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Homotopic thinning
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Simple point

Intuitively, a point is simple if it can be removed without changing
topology

non simple
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Warning: parallel removal of simple points . . .

. . . may alter topology.
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The 3D case

In 2D, the notion of connectedness (for both the object and the
background) suffices to characterize simple pixels.
In 3D, things are more difficult.

x
y
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Plan of the presentation

Cubical complexes, collapse and simple points

Confluences and new characterizations of simple points in
2D, 3D, 4D

Critical Kernels (parallel thinning)

New characterizations of MNSs and P-simple points in 2D,
3D, 4D
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Cubical complexes, collapse, simple
points
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Cubical complexes

A complex is a set of faces glued together according to certain
rules.

0-face 1-faces 2-face (pixel) 3-face (voxel)

A complex:
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Elementary collapse

Let f and g be two distinct faces such that f is the only face
of X which contains g.

The complex X \{f ,g} is an elementary collapse of X .

f

g

X \{f ,g} is an elementary collapse of X .
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Elementary collapse

Let f and g be two distinct faces such that f is the only face
of X which contains g.

The complex X \{f ,g} is an elementary collapse of X .

f
g

X \{f ,g} is not an elementary collapse of X .
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Collapse preserves topology
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Collapse sequence

Let X , Y be two complexes. We say that X collapses onto Y
if there exists a collapse sequence from X to Y .
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Detachment

The detachment operation (denoted by ⊘ ) “removes” a
subcomplex from a complex, yielding a new complex.

X ,Y X ⊘ Y



New characteri-
zations of

simple points,
minimal

non-simple sets
and P-simple

points in 2D, 3D
and 4D discrete

spaces

Michel Couprie
and Gilles
Bertrand

DGCI 2008

Facet

A face f ∈ X is a facet if there is no g ∈ X such that f is strictly
included in g.

X the facets of X
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Definition of simple facets (G. Bertrand)

Definition

Let f be a facet, we say that f is simple if X collapses onto X ⊘ f .

f

X X ⊘ f
The facet f is simple.



New characteri-
zations of

simple points,
minimal

non-simple sets
and P-simple

points in 2D, 3D
and 4D discrete

spaces

Michel Couprie
and Gilles
Bertrand

DGCI 2008

Local characterization of simple facets

Let f be a facet of X . The attachment of f for X is the complex
defined by Att(f ,X) = f ∩ (X ⊘ f ).

Theorem: the facet f is simple for X if and only if f collapses
onto Att(f ,X).

The facet is not simple
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Let f be a facet of X . The attachment of f for X is the complex
defined by Att(f ,X) = f ∩ (X ⊘ f ).

Theorem: the facet f is simple for X if and only if f collapses
onto Att(f ,X).
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Confluences and new characterizations of
simple points in 2D, 3D, 4D
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In 2D: a rectangle collapses onto a point

Collapsing a rectangle in any arbitrary order leads to a single point
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Confluence properties

Let A,B,C be three complexes such that C ⊂ B ⊂ A

A

C

B
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Confluence properties in 2D

Let A,B,C be any three complexes in the 2-dimensionnal discrete
space such that C ⊂ B ⊂ A.
The two following confluence properties hold:

A

C
B

A

C
B
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Question:

Are these confluence properties also true in 3D ?
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Bing’s house
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Bing’s house is a counter-example for 3D confluence

Bing’s house has no free face.
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New confluence properties

Let d ∈ {2,3,4}.
Let f be a d-face.
Let f̂ be the complex formed by f and all the faces herein.

a 3-face f the complex f̂



New characteri-
zations of

simple points,
minimal

non-simple sets
and P-simple

points in 2D, 3D
and 4D discrete

spaces

Michel Couprie
and Gilles
Bertrand

DGCI 2008

New confluence properties

Let d ∈ {2,3,4}.
Let f be a d-face.
Let f̂ be the complex formed by f and all the faces herein.

Theorem

Let A,B be subcomplexes of f̂ such that B ⊂ A and A collapses
onto a point.
Then, B collapses onto a point if and only if A collapses onto B.

Theorem

Let C,D be subcomplexes of f̂ such that D ⊂ C, and f̂ collapses
onto D.
Then, f̂ collapses onto C if and only if C collapses onto D.
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New characterization of simple points

Remind that:

The facet f is simple for X if and only if f collapses onto its
attachment to X .

Applying this characterization may involve, in the worst case, the
exploration of all possible collapse sequences, which is huge.
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New characterization of simple points

Thanks to the above confluence properties, we proved that the
following greedy collapsing algorithm allows for a characterization
of simple facets

Algorithm A1 : Set Z = f̂ ; Set A = Att(f ,X) ; Do
Select any free pair (h,g) in Z \A; set Z to Z \{h,g} ;
Continue until either Z = A (answer yes) or no such pair is found
(answer no).
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Critical kernels

A framework for the study of parallel thinning
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Key notions

This framework, introduced by G. Bertrand for the study of parallel
thinning in any dimension, is based on only three notions:

Essential face

Core of a face

Regular/critical face
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Essential face

Definition

We say that f is an essential face if f is precisely the intersection of
all facets of X which contain f .

Note: Any facet is essential.

The 2-face is not essential
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Essential face

Definition

We say that f is an essential face if f is precisely the intersection of
all facets of X which contain f .

Note: Any facet is essential.

The 0-face is not essential
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Core

Definition

The core of f is the complex, denoted by Core(f ,X),
composed by all the essential faces which are strictly
included in f , and all the faces included in these faces.

A 3-face and its core
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Regular/critical face

Definition

We say that f is regular if f is essential and if f̂ collapses onto
Core(f ,X).

We say that f is critical if f is essential and not regular.

The 3-face is regular
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Critical kernel

Definition

We set Critic(X) = ∪{f̂ | f is critical }, Critic(X) is the critical
kernel of X .

A complex X
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Critical kernel

Definition

We set Critic(X) = ∪{f̂ | f is critical }, Critic(X) is the critical
kernel of X .

The critical faces of X
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Critical kernel

Definition

We set Critic(X) = ∪{f̂ | f is critical }, Critic(X) is the critical
kernel of X .

The critical kernel of X
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Main theorem (G. Bertrand)

Theorem

In any dimension, X collapses onto the critical kernel of X .

Furthermore, if Y is any set of facets of X such that Y contains the
critical kernel of X , then X collapses onto Y .

This theorem leads to a wide class of topologically correct n-D
parallel thinning algorithms, based on the different possible
choices of the set Y .
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Crucial kernels: motivation

The critical kernel of a set of voxels is not always a set of voxels

In the following, we assume that X is a set of voxels (i.e., a
complex in which each principal face is a 3-face).
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Maximal critical face

Definition

A face f in X is a maximal critical face, or an M-critical face, if
f is a critical face which is not strictly included in any other
critical face.

Critical faces
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Maximal critical face

Definition

A face f in X is a maximal critical face, or an M-critical face, if
f is a critical face which is not strictly included in any other
critical face.

M-critical faces
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Crucial cliques

Definition

Let f be an M-critical face of X .
The set K of all the facets of X which contain f is called a crucial
clique (for X )
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Crucial cliques: examples
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Minimal Non-simple Sets (MNS)
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Minimal Non-simple Set, or MNS [Ronse 1988]
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Minimal Non-simple Set, or MNS [Ronse 1988]

Extended by Kong, Gau to 3D and 4D
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Minimal Non-simple Set, or MNS [Ronse 1988]

Any thinning algorithm which preserves at least one element of
every MNS at each step is guaranteed to preserve topology.
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New characterization of MNSs

Let X be a pure d-complex, with d ∈ {2,3,4}, and let K be a set of
facets of X .

Theorem

The set K is a minimal non-simple set for X if and only if it is a
crucial clique for X .
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Conclusion

Confluence properties (true up to 4D)

New characterization of simple points, up to 4D

New efficient simplicity testing algorithm

MNSs are particular cases in the critical kernels framework

P-simple points are particular cases in the critical kernels
framework

New efficient algorithms for detecting MNSs and P-simple
points

Non-combinatorial proofs (except for one lemma)

Higher dimensions...
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Questions
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Minimal Non-simple Set, or MNS [Ronse 1988]

A sequence 〈k0, . . . ,kℓ〉 of facets of X is said to be a simple
sequence for X if k0 is simple for X , and if, for any i ∈ {1, . . . , ℓ}, ki

is simple for X ⊘ {kj , 0 ≤ j < i}.

Let K be a set of facets of X . The set K is said to be F-simple for
X if K is empty, or if the elements of K can be ordered as a simple
sequence for X .

The set K is minimal non-simple for X if it is not F-simple for X and
if all its proper subsets are F-simple.
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P-simple points [Bertrand 1995]

Let C be a set of facets of X . A facet k ∈ C is said to be P-simple
for 〈X ,C〉 if k is simple for all complexes X ⊘ T , such that
T ⊆ C \{k}.
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New characterization of P-simple points

Let X be a pure d-complex, with d ∈ {2,3,4}, and let C be a set of
facets of X .

Theorem

A facet k in C is P-simple for 〈X ,C〉 if and only if every face of k
that is critical for X is also a face of a facet of X that is not in C.
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Higher dimensions (5D, 6D, . . . nD)
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Part
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Schlegel diagram

(a)

a b

c d

e f

g h

e

g h

f

a

c d

b

(b) (c)
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Schlegel diagram

(a) (b)

H

JI

K

L
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A 1−subcomplex of the boundary of a 4−face

(a) (b)
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Illustration of the product operation
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Sketch of a Bing’s house in the boundary of a
6−face

× ×

CONTAINS
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Counter-example in 5D

Computer program:
Loop forever

Randomly collapse a 5-face until stability
If the result X is not a singleton, then return X
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Dunce hat
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Dunce hat

aa

a a

b b

b c

c cd e

f

g
h
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Dunce hat as a 2D complex

A cuboid collapses onto the Dunce hat
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Dunce hat is a counter-example for 3D confluence
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Counter-example in 5D

a a

b b

b c

c cd e

g
h

a a

f

f

(a) (b)

(a): The signature of X105.
(b): A variant of the dunce hat (triangulated).


