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ABSTRACT

Algorithms based on the minimization of the Total Variation
are prevalent in computer vision. They are used in a variety
of applications such as image denoising, compressive sensing
and inverse problems in general. In this work, we extend the
TV dual framework that includes Chambolle’s and Gilboa-
Osher’s projection algorithms for TV minimization in a flex-
ible graph data representation by generalizing the constraint
on the projection variable. We show how this new formulation
of the TV problem may be solved by means of a fast parallel
proximal algorithm, which performs better than the classical
TV approach for denoising, and is also applicable to inverse
problems such as image deblurring.

Index Terms— Proximal algorithm, inverse problems, image
denoising, convex optimization, image restoration

1. INTRODUCTION

The Total Variation (TV) model was introduced as a regu-
larizing criterion for image denoising by Rudin, Osher and
Fatemi [9], and has been shown to be quite efficient for
smoothing images while preserving contours. Moreover, a
major advantage is that TV minimization is a convex problem,
although coping with the non-differentiability of the involved
objective function required the development of specific op-
timization techniques, particularly with respect to speed and
efficiency. Much progress has been achieved by employing
primal-dual approaches [4, 2], and more recently by the dual
approach of Chambolle [3]. Qualitative improvements have
also been obtained by introducing a weighted model [1, 7]. In
this model, the discretization of the TV energy is performed
by the use of an edge-weighted graph. Gilboa and Osher
provided an efficient dual algorithm in [7], based on Cham-
bolle’s [3] method to address this problem. Currently, one of
the fastest method for optimizing weighted TV is proposed
by Zhang et. al [11].

The projection algorithms in [3, 7] are based on a relatively

simple local constraint on the norm of the projection variable.
In this work, we extend the constraint on this variable, as
this allows us to better adapt the optimization procedure to
the local information. We name this new approach “Dual-
Constrained Total Variation” (DCTV) regularization.

The paper is organized as follows: in Section 2, we generalize
TV models on a graph by extending the dual formulation un-
der a constrained form. In Section 3, we demonstrate how our
constrained TV-based optimization problem can be efficiently
solved by using a parallel proximal algorithm. Finally, results
obtained with the proposed approach are presented in three
applications and compared to classical weighted TV.

2. GRAPH EXTENSION OF TV MODELS

Given an original corrupted image f , the purpose of varia-
tional methods for image restoration is to deduce a restored
image u close to the observed image f under the assumption
of smooth variations of intensity values inside objects. Let
λ ∈]0,+∞[ be a real positive value representing a regulariza-
tion parameter. In a continuous setting, given a plane domain
Ω, and denoting by x and y two arbitrary points of Ω, the
weighted anisotropic TV model [7] is given by
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where w is a nonnegative valued function defined on Ω2. As

shown by Chan et al in [4] the TV minimization problem (1)
is equivalent to the min-max problem
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with p a projection vector field, ‖p‖∞ = supx∈Ω
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Let us now establish the formulation of the DCTV energy
within a discrete framework, by first specifying our notation.
A graph consists of a pair G = (V,E) with vertices v ∈ V
and edges e ∈ E ⊆ V × V , with cardinalities n = |V | and
m = |E|. An edge, e, spanning two vertices, vi and vj , is
denoted by ei,j . In this paper we deal with weighted graphs



that include weights on both the edges and nodes. An edge
weight is a value assigned to each edge ei,j , and is denoted
by wi,j . We assume that wi,j ∈]0,+∞[. The weight of a
node vi is denoted by gi. We also assume that gi ∈ R∗+. We
note A the incidence matrix of the graph which is known to
define the discrete calculus analogue of the gradient, while
A> similarly defines the discrete calculus analogue of the di-
vergence (see [8] and the references therein). The incidence
matrix A ∈ Rm×n is defined, for every vertex vk and edge
eij , as Aeij ,vk

= 1 if i = k, Aeij ,vk
= −1 if j = k, and

Aeij ,vk
= 0 otherwise. For any matrix M , we use |M | for the

matrix composed of the absolute value of each entry individ-
ually, and denote · the Hadamard product. As the step size of
the graph tends toward zero, the discrete version of (1) and its
dual (2) approximate the continuous versions. Now, f and u
are vectors in Rn. The discrete TV model as defined by [1, 7]
is

min
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where Ni = {j ∈ {1, . . . , n} | ei,j ∈ E} and the dual for-
mulation optimized by a projection algorithm [7] is given by

min
u

max
‖p‖∞≤1

p>((Au) ·
√
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1
2λ
‖u− f‖2 (4)

where ‖ · ‖ denotes the Euclidean norm, w ∈ Rm is a vector
with components (wi,j)i,j and denoting by (pi,j)i,j the com-

ponents of p ∈ Rm, ‖p‖∞ = maxi∈{1,...,n}
(∑

j∈Ni
p2
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.

By introducing a vector F = (Fi,j)i,j ∈ Rm such that, for
every i ∈ {1, . . . , n} and j ∈ Ni, Fi,j = pi,j

√
wi,j , the

problem can be reformulated as

min
u

max
F∈C

F>Au+
1

2λ
‖u− f‖2, (5)

C = {(Fi,j)i,j | (∀i ∈ {1, . . . , n})
∑
j∈Ni

F 2
i,j

wi,j
≤ 1}. (6)

The objective of this work is to extend the discrete weighted
TV variational formulation in (5) by investigating the follow-
ing optimization problem

min
u

max
F∈C

F>Au+
1
2

(Hu− f)>Λ−1(Hu− f) (7)

where f ∈ Rq is an observed vector of data,H ∈ Rq×n and Λ
is weighting symmetric definite-positive matrix in Rq×q . H
may simply be the identity matrix for image denoising; a con-
volution operator in restoration tasks; or a projection matrix
in reconstruction problems. Λ may be a matrix proportional
to the covariance matrix of the noise corrupting the data as
commonly used in weighted least squares approaches. In ad-
dition, the main contribution of this work is to consider more

general convex sets C than those given by (6). More pre-
cisely, the proposed optimization approach allows us to ad-
dress nonempty convex sets C which can be decomposed as
an intersection of closed convex subsets (Cr)1≤r≤s of Rm,
the projections onto which take closed forms. An example of
a set C of interest is

C = {F | (∀i ∈ {1, . . . , n}) ‖θi · F‖α ≤ gi} (8)

where ‖ · ‖α is the `α norm of Rm with α ∈ [1,+∞] and, for
every i ∈ {1, . . . , n}, θi ∈]0,+∞[m is a vector of multiplica-
tive constants. The form of C in (8) obviously includes (6) as
a particular case while offering much more flexibility. In this
paper, we are mostly interested in the case when θi is the i-th
line vector of |A>| and the i-th node weight gi is a decreasing
function of the image gradient. Given positive reals ε and β,
we suggest using

gi = exp(−β‖∇ui‖2) + ε, (9)

where u is some reference image (wich corresponds to some
rough estimate of u) and ‖∇ui‖2 is the Euclidean norm of its
discrete gradient∇ui at node i. In addition to intensity infor-
mation, gi may be used to penalize changes in other relevant
image quantities such as color or texture. In the absence of
a contour, gi takes large values, so are the components of F
corresponding to nonzero values of θi, preventing large local
variations of u in the minimization (7). Conversely, in the
presence of a contour, gi ' ε, and the components of F cor-
responding to nonzero values of θi are small, thus allowing
large local variations of u.

3. PROPOSED ALGORITHM

We show in this section that it is possible to efficiently solve
Problem (7) by proximal methods [6]. To do so, define the
support function σC of the closed convex constraint set C as

σC : Rm →]−∞,+∞] : a 7→ sup
F∈C

F>a. (10)

This is a proper lower-semicontinuous convex function, the
conjuguate of which is the indicator function of C,

ıC : F 7→

{
0 if F ∈ C,
+∞ otherwise.

(11)

This leads us to consider the following optimization problem:

min
u
σC(Au) +

1
2

(Hu− f)>Λ−1(Hu− f) +
η

2
‖Ku‖2

(12)
where η ∈]0,+∞[ and K ∈ Rn×n is the projection matrix
onto the nullspace of H . When H is injective (rankH = n),
the last term vanishes and (12) is strictly equivalent to (7).
The term u 7→ η‖Ku‖2/2 thus aims at introducing an addi-
tional regularization when H is not injective, so that the ob-
jective function remains strictly convex. The following holds:



Proposition 3.1 Problem (12) admits a unique solution û.
The dual Fenchel-Rockafellar form of the problem is

min
F

ϕ(F ) + ıC(F ), (13)

where ϕ : F 7→ 1
2F
>AΓA>F − F>AΓH>Λ−1f and

Γ = (H>Λ−1H + ηK)−1. The optimal solution to the
primal problem (12) is deduced from any optimal solution F̂
of the dual problem by the relation

û = Γ
(
H>Λ−1f −A>F̂

)
. (14)

Note that the dual forward-backward algorithm proposed in
[5] is not applicable here since the projection onto C is not
explicit. In order to numerically solve (13), recall that C =
∩sr=1Cr, so that ıC can be decomposed into the sum of the
indicator functions of the convex subsets (Cr)1≤r≤s. Hence,
the problem is equivalent to solving

min
F

s∑
r=1

ıCr
(F ) + ϕ(F ). (15)

The above sum of (s+ 1) convex functions can be efficiently
optimized by resorting to a parallel proximal algorithm [6].
As shown in Algorithm 1, this requires to compute in paral-
lel projections onto each set Cr with r ∈ {1, . . . , s}, which
are defined ∀F ∈ Rm as PCr

(F ) = arg minΦ∈Cr
‖Φ− F‖.

Note that the convergence of the sequence (Fk)k generated
by this algorithm to a solution F̂ of (13) is guaranteed, which
allows us to deduce a solution to (12) by using Relation (14).

Algorithm 1: Parallel proximal algorithm solving (15)

Fix γ > 0 and ν ∈]0, 2[. Set k = 0.
Choose y1,0 = y2,0 = . . . = ys+1,0 ∈ Rm and F0.
repeat

for r = 1, . . . , s+ 1 do in parallel

πr,k =

8><>:
PCr (yr,k) if r ≤ s
(γAΓA> + I)−1(γAΓH>Λ−1f + ys+1,k)

otherwise

zk = 2
s+1 (π1,k + · · ·+ πs+1,k)− Fk

for r = 1, . . . , s+ 1 do in parallel
yr,k+1 = yr,k + ν(zk − pr,k)

Fk+1 = Fk + ν
2 (zk − Fk)

until convergence

For a 4-connected lattice, when using (8) where, for every
i ∈ {1, . . . , n}, θi is the i-th line of matrix |A>|, the projec-
tion onto C is not explicit. However, a decomposition of C
can be performed by setting s = 2 and, for every r ∈ {1, 2},
Cr = {F | (∀i ∈ Sr) ‖θi · F‖α ≤ gi}. The partition
(Sr)1≤r≤2 corresponds to two spatial disjoint sets each with
a checkered pattern. The projection onto Cr for α = 2 (resp.
α = 1 or α = ∞) reduces to simple projections onto hyper-
spheres (resp. hypercubes [10]). Note that the computation

of πs+1,k requires a matrix inversion which can be efficiently
performed by Fast Fourier Transform when H and Λ are (or
can be approximated by) circulant-block circulant matrices.

4. RESULTS

We now demonstrate the performance of DCTV with respect
to weighted TV. In our experiments, we compare solutions to
the TV problem (3) given by the state-of-the-art augmented
Lagrangian algorithm (a.k.a. split Bregman) of [11], to solu-
tions optimizing DCTV with our parallel proximal algorithm.

(a) Original image (b) Noisy SNR=10.1dB

(c) weighted TV SNR=13.4dB (d) DCTV SNR=13.8dB

Fig. 1. Denoising ‘Barbara’ image corrupted with Gaussian
noise of variance σ2 = 15

We used four standard test images that we corrupted with
synthetic Gaussian noise of variance σ2. The weights have
been set according to (9) with β = 0.04 for DCTV. The value
of the image fidelity parameter λ was set according to an em-
pirical rule depending of the variance of the noise. The
value of ε was set to λ, and the stopping criteria for both algo-
rithms is ||u

k−uk−1||
||uk|| < 5.10−3. Signal to Noise Ratio (SNR)

is used as performance measure in our quantitative evalua-
tion. Table 1 reports SNR values for DCTV and weighted
TV results obtained on each image corrupted with different
values of noise variance. Examples of results are shown in
Figure 1. Those experiments show that DCTV leads to im-
proved results when the variance of the noise is lower than 50.
Visually, DCTV are sharper and feature better contrast than
the weighted TV results. This also explains the slight degra-
dation of performance in presence of heavy noise (variances
50-100). Geometrically, the improvement of DCTV over the
weighted TV can be interpreted in the following way: the



σ2 5 10 15 20 25 50 100
SNR values obtained by optimizing weighted TV with Split Bregman
house 22.7 18.9 17.1 15.8 15.1 11.8 7.8
man 23.3 19.6 17.8 16.5 15.5 12.3 8.3
lena 22.7 18.9 17.2 16.2 15.4 12.5 8.3

barbara 20.3 16.0 13.4 11.7 10.5 8.5 6.2
mean 22.3 18.4 16.4 15.1 14.1 11.3 7.6

SNR values obtained by optimizing DCTV
house 22.7 19.3 17.4 15.8 15.2 11.8 7.4
man 23.7 20.3 18.2 16.7 15.6 12.1 8.1
lena 23.2 19.7 17.7 16.3 15.5 12.4 8.0

barbara 20.3 16.2 13.8 12.2 10.9 8.4 6.0
mean 22.5 18.9 16.8 15.3 14.3 11.2 7.4

Table 1. Quantitative denoising experiment on standard im-
ages corrupted with additive Gaussian noise of variance σ2.

convex we use for projection adapts itself to the local neigh-
borhood, and this is reducing blur as a result.

(a) Original image (b) Noisy image SNR=7.2dB

(c) Blurry image SNR=11.6dB (d) DCTV SNR=16.3dB

Fig. 2. Image fusion from a an image corrupted with Gaussian
noise of variance σ2 = 20 (b) and a blurry image (c).

In terms of computation time, DCTV is competitive with the
most efficient weighted TV algorithm. Denoising the 512 ×
512 Lena image corrupted with Gaussian noise (σ2 = 15) re-
quires 0.38 seconds for split Bregman, versus 0.7 seconds for
PPXA to converge on an Intel Xeon 2.5GHz 8-core system.
Figures 2 and 3 show the ability of DCTV to easily generalize
to applications beyond denoising.

5. CONCLUSION
In this paper we have extended existing TV models by gener-
alizing the constraint on the projection variable of the dual TV
formulation. This new approach yields improved results com-
pared with the weighted TV approach in image restoration

(a) Original image (b) Corrupt SNR=12.3dB (c) DCTV SNR=17.2dB

Fig. 3. Denoising and deblurring an MRI image corrupted
with synthetic uniform 7×7 blur and Gaussian noise (σ2 = 10)

applications. More generally, the proposed algorithm makes
it possible to efficiently solve convex minimization problems
involving the support function of an intersection of convex
sets as a penalty term. It is also worth emphasizing that this
approach can be applied on graph data structures such as those
frequently employed in 3D modelling. Future work will fur-
ther improve our results by using image patches in the weight
computation before applying DCTV, and applications on em-
bedded manifolds such as triangulated surfaces.
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