On critical kernels

Gilles Bertrand

IGM, Unité Mixte de Recherche CNRS-UMLV-ESIEE UMR 8049 Laboratoire A2SI, Groupe ESIEE Cité Descartes, BP 99, 93162 Noisy-le-Grand Cedex France

Abstract

We propose a method for collapsing simplicial complexes in a symmetric manner. For that purpose, we introduce the notions of a *simple cell*, of an *essential face*, and the one of a *core of a cell*. Then, we define the *critical kernel* of a complex. Our main result is that the critical kernel of a given complex X is a collapse of X. We extend this result by giving a necessary and sufficient condition which characterizes a certain class of subcomplexes of X which contain the critical kernel of X. In particular, any complex which belongs to this class is homotopy equivalent to X.

1 Introduction

The operation of collapse leads to a notion of homotopy equivalence in discrete spaces, which is the so-called simple homotopy equivalence [4]. This operation was originally settled in the context of (finite) simplicial complexes [9]. A simplicial complex Y is an elementary collapse of a simplicial complex X if $Y = X \setminus \{f, g\}$, where f, g are two distinct faces of X such that f is maximal for X (under inclusion), and f is the only face which contains g; the face g is said to be free for X. We observe that, in general, it is not possible to remove simultaneously all free faces (and their corresponding maximal faces) from an object: the result could be not homotopy equivalent to the original object. In fact the operation of collapse is basically not symmetric.

In this paper, we propose a method for collapsing simplicial objects in a symmetric manner. For that purpose, we introduce the notions of a simple cell, of an essential face, and the one of a core of a cell. Then, we define the critical kernel of a complex. Our main result is that the critical kernel of a given complex X is a collapse of X, *i.e.*, it may be obtained from X by a sequence of elementary collapses. We extend this result by showing that, if Y belongs to a certain class of subcomplexes of X which contain the critical kernel of X, then Y is homotopy equivalent to X. At last, we give a necessary and sufficient condition for this class of subcomplexes.

It is worth pointing out that homotopic retractions of discrete objects have received a lot of attention in the field of image analysis [6]. Many algorithms for extracting different kinds of "skeletons" of an object have been proposed (*e.g.*, curvilinear or surfacic skeletons in the 3D cubic grid). These algorithms are often based on ad-hoc conditions for removing points in a symmetric manner while preserving the topology of the original object. In fact, critical kernels constitute a framework for such algorithms [2,3] which may be seen as a generalization of the one presented in [1]. It should be noted that all the results presented hereafter may be directly transposed to N-dimensional cubical complexes.

2 Simple cells

A *(finite simplicial) complex* X is a finite family composed of finite nonempty sets such that, if f is an element of X, then every nonempty subset of f is an element of X. Each element of a com-

plex is a face of this complex. The dimension of a face f is the number of its elements minus one. The dimension of a complex is the largest dimension of its faces. We denote by \mathbb{K} the collection of all complexes.

Let f be a finite nonempty set. We set $\hat{f} = \{g \mid g \subseteq f, g \neq \emptyset\}$ and $\hat{f}^* = \hat{f} \setminus \{f\}$. Any $g \in \hat{f}$ is a face of f, and any $g \in \hat{f}^*$ is a proper face of f. If X is a finite family composed of finite nonempty sets, we write $X^- = \cup \{\hat{f} \mid f \in X\}, X^-$ is the *(simplicial) closure of* X. Thus, a finite family X of finite nonempty sets is a complex if and only if $X = X^-$.

A complex X is a *cell* if there exists a face $f \in X$, such that $X = \hat{f}$.

A family Y is a *subcomplex* of a complex X, written $Y \leq X$, if Y is a complex and if $Y \subseteq X$.

Let $X \in \mathbb{K}$. A face $f \in X$ is a *facet of* X if there is no $g \in X$ such that $f \in \hat{g}^*$. We denote by X^+ the set composed of all facets of X. Thus, we have $[X^+]^- = X$.

Let $X, Y \in \mathbb{K}$. We set $X \otimes Y = [X^+ \setminus Y^+]^-$. The set $X \otimes Y$ is a complex which is the *detachment of* Y from X.

Intuitively a cell \hat{f} in a complex X is simple if its detachment from X "does not change the topology of X". In this section we propose a definition of a simple cell based on the operation of collapse [5]. It may be seen as a discrete analogue of the one given by T.Y. Kong in [8] which lies on continuous deformations in the N-dimensional Euclidean space.

Let $X \in \mathbb{K}$ and let $f \in X^+$. The facet f is a border face of Xif there exists one face $g \in \hat{f}^*$ such that f is the only face of Xwhich contains g. Such a face g is a free face of X and the pair (f,g) is said to be a free pair for X. If (f,g) is a free pair for X, the complex $X \setminus \{f, g\}$ is an elementary collapse of X. Let X, Y be two complexes. We say that X collapses onto Y if there exists a collapse sequence from X to Y, *i.e.*, a sequence of complexes $\langle X_0, ..., X_l \rangle$ such that $X_0 = X$, $X_l = Y$, and X_i is an elementary collapse of X_{i-1} , i = 1, ..., l.

Definition 2.1 Let $X \in \mathbb{K}$ and let \hat{f} be a cell. We say that \hat{f} and f are simple for X if $X \cup \hat{f}$ collapses onto $X \otimes \hat{f}$.

Let $X \in \mathbb{K}$. If $f \in X^+$, f is simple for X iff X collapses onto $X \otimes \hat{f}$; if $f \in X \setminus X^+$, then f is trivially simple for X. If $f \notin X$, f is simple for X iff $X \cup \hat{f}$ collapses onto X. If $f \in X^+$, we have $[X \otimes \hat{f}] \cup \hat{f} = X$, thus f is simple for X iff f is simple for $X \otimes \hat{f}$. If $f \notin X$, we may have $[X \cup \hat{f}] \otimes \hat{f} \neq X$, thus, in general, it is not true that f is simple for X iff f is simple for $X \cup \hat{f}$.

The notion of attachment, as introduced by T.Y. Kong [7,8], leads to a local characterization of simple cells.

Let $X \in \mathbb{K}$ and let \hat{f} be a cell. The *attachment of* \hat{f} for X is the complex $Attach(\hat{f}, X) = \hat{f} \cap [X \otimes \hat{f}]$. If $f \in X^+$, a face g is in $Attach(\hat{f}, X)$ iff g is in \hat{f}^* and g is a face of a facet h of X distinct from f. If $f \notin X$, we have $Attach(\hat{f}, X) = \hat{f} \cap X$.

The following proposition is an easy consequence of the above definitions.

Proposition 2.2 Let $X \in \mathbb{K}$ and let \hat{f} be a cell. The cell \hat{f} is simple for X if and only if \hat{f} collapses onto $Attach(\hat{f}, X)$.

3 Essential faces

We introduce the notion of an essential face and the one of a core on which are based critical kernels. **Definition** 3.1 Let $X \in \mathbb{K}$ and let $f \in X$. We say that f is essential for X if f is precisely the intersection of all facets of X which contain f, i.e., if $f = \bigcap \{g \in X^+ \mid f \subseteq g\}$. We denote by Ess(X) the set composed of all faces which are essential for X. Let $X \in \mathbb{K}$. If $Y \preceq X$ and if $Ess(Y) \subseteq Ess(X)$, we write $Y \trianglelefteq X$.

Observe that a facet of X is necessarily essential for X, *i.e.*, $X^+ \subseteq Ess(X)$. Note also that any face which is the intersection of essential faces is itself essential. The following property may be easily checked.

Proposition 3.2 Let $X \in \mathbb{K}$ and $Y \preceq X$. We have $Y \trianglelefteq X$ if and only if $Y^+ \subseteq Ess(X)$.

Proposition 3.3 Let $X, Y, Z \in \mathbb{K}$, with $X \leq Z$. Then $X \otimes Y \leq Z$. Furthermore, if $Y \leq Z$, then we have $X \cup Y \leq Z$, and $X \cap Y \leq Z$.

Proof:

We have $[X \otimes Y]^+ \subseteq X^+$, thus, if $X \trianglelefteq Z$, Prop. 3.2 gives $X \otimes Y \trianglelefteq Z$. We also have $[X \cup Y]^+ \subseteq X^+ \cup Y^+$, thus, if $X \trianglelefteq Z$ and $Y \trianglelefteq Z$, Prop. 3.2 gives $X \cup Y \trianglelefteq Z$. Now observe that, in general, we have not $[X \cap Y]^+ \subseteq X^+ \cap Y^+$. Let $f \in [X \cap Y]^+$. We set $f_1 = \bigcap \{g \in X^+ \mid f \subseteq g\}, f_2 = \bigcap \{g \in Y^+ \mid f \subseteq g\}$, and $f' = f_1 \cap f_2$. We have $f \subseteq f'$. We note that f' is a face of $X \cap Y$. Thus, since f is a facet of $X \cap Y$, we have f = f'. If $X \trianglelefteq Z$ and if $Y \trianglelefteq Z$, f_1 and f_2 are both essential for Z, so is f. In this case, by Prop. 3.2, we have $X \cap Y \trianglelefteq Z$.

Definition 3.4 Let $X \in \mathbb{K}$ and let $f \in Ess(X)$. The core of \hat{f} for X is the complex, denoted by $Core(\hat{f}, X)$, such that $Core(\hat{f}, X) = \bigcup\{\hat{g} \mid g \in Ess(X) \cap \hat{f}^*\}.$

Proposition 3.5 Let $X \in \mathbb{K}$ and let $f \in X^+$. The attachment of \hat{f} for X is precisely the core of \hat{f} for X, i.e., we have $Attach(\hat{f}, X) = Core(\hat{f}, X)$.

Proof:

- Let $g \in Attach(\hat{f}, X)$. By the very definition of the attachment, there exists a facet $h \neq f$ such that $g \subseteq h$. Thus, $h \cap f$ is not empty, $h \cap f$ is a face which is essential for X and which is in \hat{f}^* , hence $h \cap f \in Core(\hat{f}, X)$. Since $g \subseteq h \cap f$, we have $g \in Core(\hat{f}, X)$. - Let $g \in Core(\hat{f}, X)$. There exists an essential face $h \in Core(\hat{f}, X)$, with $g \subseteq h$. By the very definition of an essential face, and since his not a facet, it means that there exists at least one facet distinct from f which contains h and g. Thus $g \in Attach(\hat{f}, X)$. \Box

Proposition 3.6 Let $X \in \mathbb{K}$ and let $f \in Ess(X)$. Let $Y = \bigcup\{\hat{h} \mid h \in X^+ \text{ and } f \subseteq h\}$ and let $g \in \hat{f}^*$. The face g is essential for X if and only if g is essential for $Z = (X \otimes Y) \cup \hat{f}$. Thus $Core(\hat{f}, X) = Core(\hat{f}, Z)$.

Proof:

- Suppose $g \in Ess(X)$. Let $g_1 = \bigcap\{h \in X^+ \mid f \subseteq h\}$ and $g_2 = \bigcap\{h \in X^+ \mid g \subseteq h \text{ and } f \not\subseteq h\}$. We have $g = \bigcap\{h \in X^+ \mid g \subseteq h\} = g_1 \cap g_2$. But, since f is essential for $X, g_1 = f$, thus $g = f \cap g_2$. Since $f \in Z^+$ and since any $h \in X^+$ such that $f \not\subseteq h$ is in Z^+ , this shows that g is essential for Z.

- We have $Z^+ = [X^+ \setminus Y^+] \cup \{f\}$. This implies $Z \trianglelefteq X$: if g is essential for Z, then g is essential for X. \Box

4 Critical kernels

We are now in position to define the critical kernel of a complex, see illustration Fig. 1.

Figure 1. (a): A complex X_0 . (b): The critical faces of X_0 are highlighted. (c) The complex $X_1 = Critic(X_0)$, the critical faces of X_1 are highlighted. The complex $X_2 = Critic(X_1)$ is such that $X_2 = \{f\}$. At last, we have $Critic(X_2) = X_2$.

Definition 4.1 Let $X \in \mathbb{K}$. A face $f \in Ess(X)$ is regular for X if \hat{f} collapses onto $Core(\hat{f}, X)$. A face $f \in Ess(X)$ is critical for X if f is not regular for X. We set $Critic(X) = \bigcup \{\hat{f} \mid f \text{ is critical for } X\}$, Critic(X) is the critical kernel of X.

By Prop. 3.5 and 2.2, a facet f of X is regular for X if and only if it is simple for X. The following property extends this fact, it is a direct consequence of Prop. 3.6.

Proposition 4.2 Let $X \in \mathbb{K}$ and $f \in Ess(X)$. Let $Y = \bigcup \{\hat{g} \mid g \in X^+ \text{ and } f \subseteq g\}$ and $Z = (X \otimes Y) \cup \hat{f}$. The face f is regular for X if and only if it is simple for Z.

Theorem 4.3 Let $X \in \mathbb{K}$.

i) The complex X collapses onto its critical kernel.
ii) If Y ≤ X contains the critical kernel of X, then X collapses onto Y.
iii) If Y ≤ X contains the critical kernel of X, then any Z such

that $Y \preceq Z \trianglelefteq X$ collapses onto Y.

Proof: We prove property iii), iii) implies ii) and, since $Critic(X) \leq X$, ii) implies i).

Suppose that $Y \leq X$ and that Y contains the critical kernel of X. Let Z such that $Y \leq Z \leq X$. Let f be a face in $Z^+ \setminus Y$, and let $Z' = [Z \otimes \hat{f}] \cup Core(\hat{f}, X)$. We have $Z' \leq Z$, and $Z' \neq Z$ (since $f \notin Z'$). Note that if no such a face f exists, then Z = Y. Observe also that we have not necessarily $Z' \leq Z$.

1) By Prop. 3.3, since $Z \leq X$, we have $Z \otimes \hat{f} \leq X$. Again by Prop. 3.3, since $Core(\hat{f}, X) \leq X$, we have $Z' \leq X$.

2) We have $Core(\hat{f}, X) \subseteq \hat{f} \cap Z'$. Since $\hat{f} \trianglelefteq X$ and $Z' \trianglelefteq X$, by Prop. 3.3, $\hat{f} \cap Z' \trianglelefteq X$. Consequently $[\hat{f} \cap Z']^+ \subseteq Ess(X)$ and, since $\hat{f} \cap Z' \subseteq \hat{f}^*$, it implies that $\hat{f} \cap Z' \subseteq Core(\hat{f}, X)$. Thus, $\hat{f} \cap Z' = Core(\hat{f}, X)$. Since $Critic(X) \subseteq Y$, and $f \notin Y$, the face f is regular for X, it means that \hat{f} collapses onto $Core(\hat{f}, X)$. Thus, since $Attach(\hat{f}, Z') = \hat{f} \cap Z' = Core(\hat{f}, X)$, \hat{f} collapses onto $Attach(\hat{f}, Z')$. By Prop. 2.2, this implies that \hat{f} is simple for Z', *i.e.*, $Z' \cup \hat{f}$ collapses onto Z'. But $Z = Z' \cup \hat{f}$ and so Z collapses onto Z'.

3) Let $g \in Y^+$. Accordingly, we have $g \in Z$. As $Z = Z' \cup \hat{f}$, either $g \in Z'$, or $g \in \hat{f}$. Suppose $g \in \hat{f}$. Clearly $g \neq f$ (since $f \in Z^+ \setminus Y$) and $g \in \hat{f}^*$. But, g being essential for X, we see that $g \in Core(\hat{f}, X)$. The result is $g \in Z'$. Thus, $Y^+ \subseteq Z'$, it follows that $Y \preceq Z'$.

By iteratively performing the operation $Z \to Z'$, the property is proved by induction. \Box

Definition 4.4 Let $X \in \mathbb{K}$ and $Y \trianglelefteq X$. We say that Y is a strong collapse of X if Z collapses onto T whenever $Y \preceq T \preceq Z \preceq X$, $T \trianglelefteq X$, and $Z \trianglelefteq X$.

Theorem 4.5 Let $X \in \mathbb{K}$, and $Y \leq X$. The complex Y is a strong collapse of X if and only if Y contains the critical kernel of X.

Proof:

i) If Y contains the critical kernel of X, then, by Th. 4.3 iii), Y is a strong collapse of X.

ii) Let Y be a strong collapse of X. Suppose Y does not contain the critical kernel of X. It means that there exists $f \in X \setminus Y$ which is critical for X. Let $Z = Y \cup \hat{f}$ and let $T = Y \cup Core(\hat{f}, X)$.

By Prop. 3.3, $Z \leq X$ and $T \leq X$. We have $Z = T \cup \hat{f}$ and $Attach(\hat{f},T) = \hat{f} \cap T$. Clearly $Core(\hat{f},X) \subseteq \hat{f} \cap T$. Since $\hat{f} \leq X$ and $T \leq X$, by Prop. 3.3, $\hat{f} \cap T \leq X$. Consequently $[\hat{f} \cap T]^+ \subseteq Ess(X)$ and, since $\hat{f} \cap T \subseteq \hat{f}^*$, we must have $\hat{f} \cap T \subseteq Core(\hat{f},X)$. Thus, $\hat{f} \cap T = Core(\hat{f},X) = Attach(\hat{f},T)$. Since f is critical for X, it implies that f does not collapse onto $Attach(\hat{f},T)$: f would not be simple for T (Prop. 2.2), and, by the very definition of a simple face, $T \cup \hat{f} = Z$ would not collapse onto T, a contradiction. \Box

References

- G. Bertrand, "On P-simple points", Comptes Rendus de l'Académie des Sciences, Série Math., I, 321, 1077-1084, 1995.
- [2] G. Bertrand and M. Couprie, "Two-dimensional parallel thinning algorithms based on critical kernels", *Internal Report, Université de Marne-la-Vallée*, IGM2006-02, Also submitted for publication, 2006.
- [3] G. Bertrand and M. Couprie, "Three-dimensional parallel thinning algorithms based on critical kernels", *Lecture Notes in Computer Science*, 4245, 580-591, 2006.
- [4] M. M. Cohen, A course in simple-homotopy theory, Springer Verlag, 1973.
- [5] P. Giblin, *Graphs, surfaces and homology*, Chapman and Hall, 1981.
- [6] R. Klette and A. Rosenfeld, Digital geometry, geometric methods for digital picture analysis, Morgan Kaufmann, 2006.
- [7] T. Y. Kong, "On topology preservation in 2-D and 3-D thinning", International Journal on Pattern Recognition and Artificial Intelligence, 9, 813-844, 1995.
- [8] T. Y. Kong, "Topology-preserving deletion of 1's from 2-, 3- and 4-dimensional binary images", *Lecture Notes in Computer Science*, **1347**, 3-18, 1997.
- [9] J.H.C. Whitehead, "Simplicial spaces, nuclei, and m-groups", Proc. London Math. Soc., (2) 45, 243-327, 1939.