Segmentation by discrete watersheds Part 2: Algorithms and Seeded watershed cuts

Jean Cousty

FOUR-DAY COURSE

on

Mathematical Morphology in image analysis Bangalore 19-22 October 2010

Thinnings: a new paradigm to compute watershed cuts

Thinnings: a new paradigm to compute watershed cuts

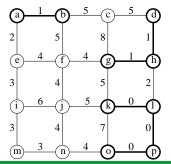
 Intuitively, a thinning consists of iteratively lowering the values of the edges which satisfy a certain property

Thinnings: a new paradigm to compute watershed cuts

- Intuitively, a thinning consists of iteratively lowering the values of the edges which satisfy a certain property
 - B-thinnings
 - *M*-thinnings
 - *I*-thinnings

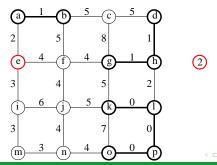
- The *altitude* of a vertex *x*, denoted *F*[⊖](*x*), is the minimal altitude of an edge which contains *x*:
 - $F^{\ominus}(x) = \min\{F(u) \mid u \in E \text{ and } x \in u\}$

- The altitude of a vertex x, denoted F[⊖](x), is the minimal altitude of an edge which contains x:
 - $F^{\ominus}(x) = \min\{F(u) \mid u \in E \text{ and } x \in u\}$



J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

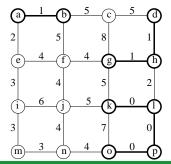
- The *altitude* of a vertex *x*, denoted *F*[⊖](*x*), is the minimal altitude of an edge which contains *x*:
 - $F^{\ominus}(x) = \min\{F(u) \mid u \in E \text{ and } x \in u\}$



$$k \xrightarrow{k} k \xrightarrow{k' < k} k \xrightarrow{k'' < k} k$$

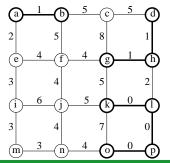
border

inner

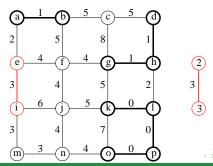


J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

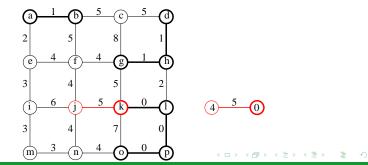
We say that u = {x, y} is a *border edge for (for F)* if:
 F(u) = max(F(x), F(y)); and F(u) > min(F(x), F(y))



We say that u = {x, y} is a *border edge for (for F)* if:
 F(u) = max(F(x), F(y)); and F(u) > min(F(x), F(y))



We say that u = {x, y} is a *border edge for (for F)* if:
 F(u) = max(F(x), F(y)); and F(u) > min(F(x), F(y))



\mathscr{B} -thinnings & \mathscr{B} -cuts

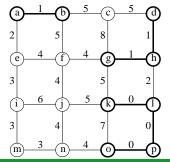
The *lowering of F at u* is the map F' such that:

•
$$F'(u) = \min_{x \in u} \{F^{\ominus}(x)\}$$
; and

•
$$F'(v) = F(v)$$
 for any edge $v \in E \setminus \{u\}$.

Definition

Definition

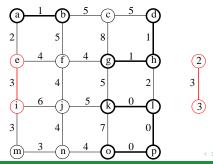


J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

\mathscr{B} -thinnings & \mathscr{B} -cuts

Definition

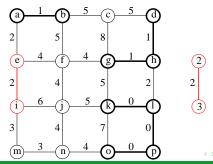
■ A map H is a *B*-thinning of F if H may be derived from F by iterative lowerings at border edges



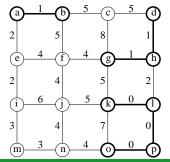
\mathscr{B} -thinnings & \mathscr{B} -cuts

Definition

■ A map H is a *B*-thinning of F if H may be derived from F by iterative lowerings at border edges



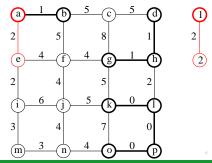
Definition



J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

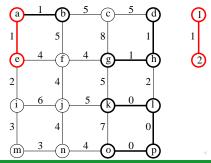
Definition

■ A map H is a *B*-thinning of F if H may be derived from F by iterative lowerings at border edges

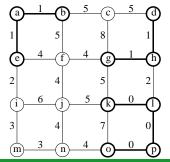


Definition

■ A map H is a *B*-thinning of F if H may be derived from F by iterative lowerings at border edges

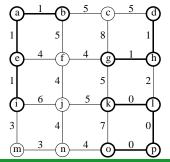


Definition



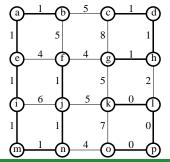
J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Definition



J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

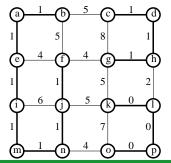
Definition



J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Definition

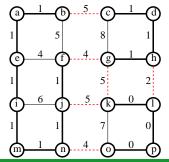
- A map H is a *B*-thinning of F if H may be derived from F by iterative lowerings at border edges
- The map H is a *B*-kernel of F if H is a *B*-thinning of F and if there is no border edge for H.



\mathscr{B} -thinnings & \mathscr{B} -cuts

Definition

• We say that $S \subseteq E$ is a \mathscr{B} -cut of F if there exists a \mathscr{B} -kernel H of F such that S is the set of all edges linking two distinct minima of H.



B-kernels, *B*-cuts & watersheds

Theorem

- A graph X is an MSF relative to the minima of F if and only if X is the graph of the minima of a *B*-kernel of F
- An edge set $S \subseteq E$ is a \mathscr{B} -cut of F if and only if S is a watershed of F

B-thinnings:

Rely on a local condition

B-thinnings:

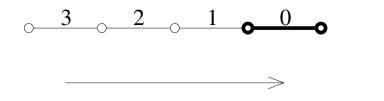
- Rely on a local condition
- Adapted to parallel strategies

- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem

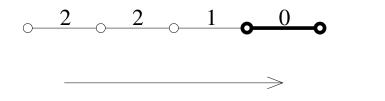
- *B*-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem



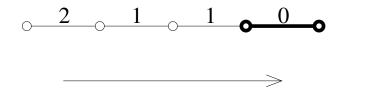
- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem



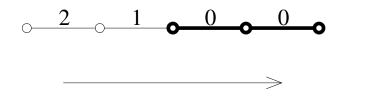
- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem



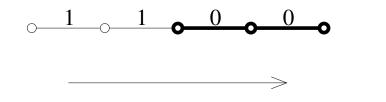
- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem



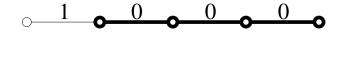
- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem



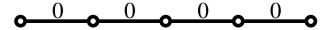
- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

Problem



- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

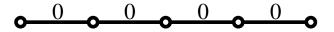
Problem



- B-thinnings:
 - Rely on a local condition
 - Adapted to parallel strategies

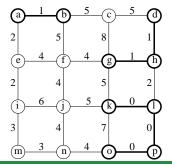
Problem

- But a same edge can be lowered several times
- Naive sequential algorithm runs in $O(n^2)$



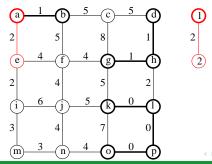
Definition

An edge u is M-border (for F) if u is a border edge for F and if one of its vertices belongs to a minimum of F



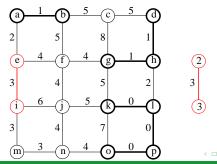
Definition

An edge u is M-border (for F) if u is a border edge for F and if one of its vertices belongs to a minimum of F



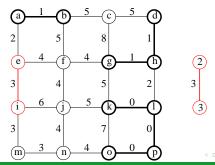
Definition

An edge u is M-border (for F) if u is a border edge for F and if one of its vertices belongs to a minimum of F



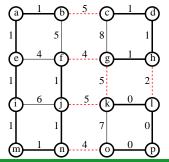
Definition

- An edge u is M-border (for F) if u is a border edge for F and if one of its vertices belongs to a minimum of F
- We can then define *M*-thinnings, *M*-kernels and *M*-cuts of *F*



Definition

- An edge u is M-border (for F) if u is a border edge for F and if one of its vertices belongs to a minimum of F
- We can then define *M*-thinnings, *M*-kernels and *M*-cuts of *F*



M-kernels, *M*-cuts & watersheds

Theorem

- A graph X is an MSF relative to the minima of F if and only if X is the graph of the minima of a *M*-kernel of F
- An edge set $S \subseteq E$ is an \mathcal{M} -cut of F if and only if S is a watershed cut of F

M-kernel Algorithm

Data: (V, E, F): an edge-weighted graph **Result**: F: an \mathcal{M} -kernel of the input map, and its minima (V_M, E_M) 1 $L \leftarrow \emptyset$: 2 Compute $M(F) = (V_M, E_M)$ and $F^{\ominus}(x)$ for each $x \in V$; 3 foreach $u \in E$ outgoing from (V_M, E_M) do $L \leftarrow L \cup \{u\}$; 4 while there exists $u \in L$ do $L \leftarrow L \setminus \{u\}$: 5 if u is border for F then 6 $x \leftarrow$ the vertex in u such that $F^{\ominus}(x) < F(u)$; 7 $y \leftarrow$ the vertex in u such that $F^{\ominus}(y) = F(u)$; 8 $F(u) \leftarrow F^{\ominus}(x)$; $F^{\ominus}(y) \leftarrow F(u)$; 9 $V_M \leftarrow V_M \cup \{y\}$; $E_M \leftarrow E_M \cup \{u\}$; 10 foreach $v = \{y', y\} \in E$ with $y' \notin V_M$ do $L \leftarrow L \cup \{v\}$; 11

M-kernel algorithm: analysis

Results

Any edge is lowered at most once

M-kernel algorithm: analysis

Results

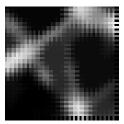
- Any edge is lowered at most once
- Linear-time (O(|V| + |E|)) whatever the range of F
 - No need to sort
 - No need to use a hierarchical/priority queue
 - No need to use union-find structure

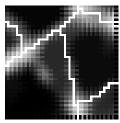
M-kernel algorithm: analysis

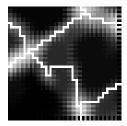
Results

- Any edge is lowered at most once
- Linear-time (O(|V| + |E|)) whatever the range of F
 - No need to sort
 - No need to use a hierarchical/priority queue
 - No need to use union-find structure
- The only required data structure is a list for the set L

Watershed on plateaus?







(a)

(b)

(c)

- (a) Representation of an edge weighted graph (4-adjacency)
 - Watersheds computed by \mathscr{B} -kernel algorithms implementing set L
 - (b) as a LIFO list
 - $(c)\,$ as a priority queue with a FIFO breaking ties policy

Watershed: pracical problem #2

Problem

In practice: over-segmentation

Over-segmentation

Solution 2

Seeded watershed (or marker based watershed)

Over-segmentation

Solution 2

- Seeded watershed (or marker based watershed)
- Methodology proposed by Beucher and Meyer (1993)
 - **1** Recognition
 - **2 Delineation** (generally done by watershed)
 - **3** Smoothing

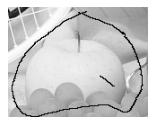
Over-segmentation

Solution 2

- Seeded watershed (or marker based watershed)
- Methodology proposed by Beucher and Meyer (1993)
 - **1** Recognition
 - **2 Delineation** (generally done by watershed)
 - **3** Smoothing
- Semantic information taken into account at steps 1 and 3

Seeded segmentation is very popular

• A user "marks by seeds" the object that are to be segmented



Seeded segmentation is very popular

- A user "marks by seeds" the object that are to be segmented
- MSF cuts fall into this category

Seeded segmentation is very popular

- A automated procedure "marks by seeds" the object that are to be segmented
- MSF cuts fall into this category

Seeded segmentation is very popular

- A automated procedure "marks by seeds" the object that are to be segmented
- MSF cuts fall into this category

A morphological solution

 Mathematical morphology is adapted to the design of such automated recognition procedure

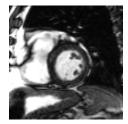
Myocardium segmentation in 3D+t ciné MRI

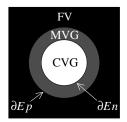
J. Cousty et al., 2007

Myocardium segmentation in 3D+t ciné MRI

J. Cousty et al., 2007

Cross-section by cross-section acquisition



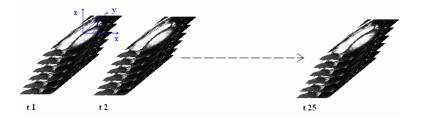


Myocardium segmentation in 3D+t ciné MRI

- J. Cousty et al., 2007
- Cross-section by cross-section acquisition
- First, along time (ECG gated)

Myocardium segmentation in 3D+t ciné MRI

- J. Cousty et al., 2007
- Cross-section by cross-section acquisition
- First, along time (ECG gated)
- Then, in space



Endocardial segmentation:

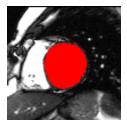
- Endocardial segmentation:
- Upper threshold (recognition)

Endocardial segmentation:

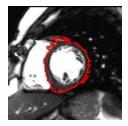
- Upper threshold (recognition)
- Geodesic dilation in a lower threshold (delineation)

• Epicardial segmentation:

- Epicardial segmentation:
- Internal and external markers (recognition):
 - Repulsed dilation
 - Homotopic dilation

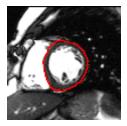


- Epicardial segmentation:
- Internal and external markers (recognition):
 - Repulsed dilation
 - Homotopic dilation
- Watershed in 4D space



Epicardial segmentation:

- Internal and external markers (recognition):
 - Repulsed dilation
 - Homotopic dilation
- Watershed in 4D space
- Smoothing (alternated sequential filters)



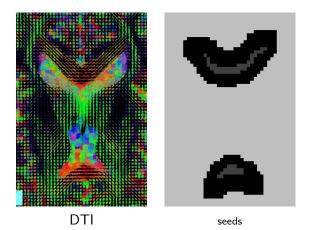
res

Seeded watershed for Diffusion Tensor Images (DTIs)

3D Diffusion Tensor Image equipped with the direct adjacency

Edges weighted by the Log-Euclidean distance between tensors

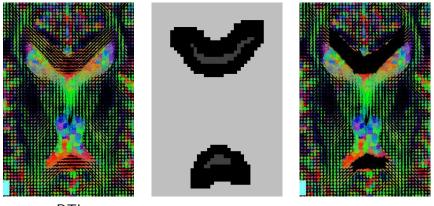
Seeded watershed for Diffusion Tensor Images (DTIs)



■ 3D Diffusion Tensor Image equipped with the direct adjacency

Edges weighted by the Log-Euclidean distance between tensors

Seeded watershed for Diffusion Tensor Images (DTIs)



DTI

seeds

segmentation by MSF cuts

- 3D Diffusion Tensor Image equipped with the direct adjacency
- Edges weighted by the Log-Euclidean distance between tensors
- Seeds automatically obtained from a statistical atlas

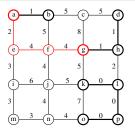
Discrete optimization for seeded segmentation

- Minimum spanning forests
- Shortest paths spanning forests
- Min-cuts
- Random Walkers

Connection value

Definition

• Let
$$\pi = \langle x_0, \dots, x_\ell \rangle$$
 be a path in G.
• $\Upsilon_F(\pi) = \max\{F(\{x_{i-1}, x_i\}) \mid i \in [1, \ell]\}$



•
$$\Upsilon_F(\langle a, e, f, g \rangle) = 4$$

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

.≣. ►

Connection value

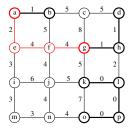
Definition

• Let
$$\pi = \langle x_0, \ldots, x_\ell \rangle$$
 be a path in G.

•
$$\Upsilon_F(\pi) = \max\{F(\{x_{i-1}, x_i\}) \mid i \in [1, \ell]\}$$

• The connection value between two points x and y is

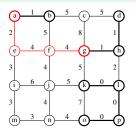
•
$$\Upsilon_F(x, y) = \min{\{\Upsilon_F(\pi) \mid \pi \text{ path from } x \text{ to } y\}}$$



Connection value

Definition

- Let $\pi = \langle x_0, \ldots, x_\ell \rangle$ be a path in G.
 - $\Upsilon_F(\pi) = \max\{F(\{x_{i-1}, x_i\}) \mid i \in [1, \ell]\}$
- The connection value between two points x and y is
 - $\Upsilon_F(x, y) = \min{\{\Upsilon_F(\pi) \mid \pi \text{ path from } x \text{ to } y\}}$
- The connection value between two subgraphs X and Y is
 - $\Upsilon_F(X, Y) = \min{\{\Upsilon_F(x, y) \mid x \in V(X), y \in V(Y)\}}$



• $\Upsilon_F(\langle a, e, f, g \rangle) = 4$

•
$$\Upsilon_F(a,g) = 4$$

•
$$\Upsilon_F(\{a, b\}, \{g, h, d\})$$

Subdominant ultrametric

Remark

The connection value is a (ultrametric) distance in a graph

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

MSFs preserve connection values

Theorem

- If Y is an MSF relative to X,
- **Then**, for any two distinct components A et B of X :

•
$$\Upsilon_F(A,B) = \Upsilon_F(A',B')$$

■ where A' et B' are the two components of Y that contains A et B

Shortest paths spanning forests

Remark

• The connection value is a (ultrametric) distance in a graph

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

Shortest paths spanning forests

Definition

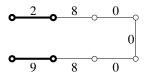
- Let X be a graph (the seeds)
- We say that Y is a shortest path forest relative to X if
 - Y is a forest relative toX and
 - for any $x \in V(Y)$, there exists, from x to X, a path π in Y such that $F(\pi) = F(\{x\}, X)$

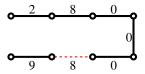
Property

 If Y is a MSF relative to X, then Y is a shortest path spanning forest relative to X

Property

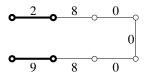
 If Y is a MSF relative to X, then Y is a shortest path spanning forest relative to X

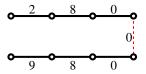




Property

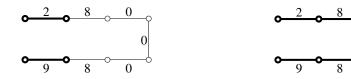
 If Y is a MSF relative to X, then Y is a shortest path spanning forest relative to X





Property

 If Y is a MSF relative to X, then Y is a shortest path spanning forest relative to X



Remark

The converse is, in general, not true

Property

 If Y is a MSF relative to X, then Y is a shortest path spanning forest relative to X



Remark

- The converse is, in general, not true
- No connection value preservation

Property

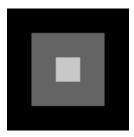
 If Y is a MSF relative to X, then Y is a shortest path spanning forest relative to X

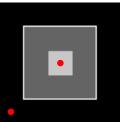


Remark

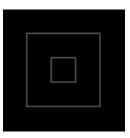
- The converse is, in general, not true
- No connection value preservation

Synthetic image example

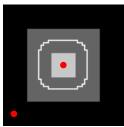




MSF cut (white) - seeds (red) J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology



Dissimilarities



SPF cut (white) seeds (red) 🕨 🚊 🔊 ५ 🤆

Shortest path forests and watersheds

Property

The graph X is a shortest path spanning forest relative to the minima of F if and only if X is an MSF relative to the minima of F

Shortest path forests and watersheds

Property

The graph X is a shortest path spanning forest relative to the minima of F if and only if X is an MSF relative to the minima of F

Property

- Let X be a graph (the seeds)
- A subset S of E is a watershed of the flooding of F by X if and only if S is a cut induced by a shortest path spanning forest relative to X

Min-cuts

Definition

- Let X be a graph (the seeds)
- Let $C \subseteq E$ be a cut relative to X
- The cut C is called a minimum cut (min-cut) relative to X if, for any cut C' relative to X we have $F(C) \leq F(C')$

Min-cuts

Definition

- Let X be a graph (the seeds)
- Let $C \subseteq E$ be a cut relative to X
- The cut C is called a minimum cut (min-cut) relative to X if, for any cut C' relative to X we have $F(C) \leq F(C')$

a: an image with seeds X in red and blue, b (resp. c): MSF cut (resp. min-cut) relative to X (white) where F is the gradient of (a) (resp. its inverse) [from Allène et al., IVC 2010]

医马马耳氏

J. Serra, J. Cousty, B.S. Daya Sagar : Course on Math. Morphology

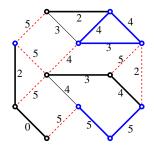
3

・日・ ・ ヨ・・

Let g be a decreasing (resp. increasing) map in \mathbb{R}^+

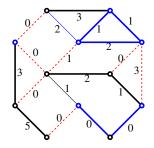
Let g be a decreasing (resp. increasing) map in \mathbb{R}^+

• X MINimum SF for F iff X is a MAXimum SF (resp. MINSF) for $g \circ F$



Let g be a decreasing (resp. increasing) map in \mathbb{R}^+

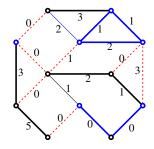
• X MINimum SF for F iff X is a MAXimum SF (resp. MINSF) for $g \circ F$



Let g be a decreasing (resp. increasing) map in \mathbb{R}^+

• X MINimum SF for F iff X is a MAXimum SF (resp. MINSF) for $g \circ F$

Let F^p : $F^p(u) = [F(u)]^p$

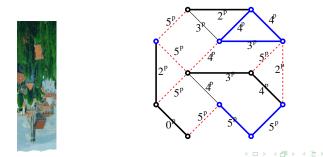


Let g be a decreasing (resp. increasing) map in \mathbb{R}^+

• X MINimum SF for F iff X is a MAXimum SF (resp. MINSF) for $g \circ F$

Let F^{p} : $F^{p}(u) = [F(u)]^{p}$

■ X MAXSF for F^p iff X MAXSF for F

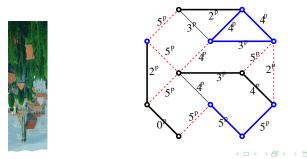


Let g be a decreasing (resp. increasing) map in \mathbb{R}^+

• X MINimum SF for F iff X is a MAXimum SF (resp. MINSF) for $g \circ F$

Let F^p : $F^p(u) = [F(u)]^p$

- X MAXSF for F^p iff X MAXSF for F
- Property not verified by min-cuts



Watershed & min-cuts

Theorem

There exists a real k such that for any p ≥ k
 any min-cut for F^p is a MAXSF cut for F^p

 Allène et al., Some links between extremum spanning forests, watersheds and min-cuts, IVC 2010

Watershed & min-cuts: illustration [Allène2010]

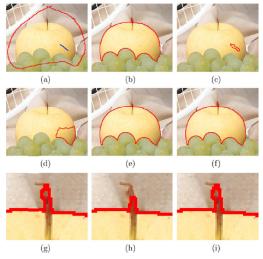


Fig. 12. Color image segmentation using: (a) markers superimposed to the original image; (b) MaxSF cut on P; (c) min-cut on P^{(1,4}; (e) min-cut on P⁽²⁾; (f) min-cut on P⁽²⁾; (g) zoom of MaxSF cut on P; (h) zoom of min-cut on P⁽²⁾; (g) zoom of MaxSF cut on P; (h) zoom of min-cut on P⁽²⁾; (f)

- Similar results hold true for random walks segmentation
- See L. Najman's talk next week

Summary

Defining watershed in discrete spaces is difficult

- Grayscale image as vertex weighted graphs
- Region merging problems
- The large familly of watersheds
- Watershed in edge weighted graphs
 - Watershed cuts: a consistent framework
 - Minimum spanning forests: watershed optimality
 - Thinnings: watershed algorithms
- Seeded segmentation
 - Watershed in practical applications
 - Comparison with other method of combinatorial optimization