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Abstract: This paper presents the design and analysis of a novel nonlinear spring for widening the bandwidth of 

the frequency-response of a vibration energy harvester (VEH). Based on a crab-leg design, an angle � is introduced 

in the main spring beam in order to add geometric nonlinearities. We use a discrete optimization process to 

determine the optimal shape of the spring given by �. We present the correspondent frequency-response curves 

under ideal white-noise excitations using Lindstedt-Poincaré Perturbation Technique. It appears that the angle �

maximizing nonlinearities is 170°. Based on this design, a VEH having two linear and two nonlinear springs is 

proposed for lowering the excitation frequency range. 
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INTRODUCTION 
VEHs are currently receiving a great attention 

thanks to their ability to act as independent 

autonomous power generators for MEMS components. 

An efficient VEH has to operate in the mode of strong 

electromechanical coupling [1]  and has to benefit to 

most of the vibration frequencies available in the 

surrounding environment. However most of those 

devices are designed as linear resonant structures. One 

of their fundamental limitations is their narrow 

bandwidths. A solution to overcome this problem is to 

introduce nonlinear springs, which introduces a 

hysterical mechanical behavior and their design can be 

complex [2]. 

In this work, we detail the optimization process 

used to determine the optimal shape of a novel 

nonlinear spring design, and we present an approach 

for the determination of the frequency response based 

on the Lindstedt-Poincaré Perturbation Technique. 

Then we modify the formula of the maximal harvested 

power for linear VEH [3] in order to evaluate the 

efficiency of the spring design. 

Fig. 1: Simplified dynamical model of the vibration-

driven energy harvester. 

DYNAMICAL MODEL 
Model and equation of motion 

We used a simplified spring-mass dynamical 

model of the vibration-driven energy harvester made 

of 4 springs, a damper and an inertial mass which 

dimensions and design rules are based on the silicon-

based VEH in [4]. We assume that the oscillator is a 

single degree of freedom lumped system (Fig. 1). We 

denote by x its displacement in the mobile rigid frame 

and y the displacement of the frame itself. The 

governing equation of motion can be derived using 

Newton’s second law as: 

ymFFFxm Rd
���� −==−−          (1) 

where m is the effective mass of the resonator, x��  and 

��y  are the second time derivative of x and y,

respectively. Fd is the damping force, FR is the springs 

restoring force and F is the external force applied on 

the inertial mass by the rigid frame. We assume linear 

viscous damping that is:  

xcFd
�−=            (2) 

where c is the damping coefficient. 

Fig. 2: Schematic view of the nonlinear spring. 
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Restoring force 
First, we perform finite element analysis to derive 

the expression of FR for the proposed spring in Fig. 2.  

This geometry is based on a crab-leg design. An 

angle � is introduced in the main beam to add 

geometric nonlinearities [5] due to larger 

deformations, while keeping a low operational 

frequency range as we will see later. 

For this design, the restoring force FR is not 

proportional to x when oscillations amplitude is not 

negligible comparing to the spring thickness. We 

assume third order Taylor series expansion of the 

nonlinear restoring force, which is: 

)( 3

2

2

1 xkxkkxFR ++−=          (3) 

where k is the normal linear spring constant, k1 and k2

are the second and third order corrections, 

respectively. Those constants depend on spring 

dimensions, geometric parameter � and boundary 

conditions. In all following analysis, the only variable 

parameter is the angle � that determines the shape of 

the spring. The fixed geometric parameters are 

mentioned in Fig. 2. 

Using commercial FEM tool ANSYS Multiphysics, 

we apply a horizontal displacement on the guided end 

gradually and we determine the value of restoring 

force for each load increment. We plot the force-

displacement curve in Fig. 3 for a set of angles. They 

are asymmetric due to the asymmetry of the spring 

geometry. For large displacements the curves are no 

more linear. 

Fig. 3: Force-displacement curve of one nonlinear 

spring obtained by FEM for various values of �. 40 

linear elements were used to model each spring 

segment. 

We numerically evaluate the spring constants 

using the following optimization formulation based on 

least square method: 

� �
���� � � ��

=

− + +�
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m
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i

F kx k x k x         (4) 

where xi is the displacement increment and FRi is the 

restoring force at the increment i. The obtained results 

are shown in Fig. 4 after fitting. k, k1 and k2 are 

maximal at � = 180°. One may think that it is the best 

angle for nonlinearities. However, this is not exact as 

we will see later. In addition, the angle 180° leads to 

the stiffest springs resulting in the highest working 

frequency range comparing to other values of �. 

Indeed, the linear resonance frequency 

m

k
=0ω increases with k and is maximal at � = 180°. 

Fig. 4: Spring constants obtained by FEM, 40 linear 

elements were used to model each beam segment.

FREQUENCY-RESPONSE CURVES 
We present results obtained by the Lindstedt-

Poincaré Perturbation Technique [6-7] to determine the 

frequency-response curves of the oscillator. We also 

performed numerical solutions given by Long Time 

Integration method to validate the perturbation 

approach (not shown in this paper). 

Lindstedt-Poincaré Perturbation Technique 
Substituting FR and Fd by their expressions in 

Eq. l) leads to: 

Fxkxkkxxcxm =++++ 3

2

2

1
���        (5) 

We assume that the solution of Eq. 5) is periodic. 

Far from resonance, the nonlinear terms are small. The 

time harmonic vibration amplitude X can be written as 

[7]: 

2022

0

2 )()(
Q

m

F

X
ωω

ωω

ω

+−

=  (6) 

where F� is the magnitude of the forcing term at 

frequency � and 
c

m
Q 0ω

=  denotes the quality factor.  

Near resonance, frequency-response curves can be 

approximated using the Lindstedt-Poincaré 

Perturbation Technique. We first consider unforced-

undamped vibrations: 

03

2

2

1 =+++ xkxkkxxm ��          (7) 

We introduce the perturbation parameter �. We 

assume that the nonlinear terms in Eq. 7) will change 

the resonance frequency to �0’. Then x and �0’ can be 

written as: 
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Solving Eq. 7) and Eq. 8) for oscillations amplitude X0

leads to [7]: 
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where
2

000 ' Xκωω += is the new resonance frequency 

that depends on oscillations amplitude and � denotes 

the nonlinear spring constant that measures the change 

of the resonance frequency. � is defined as [7]: 
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From Fig. 5 it can be seen that the angle � leading 

to the best nonlinearity is 170°. 

Fig. 5: Nonlinear effect constant � versus the angle �

for one nonlinear spring. 

Fig. 6: Normalized amplitude versus normalized 

frequency of the mobile mass under harmonic 

excitations for various values of � (normalization is 

with respect to the values of � = 180°). 

Fig. 6 shows that the angle � =180° leads to the 

higher working frequency range as expected. In 

addition, one can notice that when �’< 0, a hardening 

effect is obtained and when �’ � 0, a softening effect is 

observed, where �’ is the first derivative of � with 

respect to �.

Fig. 8: Normalized power versus normalized frequency 

under harmonic excitations 0.5 g in amplitude. The 

reference angle is � =170°. 

Convertible Power 
If we assume that the mechanism responsible for 

the conversion of power from the mechanical domain 

to the electrical domain is equivalent to an ideal 

damper, the convertible energy is equivalent to the 

dissipated energy. For a linear oscillator the 

convertible power is equal to [3]:

222
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=       (11) 

where
0ω

ω
ω =c ,

Q2

1
=ξ  is the damping ratio and 0Y is 

the rigid frame displacement amplitude. Eq. 11) can be 

written as: 

2

0

2

2

1
XcP ω=         (12) 

To calculate the maximal convertible power of our 

structure near resonance, we substitute the linear 

resonant pulsation �0 by 
2

000 ' Xκωω +=  in Eq. 12). 

Fig. 8 compares the frequency response of a linear 

and a nonlinear oscillator having the same linear 

spring stiffness, mass and damper. It can be seen that 

the two systems have almost the same peak amplitude. 

In order to evaluate the efficiency of each system, we 

calculate the average convertible power as: 

�=
ϖ

ωP
n

P
1

        (13) 

where ωP is the convertible power at the frequency ω

and n denotes the number of frequencies. The average 

power generated by the nonlinear system is 2.6 times 

greater than the linear oscillator because it has a larger 

bandwidth. 
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We use the same method to calculate the average 

convertible power for different values of � when the 

system is subjected to a perfect white noise of different 

levels [8]. Fig. 9 shows that for small excitations, the 

behavior of the system is linear and the average 

convertible power is almost constant for all values of �

(Fig. 9). Increasing the excitations amplitude leads to a 

nonlinear behavior. A peak power generation is 

observed at � = 170°. 

Fig. 9: Normalized output power versus � when the 

mobile mass is under ideal white noise excitation of 

standard deviation �.

Fig. 10: Normalized amplitude versus normalized 

frequency when the mobile mass under ideal white 

noise excitation of standard deviation � = 0.5 g. 

Lowering the frequency range 
In order to reach a lower working frequency range 

of the device, we propose to attach the inertial mass 

with 2 serpentine-shaped linear springs and two 

nonlinear springs. Fig. 10 shows the impact of such 

configuration.

It can be seen that the -3dB bandwidth of the 

design with a mix of linear and nonlinear springs is 

125% larger than the fully linear configuration and 

could harvest 2.5 times more energy if excited by an 

ideal white noise. The device having 4 nonlinear 

springs has a -3dB bandwidth 147% larger than a 

linear oscillator with the same stiffness and could 

harvest 2.6 times more energy. In addition, we can see 

that the oscillation amplitude increases thanks to the 

proposed configuration. 

CONCLUSION 

Based on Lindstedt-Poincaré Perturbation 

Technique, a discrete optimization process is achieved 

to determine the optimal angle that maximizes the 

oscillations bandwidth. The angle does not only add 

nonlinearities to the motion of the system, but can also 

decrease the stiffness of the springs leading to lower 

operational frequency range. A VEH design having 

two linear springs and two nonlinear springs is 

proposed in order to reduce the operational frequency 

range.  
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