
Elements on Adaptive Filters

J.-F. Bercher

March 15, 2014

Contents

1 LMS Algorithm 1
1.1 Filter Identification . 2
1.2 Noise cancellation . 3
1.3 Corrupted speech . 4

Author: J.-F. Bercher
06 décembre 2013
English version: february 20, 2014
Last update: march 07, 2014

The goal of this lab is to illustrate and consolidate some concepts on adaptive filtering. First, we study the
problem anatycally; then we will experiment and study the probleme in simulation. In particular –since one
should do it at least one time, you will implement and use a LMS algorithm. You will study the convergence
properties, the role of the adaptation step, etc. We will consider an identification problem and then several
noise cancellation problems.

1 LMS Algorithm

Implement a LMS algorithme. The call syntax should be:

def lms(d,u,w,mu):

"""

Implements a single iteration of the stochastic gradient (LMS)\n

:math:‘w(n+1)=w(n)+\\mu u(n)\\left(d(n)-w(n)^T u(n)\\right)`‘

Input:

======

d : wanted sequence at time n \n

u : vecteur de longueur p des échantillons d’entrée \n

w : wiener filter to update \n

mu : adaptation step

Outputs:

=======

w : upated filter

error : y-yest

dest : prediction = :math:‘u(n)^T w‘

"""

1

1.1 Filter Identification

You will test this algorithm on an identification problem. >You will use as a test signal the output of a
filter excited by a white noise, according to

from scipy.signal import lfilter

N=200

x=randn(N)

htest=10*array([1, 0.7, 0.7, 0.7, 0.3, 0])

L=size(htest)

z=zeros(N)

for t in range(L,200):

z[t]=htest.dot(x[t:t-L:-1])

z+= 0.01*randn(N)

z2=lfilter(htest,[1],x)+0.01*randn(N)

Implementation:

• Begin by some direct commands (initializations and a for loop on the time variable) for identifying
the filter; once this works you will implement th commands as a function ident

• If necessary, the function squeeze() enable to remove single-dimensional entries from the shape of an
n-D array (e.g. transforms an array (3,1,1) into a vector of demension 3)

• Implement now the identication procedure as a function ident which uses a loop on the lms algorithm,
called with the correct parameters. Syntax:

def ident(observation,input_data,mu,p=20,h_initial=zeros(20),normalized=False):

"""

Identification of an impulse response from an observation

‘observation‘ of its output, and from its input ‘input_data‘ \n

‘mu‘ is the adaptation step\n

Inputs:

=======

observation: array

output of the filter to identify

input_data: array

input of the filter to identify

mu: real

adaptation step

p: int (default =20)

order of the filter

h_initial: array (default h_initial=zeros(20))

initial guess for the filter

Outputs:

========

w: array

identified impulse response

err: array

estimation error

yest: array

estimated output

"""

In order to evaluate the algorithm behaviour, you will plot the estimation error, the evolution of the
coefficients of the identified filter during the iterations of the algorithm; and finally the quadratic error

2

between the true filter and the identified one. This should be done for several orders p (the exact order is
unknown. . .) and for different values of the adaptation step µ.

• The quadratic error can be evaluated simply thanks to a comprehension list according to Errh=[sum(he-
w[:,n])**2 for n in range(N+1)]

Normalized LMS In the normalized LMS, the adaptation step can be computed automatically according
to

µ =
1

u(n)Tu(n) + ε

mun=mu/(dot(input_data[t:t-p:-1],input_data[t:t-p:-1])+1e-10)

Study the convergence speed with respect to the adaptation step, by introducing a slow non-stationarity
in the signal, for instance according to

Slow non-stationarity

N=1000

u=randn(N)

y=zeros(N)

htest=10*array([1, 0.7, 0.7, 0.7, 0.3, 0])

L=size(htest)

for t in range(L,N):

y[t]=dot((1+cos(2*pi*t/N))*htest,u[t:t-L:-1])

y+=0.01*randn(N)

RLS Algorithm Kindly, we offer you an implementation of the Recursive Least Squares algorithm.
Restart the previous experimentations (identification with non stationary data) with the RLS algorithm.
Compare and conclude.

In order to import the definitions, include a from algorls import *, or cut and paste these definitions.

1.2 Noise cancellation

Let s be the signal we want to estimate from the mixture x = s + b, and from the noise reference u. You
will apply a noise cancellation procedure, wher the filter will be identified in an adaptive way, using a LMS
algorithm. For your experiments, you have to consider the tests signals included in the files sb1.npz and
sb2.npz. The first file contains two noise references, one is stationary, the second non stationary. You will
consider these two references successively. You will take values between 0.01 and 1 for the adaptation step.
For the second signal in sb2.npz, we have a much more important non stationarity and a lower signal-to-
noise ratio. It might be useful to consider the problem in two phases, so as to obtain a frst estimate of the
impulse response, which will be used as an initial condition in the second phase.

Implementation : You will implement a function following the call syntax

def noisecancel(ref,signal,h_ini,mu,normalized=False):

"""

Noise cancellation algorithm

Inputs:

=======

ref: array

noise reference

signal: array

signal path (signal mixture s +b, where b is correlated with ref

h_ini: array

initial impulse response

3

mu: adaptation step

Outputs:

========

h: array

identified impulse response

s: array

signal identified by noise cancellation

b_est: array

noise on the signal path estimated from ref

"""

(....)

Test: Problem Simulation

N=1000

u=randn(N)

b=lfilter(ones(10),1,u)

s=sin(2*pi*0.03*arange(N))

x=s+b

(h,s,s_est)=noisecancel(u,x,zeros(12),0.2,normalized=True)

figure()

plot(s)

print(h)

For loading the data, you have to do something like

f=numpy.load(’sb1.npz’)

f is a dictionary

its keys are given by

f.keys()

>>> [’ref2’, ’ref1’, ’obs’]

Then the contents are affected to local variables

obs=f[’obs’]

ref1=f[’ref1’]

ref2=f[’ref2’]

1.3 Corrupted speech

We end with a speech sound, corrupted by a cricket chirping

1. We load data by

f=numpy.load(’parole_bruitee.npz’)

g=numpy.load(’decticelle.npz’)

then the contents are affected to local variables

d=f[’d’]

u=g[’u’]

2. Perform the noise cancellation. Then you will be able to listen the result thanks to the sound function
which has been thrown together by your servant (from syssound import *).

THE END.

4

	LMS Algorithm
	Filter Identification
	Noise cancellation
	Corrupted speech

