Discrete Morphology and Distances on graphs

Jean Cousty

FOUR-DAY COURSE

on Mathematical Morphology in image analysis Bangalore 19-22 October 2010

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Mathematical Morphology (MM) allows to process

Continuous planes

Continuous manifolds

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Discrete grids

Triangular meshes

Problem

Is there generic structures that allow MM operators to be studied and implemented in computers?

Problem

Is there generic structures that allow MM operators to be studied and implemented in computers?

Proposition

Graphs constitute such a structure for digital geometric objects

Outline

1 Graphs

- Graphs for discrete geometric objects
- Morphological operators in graphs
- Dilation algorithm in graphs

2 Distance transforms

- Geodesic distance (transform) in graphs
- Iterated morphological operators
- Distance transform algorithm in graphs

3 Medial axis

- Example of application
- Algorithm

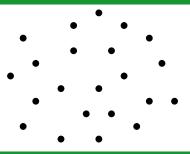
4 Related problems

What is a graph ?

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

(本部) (本語) (本語)

What is a graph ?



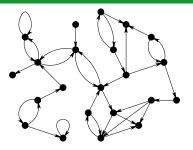
Definition

A graph G is a pair
$$(V, E)$$
 made of:

A set V

whose elements $\{x \in V\}$ are called points or vertices of G

What is a graph ?



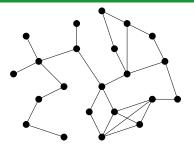
Definition

- A graph G is a pair (V, E) made of:
 - A set V

whose elements $\{x \in V\}$ are called points or vertices of G

■ A binary relation *E* on *V* (i.e., $E \subseteq V \times V$) whose elements {(*x*, *y*) ∈ *E*} are called edges of *G*

What is a graph ?



Definition

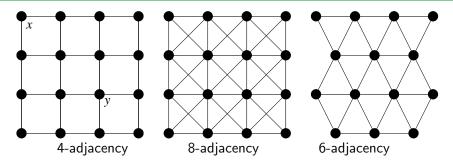
The graph (V, E) is symmetric whenever:

•
$$(x,y) \in E \implies (y,x) \in E$$

The graph (V, E) is reflexive if:

•
$$\forall x \in V, (x, x) \in E$$

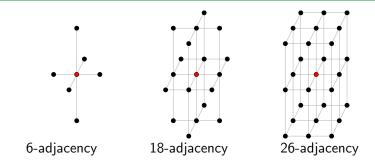
What is a graph ?



Symmetric & reflexive graph for 2D image analysis

- The vertex set V is the **image domain**
- The edge set *E* is given by an "adjacency" relation

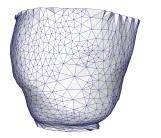
What is a graph ?



Symmetric & reflexive graph for 3D image analysis

- The vertex set V is the **image domain**
- The edge set *E* is given by an "adjacency" relation

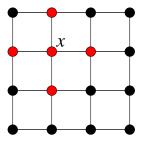
What is a graph ?



Symmetric & reflexive graph for mesh analysis

- The vertex set V is the **image domain**
- The edge set *E* is given by an "adjacency" relation

Neighborhood

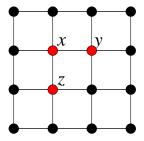


Definition

We call **neighborhood of a vertex (in** G) the set of all vertices linked (by an edge in G) to this vertex:

•
$$\forall x \in V, \Gamma(x) = \{y \in V \mid (x, y) \in E\}$$

Neighborhood

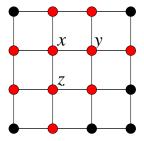


Definition

The **neighborhood (in** *G***) of a subset of vertices**, is the union of the neighborhood of the vertices in this set:

•
$$\forall X \subseteq V, \Gamma(X) = \cup_{x \in X} \Gamma(x)$$

Neighborhood



Definition

The **neighborhood (in** *G***) of a subset of vertices**, is the union of the neighborhood of the vertices in this set:

•
$$\forall X \subseteq V, \Gamma(X) = \cup_{x \in X} \Gamma(x)$$

Algebraic Dilation & graph

Property

- Whatever the graph G, the map $\Gamma : \mathcal{P}(V) \to \mathcal{P}(V)$ is an (algebraic) dilation
 - **Γ** commutes with the supremum

Morphological Dilation & graph

Property

- If V is discrete and equipped with a translation \mathcal{T}
- If X and B are subsets of V
- Then, $X \oplus B = \Gamma(X)$, where E is made of all pairs $(x, y) \in V \times V$ such that $y \in B_x$

Morphological Dilation & graph

Property

- If V is discrete and equipped with a translation \mathcal{T}
- If X and B are subsets of V
- Then, X ⊕ B = Γ(X), where E is made of all pairs (x, y) ∈ V × V such that y ∈ B_x

Conversely,

Property

- If V is equipped with a translation \mathcal{T} , and an origin $o \in V$
- If G is translation invariant $(\forall x, y \in V, \Gamma(x) = \mathcal{T}_t(\Gamma(y)))$,
- Then, $\Gamma(X) = X \oplus B$, with $B = \Gamma(o)$

Dilation, erosion, opening, closing & graph

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Dilation, erosion, opening, closing & graph

Reminder

- The adjoint erosion of Γ:
 - obtained by duality
- Elementary openings and closings:
 - obtained by composition of adjoint dilations and erosion's

Dilation Algorithm

Algorithm

Input: A graph G = (V, E) and a subset X of V

- $Y := \emptyset$
- For each $x \in V$ do
 - if $x \in X$ do
 - For each $y \in \Gamma(x)$ do $Y := Y \cup \{x\}$

Dilation Algorithm

Algorithm

Input: A graph G = (V, E) and a subset X of V

$$Y := \emptyset$$

For each
$$x \in V$$
 do

• if
$$x \in X$$
 do

For each
$$y \in \Gamma(x)$$
 do $Y := Y \cup \{x\}$

Data Structures

- Each element of V is represented by an integer between 0 and |V| - 1
- The map Γ is represented by an array of |V| lists
- Sets X and Y are represented by Boolean arrays

Dilation Algorithm: Complexity analysis

Algorithm

Input: A graph	G = (V, E) and a subset X of V
----------------	-----------	-----------------------

• $Y := \emptyset$	O(1)
For each $x \in V$ do	O(V)
• if $x \in X$ do	O(V)
For each $y \in \Gamma(x)$ do $Y := Y \cup \{x\}$	O(V + E)

Data Structures

- Each element of V is represented by an integer between 0 and |V| - 1
- The map Γ is represented by an array of |V| lists
- Sets X and Y are represented by Boolean arrays

Usual granulometric studies of X require Γ^N(X) for each possible value of N

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Usual granulometric studies of X require Γ^N(X) for each possible value of N How can Γ^N(X) be computed?

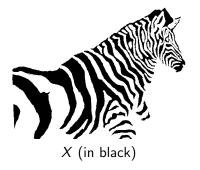
- Usual granulometric studies of X require
 Γ^N(X) for each possible value of N
- How can $\Gamma^N(X)$ be computed?
- Applying N times the preceding algorithm?
 - Complexity $O(N \times (|V| + |E|))$

- Usual granulometric studies of X require
 - $\Gamma^N(X)$ for each possible value of N
- How can $\Gamma^N(X)$ be computed?
- Applying N times the preceding algorithm?
 - Complexity $O(N \times (|V| + |E|))$

Problem

• Efficient computation of $\Gamma^N(X)$

Distance transforms: intuition



Distance transforms: intuition

Distance transform of X

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

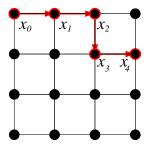
Distance transforms: intuition

./Figures/zebreDilation.avi Thresholds: $\{\Gamma^N\}$

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Paths

- Let $\pi = \langle x_0, \ldots, x_k \rangle$ be an ordered sequence of vertices
- π is a *path from* x_0 *to* x_k if:
 - any two consecutive vertices of π are linked by an edge: $\forall i \in [1, k], (x_{i-1}, x_i) \in E$



Length of a path

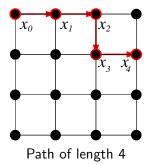
• Let
$$\pi = \langle x_0, \ldots, x_k \rangle$$
 be a path

The *length* of π , denoted by $L(\pi)$, is the integer k

Length of a path

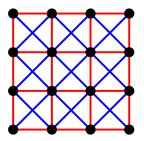
• Let
$$\pi = \langle x_0, \ldots, x_k \rangle$$
 be a path

• The *length of* π , denoted by $L(\pi)$, is the integer k



Length of a path in a weighted graph

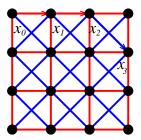
- Let ℓ be a map from E into \mathbb{R} : $u \to \ell(u)$, the *length* of the edge u
- The pair (G, ℓ) is called a *weighted graph* or a *network*



- Length of red edges: 1
- Length of blue edges: $\sqrt{2}$

Length of a path in a weighted graph

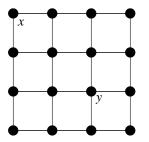
- Let ℓ be a map from E into \mathbb{R} : $u \to \ell(u)$, the *length* of the edge u
- The pair (G, ℓ) is called a *weighted graph* or a *network*
- The *length* of a path π = ⟨x₀,..., x_k⟩ is the sum of the length of the edges along π: L(π) = ∑_{i=1}^k ℓ ((x_{i-1}, x_i))



- Length of red edges: 1
- Length of blue edges: $\sqrt{2}$
- Path of length $2 + \sqrt{2} \approx 3.4$

Graph distance

- Let x and y be two vertices
- The distance between x and y is defined by:
 - $D(x, y) = \min\{L(\pi) \mid \pi \text{ is a path from } x \text{ to } y\}$



$$D(x,y) = 4$$

Graph distance

Property

• If the graph G is symmetric, then the map D is a distance on V:

- $\forall x \in V, D(x,x) = 0$
- $\forall x, y \in V, x \neq y \implies D(x, y) > 0$ (positive)
- $\forall x, y \in V$, D(x, y) = d(y, x) (symmetric)
- $\forall x, y, z \in V$, $D(x, z) \leq D(x, y) + D(y, z)$ (triangular inequality)

Graph distance

Property

• If the graph G is symmetric, then the map D is a distance on V:

•
$$\forall x \in V, D(x,x) = 0$$

- $\forall x, y \in V, x \neq y \implies D(x, y) > 0$ (positive)
- $\forall x, y \in V$, D(x, y) = d(y, x) (symmetric)
- $\forall x, y, z \in V$, $D(x, z) \leq D(x, y) + D(y, z)$ (triangular inequality)

Terminology

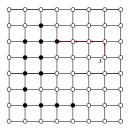
■ In this case of graph, the distance *D* is called *geodesic*

伺 ト く ヨ ト く ヨ ト

Distance Transform

- Let $X \subseteq V$ and $x \in V$
- The distance between *x* and *X* is defined by

$$D(x,X) = \min\{D(x,y) \mid y \in X\}$$



X black vertices

 $\bullet D(x,X)$

Distance Transform

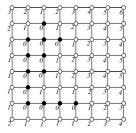
• Let $X \subseteq V$ and $x \in V$

■ The distance between *x* and *X* is defined by

$$D(x,X) = \min\{D(x,y) \mid y \in X\}$$

• The distance transform of X is the map from V into \mathbb{R} defined by

•
$$x \to D_X(x) = D(x, X)$$

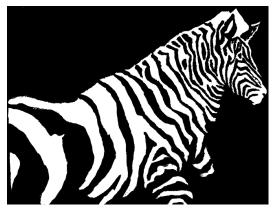


X black vertices

 $\square D_X$

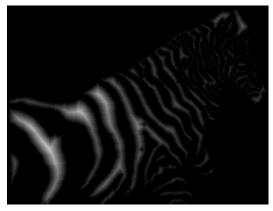
Distance transforms

Illustration on an image



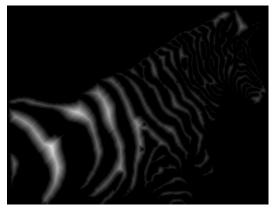
Original object X in black

Illustration on an image



 D_X in the (non-weighted) graph induced by the 4-adjacency

Illustration on an image



 D_X in the (non-weighted) graph induced by the 8-adjacency

Distance transforms & dilations (in non-weighted graphs)

The *level-set of* D_X *at level* k ($X \subseteq V, k \in \mathbb{R}$) is defined by:

• $D_X[k] = \{x \in V \mid D_X(x) \le k\}$

Distance transforms & dilations (in non-weighted graphs)

• The *level-set of* D_X *at level* k ($X \subseteq V, k \in \mathbb{R}$) is defined by:

• $D_X[k] = \{x \in V \mid D_X(x) \le k\}$

Theorem

•
$$\Gamma^k(X) = D_X[k]$$
, for any $X \subseteq V$ and any $k \in \mathbb{N}$

Algorithm: **Input:** $X \subseteq V$, **Results:** D_X

For each
$$x \in V$$
 do $D_X(x) := \infty$

•
$$S := X; T := \emptyset; k := 0;$$

- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

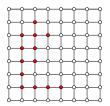
For each $y \in \Gamma(x)$ if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

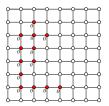


- Example of execution
- S in red
- T in blue
- *k* = 0

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

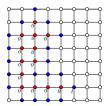


- Example of execution
- S in red
- T in blue
- *k* = 0

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

• For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

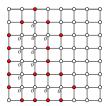


- Example of execution
- S in red
- T in blue
- *k* = 0

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

• For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

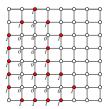


- Example of execution
- S in red
- T in blue
- *k* = 1

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

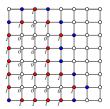


- Example of execution
- S in red
- T in blue
- k = 1

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

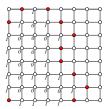


- Example of execution
- S in red
- T in blue
- k = 1

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

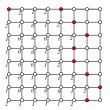


- Example of execution
- S in red
- T in blue
- *k* = 2

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

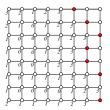


- Example of execution
- S in red
- T in blue

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

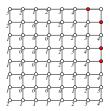


- Example of execution
- S in red
- T in blue
- *k* = 4

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

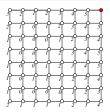
•
$$S := T; T := \emptyset; k := k + 1;$$



- Example of execution
- S in red
- T in blue

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do
 - For each $y \in \Gamma(x)$ if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$



- Example of execution
- S in red
- T in blue
- *k* = 6

- For each $x \in V$ do $D_X(x) := \infty$
- $\bullet S := X; T := \emptyset; k := 0;$
- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each
$$y \in \Gamma(x)$$
 if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

- Example of execution
- S in red
- T in blue

Algorithm: **Input:** $X \subseteq V$, **Results:** D_X

For each
$$x \in V$$
 do $D_X(x) := \infty$

•
$$S := X; T := \emptyset; k := 0;$$

- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do
 - For each $y \in \Gamma(x)$ if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

Correctness: sketch of the proof by induction

At the end of step k, D_X(y) = k if and only if there is a path of length k from X to y

Algorithm: **Input:** $X \subseteq V$, **Results:** D_X

For each
$$x \in V$$
 do $D_X(x) := \infty$

•
$$S := X; T := \emptyset; k := 0;$$

- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do
 - For each $y \in \Gamma(x)$ if $D_X(y) = \infty$ do $T := T \cup \{y\}$;

•
$$S := T; T := \emptyset; k := k + 1;$$

Data Structures

- Elements of V represented by integers in [0, |V| 1]
- Γ represented by an array of |V| lists
- S and T implemented as lists

Algorithm: **Input:** $X \subseteq V$, **Results:** D_X

For each
$$x \in V$$
 do $D_X(x) := \infty$

•
$$S := X; T := \emptyset; k := 0;$$

- While $S \neq \emptyset$ do
 - For each $x \in S$ do $D_X := k$
 - For each $x \in S$ do

For each $y \in \Gamma(x)$ if $D_X(y) = \infty$ do $T := T \cup \{y\}$; $D_X(y) := -\infty$

•
$$S := T; T := \emptyset; k := k + 1;$$

Complexity

•
$$O(|V| + |E|)$$

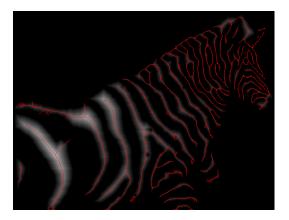
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

- Disjkstra Algorithm (1959)
- Complexity (using modern data structure)
 - Same as sorting algorithms

- Disjkstra Algorithm (1959)
- Complexity (using modern data structure)
 - Same as sorting algorithms
 - For small integers distances: O(|V| + |E|)

- Disjkstra Algorithm (1959)
- Complexity (using modern data structure)
 - Same as sorting algorithms
 - For small integers distances: O(|V| + |E|)
 - For floating point numbers distances: $O(\log \log(|V|) + |E|)$

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology



■ Visually, the salient loci of the DT form a "centered skeleton"

- Visually, the salient loci of the DT form a "centered skeleton"
 Medial axis constitute a first notion of such skeletons
 - Introduced by Blum in the 60's

Medial Axis: grass fire analogy

./Figures/feudeprairie.avi

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

25/34

Definition

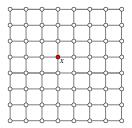
• $\Gamma^r(x)$ is called the *ball of radius r centered on x*

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

'문▶' ★ 문▶

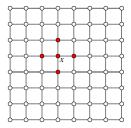
Definition

• $\Gamma^r(x)$ is called the *ball of radius r centered on x*



Definition

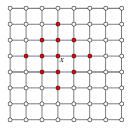
• $\Gamma^r(x)$ is called the *ball of radius r centered on x*



Γ¹(x)

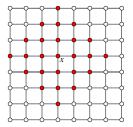
Definition

• $\Gamma^r(x)$ is called the *ball of radius r centered on x*



Definition

• $\Gamma^r(x)$ is called the *ball of radius r centered on x*

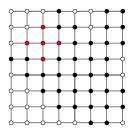


Definition

- $\Gamma^r(x)$ is called the *ball of radius r centered on x*
- $\Gamma^{r}(x)$ is called a *maximal ball in X* if:
 - $\Gamma^r(x) \subseteq X$
 - $\forall y \in V, \forall r' \in \mathbb{N}, \text{ if } \Gamma^{r}(x) \subseteq \Gamma^{r'}(y) \subseteq X, \text{ then } \Gamma^{r}(x) = \Gamma^{r'}(y)$

Definition

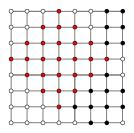
- $\Gamma^{r}(x)$ is called the *ball of radius r centered on x*
- $\Gamma^{r}(x)$ is called a *maximal ball in X* if:
 - $\Gamma^r(x) \subseteq X$
 - $\forall y \in V, \forall r' \in \mathbb{N}, \text{ if } \Gamma^{r}(x) \subseteq \Gamma^{r'}(y) \subseteq X, \text{ then } \Gamma^{r}(x) = \Gamma^{r'}(y)$



X in red and black
A ball which is not maximal in X

Definition

- $\Gamma^r(x)$ is called the *ball of radius r centered on x*
- $\Gamma^{r}(x)$ is called a *maximal ball in X* if:
 - $\Gamma^r(x) \subseteq X$
 - $\forall y \in V, \forall r' \in \mathbb{N}, \text{ if } \Gamma^{r}(x) \subseteq \Gamma^{r'}(y) \subseteq X, \text{ then } \Gamma^{r}(x) = \Gamma^{r'}(y)$

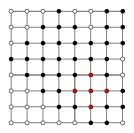


X in red and black

A maximal ball

Definition

- $\Gamma^r(x)$ is called the *ball of radius r centered on x*
- $\Gamma^{r}(x)$ is called a *maximal ball in X* if:
 - $\Gamma^r(x) \subseteq X$
 - $\forall y \in V, \forall r' \in \mathbb{N}, \text{ if } \Gamma^{r}(x) \subseteq \Gamma^{r'}(y) \subseteq X, \text{ then } \Gamma^{r}(x) = \Gamma^{r'}(y)$



X in red and black

A maximal ball

Medial Axis

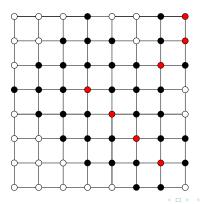
Definition

The medial axis of X is the set of centers of maximal balls in X
MA(X) = {x ∈ X | ∃r ∈ N, Γ'(x) is a maximal ball in X}

Medial Axis

Definition

The medial axis of X is the set of centers of maximal balls in X
 MA(X) = {x ∈ X | ∃r ∈ ℕ, Γ^r(x) is a maximal ball in X}



Medial Axis: illustration on images

Medial axis

./Figures/ct.avi

./Figures/segmentation.avi

./Figures/paths.avi

./Figures/colono.avi

Computational characterization

• The point $x \in V$ is a local maximum of D_X if

• for any $y \in \Gamma(x)$, $D_X(y) \le D_X(y)$

Property

• The medial axis of X is the set of local maxima of $D_{\overline{X}}$

Homotopic transform

Medial axis of connected objects can be disconnected

Medial Axis

Homotopic transform

Medial axis of connected objects can be disconnected



Homotopic skeleton

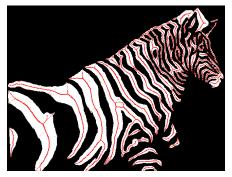
Kong & Rosenfeld. *Digital topology: introduction and survey* CVGIP-89

 Couprie and Bertrand, New characterizations of simple points in 2D, 3D and 4D discrete spaces, TPAMI-09

Euclidean distance and medial axis

Medial axis for the D_4 graph distance

Euclidean distance and medial axis



Medial axis for the Euclidean distance

Euclidean distance and medial axis

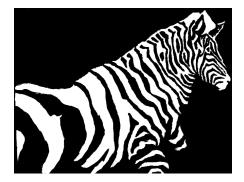
Euclidean distance transform

 Saito & Toriwaki, New algorithms for Euclidean distance transformation of an n-dimensional digitized picture with applications, PR-94

Remy & Thiel, *Exact Medial Axis with Euclidean Distance* IVC-05

Related problems

Opening function



Related problems

Opening function

Related problems

Opening function

Figures/OpeningFunction.png

Opening function

Figures/OpeningFunction.png

- Vincent, *Fast grayscale granulometry algorithms*, ISMM'94
- Chaussard et al., Opening functions in linear time for chessboard and city-bloc distances (in preparation)

▶ < ∃ >

- Introduction of the graph formalism for MM
- Distance Transform
- Linear time algorithm for morphological operators in graphs
- Medial axis