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Milestones

1966: D. Rutovitz – first parallel thinning algorithm

1970: A. Rosenfeld – digital topology

1988: C. Ronse – minimal non-simple sets

1995: G. Bertrand – P-simple points

2005: G. Bertrand – Critical kernels
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Cubical complexes
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Face

We consider Zn, n ≥ 2.

A subset of Zn composed of one point is called a 0-face.

A subset of Zn forming a unit bipoint is called a 1-face.

A subset of Zn forming a unit square is called a 2-face.

0-face 1-faces 2-face
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Faces: graphical representations

0-face 1-faces 2-face

Graphical representations:

0-face 1-faces 2-face
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Closure

Let f be a face.

The closure of f , denoted by f̂ , is the set composed by all
the faces which are included in f .

The set f̂ is called a cell.

If X is a finite set of faces, we write X− = ∪{f̂ | f ∈ X},
X− is the closure of X .

f f̂ X X−
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Cubical complex

A finite set X of faces is a complex if X = X−.

not complex complex
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Principal face

A face f ∈ X is principal if there is no g ∈ X such that f
is strictly included in g .

We denote by X + the set composed of all principal faces
of X .

X X +
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Detachment

Let Y be a subcomplex of X . We set X � Y = [X + \ Y +]−.
The set X � Y is a complex which is the detachment of Y
from X .

X ,Y X � Y
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Dimension, pure complex

Let X be a complex, dim(X ) = max{dim(f ) | f ∈ X +} is
the dimension of X .

We say that X is an m-complex if dim(X ) = m.

We say that X is pure if, for each principal face f of X , we
have dim(f ) = dim(X ).

a non-pure 2-complex a pure 2-complex
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Border face, free face

The face f is a border face if there exists one face g ∈ f̂ ,
g 6= f , such that f is the only face of X which contains g .

Such a face g is said to be free and the pair (f , g) is said
to be a free pair.

border faces two free pairs free faces
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Collapse, retraction

Let (f , g) be a free pair. The complex X \ {f , g} is an
elementary collapse of X .

Let X , Y be two complexes. We say that X collapses onto
Y if there exists a collapse sequence from X to Y .

If X collapses onto Y , we also say that Y is a retraction
of X .

Important: collapse preserves topology

A 2-step collapse sequence
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Critical kernels
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Essential face

Definition

We say that f is an essential face, or that f̂ is an essential
cell, if f is precisely the intersection of all principal faces of
X which contain f .

We denote by Ess(X ) the set composed of all essential
faces of X .

The essential 0- and 1-faces are highlighted.
All the 2-faces are principal, thus they are essential.
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Core

Definition

The core of f̂ is the complex, denoted by Core(f̂ ,X ),
which is the union of all essential cells which are strictly
included in f .

f g

core of f core of g
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Critical face

Definition

We say that f and f̂ are regular if f ∈ Ess(X ) and if f̂
collapses onto Core(f̂ ,X ).

We say that f and f̂ are critical if f ∈ Ess(X ) and if f is
not regular.

f g

f is regular g is critical
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Critical kernel

Definition

We set Critic(X ) = ∪{f̂ | f is critical }, Critic(X ) is the
critical kernel of X .

X0 X1 = Critic(X0)

X2 = Critic(X1) Critic(X2) = X2
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Main theorem

Theorem (G. Bertrand)

In any dimension, the critical kernel of X is a retraction of X .

Furthermore, if Y is any principal subcomplex of X such that
Y contains the critical kernel of X , then Y is a retraction of X .
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Simple cell

Intuitively, a cell f̂ of a complex X is simple if its removal from
X “does not change the topology of X ”.

Definition

Let f be a principal face, we say that f̂ is simple if X collapses
onto X � f̂ .

Property (local characterization)

A principal face of a complex X is simple if and only if is
regular.
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Crucial kernels
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Motivation

pure 2D cubical complex binary image

2-faces ↔ pixels
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Motivation

By identifying 2-faces with pixels in 2D, or surfels in 3D, we
make a link between complexes and digital topology. But:

The critical kernel of a pure 2-complex is not always a pure
2-complex

X0 X1 = Critic(X0)
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Maximal critical face

Definition

A face f in X is a maximal critical face, or an M-critical
face, if f is a critical face which is not strictly included in
any other critical face.

A complex X0 and its M-critical faces (highlighted)
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Crucial faces, crucial cliques

Definition

We say that f is crucial, if f̂ \ {f } contains a face which is
M-critical.

We say that f is 0-critical if Core(f̂ ,X ) = ∅;
We say that f is 1-critical if Core(f̂ ,X ) is not connected.

We say that f is k-crucial if f̂ \ {f } contains an M-critical
face which is k-critical, k = 0, 1.

We say that K is a (k-) crucial clique, if there exists a
(k-critical) face f which is M-critical and such that K is
precisely the set of principal faces of X which contain f .
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Crucial faces, crucial cliques

A complex Critical faces

M-critical faces Crucial cliques
left: 0-critical, right: 1-critical left: 0-crucial, right: 1-crucial

We want a pure 2-complex which contains all 0- and 1-crucial
faces. Thus, we have to preserve at least one face of each

crucial clique.
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K-Skeletons in 2D grids
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Local conditions (2D)
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Property

Let S be a set of pixels and P be a set of simple pixels.

The pixel p is 1-crucial for 〈S ,P〉 if and only if p is
matched by pattern C ;

The pixel p is 0-crucial for 〈S ,P〉 if and only if p is
matched by one of the patterns C1, ...C4.
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Minimal K-skeleton

Definition

The crucial kernel of S is the set Cruc(S) which is
composed of all critical pixels and all crucial pixels of S .

Let 〈S0,S1, ...,Sk〉 be the unique sequence such that
S0 = S , Cruc(Sk) = Sk and Si = Cruc(Si−1), i = 1, ..., k.
The set Sk is the minimal K-skeleton of S .

Algorithm MK 2
a (Input /Output : a set S of pixels)

01. Repeat Until Stability
02. P ← set of pixels which are simple for S
03. R ← set of pixels in P which are 0- or 1-crucial for S
04. S ← [S \ P] ∪ R
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Minimal K-skeleton: example

An object and its minimal K-skeleton
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Minimal K-skeleton: 1-mask algorithm

Property

Let S be a set of pixels, and let p ∈ S be a simple pixel.

If p is not crucial for S, then there exists q ∈ Γ∗(p) ∩ S
such that q is either critical or 1-crucial for S.

If p is 0-crucial for S, then any q ∈ Γ∗(p) ∩ S is neither
critical, nor 1-crucial.

Algorithm MK 2 (Input /Output : a set S of pixels)
01. Repeat Until Stability
02. P ← set of pixels which are simple for S
03. R ← set of pixels in P which are 1-crucial for S
04. T ← [S \ P] ∪ R
05. S ← T ∪ [S \ (T ⊕ Γ∗)]

The correctness of the algorithm lies on the above property.
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Constrained K-skeleton

Definition

Let S be a set of pixels and let K ⊆ S . Let P be the set
composed of all simple pixels for S which are not in K .

We denote by Cruc(S ,K ) the set composed of all pixels in
S \ P and all pixels which are crucial for 〈S ,P〉.
Let 〈S0,S1, ...,Sk〉 be the unique sequence such that
S0 = S , Sk = Cruc(Sk ,K ) and Si = Cruc(Si−1,K ),
i = 1, ..., k.

The set Sk is the K-skeleton of S constrained by K .
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K-Skeleton constrained by the medial axis

Algorithm AK 2 (Input /Output : set S of pixels)
00. K ← ∅ ; T ← S
01. Repeat Until Stability
02. E ← T 	 ΓS ; D ← T \ [E ⊕ ΓS ]
03. T ← E ; K ← K ∪ D
04. P ← set of pixels of S \ K which are simple for S
05. R ← set of pixels in P which are 1-crucial for 〈S ,P〉
06. S ← [S \ P] ∪ R

Property

Let S be a set of pixels. The set AK 2(S) is the K-skeleton of S
constrained by the medial axis of S (relative to the 4-distance).
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K-Skeleton constrained by the medial axis

Medial axis Constrained skeleton
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K-Skeletons of 2D objects in 3D grids
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Local conditions (3D)
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Property

Let S be a set of pixels and let p ∈ S. Let P be a set of simple
surfels of S.

The surfel p is 1-crucial for 〈S ,P〉 if and only if p is matched
by the pattern D.



New 2D
parallel
thinning

algorithms
based on

critical kernels

Gilles
Bertrand and

Michel
Couprie

Minimal 2D K-skeleton in the 3D grid

Algorithm MK 3
2 (Input /Output : a set S of surfels)

01. Repeat Until Stability
02. P ← set of surfels which are simple for S
03. R ← set of surfels in P which are 1-crucial for S
04. T ← [S \ P] ∪ R
05. S ← T ∪ [S \ (T ⊕ Γ∗)]

Object S Minimal K-skeleton of S
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Topological axis: generalization of the medial axis

Definition

Let X be a complex, and let f ∈ X +. We set ρ(f ,X ) as the
minimum length of a collapse sequence of X necessary to
remove f from X , if such a sequence exists, and ρ(f ,X ) =∞
otherwise. We define the topological axis of X as the set of
faces f in X + such that ρ(f ,X ) =∞ or
ρ(f ,X ) ≥ max{ρ(g ,X ) | g ∈ Γ∗S(f ) and ρ(g ,X ) 6=∞}.

Object Topological axis
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K-Skeleton constrained by the topological axis

Algorithm BK 3
2 (Input /Output : set S of surfels)

00. T ← S
01. Repeat Until Stability
02. T ← {s ∈ T | s is an interior surfel of T}
03. P ← set of simple surfels for S such that

Γ∗S(p) ∩ T 6= ∅
04. R ← set of surfels in P which are 1-crucial for 〈S ,P〉
05. S ← [S \ P] ∪ R

Property

Let S be a set of pixels. The set BK 3
2 (S) is the K-skeleton of

S constrained by the topological axis of S.
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K-Skeleton constrained by the topological axis

Topological axis Constrained skeleton
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Epilogue
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Conclusion

The salient outcomes of this work are:

the definition and some characterizations of crucial faces,
allowing for fast and simple implementations,

the definition and an algorithm for a minimal symmetric
skeleton (MK 2),

the introduction of the topological axis, which generalizes
the medial axis,

a parallel algorithm for a symmetric skeleton which
contains the medial axis,

a parallel algorithm for a minimal symmetric skeleton of an
object made of surfels,

a parallel algorithm for a symmetric skeleton, which
contains the topological axis of an object made of surfels.

As far as we know, all the above algorithms have no equivalent.
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Perspectives

parallel 3D thinning

parallel Euclidean skeletons

general skeletons (i.e., which are not necessarily principal
subcomplexes)
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Questions
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