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Abstract

We propose a method for collapsing simplicial complexes in a sym-
metric manner. For that purpose, we introduce the notions of a

simple cell, of an essential face, and the one of a core of a cell.
Then, we define the critical kernel of a complex. Our main result

is that the critical kernel of a given complex X is a collapse of X.
We extend this result by giving a necessary and sufficient condi-
tion which characterizes a certain class of subcomplexes of X which

contain the critical kernel of X. In particular, any complex which
belongs to this class is homotopy equivalent to X.

1 Introduction

The operation of collapse leads to a notion of homotopy equiva-

lence in discrete spaces, which is the so-called simple homotopy
equivalence [4]. This operation was originally settled in the context

of (finite) simplicial complexes [9]. A simplicial complex Y is an
elementary collapse of a simplicial complex X if Y = X \ {f, g},
where f , g are two distinct faces of X such that f is maximal for

X (under inclusion), and f is the only face which contains g; the
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face g is said to be free for X. We observe that, in general, it is
not possible to remove simultaneously all free faces (and their cor-

responding maximal faces) from an object: the result could be not
homotopy equivalent to the original object. In fact the operation

of collapse is basically not symmetric.

In this paper, we propose a method for collapsing simplicial objects

in a symmetric manner. For that purpose, we introduce the notions
of a simple cell, of an essential face, and the one of a core of a cell.

Then, we define the critical kernel of a complex. Our main result is
that the critical kernel of a given complex X is a collapse of X, i.e.,
it may be obtained from X by a sequence of elementary collapses.

We extend this result by showing that, if Y belongs to a certain
class of subcomplexes of X which contain the critical kernel of X,

then Y is homotopy equivalent to X. At last, we give a necessary
and sufficient condition for this class of subcomplexes.

It is worth pointing out that homotopic retractions of discrete ob-
jects have received a lot of attention in the field of image analysis

[6]. Many algorithms for extracting different kinds of “skeletons” of
an object have been proposed (e.g., curvilinear or surfacic skeletons

in the 3D cubic grid). These algorithms are often based on ad-hoc
conditions for removing points in a symmetric manner while pre-
serving the topology of the original object. In fact, critical kernels

constitute a framework for such algorithms [2,3] which may be seen
as a generalization of the one presented in [1]. It should be noted

that all the results presented hereafter may be directly transposed
to N -dimensional cubical complexes.

2 Simple cells

A (finite simplicial) complex X is a finite family composed of fi-
nite nonempty sets such that, if f is an element of X, then every

nonempty subset of f is an element of X. Each element of a com-
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plex is a face of this complex. The dimension of a face f is the
number of its elements minus one. The dimension of a complex is

the largest dimension of its faces. We denote by K the collection of
all complexes.

Let f be a finite nonempty set. We set f̂ = {g | g ⊆ f, g 6= ∅} and
f̂ ∗ = f̂ \ {f}. Any g ∈ f̂ is a face of f , and any g ∈ f̂ ∗ is a proper

face of f . If X is a finite family composed of finite nonempty sets,
we write X− = ∪{f̂ | f ∈ X}, X− is the (simplicial) closure of

X. Thus, a finite family X of finite nonempty sets is a complex if
and only if X = X−.

A complex X is a cell if there exists a face f ∈ X, such that X = f̂ .

A family Y is a subcomplex of a complex X, written Y � X, if Y

is a complex and if Y ⊆ X.

Let X ∈ K. A face f ∈ X is a facet of X if there is no g ∈ X such
that f ∈ ĝ∗. We denote by X+ the set composed of all facets of X.

Thus, we have [X+]− = X.

Let X, Y ∈ K. We set X � Y = [X+ \ Y +]−. The set X � Y is a

complex which is the detachment of Y from X.

Intuitively a cell f̂ in a complex X is simple if its detachment from
X “does not change the topology of X”. In this section we propose

a definition of a simple cell based on the operation of collapse [5]. It
may be seen as a discrete analogue of the one given by T.Y. Kong

in [8] which lies on continuous deformations in the N-dimensional
Euclidean space.

Let X ∈ K and let f ∈ X+. The facet f is a border face of X

if there exists one face g ∈ f̂ ∗ such that f is the only face of X

which contains g. Such a face g is a free face of X and the pair
(f, g) is said to be a free pair for X. If (f, g) is a free pair for X,

the complex X \ {f, g} is an elementary collapse of X.
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Let X, Y be two complexes. We say that X collapses onto Y if
there exists a collapse sequence from X to Y , i.e., a sequence of

complexes 〈X0, ..., Xl〉 such that X0 = X, Xl = Y , and Xi is an
elementary collapse of Xi−1, i = 1, ..., l.

Definition 2.1 Let X ∈ K and let f̂ be a cell. We say that f̂ and
f are simple for X if X ∪ f̂ collapses onto X � f̂ .

Let X ∈ K. If f ∈ X+, f is simple for X iff X collapses onto
X � f̂ ; if f ∈ X \ X+, then f is trivially simple for X. If f 6∈ X,

f is simple for X iff X ∪ f̂ collapses onto X. If f ∈ X+, we have
[X � f̂ ]∪ f̂ = X, thus f is simple for X iff f is simple for X � f̂ .

If f 6∈ X, we may have [X ∪ f̂ ] � f̂ 6= X, thus, in general, it is not
true that f is simple for X iff f is simple for X ∪ f̂ .

The notion of attachment, as introduced by T.Y. Kong [7,8], leads

to a local characterization of simple cells.
Let X ∈ K and let f̂ be a cell. The attachment of f̂ for X is the

complex Attach(f̂ , X) = f̂ ∩ [X � f̂ ]. If f ∈ X+, a face g is in
Attach(f̂ , X) iff g is in f̂ ∗ and g is a face of a facet h of X distinct

from f . If f 6∈ X, we have Attach(f̂ , X) = f̂ ∩ X.

The following proposition is an easy consequence of the above def-

initions.

Proposition 2.2 Let X ∈ K and let f̂ be a cell. The cell f̂ is

simple for X if and only if f̂ collapses onto Attach(f̂ , X).

3 Essential faces

We introduce the notion of an essential face and the one of a core

on which are based critical kernels.
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Definition 3.1 Let X ∈ K and let f ∈ X. We say that f is essen-

tial for X if f is precisely the intersection of all facets of X which
contain f , i.e., if f = ∩{g ∈ X+ | f ⊆ g}. We denote by Ess(X)
the set composed of all faces which are essential for X.

Let X ∈ K. If Y � X and if Ess(Y ) ⊆ Ess(X), we write Y E X.

Observe that a facet of X is necessarily essential for X, i.e., X+ ⊆
Ess(X). Note also that any face which is the intersection of essen-
tial faces is itself essential. The following property may be easily

checked.

Proposition 3.2 Let X ∈ K and Y � X. We have Y E X if and

only if Y + ⊆ Ess(X).

Proposition 3.3 Let X, Y, Z ∈ K, with X E Z. Then X � Y E

Z. Furthermore, if Y E Z, then we have X∪Y E Z, and X∩Y E

Z.

Proof:

We have [X � Y ]+ ⊆ X+, thus, if X E Z, Prop. 3.2 gives
X � Y E Z. We also have [X ∪ Y ]+ ⊆ X+ ∪ Y +, thus, if X E Z

and Y E Z, Prop. 3.2 gives X ∪ Y E Z. Now observe that, in
general, we have not [X ∩ Y ]+ ⊆ X+ ∩ Y +. Let f ∈ [X ∩ Y ]+.

We set f1 = ∩{g ∈ X+ | f ⊆ g}, f2 = ∩{g ∈ Y + | f ⊆ g}, and
f ′ = f1 ∩ f2. We have f ⊆ f ′. We note that f ′ is a face of X ∩ Y .
Thus, since f is a facet of X ∩ Y , we have f = f ′. If X E Z and

if Y E Z, f1 and f2 are both essential for Z, so is f . In this case,
by Prop. 3.2, we have X ∩ Y E Z. 2

Definition 3.4 Let X ∈ K and let f ∈ Ess(X). The core of f̂ for
X is the complex, denoted by Core(f̂ , X), such that Core(f̂ , X) =

∪{ĝ | g ∈ Ess(X) ∩ f̂ ∗}.
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Proposition 3.5 Let X ∈ K and let f ∈ X+. The attachment of
f̂ for X is precisely the core of f̂ for X, i.e, we have Attach(f̂ , X) =

Core(f̂ , X).

Proof:

- Let g ∈ Attach(f̂ , X). By the very definition of the attachment,

there exists a facet h 6= f such that g ⊆ h. Thus, h∩f is not empty,
h ∩ f is a face which is essential for X and which is in f̂ ∗, hence

h ∩ f ∈ Core(f̂ , X). Since g ⊆ h ∩ f , we have g ∈ Core(f̂ , X).
- Let g ∈ Core(f̂ , X). There exists an essential face h ∈ Core(f̂ , X),

with g ⊆ h. By the very definition of an essential face, and since h

is not a facet, it means that there exists at least one facet distinct
from f which contains h and g. Thus g ∈ Attach(f̂ , X). 2

Proposition 3.6 Let X ∈ K and let f ∈ Ess(X). Let Y =
∪{ĥ | h ∈ X+ and f ⊆ h} and let g ∈ f̂ ∗. The face g is es-

sential for X if and only if g is essential for Z = (X � Y ) ∪ f̂ .
Thus Core(f̂ , X) = Core(f̂ , Z).

Proof:

- Suppose g ∈ Ess(X). Let g1 = ∩{h ∈ X+ | f ⊆ h} and
g2 = ∩{h ∈ X+ | g ⊆ h and f 6⊆ h}. We have g = ∩{h ∈
X+ | g ⊆ h} = g1∩g2. But, since f is essential for X, g1 = f , thus

g = f ∩ g2. Since f ∈ Z+ and since any h ∈ X+ such that f 6⊆ h

is in Z+, this shows that g is essential for Z.

- We have Z+ = [X+ \ Y +] ∪ {f}. This implies Z E X: if g is
essential for Z, then g is essential for X. 2

4 Critical kernels

We are now in position to define the critical kernel of a complex,
see illustration Fig. 1.
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Figure 1. (a): A complex X0. (b): The critical faces of X0 are highlighted. (c) The
complex X1 = Critic(X0), the critical faces of X1 are highlighted. The complex
X2 = Critic(X1) is such that X2 = {f}. At last, we have Critic(X2) = X2.

Definition 4.1 Let X ∈ K. A face f ∈ Ess(X) is regular for X if

f̂ collapses onto Core(f̂ , X). A face f ∈ Ess(X) is critical for X

if f is not regular for X. We set Critic(X) = ∪{f̂ | f is critical

for X}, Critic(X) is the critical kernel of X.

By Prop. 3.5 and 2.2, a facet f of X is regular for X if and only if
it is simple for X. The following property extends this fact, it is a

direct consequence of Prop. 3.6.

Proposition 4.2 Let X ∈ K and f ∈ Ess(X). Let Y = ∪{ĝ | g ∈
X+ and f ⊆ g} and Z = (X � Y ) ∪ f̂ . The face f is regular for

X if and only if it is simple for Z.

Theorem 4.3 Let X ∈ K.
i) The complex X collapses onto its critical kernel.

ii) If Y E X contains the critical kernel of X, then X collapses
onto Y .

iii) If Y E X contains the critical kernel of X, then any Z such
that Y � Z E X collapses onto Y .

Proof: We prove property iii), iii) implies ii) and, since Critic(X) E

X, ii) implies i).
Suppose that Y E X and that Y contains the critical kernel of X.
Let Z such that Y � Z E X. Let f be a face in Z+ \ Y , and let

Z ′ = [Z � f̂ ] ∪ Core(f̂ , X). We have Z ′ � Z, and Z ′ 6= Z (since
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f 6∈ Z ′). Note that if no such a face f exists, then Z = Y . Observe
also that we have not necessarily Z ′ E Z.

1) By Prop. 3.3, since Z E X, we have Z � f̂ E X. Again by

Prop. 3.3, since Core(f̂ , X) E X, we have Z ′ E X.
2) We have Core(f̂ , X) ⊆ f̂ ∩ Z ′. Since f̂ E X and Z ′ E X,

by Prop. 3.3, f̂ ∩Z ′ E X. Consequently [f̂ ∩Z ′]+ ⊆ Ess(X) and,
since f̂ ∩ Z ′ ⊆ f̂ ∗, it implies that f̂ ∩ Z ′ ⊆ Core(f̂ , X). Thus,

f̂ ∩ Z ′ = Core(f̂ , X). Since Critic(X) ⊆ Y , and f 6∈ Y , the
face f is regular for X, it means that f̂ collapses onto Core(f̂ , X).

Thus, since Attach(f̂ , Z ′) = f̂∩Z ′ = Core(f̂ , X), f̂ collapses onto
Attach(f̂ , Z ′). By Prop. 2.2, this implies that f̂ is simple for Z ′,
i.e., Z ′ ∪ f̂ collapses onto Z ′. But Z = Z ′ ∪ f̂ and so Z collapses

onto Z ′.
3) Let g ∈ Y +. Accordingly, we have g ∈ Z. As Z = Z ′ ∪ f̂ ,

either g ∈ Z ′, or g ∈ f̂ . Suppose g ∈ f̂ . Clearly g 6= f (since
f ∈ Z+ \ Y ) and g ∈ f̂ ∗. But, g being essential for X, we see that

g ∈ Core(f̂ , X). The result is g ∈ Z ′. Thus, Y + ⊆ Z ′, it follows
that Y � Z ′.

By iteratively performing the operation Z → Z ′, the property

is proved by induction. 2

Definition 4.4 Let X ∈ K and Y E X. We say that Y is a strong

collapse of X if Z collapses onto T whenever Y � T � Z � X,
T E X, and Z E X.

Theorem 4.5 Let X ∈ K, and Y E X. The complex Y is a strong
collapse of X if and only if Y contains the critical kernel of X.

Proof:
i) If Y contains the critical kernel of X, then, by Th. 4.3 iii), Y is

a strong collapse of X.
ii) Let Y be a strong collapse of X. Suppose Y does not contain the
critical kernel of X. It means that there exists f ∈ X \ Y which

is critical for X. Let Z = Y ∪ f̂ and let T = Y ∪ Core(f̂ , X).
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By Prop. 3.3, Z E X and T E X. We have Z = T ∪ f̂ and
Attach(f̂ , T ) = f̂ ∩ T . Clearly Core(f̂ , X) ⊆ f̂ ∩ T . Since f̂ E X

and T E X, by Prop. 3.3, f̂ ∩ T E X. Consequently [f̂ ∩ T ]+ ⊆
Ess(X) and, since f̂ ∩T ⊆ f̂ ∗, we must have f̂ ∩T ⊆ Core(f̂ , X).
Thus, f̂ ∩ T = Core(f̂ , X) = Attach(f̂ , T ). Since f is critical for

X, it implies that f does not collapse onto Attach(f̂ , T ): f would
not be simple for T (Prop. 2.2), and, by the very definition of a

simple face, T ∪ f̂ = Z would not collapse onto T , a contradiction.
2
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