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We consider the following geometric pattern matching problem: Given two sets of points
in the plane, P and @, and some (arbitrary) § > 0, find the largest subset B C P and a
similarity transformation T' (translation, rotation and scale) such that h(T(B), Q) < 4,
where h(.,.) is the directional Hausdorff distance. This problem stems from real world
applications, where § is determined by the practical uncertainty in the position of the
points (pixels). We reduce the problem to finding the depth (maximally covered point)
of an arrangement of polytopes in transformation space. The depth is the cardinality of
B, and the polytopes that cover the deepest point correspond to the points in B. We
present an algorithm that approximates the maximum depth with high probability, thus
getting a large enough common point set in P and Q.

The algorithm is implemented in the GPU framework, thus it is very fast in practice.
We present experimental results and compare their runtime with those of an algorithm
running on the CPU.

Keywords: Approximation algorithms; randomized algorithms; GPU; computational
geometry; geometric pattern matching; Hausdorff distance.
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1. Introduction

Pattern matching is pervasive in many areas of computer science. It is of special
importance in computer vision, where it directly corresponds to fundamental vision
problems like object registration and recognition. The first step in any machine
vision application, and the one that usually determines whether the application
succeeds or fails, involves locating the object within the camera’s field of view, a
process known as pattern matching. It is also of importance in computational drug
design and computational biology, where it has been successfully used for identi-
fication of drug molecules with similar shapes (and presumably similar chemical
properties). Shape matching is an important ingredient in shape retrieval, recogni-
tion, classification, alignment, registration, approximation and simplification.

A central problem in these applications, is the question of whether two point sets
P and @ in the plane resemble each other under a given family of transformations. A
common measure of resemblance is the minimum Hausdorff distance. The Hausdorff
distance (HD) between two point sets P and @ is defined as

H(P,Q) = max(h(P,Q), h(Q, P)),
where h(P, Q) is the directional Hausdorff distance from P to Q:

h(P,Q) = max min d(p,q).
Here, d(-,-) represents a standard metric (Ly or Lo ). The minimum Hausdorff
distance D(P, Q) is defined as H(T(P),Q), where T is a transformation from the
given family that gets H(T(P), Q) to the minimum.

In some applications a constant § is given, determined by the uncertainty in the
position of the input points (P and @), and one is then interested in the decision
problem, namely, whether a transformation 7" that brings P to Hausdorff distance
smaller than 9, from the points of @, exists; and if so, one wishes to find this
transformation. A slightly more general problem allows outliers — the question is
similarly posed but now we want to find a transformation 1" that brings the largest
subset B C P to Hausdorff distance smaller than §, and, report also the points in
B. This problem is called the largest common point set (LCP).

Our paper is motivated by practical pattern matching problems under similarity
transformations. The data in our experiments comes from the rasterized (pixel)
world, thus we are interested just in the decision problem. Moreover, in our kind of
data we must take into account outliers, therefore we solve here the approximate
LCP problem.

Geometric algorithms that solve pattern matching problems (including LCP)
suffer from the curse of dimensionality in the dimension of transformation space.
Huttenlocher et al.! find the minimum Hausdorff distance between P and @ under
translation in time O(n®logn), where n = max{|P|, |Q|}. Chew et al.? solve exactly
the minimum HD under rigid transformation requiring O(n®log? mn) time. Choi
and Goyal? solve the LCP problem (under rigid transformation) approximately, the
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runtime of their algorithms is O(n®logn). To get over this hurdle we provide a
GPU-based algorithm and compute approximately the LCP.

As has been done before (see, e.g. Refs. 4 to 8) our solution is based on reducing
the LCP problem to that of finding the deepest point in an arrangement of polytopes
in transformation space which is 4-dimensional in our case. We present in this paper
an approximation scheme that allows speeding up the computation in the GPU
framework, improving, on the fly, the results in Aiger and Kedem? for a similarly
stated problem, but in 3-dimensional transformation space (rigid transformation,
or translation and scale). We provide few examples of the implementation, and
compare our runtime with an implementation of the algorithm of Irani et al.” on
the CPU.

Finding the deepest point in an arrangement of objects in 3D shares common
ideas with the computation of shadow volumes in computer graphics (see a survey
by Crow!®). The problem we solve is more challenging since the objects we deal
with may have many intersections (details in the paper). Modern graphics hardware
have built-in capabilities that allow fast computation of a point of maximum depth.

Throughout the paper we assume that the scaling parameter is constrained to
be above a minimum value (to avoid the trivial case that all points in the pattern
collapse into a single point).

2. The GPU as a Stream Computer

A graphics processing unit or GPU is a dedicated graphics rendering device for a
personal computer, workstation, or game console. Modern GPUs are very efficient at
manipulating and displaying computer graphics, and their highly parallel structure
makes them more effective than typical CPUs for a range of complex algorithms.
Recently, many GPU-based algorithms for geometry, image processing and other
problems have been considered by researchers (see, e.g. Refs. 11 and 12 for more
details). In particular, the GPU as a stream computer for geometric optimization
was considered by Ref. 13. Today’s GPUs have a large number of processors (about
256), thus as in the application we present here, performing a computation on the
GPU is far faster than performing it on the CPU. The GPU provides parallelism
where each pixel on the screen can be viewed as a stream processor, enabling an
application to be computed in highly parallel mode. Modern graphics hardware
come now with a specially designed software, e.g., the NVIDIA’s CUDA, which
enables programmers and developers to write their software for the GPU as casily
as coding in C.

3. Approximating the Depth of Grid Points on a Plane
in 3D in one Rendering Pass

We start with some definitions as in Ref. 5.

Definition 1. We define the d-neighborhood of a point ¢ in the plane to be all the
points in R? that have distance < § from gq.
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Note. Throughout this work we use Lo, as the underlying metric, as we did in
Ref. 4. However, the GPU method allows us to work with the Ly metric without
any changes to our methods and algorithm. In the plane the §-neighborhood of a
point is an axis parallel square, of side-length 29, under L., and a circle of radius
0 for LQ.

Definition 2. Given a set S of convex polytopes in R and a point ¢ € R?, we
define the depth of ¢ in S, depth(q,S), to be the number of polytopes of S containing
q. The depth of S, depth(S), is defined as maz,depth(q,S) over all ¢ € RY.

We represent the similarity transformation 7' by its linear parametrization as
follows. Let (z/,3) = T(x,y), then

' =ax+by+e, (1)
y' = —bx +ay +d, (2)

where a = scos(6), b = ssin(6), s is the scale, 0 is the rotation, and (¢, d) is the
translation vector. We describe the similarity transformation as the point (a, b, ¢, d)
in R*.

Consider the set of similarity transformations that map a point p € P exactly to
a point ¢ € Q. The transformations that correspond to Eq. (1) describe a hyperplane
in R* parallel to the d-axis. The transformations that correspond to Eq. (2) describe
a hyperplane in R* parallel to the c-axis. The set of transformations that map p to
q is thus a 2-flat which is the intersection of these two hyperplanes. Based on this
parametrization we define a d0-stick in the transformation space:

Definition 3. Let Rs be an axis parallel square, of side-length 2§, in the (c,d)
plane centered at (c,d) = (0,0). A §-stick is the polytope in R* determined by the
Minkowski sum of Rs with the 2-flat described above.

Claim 1. The set of all similarity transformations that map p to the J-
neighborhood of ¢ is a 0-stick in transformation space.

In Ref. 4 we describe a GPU-based algorithm for the approximation of point
set matching in 3-parameter transformation space (i.e. rigid transformation or
scale + translation). It computes an approximate LCP of P and @ under these
transformations, for a given §. The algorithm is based on counting levels in arrange-
ments of polytopes in R*, and is implemented on the GPU by depth peeling.'* In
this section we improve the results of Aiger and Kedem,* and present a faster and
simpler GPU-based algorithm for approximating a point of maximum depth in an
arrangement of polytopes in 3D. This result is one of the building blocks of the 4D
algorithm discussed in Sec. 5.

Let S be any set of convex polytopes in R* bounded by a cube in R?, and let
W be a given plane in this cube. We are given an approximation parameter o that
determines a grid on B3 and on W. Let U be the set of a-spaced grid points on W.
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Fig. 1. A point on W belonging to the grid U, the ray coming out of it, the viewing plane, and
two polytopes.

Our goal is to approximate the depth of each point in U in one rendering pass
over S and W.

The term rendering refers to the process of drawing a 3D object on the frame
buffer, given a viewing point and the object’s geometry. While objects are rendered
to the frame buffer, the Z-buffer holds the updated distance of any rendered pixel
from the viewer (or when parallel projection is used, from the viewing plane). This
is essentially the (rasterized) lower envelope of the arrangement of the 3D objects.
The frame buffer contains the color of the object thus it can be used to store a
pointer to the object, on the envelope, at each pixel. The stencil buffer allows us to
increment or decrement a counter for each pixel. We count in this buffer the number
of front faces and back faces (definition below) placed between W and the viewer.
(See Ref. 14 for a detailed description of the computer graphics terms above.)

Our algorithm works as follows. We set the viewing plane to be parallel to
the plane W and use parallel projection rendering. We initialize the Z-buffer to a
minimum value. Then we render all the points in U (by simply drawing W using a
resolution of o and updating the depth buffer). We refer to a convex object as an
intersection of halfspaces and we say that a face is a front face if the viewing point
is outside the halfspace that defines the face, and that a face is a back face if the
viewing point is inside the halfspace containing the face. We render the objects in
S in two stages. First, the front faces are rendered while incrementing the stencil
buffer for each pixel that is closer than the depth buffer value. This counts the
number of front faces in front of every point in U. In the second stage, we do the
same with the back faces, but now decrementing the stencil for each pixel closer
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than the value in the depth buffer. We thus count the back faces in front of the
points in U. When done, the stencil buffer holds, for each point of U, the number
of objects (front faces minus back faces) that contain this point. We thus compute
the depth of all the points of U in one pass over the data of polytopes in S and the
points in U.

In our previous work? S consisted of §-sticks in R3. By using the above method,
instead of the peeling method applied in Ref. 4, we managed to make that algorithm
much simpler and faster.

In the following section we construct the set of polytopes S for our approximate
LCP problem for similarity transformations. As we will demonstrate, the set S is
a collection of slabs in R3.

4. Using Random Projection

Cardoze and Schulman!® show how to solve the geometric pattern matching prob-
lem of finding a rigid transformation that brings P approximately to the o-
neighborhood of @ (allowing a small error, &, in the distance). They discretize
the plane into a y-size grid, G, for v = %, and convert the coordinates of the
input points into integer grid coordinates. Let us denote by P’, respectively @',
the converted points of P, respectively Q. Then they add to Q" the O(ndy~2) grid
points of G, which are in the §-neighborhood of each point in Q. Finding a trans-
lation that brings the maximum number of points of P’ to coincide with the points
in @’ is an approximation of the LCP for P and Q.

They further show, that for the integer case, the question of finding the best
translation in 2-dimensional space can be reduced to finding the best translation
on a random line in the plane, and that the latter translation, when carried back
to 2D, will be the best translation in 2D with high probability.

Their algorithm is as follows. They pick a random line u in the plane and project
the input points (P’ and Q') on that line. They define a fine grid on w, so that the
probability that the best translation on the line, when carried back to 2D, will
not be the best translation 2D is very small. Then, they use FFT to find all best
translations on this line from the projection of P’ to the projection of @’. Thus
they get a randomized algorithm that succeeds with high probability to find the
translation in 2D. (See Ref. 15 for more details.)

Following the ideas in Ref. 15, we get rid of one translation parameter, thus
converting our 4D problem into a 3D approximation problem. Now, instead of
looking for the approximately optimal 4D similarity vector (a, b, ¢, d), we look for
an approximately optimal 3D vector (a,b,t). For simplicity we first describe the
idea in the continuous space. For a given point p € P and a point g € @, let ¢; be
the projection of ¢ on u (see Fig. 2). Let p1 denote the transformation of p by scale
and rotation (parameters a,b), and let p; be the projection of p; on u. We have
(applying scale and rotation):

P11 = (apx + bpya —bps + apy)7
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Fig. 2. Reducing 2D translation to 1D by projection onto a random line.

where p, and p, are the z and y coordinates of p respectively. Then (applying scale,
rotation and dot product with u):

Ipt| = apzug + bpyus — bpauy + apyuy,
|Qt| = (zUgz + QyUy,

where | - | is the length of the vector. The mapping from p to ¢ on the vector u
satisfies:

apz Uy + bpyuy — bpruy + apyy +t = guus + qyuy, (3)

where t is the shift on the line u. This is a plane in R? (for fixed p, ¢, u) and with
parameters a, b (from Egs. (1) and (2)) and ¢ on the line u. We denote this plane
by N.

Recall that the fine grid size on u was defined so that, with high probability,
only one point of " will be projected to one grid interval on u. For a fixed pair of
points p € P’ and ¢ € Q' as above, there is a transformation (¢, b’,t') that maps
p to ¢ (and with high probability to ¢). Allowing ¢ to vary from one end of the
grid cell of ¢ on w to the other, the plane N sweeps a slab in transformation space
(a,b,t). Our set of polytopes S consists of the slabs assigned to all pairs (p,q),
pe P and ge Q.

Consequently, it follows from Ref. 15 that the similarity transformation that
brings the largest number of points in P’ close to points of Q' can be found by
finding the point (ao, bo, to) that is covered by the maximum number of slabs in R>.
This is the second building block in the algorithm which we present below.

Note that in the exact setting in Ref. 5 we required the §-neighborhood of
the points in @ to be pairwise disjoint in their interiors, in order for the depth to
correspond to the cardinality of the LCP of P and (). Here this restriction is relaxed
by adding O(§v~2) grid points around each point of @, and by refining the cell
size on wu.

5. Algorithm, Implementation, and Experiments

The algorithm. We are given two point sets P and @ in the plane, § > 0, and
e > 0. We wish to find a similarity transformation that brings the maximum number
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of points in P to the d-neighborhood of points in (). We first give a brief overview
of our algorithms: we round all points in P and @ to a planar grid determined
by . Next we project the 4D transformation space to a 3D transformation space,
creating the objects in this space that correspond to transformations which map
each p € P to every ¢ € Q). We then find a point in the arrangement of these objects
in 3-space that is covered by the maximum number of objects (maximum depth).
To this end we apply our GPU algorithm. Returning back to 4D, the point we thus
found corresponds to a similarity transformation as required.
In more detail we do:

e Draw the grid G of cell-size v on the plane.

e Convert the coordinates of each point of P into its closest grid’s integer coordi-
nates, creating P’.

e Convert the coordinates of each point of () into its closest grid’s integer coordi-
nates, initiating @', and add to @’ all the 6y~ 2 grid points in the d-neighborhood
of each point of Q.

e Pick a random line u on the plane and convert our 2D translation into 1D
translation, and the 4D transformation space (a, b, ¢, d) into a 3D transformation
space (a, b, t).

e Construct the slabs, one for each pair (p, q), for all p € P’ and ¢ € Q'.

e Determine a grid in transformation space so that for every p in P’ and every two
centers, T, Ty, of neighboring cells |71 (p) — T2(p)| < 3. Let  from Sec. 3 be that
erid size.

e For each slab, we set its lower plane to be the plane W as in Sec. 3 and set U to
be the grid points on W. We compute the depth of the arrangement of all slabs
for all points of U. (Clearly, the deepest point in the arrangement is in one of
the slabs, and hence can be computed, without loss of generality, for the lowest
plane in the slab.)

e We pick the slab, and grid point of maximum depth on it, as our result.

Complexity. In total we need one rendering pass for each plane, meaning O(mn)
passes. (If m = |P| and n = |Q| then there are O(mn) such planes, one for each
p € P mapped to each ¢ € Q). Naively, we have to render m?n? polygons in total.
However, by applying a randomization scheme from Aronov and Har-Peled,'¢ we
can reduce the number of objects in our arrangement and with it the number of
passes, so the number of rendered polygons in total gets down to O(n?). According
to Ref. 16, we sample our set of objects by taking every object with probability
O(X logmn) (with constants that depend on the desired approximation). We com-
pute the point of maximum depth in the arrangement of this sample set and we get
a “good enough” approximation for the maximum depth in the entire set, with high
probability. This means that instead of finding the point of maximum depth, D,
we approximate it to find a point of depth (1 — ¢)D with high probability where e
determines the approximation. For details on this approximation see Refs. 5 and 16.
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Note (see below for detailed implementation) that the actual number of rendered
polygons can be lower and their size is very small since for each pass we compute
the depth of all (discrete) points that lic on a specific plane which is the lower plane
of the object in turn (we go over all objects), thus we are only interested in the
polygons that intersect this object. To conclude, we render O(n?) small polygons
in total but the practical number can be smaller.

The implementation. We implemented the GPU algorithm on a PC Pentium
3.3Ghz with Nvidia GEforce7800 using OpenGL. We should note that modern
GPUs now have advanced capabilities that can be used by modern languages like
Nvidia CUDA, but at the time we wrote this code it was not available. Clearly,
using such modern hardware and software would have resulted in much better time
performance for the same algorithm.

Since all objects are slabs with limited width, we can limit our rendering to
a small slab around each plane. We use OpenGL function ¢lClipPlane() to set a
clipping region which is a small slab around the plane in process. For each plane
among the lower planes of all objects we apply the algorithm described in Sec. 3
in one rendering pass. Following each pass, we have to get the point of maximum
value from the stencil buffer. In CUDA, fast stream reduction is possible but our
implementation does not use CUDA. Still, this can be done without reading back
the buffer to main memory by parallel reduction techniques'” implemented as a
fragment program.!'! We use the simplest implementation that runs in O(log N)
steps and overall O(N) time where N is the number of pixels.

Since the stencil buffer has only 8 bits in most hardware, there is theoretically
a potential overflow if there are more than 255 objects counted during a pass for
a single point in the stencil buffer. To prevent this, we apply a process of adding
the stencil buffer values to 24 bits buffer for every chunk of 255 polygons rendered
and then reset the stencil. This again is done without reading back the buffer.
Modern hardware eliminates this need. Once all passes are finished and the point
P = (z,y) in the stencil buffer, corresponding to the point of maximum depth
in 3D, is computed, P corresponds to a ray in 3D where the point of maximum
depth (in 3D) must lie. We apply one more pass to compute the actual 3D point
by OpenGL selection mode and get the desired output.

We give experimental results for a number of input sizes and error parameters.
In all tables, |P| = |Q| = n, ¢ is the error (pixel size). For finding the depth in the
arrangement of these planes in 3D, we use the method described in Sec. 5 on the
GPU to get O(n?) time GPU algorithm. In all tests the range for the parameters
a and b (Egs. (1) and (2)) was [0.2,2]. The input sets are points taken randomly
from [—1,1] x [-1,1]. We used 6 = 0.01 for all tests. An example of the point sets
can be seen in Fig. 3 for n = 100. The time is given in seconds. For comparison,
we implemented on the CPU the algorithm of Irany and Raghavan® which is a
randomized faster version of the practical algorithm of Goodrich et al.'®

The experiments are summarized in Tables 1 and 2, taking m = n.
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Fig. 3. The point sets P and @ for n = 100. P contains the points of @, rotated by 0.5 radians
and scaled by a factor of 0.8, with added position noise.

Table 1. Running time (in seconds) for number of input points. In practice
we get quadratic time in the number of points in Q.

9

n € Our GPU algorithm time Randomized alignment time

50 0.02 0.008 0.078

100  0.02 0.031 0.485

200 0.02 0.079 2.937

400  0.02 0.269 37.469
800  0.02 1.231 —
1600  0.02 3.943 —

Table 2. Running time (in seconds) for various e.

n € time

100 0.02 0.031

100 0.01 0.081

100 0.005 0.245

100 0.0025 0.714

Limitations. While being fast in many practical cases, our GPU algorithm has
some limitations. The input should be bounded so that it can be rendered onto the
GPU frame buffer that has bounded memory. The approximation error, &, should
not be too small. Our algorithm can become expensive both in runtime and in the
required memory if € is very small.
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