Array_Processing?2

Author: J.-F. Bercher
date: january 09, 2014
Updates : january 12, 2014

1 Some useful definitions

We begin by some useful definitions

* asimple routine that returns a comumn vector from any array
* two functions which return the steering vectors for a Unifor Linear Array (ULA), in the case of plane waves and
of circular waves

In [3]: def

def

def

sconfig InlineBackend.figure_format = ’svg’

col (v) :

"mrn transforme un array en vecteur colonne"""

v=asmatrix (v.flatten())
return reshape (v, (size(v),1))

steeringvec_plane (theta,N,d, lamb) :
""" plane waves ——\n

Returns the steering vector for a plane wave\n

illuminating an ULA

mmrn

k=arange (0, N)

u=d+sin (thetaxpi/180) /lamb
a=exp (Lj*2+xpixk*u)

return a

steeringvec_circ (H,D,N,d, lamb) :

mnr o circular waves

a([D,H])=[.... 1/Rkxrexp(—j+2+pirf0+Rk/c) ..
a([D,H])=[.... 1/Rk+exp (-j*2+pi*Rk/lambda)

with Rk"2= H"2+ (D+ (k-1) »d) =2
k=arange (0, N)

R= sqrt (H"2+ (D+ (k—1) xd) x*2)
a=(1/R) xexp (-1j*2+xpi+R/1lamb)
return col (a)

2 Simulation of data

J.-F. Bercher

January 12, 2014

In

[4]:

We have a Uniform Linear Array, with

c=346 # sound velocity, in m/s
£0=1000 # frequency Hz

lamb=c/£f0 # wave length

d= lamb/4 # distance between sensors
M=10; # Number of sensors

mintheta=-180; steptheta=1; maxtheta=180
Nb_snap=500; # Number of snapshots

3 Determination of the directivity diagram

We simulate a single source in the direction 30°,, and plot the directivity diagram for several values of M, the number
of sensors. For each), we compute the output of the beamformer, ie the spatial filter w = —¢-, as 2(0) = whz

In

Oout

[5]:

[5]:

Directivity diagram

99090000000000000000000000000090000000090

OO0OOO0OOOOOOOOOOOOOOOOOOOOOOOOOOOOO©OODO™©
We simulate a single source in the direction 30°,, and plot the directivity diagram
values of M, the number of sensors

theta=30

for M in (10,20,100):

x=2+steeringvec_plane (30,M,d, lamb) # <—— data

vtheta=arange (mintheta, maxtheta, steptheta) # range of values of angles theta to
m=0

S=zeros (size (vtheta))

for theta in vtheta: # For each theta, we compute the ou

ie the spatial filter Sw=\fracf{a}
a=steeringvec_plane (theta,M, d, lamb)

w= a/vdot (a, a) # vdot (a,a)=mat (a) .H+mat (a) # beamforming : norm 1 vector
S [m]=abs (vdot (w, x)) # Output of the beaformer : Sz (\the
m=m+ 1

figure (1)

plot (vtheta, abs(S), label="M={}".format (M))

figure (2)

polar (vtheta*pi/180, (abs(S)), label="M={}".format (M))

figure (1)

xlabel ($\\theta$’)

title ('Output to a single source’)
legend ()

figure (2)

title('Directivity’)

legend()

<matplotlib.legend.Legend at 0x7£322dc42050>

25 Output to a single source

— M=10

— M=20

2.0

1.5

1.0

0.5

0.0 L
-200 -150 -100 -50 0 50 100 150 200

180

270°

¢ We see that the main lobe’s width, or beanwidth, decreases with M. Actually, we know that in terms of spatial
frequencies, the width is ~ 1 /M.

* The second point is that we can observe a second, phantom source at 180°,. This source corresponds to the
fact that we do not know if the real source is located above or below the array plane. Evidently, from physical
reasons, we might know that the source is “above”, but this is not included in the model.

4 Fourier Analysis

The beamforming, in the case of plane eves, is directly related to the spatial Fourier transform of the signals recorded
at the sensors of the antenna. Actually, we simply have that

M—

: _ L

[y

S(0) =wte = L FT{z} (1)

Furthermore,the finite size of the array — the finite number of sensors, induce a convolution by a cardinal sine. As a
consequence, for a single source, instead of observing a pure spectral line (a Dirac impulse), we got a cardinal sine,
with a main-lobe of width 1/M, which induces a limitation in resolution.

This is illustrated below.
In [27]: from numpy.fft import fft, ifft

close(’all’)
for M in (10,20):
x=steeringvec_plane (30,M,d, lamb)
N=1024
x=array (x) .flatten()
S=1/Mxabs (fft (x,N)); # with zero padding
the prefactor 1/M normalizes the amplitude to 1
S=fftshift (S);
f=(arange (N) /N-0.5)

figure (1)

plot (f,S, label="M={}".format (M)) # with frequencies between +-1/2
The normalized frequencies are actually d sin(theta)/lambda

Thus

figure(2) # Here, we plot with respect to θ instead of Su(\theta)$
There is a simple change of variable in representation which
leads to a kind of distorsion of the sidelobes —-- the very same observ
holds for the output of the beamformer obtained above

plot (180/pi*arcsin(lamb/dxf),S, label="M={}".format (M))

figure (1)

xlabel ("frequencies Su(\\theta)s")
legend()

figure (2)

xlabel ("S$S\\thetas")

legend()

Smax=max (S)
fmax= (find (S==Smax)) [0] /N-0.5

print ("The maximum of the FT accurs at $f={}$, that is an \
angle of {:2.2f}°,".format (fmax, 180/pirarcsin(lamb/d*fmax)))

The maximum of the FT accurs at $f=0.125$%, that is an angle of 30.00°,

1.0

0.8}

0.6

0.41

L
0.0 0.2 0.4 0.6

0.0 L L
-0.6 -0.4 -0.2

frequencies u(6)

1.0 T T

0.4}

0.2

0.0 1 1
-100 -50

5 Spectrum at the beamformer output - resolution

We now consider a mixture of three sources with a Gaussian amplitude (randn function), in the directions (—20°38°,
40°) and with variances (1, 4, 4).

* we compute the correlation matrix, using K snapsots x, according to

1 XK
_ +
R=— kg_l T, 2

mmwn

In [28]: mimmn

Simulated data
def randn_m(*args) :
return matrix (randn (xargs))

x=2+float (randn (1)) xsteeringvec_plane (-20,M,d, lamb) + \
2+«float (randn (1)) xsteeringvec_plane (38,M,d, lamb) + \
float (randn (1)) »steeringvec_plane (40,M,d, lamb)

vtheta=arange (mintheta, maxtheta, steptheta)
m=0
S=zeros (size (vtheta)) +07]
for theta in vtheta:
a=steeringvec_plane (theta,M, d, lamb) ;
w= a/sqrt (vdot (a,a))
S [m]=vdot (w, x)
m=m+1

close(’all’)

figure (1)

plot (vtheta, abs (array (S)))
xlabel (S\\theta$’);

title ("DOA for current random realization")

mmn

DOA spectrum
We first compute the correlation matrix of the array, by averaging K

snapshots (i.e. realizations taken over the array sensors)
mmn

M=200

m=0

R=zeros ((M, M))

for k in range (Nb_snap) :
x=2+randn (1) xsteeringvec_plane (-20,M,d, lamb) + \
2+randn (1) xrsteeringvec_plane (38,M,d, lamb) + \
lxrandn (1) *steeringvec_plane (40,M,d, lamb)
R=R+outer (x,x.conj())

iR=inv (R+0.01lxeye (M))

from numpy.linalg import matrix_rank
print ("\t ==> The matrix R of size {1} has rank {0}".format (matrix_rank (R), repr (shape (

mintheta=-90; steptheta=1; maxtheta=90
vtheta=arange (mintheta, maxtheta, steptheta)

Beamforming spectrum
for M in (10, 50, 100, 200):
m=0;
S=zeros (size (vtheta))
C=zeros (size (vtheta))
for theta in vtheta:
a=col (steeringvec_plane (theta, M, d, lamb))
w= a/sqrt (a.Hxa)

S[m]=1/M*abs (w.H*R[:M, :M] xw) #beamforming spectrum
the extra factor M is introduced for normalization purposes
m=m+1
figure (2)
plot (vtheta, abs(S),label="M={}".format (M))
figure (2)

xlabel (" $\\thetas’)

title ("Beamforming Spectrum")
x1lim ([0, 901)

legend()

==> The matrix R of size (200, 200) has rank 3

<matplotlib.legend.Legend at 0x7£322d510cd0>
Out [28]:

14 DOA for current random realization

121

101

0 L
-200 -150 -100 -50 0 50 100 150 200

3000 . . Belamforlmmg SlpectrtIJm

2500

2000

1500

1000

We see that the two sources at 08 and 40°, are resolved for M = 200 but not for M = 100. Actually, we will have a
correctct separation when u(62) — w(61) > 1/M, which implies M > 1/(u(62) — u(61)) which, numerically, gives
M > 148.

theta2=40%pi/180; thetal=38/180x*pi
1/ (d/lambx (sin (theta2) -sin (thetal)))
Out[24]: 147.45927107728497

6 Capon’s method - Comparison of Beamforming and Capon spectra
for M=20

The idea of Capon’s method is to designa a spatial filter which miimizes the overall power in a direction 6, while
imposing a unit gain in this direction. This results in a spatial filter

R 'a

w =
atR1la

3)

which minimizes the aliasing between sources; the filter depends on the direction scanned, but also on the overall
environment, via the matrix R

m=0

M=20

iR=inv (R[:M, :M]+0.01lxeye (M))

S=zeros (size (vtheta))

C=zeros (size (vtheta))

for theta in vtheta:
a=col (steeringvec_plane (theta,M,d, lamb))
w= a/sqgrt (a.H*a)

In [29]:

S[m]=1/Mxabs (w.H*R[:M, :M] *xw) #beamforming spectrum
the extra factor M is introduced for normalization purposes
w= iRxa/ (a.H*xiRxa) # Capon vector
C[m]=1/abs (a.HxiRx*a) #Capon spectrum
m=m+1
figure (2)

plot (vtheta, abs(S),label="Beamforming Spectrum")
plot (vtheta, abs(C),label="Capon Spectrum")
xlabel (’ $\\theta$’)

legend()

figure (3)

plot (vtheta, abs(C),label="Capon Spectrum (zoom)")
x1im ([30, 50])

xlabel (" $\\theta$’)

legend()

<matplotlib.legend.Legend at 0x7£322d1533d0>
Oout [29]:
3000 - T T
— Beamforming Spectrum
2500 — Capon Spectrum |

2000} E

15001 E

1000 i

500} E

0
—100 -50 0 50 100

2500 - - -
— Capon Spectrum (zoom)

2000 E

1500 i

T
I

1000

30 35 40 45 50

We see that the results obtained with M = 20 with Capon’s method are equivalent to the beamforming with M =
200... This shows that it is useful to study advanced concepts and invest in more evolved methods.

7 Spatial filtering

We consider a example of spatial filtering. We have a source of interest in the direction # = 38X, but with with severe
jammers in the directions § = —20%, and 6 = 403,. We show here, that the source of interst can be almost extracted
by a spatial filter.

def rect_pulse(xargqg):

In [30]: return (sign(cos(*xarqg)))

N=1000

x=2+outer (steeringvec_plane (-20,M,d, lamb) , randn (N, 1))+ \
2xouter (steeringvec_plane (38,M,d, lamb) , rect_pulse (2+pi*0.01l+arange (N)))+ \
outer (steeringvec_plane (40,M,d, lamb) , randn (N, 1))

a=col (steeringvec_plane (38,M,d, lamb))
w= iR*a/ (a.H*iR=*a) # Capon vector
z=w.Hrmatrix (x) # Filtering

representations

figure(l); clf()

plot (real (x[0,:]))

title("Signal recorded on first sensor")
xlabel ("Time")

figure(2); clf()

plot (real (array(z) .flatten())) # need to do this cause there is a bug in matplotlib 1.
xlabel ("Time")

title("Signal recovered after spatial filtering in the 38°, direction")

<matplotlib.text.Text at 0x7£322cd7dd10>
Out [307]:

Signal recorded on first sensor

0 200 400 600 800 1000
Time

3Signal recovered after spatial filtering in the 38° direction

EELEET TR

N

R pR TP AN RTRn T

	Some useful definitions
	Simulation of data
	Determination of the directivity diagram
	Fourier Analysis
	Spectrum at the beamformer output - resolution
	Capon's method - Comparison of Beamforming and Capon spectra for M=20
	Spatial filtering

