Introduction to grayscale image processing by mathematical morphology

Jean Cousty

MorphoGraph and Imagery 2011

Outline of the lecture

1 Grayscale images

2 Operators on grayscale images

Images

Definition

- Let V be a set of values
- An image (on E with values in V) is a map I from E into V
- I(x) is called the value of the point (pixel) x for I

Images

Definition

- Let V be a set of values
- An image (on E with values in V) is a map I from E into V
- I(x) is called the value of the point (pixel) x for I

Example

- Images with values in \mathbb{R}^+ : euclidean distance map D_X to a set $X \in \mathcal{P}(E)$
- Images with values in \mathbb{Z}^+ : distance map D_X for a geodesic distance in a uniform network

Grayscale images

- We denote by \mathcal{I} the set of all images with integers values on E
- An image in \mathcal{I} is also called *grayscale* (or *graylevel*) image

Grayscale images

- lacktriangle We denote by $\mathcal I$ the set of all images with integers values on E
- An image in \mathcal{I} is also called *grayscale* (or *graylevel*) image
- lacktriangle We denote by I an arbitrary image in ${\mathcal I}$
- The value I(x) of a point $x \in E$ is also called the *gray level of x*, or the *gray intensity at x*

Topographical interpretation

- An grayscale image I can be seen as a topographical relief
 - \blacksquare I(x) is called the *altitude of x*

Topographical interpretation

- An grayscale image I can be seen as a topographical relief
 - \blacksquare I(x) is called the *altitude of x*
 - Bright regions: mountains, crests, hills
 - Dark regions: bassins, valleys

Level set

Definition

- Let $k \in \mathbb{Z}$
- The k-level set (or k-section, or k-threshold) of I, denoted by I_k , is the subset of E defined by:
 - $I_k = \{x \in E \mid I(x) \ge k\}$

Level set

Definition

- Let $k \in \mathbb{Z}$
- The k-level set (or k-section, or k-threshold) of I, denoted by I_k , is the subset of E defined by:
 - $I_k = \{x \in E \mid I(x) \ge k\}$

1

 I_{80}

 I_{150}

 I_{220}

Reconstruction

Property

- $\blacksquare \ \forall k, k' \in \mathbb{Z}, \ k' > k \implies I_{k'} \subseteq I_k$
- $I(x) = \max\{k \in \mathbb{Z} \mid x \in I_k\}$

grayscale operators

■ An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

grayscale operators

■ An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

Definition (flat operators)

- Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on \mathcal{I} , also denoted by γ , defined by:
 - $\forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\gamma(I)]_k = \gamma(I_k)$

grayscale operators

■ An operator (on \mathcal{I}) is a map from \mathcal{I} into \mathcal{I}

Definition (flat operators)

- $lue{}$ Let γ be an increasing operator on E
- The stack operator induced by γ is the operator on \mathcal{I} , also denoted by γ , defined by:
 - $\forall I \in \mathcal{I}, \forall k \in \mathbb{Z}, [\gamma(I)]_k = \gamma(I_k)$

<u>Exercice.</u> Show that a same construction cannot be used to derive an operator on \mathcal{I} from an operator on E that is not increasing.

Characterisation of grayscale operators

Property

- lacktriangle Let γ be an increasing operator on E
- $[\gamma(I)](x) = \max\{k \in \mathbb{Z} \mid x \in \gamma(I_k)\}$

Characterisation of grayscale operators

Property

- Let γ be an increasing operator on E

<u>Remark.</u> Untill now, all operators seen in the MorphoGraph and Imagery course are increasing

Illustration: dilation on \mathcal{I} by Γ

Illustration: erosion on $\mathcal I$ by Γ

Illustration: opening on $\mathcal I$ by Γ

Illustration: closing on $\mathcal I$ by Γ

Dilation/Erosion by a structuring element: characterisation

Property (duality)

- Let Γ be a structuring element
- $\bullet \epsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Dilation/Erosion by a structuring element: characterisation

Property (duality)

- Let Γ be a structuring element
- $\bullet \epsilon_{\Gamma}(I) = -\delta_{\Gamma^{-1}}(-I)$

Property

- Let Γ be a structuring element
- $\bullet \left[\delta_{\Gamma}(I)\right](x) = \max\{I(y) \mid y \in \Gamma^{-1}(x)\}$
- $\bullet [\epsilon_{\Gamma}(I)](x) = \min\{I(y) \mid y \in \Gamma(x)\}$

Exercise

■ Write an algorithm whose data are a graph (E,Γ) and a grayscale image I on E and whose result is the image $I' = \delta_{\Gamma}(I')$