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Abstract

In this paper, we study the watersheds in edge-weighted graphs. Contrarily to pre-
vious work, we define the watersheds following the intuitive idea of drops of water
flowing on a topographic surface. We establish the consistency of these watersheds
and proved their optimality in terms of minimum spanning forests. We introduce a
new local transformation on maps which equivalently define these watersheds and
derive two linear-time algorithms. To our best knowledge, similar properties are
not verified in other frameworks and the two proposed algorithms are the most
efficient existing algorithms, both in theory and practice. Afterward, we investi-
gate the mathematical links and differences with two other segmentation methods,
i.e., the Image Foresting Transform and the topological watershed. Finally, the de-
fined concepts are illustrated in image segmentation leading to the conclusion that
the proposed approach improves the quality of watershed-based segmentations.

Key words: Watershed, minimum spanning forest, minimum spanning tree, graph,
mathematical morphology, image segmentation

Introduction

The watershed has been extensively studied during the 19th century by Maxwell
[1] and Jordan [2] among others. One hundred years later, the watershed trans-
form was introduced by Beucher and Lantuéjoul [3] for image segmentation
and is now used as a fundamental step in many powerful segmentation proce-
dures.
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l.najman@esiee.fr (L. Najman), m.couprie@esiee.fr (M. Couprie).
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Let us consider a grayscale image as a topographic surface: the gray level
of a pixel becomes the elevation of a point, the basins and valleys of the
topographic surface correspond to dark areas, whereas the mountains and crest
lines correspond to the light areas. The watershed divide may be thought of as
a separating set of points along which a drop of water can flow down towards
at least two regional minima.

In order to compute the watershed of a digital image, several approaches
have been proposed and many of them consider a grayscale digital image as
a vertex-weighted graph. One of the most popular consists of simulating a
flooding of the topographic surface from its regional minima [4–6]. The divide
is made of “dams” built at those points where water coming from different
minima would meet. Another approach, called topological watershed [7–9],
allows to rigorously define the notion of a watershed in a discrete space and
to prove important properties not guaranteed by most watershed algorithms
[10]. It consists of lowering the values of a map (e.g., the grayscale image)
while preserving some topological properties, namely, the number of connected
components of each lower cross-section. In this case, the watershed divide is
the set of points not in any regional minimum of the transformed map.

In this paper, we investigate a different framework: we consider a graph whose
edges are weighted by a cost function (see, for example, [11] and [12,13]).

We propose a new definition of watershed, called watershed cut, and obtain
a set of remarkable properties. Unlike previous works, watersheds cuts are
defined following the intuitive idea of drops of water flowing on a topographic
surface.

Our first contribution establishes the consistency of watershed cuts. In par-
ticular, we prove that they can be equivalently defined by their “catchment
basins” (through a steepest descent property) or by the “dividing lines” sep-
arating these catchment basins (through the drop of water principle). As far
as we know, our definition is the first one that satisfies such a property.

Our second contribution establishes the optimality of watershed cuts. In [11],
F. Meyer shows the link between minimum spanning forests (MSF) and flood-
ing from marker algorithms. In this paper, we extend the problem of minimum
spanning forests and show the equivalence between watershed cuts and sepa-
rations induced by minimum spanning forest relative to the minima.

Our third contribution consists of a new thinning paradigm to compute water-
sheds in linear time. More precisely, we propose a new transformation, called
border thinning, that lowers the values of edges that match a simple local con-
figuration until idempotence. The minima of the transformed map constitute
a minimum spanning forest relative to the minima of the original one and,
hence, induce a watershed cut. Moreover, any such minimum spanning forest
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can be obtained by this transformation. We discuss the possibility of parallel
algorithms based on this transformation and give a sequential implementation
which runs in linear time.

Our fourth contribution is a second linear-time algorithm that does not need
minima extraction. Contrarily to previously published algorithms, the two
algorithms proposed in this paper do not require any sorting step, nor the use
of any hierarchical queue. Therefore, they both run in linear time whatever the
range of the input map. To our best knowledge, these are the first watershed
algorithms with such properties.

Our fifth contribution consists of a mathematical comparison between water-
shed cuts and two other segmentation paradigms. We first study the links
and differences with shortest-path forests (the theoretical basis of the Image
Foresting Transform [12] and the fuzzy connected image segmentation [14,15]).
We show that any minimum spanning forest is a shortest-path forest and that
the converse is, in general, not true. Then, we investigate the topological wa-
tershed. We prove that any border thinning is a W-thinning (i.e., the transfor-
mation which allows to obtain a topological watershed). A major consequence
is that border thinnings, and, thus, watershed cuts inherit the mathematical
properties of topological watersheds [8, 10].

Finally, we illustrate that the proposed watershed localizes with better accu-
racy the contours of objects in digital images. To this aim, we provide, on
few examples, results of morphological schemes based on watersheds in vertex
weighted graphs and results of their adaptation in edge-weighted graphs.

1 Basic notions and notations

This paper is settled in the framework of edge-weighted graphs. Following the
notations of [16], we present some basic definitions to handle such kind of
graphs.

1.1 Graphs

We define a graph as a pair X = (V (X), E(X)) where V (X) is a finite set
and E(X) is composed of unordered pairs of V (X), i.e., E(X) is a subset
of {{x, y} ⊆ V (X) | x 6= y}. Each element of V (X) is called a vertex or a
point (of X), and each element of E(X) is called an edge (of X). If V (X) 6= ∅,
we say that X is non-empty.
Let X be a graph. If u = {x, y} is an edge of X, we say that x and y are
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adjacent (for X). Let π = 〈x0, . . . , xl〉 be an ordered sequence of vertices
of X, π is a path from x0 to xl in X (or in V (X)) if for any i ∈ [1, l], xi is
adjacent to xi−1. In this case, we say that x0 and xl are linked for X. If l = 0,
then π is a trivial path in X. We say that X is connected if any two vertices
of X are linked for X.

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y ⊆ X. We say that Y is a connected
component of X, or simply a component of X, if Y is a connected subgraph
of X which is maximal for this property, i.e., for any connected graph Z, Y ⊆
Z ⊆ X implies Z = Y .

Throughout this paper G denotes a connected graph. In order to simplify
the notations, this graph will be denoted by G = (V,E) instead of G =
(V (G), E(G)). We will also assume that E 6= ∅.

In applications to image segmentation, V is the set of picture elements (pixels)
and E is any of the usual adjacency relations, e.g., the 4- or 8-adjacency in
2D [17].

Let X ⊆ G. An edge {x, y} of G is adjacent to X if {x, y} ∩ V (X) 6= ∅
and if {x, y} does not belong to E(X); in this case and if y does not belong
to E(X), we say that {x, y} is outgoing from X and that y is adjacent to X.
If π is a path from x to y and y is a vertex of X, then π is a path from x to
X (in G).

If S is a subset of E, we denote by S the complementary set of S in E,
i.e., S = E \ S.
Let S ⊆ E, the graph induced by S is the graph whose edge set is S and
whose vertex set is made of all points which belong to an edge in S, i.e., ({x ∈
V | ∃u ∈ S, x ∈ u}, S). In the following, when no confusion may occur, the
graph induced by S is also denoted by S.

1.2 Edge-weighted graphs

We denote by F the set of all maps from E to Z.

Let F ∈ F . If u is an edge of G, F (u) is the altitude of u. Let X ⊆ G and k ∈ Z.
A subgraph X of G is a minimum of F (at altitude k) if:
- X is connected; and
- k is the altitude of any edge of X; and
- the altitude of any edge adjacent to X is strictly greater than k.
We denote by M(F ) the graph whose vertex set and edge set are, respectively,
the union of the vertex sets and edge sets of all minima of F .
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In the sequel of this paper, F denotes an element of F .

For applications to image segmentation, we will assume that the altitude of u,
an edge between two pixels x and y, represents the dissimilarity between x
and y (e.g., F (u) equals the absolute difference of intensity between x and y).
Thus, we suppose that the salient contours are located on the highest edges
of G.

2 Watersheds

The intuitive idea underlying the notion of a watershed comes from the field
of topography: a drop of water falling on a topographic surface follows a
descending path and eventually reaches a minimum. The watershed may be
thought of as the separating lines of the domain of attraction of drops of water.
Despite its simplicity, none of the classical definitions formalize this intuitive
idea. In this paper, contrarily to previous works, we follow the drop of water
principle to define the notion of a watershed in an edge-weighted graph.

2.1 Extensions and graph cuts

We present the notions of extension and graph cut which play an important
role for defining a watershed in an edge-weighted graph.
Intuitively, the regions of a watershed (also called catchment basins) are asso-
ciated with the regional minima of the map. Each catchment basin contains a
unique regional minimum, and conversely, each regional minimum is included
in a unique catchment basin: the regions of the watershed “extend” the min-
ima. In [8], G. Bertrand formalizes the notion of extension.

Definition 1 (from Def. 12 in [8]) Let X and Y be two non-empty sub-
graphs of G. We say that Y is an extension of X (in G) if X ⊆ Y and if any
component of Y contains exactly one component of X.

The graphs (drawn in bold) in Fig. 1b and c are two extensions of the one
depicted in Fig. 1a.

The notion of extension is very general. Many segmentation algorithms itera-
tively extend some seed components in a graph: they produce an extension of
the seeds. Most of them terminate once they have reached an extension which
cover all the vertices of the graph. The separation which is thus produced is
called a graph cut.

Definition 2 Let X ⊆ G and S ⊆ E. We say that S is a (graph) cut for X
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(a) (b) (c) (d)

Fig. 1. A graph G. The set of vertices and edges represented in bold is: (a), a
subgraph X of G; (b), an extension of X; (c): an extension Y of X which is maximal;
and (d): a cut S for X such that S = Y .

if S is an extension of X and if S is minimal for this property, i.e., if T ⊆ S
and T is an extension of X, then we have T = S.

The set S depicted in Fig. 1d is a cut for X (Fig. 1a). It can be verified that
S (Fig. 1c) is an extension of X and that S is minimal for this property.
If X is a subgraph of G and S a cut for X, it may be easily seen that S is a
maximal extension of X.

The notion of graph cut has been studied for many years and is often defined
by means of partitions. In this case, a set S ⊆ E is said to be a graph cut
if there exists a partition of V such that S is the set of all edges of G whose
extremities are in two distinct sets of the partition. If each set of the partition
is connected and contains the vertex set of a unique component of a subgraph
of G, then S is a cut for this subgraph. It may be easily seen that this definition
is equivalent to Def. 2. One of the most fundamental results in combinatorial
optimization involves graph cuts. It states that given two isolated vertices of
an edge-weighted graph (called source and sink), finding a cut of minimal cost
that separates these vertices is equivalent to finding a maximum flow (see, for
instance, [16], chapter 6.2). There exist polynomial-time algorithms to find the
so-called min-cut. On the other hand, finding a cut of minimal cost among
all the cuts for a subgraph which is not reduced to two isolated vertices is
NP-hard [18]. In the forthcoming sections, we introduce the watershed cuts of
an edge-weighted graph and show that these watersheds are graph cuts which
also satisfy an optimality property. A major advantage is that they can be
computed in linear-time.

2.2 Watersheds

We introduce the watershed cuts of an edge-weighted graph. To this aim,
we formalize the drop of water principle. Intuitively, the catchment basins
constitute an extension of the minima and they are separated by “lines” from
which a drop of water can flow down towards distinct minima.
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(a) (b) (c) (d)

Fig. 2. A graph G and a map F . Edges and vertices in bold depict: (a), the minima
of F ; (b), a watershed S of F ; (c), an extension of M(F ) which is equal to S; and (d),
a MSF relative to M(F ).

Let π = 〈x0, . . . , xl〉 be a path in G. The path π is descending (for F ) if, for
any i ∈ [1, l − 1], F ({xi−1, xi}) ≥ F ({xi, xi+1}).

Definition 3 (drop of water principle) Let S ⊆ E. We say that S satis-
fies the drop of water principle (for F ) if S is an extension of M(F ) and if
for any u = {x0, y0} ∈ S, there exist π1 = 〈x0, . . . , xn〉 and π2 = 〈y0, . . . , ym〉
which are two descending paths in S such that:
- xn and ym are vertices of two distinct minima of F ; and
- F (u) ≥ F ({x0, x1}) (resp. F (u) ≥ F ({y0, y1})), whenever π1 (resp. π2) is
not trivial.
If S satisfies the drop of water principle, we say that S is a watershed cut, or
simply a watershed, of F .

We illustrate the previous definition on the function F depicted in Fig. 2. The
function F contains three minima (Fig. 2a). We denote by S the set of bold
edges depicted in Fig. 2b. It may be seen that S (Fig. 2c) is an extension of
M(F ). Let u = {x, y} ∈ S be the edge at altitude 8. There exists π1 (resp. π2)
a descending path in S from x (resp. y) to the minimum at altitude 1 (resp.
3). The first edge of π1 (resp. π2) is lower than u whose altitude is 8. It can
be verified that the previous properties hold for any edge in S. Thus, S is a
watershed of F . The next statement follows from the definition of a watershed.

Property 4 Let S ⊆ E. If S is a watershed of F , then S is a cut for M(F ).

Notice that a watershed of F is defined thanks to conditions that depend of
the altitude of the edges whereas the definition of a cut is solely based on the
structure of the graph. Consequently, the converse of Prop. 4 is, in general,
not true.

As an illustration of the previous property, it may be verified that the water-
shed of the map F , depicted in Fig. 2b, is a cut for the minima of F .
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2.3 Catchment basins

A popular alternative to Def. 3 defines a watershed exclusively by its catch-
ment basins and does not involve any property of the divide [19–22]. In a
vertex-weighted graph, such definitions raise several problems. The catchment
basin of a minimum M can be defined as the points from which M can be
reached by a path with steepest descent. In this case, several catchment basins
may overlap each other. To avoid this problem, some authors define the catch-
ment basin of M as the set of points from which M is the only minimum that
can be reached by a path with steepest descent. In this case, some thick sets of
points may not belong to any catchment basin (such situations are illustrated
in [22]).

In the framework of edge-weighted graph, we define a catchment basin as
a component of the complementary of a watershed. The following theorem
(Th. 6) shows that a watershed can be defined equivalently by its divide line
or by its catchment basins.

For that purpose, we start with some definitions relative to the notion of path
with steepest descent.

From now on, we will also denote by F the map from V to Z such that
for any x ∈ V , F (x) is the minimal altitude of an edge which contains x,
i.e., F (x) = min{F (u) | u ∈ E, x ∈ u}; F (x) is the altitude of x.

Let π = 〈x0, . . . , xl〉 be a path in G. The path π is a path with steepest descent
for F if, for any i ∈ [1, l], F ({xi−1, xi}) = F (xi−1).

Definition 5 (steepest descent) Let S ⊆ E be a cut for M(F ). We say
that S is a basin cut of F if, from each point of V to M(F ), there exists, in
the graph induced by S, a path with steepest descent for F .

Theorem 6 (consistency) Let S ⊆ E. The set S is a basin cut of F if and
only if S is a watershed cut of F .

The previous theorem establishes the consistency of watershed cuts: they can
be equivalently defined by a steepest descent property on the catchment basins
(regions) or by the drop of water principle on the cut (border) which separate
them. As far as we know, in the literature about discrete watershed, no similar
property has ever been proved. Some counter examples which show that such
a duality does not hold in other frameworks can be found in [23]. Th. 6 thus
emphasizes that the framework considered in this paper is adapted for the
definition and study of discrete watersheds.
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3 Minimum spanning forests and watershed optimality

In this section, we establish the optimality of watersheds. To this aim, we
introduce the notion of minimum spanning forests relative to subgraphs of G.
We will see that each of these forests induces a unique graph cut. The main
result of this section (Th. 10) states that a graph cut is induced by a minimum
spanning forest relative to the minima of a map if and only if it is a water-
shed of this map. In Sec. 3.2, we show that the problem of finding a relative
minimum spanning forest is equivalent to the classical problem of finding a
minimum spanning tree. In fact, this provides a mean to derive, from any min-
imum spanning tree algorithm, an algorithm for relative minimum spanning
forests, and thus also, for watersheds.

Let X and Y be two non-empty subgraphs of G. We say that Y is a forest
relative to X if:
i) Y is an extension of X; and
ii) for any extension Z ⊆ Y of X, we have Z = Y whenever V (Z) = V (Y ).
We say that Y is a spanning forest relative to X (for G) if Y is a forest relative
to X and V (Y ) = V .

Let X ⊆ G. We say that X is a tree (resp. a spanning tree) if X is a forest
(resp. spanning forest) relative to the subgraph ({x}, ∅), x being any vertex
of X. We say that X is a forest (resp. a spanning forest) if X is a forest (resp.
a spanning forest) relative to (S, ∅), S being a subset of V (X).

Remark 7 The notions of tree and forest (resp. spanning tree and forest)
presented above corresponds exactly to the usual notions of tree and forest
(resp. spanning tree and forest). On the one hand, the notion of forest (resp.
tree) is usually defined as a graph (resp. connected graph) which does not
contain any cycle, i.e., any simple path whose first and last points are adjacent.
On the other hand, it may be seen that a graph X is a forest relative to a
subgraph Y of G if and only if X is an extension of Y and any cycle in X is
also a cycle in Y . Thus, the two notions of forest (hence tree) are equivalent.

Let X be a subgraph of G, the weight of X (for F ) is the value F (X) =∑
u∈E(X) F (u).

Definition 8 Let X and Y be two subgraphs of G. We say that Y is a min-
imum spanning forest (MSF) relative to X (for F , in G) if Y is a spanning
forest relative to X and if the weight of Y is less than or equal to the weight
of any other spanning forest relative to X. In this case, we also say that Y is
a relative MSF.

Let us consider the graph G depicted in Fig. 3 and the subgraph X depicted
in bold in Fig. 3a. The graphs Y and Z (bold edges and vertices) in Figs. 3b
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and c are two MSFs relative to X.

3.1 Relative MSFs and watersheds

We now have the mathematical tools to present the main result of this section
(Th. 10) which establishes the optimality of watersheds. It shows the equiv-
alence between the cuts which satisfy the drop of water principle and those
induced by the MSFs relative to the minima of a map.

We start by the following lemma which gives, thanks to Th. 6, a first intuition
of Th. 10.

Lemma 9 Let X be a spanning forest relative to M(F ). The graph X is a
MSF relative to M(F ) if and only if, for any x in V , there exists a path in X
from x to M(F ) which is a path with steepest descent for F .

Let X be a subgraph of G and let Y be a spanning forest relative to X. There
exists a unique cut S for Y and this cut is also a cut for X. We say that this
unique cut is the cut induced by Y . Furthermore, if Y is a MSF relative to X,
we say that that S is a MSF cut for X.

Theorem 10 (optimality) Let S ⊆ E. The set S is MSF cut for M(F ) if
and only if S is a watershed cut of F .

As far as we know, this is the first result which establishes watershed optimal-
ity.

3.2 Relative MSFs and minimum spanning trees

The minimum spanning tree problem is one of the most typical and well-known
problems of combinatorial optimization (see [24–27]). It has been applied for
many years in image analysis [28]. We show that the minimum spanning tree
problem is equivalent to the problem of finding a MSF relative to a subgraph
of G.

Let X ⊆ G. The graph X is a minimum spanning tree (for F , in G) if X is
a MSF relative to the subgraph ({x}, ∅), x being any vertex of X.

Consequently to Rem. 7, it may be easily seen that the notion of minimum
spanning tree presented above corresponds exactly to the usual one.

In order to recover the link between flooding algorithms and minimum span-
ning trees, in [11], F. Meyer proposed a construction which allows to show
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Fig. 3. A graph G and a map F . The bold edges and vertices represent: (a), X a sub-
graph of G; (b) and (c), two MSFs relative to X; their induced cuts are represented
by dashed edges.

the equivalence between finding a MSF rooted in a set of vertices and find-
ing a minimum spanning tree. Here, we extend this construction for proving
the equivalence between finding a minimum spanning tree and a MSF rela-
tive to a subgraph of G. Let us consider, in a first time, a graph X ⊆ G
such that E(X) = ∅, i.e., a graph composed of isolated vertices. From G
and X, we can construct a new graph G′ = (V ′, E ′) which contains an addi-
tional vertex z (i.e., z /∈ V ) linked by an edge to each vertex of X. In other
words, V ′ = V ∪ {z} and E ′ = E ∪ Ez, whereEz = {{x, z} | x ∈ V (X)}. Let
us consider the map F ′ from E ′ to Z such that, for any u ∈ E, F ′(u) = F (u)
and for any u ∈ Ez, F

′(u) = kmin − 1, kmin being the minimum value of F .
Let Y be any subgraph of G and let Y ′ be the graph whose vertex and edge
sets are respectively V (Y ) ∪ {z} and E(Y ) ∪ Ez. It may be seen that Y ′ is a
minimum spanning tree for F ′ in G′ if and only if Y is a MSF relative to X
for F in G.
The construction presented above can be easily generalized to any subgraph X
of G. To this aim, in a preliminary step, each component of X must be con-
tracted into a single vertex and, if two vertices of the contracted graphs must
be linked by multiple edges, only the one with minimal value is kept.

A direct consequence of the construction presented above is that any mini-
mum spanning tree algorithm can be used to compute a relative MSF. Many
efficient algorithms (see a survey in [29]) exist in the literature for solving
the minimum spanning tree problem. In particular, in a recent paper [30],
B. Chazelle proposed a quasi-linear time algorithm. In the sequel of this pa-
per, we will see that a better complexity can be reached to compute MSFs
relative to the minima of F .

11



k

k’<k k’’<k

k

k’<k k

k

k k
locally separating border inner

Fig. 4. Illustration of the different local configurations for edges.

4 Optimal thinnings

As seen in the previous section, a MSF relative to a subgraph of G can be
computed by any minimum spanning tree algorithm. The best complexity for
solving this problem is reached by the quasi-linear algorithm of Chazelle [30].
In this section, we introduce a new paradigm to compute MSFs relative to
the minima of a map and obtain a linear algorithm. To this aim, we define
a new thinning transformation that iteratively lowers the values of the edges
that satisfy a simple local property. The minima of the transformed map
constitute precisely a MSF relative to the minima of the original one. More
remarkably, any MSF relative to the minima of a map can be obtained by this
transformation. We discuss the possibility of parallel algorithms based on this
transformation and give a sequential implementation (Algo. 1) which runs in
linear time.

4.1 Border thinnings and watersheds

We introduce an edge classification based exclusively on local properties, i.e.,
properties which depend only on the adjacent edges. This classification will be
used in the definition of a lowering process (Def. 12) which allows to extract
the watersheds of a map.

Remind that, if x is a vertex of G, F (x) is the minimal altitude of an edge
which contains x.

Definition 11 Let u = {x, y} ∈ E.
We say that u is locally separating (for F ) if F (u) > max(F (x), F (y)).
We say that u is border (for F ) if F (u) = max(F (x), F (y)) and F (u) >
min(F (x), F (y)).
We say that u is inner (for F ) if F (x) = F (y) = F (u).

Fig. 4 illustrates the above definitions. In Fig. 5a, {j, n}, {a, e} and {b, c} are
examples of border edges; {i,m} and {k, l} are inner edges and both {h, l}
and {g, k} are locally-separating edges. Note that any edge of G corresponds
exactly to one of the types presented in Def. 11.

Let u ∈ E. The lowering of F at u is the map F ′ in F such that:
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Fig. 5. A graph and some associated functions. The bold graphs superimposed are
the minima of the corresponding functions; (b), a border thinning of (a); (c): a
border kernel of both (a) and (b); and (d), another border kernel of (a). In (c) and
(d), the border cuts are represented by dashed edges.

- F ′(u) = minx∈u{F (x)}; and
- F ′(v) = F (v) for any edge v ∈ E \ {u}.

Definition 12 (border cut) Let H ∈ F . We say that H is a border thin-
ning of F if:
i) H = F ; or
ii) there exists I ∈ F a border thinning of F such that H is the lowering of I
at a border edge for I.
If there is no border edge for H, we say that H is a border kernel. If H is a
border thinning of F and if it is a border kernel, we say that H is a border
kernel of F .
If H is a border kernel of F , any cut for M(H) is called a border cut for F .

To illustrate the previous definition, we assume that F (resp. H, I) is the
map of Fig. 5a (resp. b,c). The maps H and I are border thinnings of F . The
map I is a border kernel of both F and H. The function depicted in Fig. 5d is
another border kernel of F which is not a border kernel of H. In Fig. 5c and d,
the border cuts are represented by dashed edges. Remark that the minima of
the two border kernels constitute forests relative to M(F ), and that all edges
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which do not belong to the bold graphs are locally separating.

We now present an important result of this section which mainly states that
the border kernels can by used to compute MSFs relative to the minima of a
map.

Property 13 Let H ∈ F . If H is a border thinning of F , then any MSF
relative to M(H) (for H) is a MSF relative to M(F ) (for F ). Furthermore,
if H is a border kernel of F , then M(H) is itself a MSF relative to M(F )
(for F ).

In other words, the border thinning transformation preserves some MSF rel-
ative to the minima of the original map and, moreover, the border kernels
allow the extraction of MSFs relative to the minima. We remind that a MSF
relative to the minima of a map defines a unique cut which is a watershed of
this map. Thus, a border kernel of a map defines a unique border cut for this
map. Hence, from Prop. 13, we can easily prove the following corollary which
links border kernels to watershed cuts.

Corollary 14 Any border cut of F is a watershed cut of F .

Thanks to classical algorithms for minima computation, a MSF relative toM(F )
can be obtained from any border kernel of F . In fact, the minima of a border
kernel can be extracted by a much more efficient strategy.

Property 15 Let F be a border kernel. An edge u is in a minimum of F if
and only if u is inner for F .

Let H denote a border kernel of F . On the one hand, the map H and its
minima can be derived from F exclusively by local operations (see Defs. 11,
12 and Prop. 15). On the other hand, a MSF relative to M(F ) is a globally
optimal structure. The minima of H constitute, by Prop. 13, a MSF relative
to M(F ). Thus, the local and order-independent operations presented in this
section always produce a globally optimal structure.

This kind of local, order-independent operations can be efficiently exploited
by dedicated hardware. For instance, raster scanning strategies for extracting
a border cut can be straightforwardly derived. It has been shown that such
strategies can be very fast on adapted hardware [31].

As mentioned above the property of a border edge can be tested locally. Thus,
if a set of independent (i.e., mutually disjoint) border edges is lowered in
parallel, then the resulting map is a border thinning. This property offers
several possibilities of parallel watershed algorithms. In particular, efficient
algorithms for array processors can be derived.
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4.2 Linear-time algorithm for border cut

On a sequential computer, a naive algorithm to obtain a border kernel could
be the following: i) for all u = {x, y} of G, taken in an arbitrary order, check
the values of F (u), F (x) and F (y) and whenever u is border, lower the value
of u down to the minimum of F (x) and F (y) (cost for checking all edges
of G: O(|E|)); ii) repeat step i) until no border edge remains. Consider the
graph G whose vertex set is {0, . . . , n} and whose edge set is made of all the
pairs ui = {i, i+1} such that i ∈ [0, n−1]. Let F (ui) = n−i, for all i ∈ [0, n−1].
On this graph, if the edges are processed in the order of their indices, step i)
will be repeated exactly |E| times. The worst case time complexity of this
naive algorithm is thus at least O(|E|2). In order to reduce the complexity,
we introduce a second lowering process in which any edge is lowered at most
once. This process is a particular case of border thinning which also produces,
when iterated until stability, a border kernel of the original map. Thanks to
this second thinning strategy, we derive a linear-time algorithm to compute
border kernels and, thus, watersheds.

It may be seen that an edge which is in a minimum at a given step of a border
thinning sequence never becomes a border edge. Thus, lowering first the edges
adjacent to the minima seems to be a promising strategy. In order to study
and understand this strategy, we may classify any inner, border or locally-
separating edge with respect to the adjacent minima. We thus obtain the 8
cases illustrated in Fig. 6 and any edge is classified in exactly one of these
classes depending on the values of its adjacent edges and on the regional min-
ima. In this section we study, in particular, a transformation which iteratively
lowers the values of the border edges adjacent to minima (see Fig. 6F).

Definition 16 We say that an edge u in E is minimum-border (for F ), writ-
ten M-border, if u is border for F and if exactly one of the vertices in u is a
vertex of M(F ).

In Fig. 5a, the edge {c, d} is M-border whereas {j, n} is not.

Definition 17 (M-border cut) Let H ∈ F . We say that H is an M-border
thinning of F if:
i) H = F ; or
ii) there exists I ∈ F an M-border thinning of F such that H is the lowering
of I at an M-border edge for I.
If there is no M-border edge for H, we say that H is an M-border kernel. If H
is an M-border thinning of F and if it is an M-border kernel, we say that H
is an M-border kernel of F .
If H is an M-border kernel of F , any cut for M(H) is called an M-border cut
for F .
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Fig. 6. Edge-classification in a weighted graph. In the figure, any black vertex belongs
to a minimum and two vertices represented by different shapes (i.e., square and
circle) belong to distinct minima.

Observe (in Fig. 5ab for instance) that when a map is lowered at an M-border
edge, one of its minima is “growing by one vertex”. The well-known watershed
algorithms by simulation of a flooding [4, 6, 11] (see also [32]) also work as
“region growing” processes. Intuitively, for a vertex-weighted graph, they can
be described as follows: (i), mark the minima with distinct labels; (ii), mark
the lowest point adjacent to a single label with this label; and (iii), repeat
step (ii) until there is no point adjacent to a single label. In fact, as stated by
the following property, the M-border thinning transformation –which is itself
a particular case of border thinning– generalizes flooding algorithms.

If u is an edge with minimal altitude among all the edges outgoing from M(F ),
then u is a flooding edge for F .

Property 18 Any flooding edge for F is an M-border edge for F .

The previous property also establishes a link with one [26] of the famous
minimum spanning tree algorithms. Let us consider the construction presented
in Sec. 3.2 for the computation of a MSF relative to M(F ). In this case, as
stated by F. Meyer in [11], the edges considered by Prim’s algorithm are
exactly those considered in a lowering sequence using the above condition to
detect M-border edges. Prop. 18 thus gives us a clue to precisely determine
the relation between M-border thinnings and MSFs relative to the minima.
To this aim, let us formalize the notions of flooding kernel and cut.

Definition 19 (flooding cut) Let H ∈ F . We say that H is a flooding of F
if H = F or if there exists a flooding I of F such that H is the lowering of I
at a flooding edge for I.
If there is no flooding edge for H, we say that H is a flooding kernel. If H
is a flooding of F and if it is a flooding kernel, we say that H is a flooding
kernel of F . In this case, any cut for M(H) is called a flooding cut for F .

Let H ∈ F . We say that M(H) is the min-graph of H. This notion will be
used in the following property which states that, as well as the min-graphs
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of border kernels, the min-graphs of M-border and flooding kernels of F are
MSFs relative to M(F ). More remarkably, any MSF relative to M(F ) can be
obtained as the min-graph of an M-border kernel, of a flooding kernel and also
as the min-graph of a border kernel of F .

Lemma 20 Let X ⊆ G. The four following statements are equivalent:
(i) X is the min-graph of a flooding kernel of F ;
(ii) X is the min-graph of an M-border kernel of F ;
(iii) X is the min-graph of a border kernel of F ; and
(iv) X is a MSF relative to M(F ).

Since a relative MSF induces a unique graph cut, from the previous lemma, we
immediately deduce that a flooding kernel (resp. an M-border kernel, a border
kernel) of a map defines a unique flooding cut (resp. M-border cut, border cut).
Hence, the following theorem which states the equivalence between watershed
cuts, border cuts, M-border cuts and flooding cuts can be easily proved.

Theorem 21 Let S ⊆ E. The four following statements are equivalent:
(i) S is a flooding cut for F ;
(ii) S is an M-border cut for F ;
(iii) S is a border cut for F ; and
(iv) S is a watershed cut for F .

Using the notions introduced in this section, we derive Algo. 1, an efficient
algorithm to compute M-border kernels, hence watershed cuts. We recall that
an edge u is border for F if the altitude of one of its extremities equals the
altitude of u and the altitude of the other is strictly less than the altitude of
u.

Algorithm 1: M-Border

Data: (V,E, F ): an edge-weighted graph;
Result: F , an M-border kernel of the input map and M its minima.
L← ∅ ;1

Compute M(F ) = (VM , EM) and F (x) for each x ∈ V ;2

foreach u ∈ E outgoing from (VM , EM) do L← L ∪ {u} ;3

while there exists u ∈ L do4

L← L \ {u} ;5

if u is border for F then6

x← the vertex in u such that F (x) < F (u) ;7

y ← the vertex in u such that F (y) = F (u) ;8

F (u)← F (x) ; F (y)← F (u) ;9

VM ← VM ∪ {y} ; EM ← EM ∪ {u} ;10

foreach v = {y′, y} ∈ E such that y′ /∈ VM do L← L ∪ {v} ;11

In order to achieve a linear complexity, the graph (V,E) can be stored as an
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array of lists which maps to each point the list of all its adjacent vertices. An
additional mapping can be used to access in constant time the two vertices
which compose a given edge. Nevertheless, for applications to image process-
ing, and when usual adjacency relations are used, these structures do not need
to be explicit.
Furthermore, to achieve a linear complexity, the minima of F must be known
at each iteration. To this aim, in a first step (line 2), the minima of F are com-
puted and represented by two boolean arrays VM and EM , the size of which
are respectively |V | and |E|. This step can be performed in linear time thanks
to classical algorithms. Then, in the main loop (line 4), after each lowering
of F (line 9), VM and EM are updated (line 10). In order to access, in constant
time, the edges which are M-border, the (non-already examined) edges outgo-
ing from the minima are stored in a set L (lines 3 and 11). This set can be,
for instance, implemented as a queue. Thus, we obtain the following property.

Property 22 At the end of Algorithm 1, F is an M-border kernel of the input
function F . Furthermore Algorithm 1 terminates in linear time with respect
to |E|.

We emphasize that Algo. 1 does not require any sorting step nor the use of
any hierarchical queue. Thus, whatever the range of the considered map, it
runs in linear time with respect to the size of the input graph. To our best
knowledge, this is the first watershed algorithm with such a property.

5 Streams and linear-time watershed algorithm

A watershed of any map can be computed in linear time thanks to Algo. 1. This
algorithm, in a first step (line 2), extracts the minima of the input map. In this
section, we introduce a second linear-time algorithm. As Algo. 1, it does not
require any sorting step, nor the use of any hierarchical queue. Furthermore,
contrarily to Algo. 1, it does not need minima precomputation. As far as we
know, this algorithm has no equivalent in the literature.

In the first part of the section, the mathematical tools which allow to prove
the correctness of the proposed algorithm are introduced. In particular, we
propose a new notion of stream which is crucial to this paradigm. Then, the
algorithm is presented, and both its correctness and complexity are analyzed.

Definition 23 Let L ⊆ V . We say that L is a stream if, for any two points
x and y of L, there exists, in L, either a path from x to y or from y to x, with
steepest descent for F .
Let L be a stream and let x ∈ L. We say that x is a top (resp. bottom) of L
if the altitude of x is greater than (resp. less than) or equal to the altitude of
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any y ∈ L.

Remark that if L is a stream and x is a bottom (resp. a top) of L, then, from
any y ∈ L to x (resp. from x to any y ∈ L), there is a path in L, with steepest
descent for F . Notice that, whatever the stream L, there exists a top (resp.
bottom) of L. Nevertheless, this top (resp. bottom) is not necessarily unique.

In order to illustrate the previous definitions, let us assume that G and F
are the graph and the function depicted in Fig. 5a. The sets L = {a, b, e, i}
and {j,m, n} are two examples of streams. On the contrary, the set L′ =
{i, j, k} is not a stream since there is no path in L′, between i and k, with
steepest descent for F . The sets {a, b} and {i} are respectively the set of
bottoms and tops of L.

The algorithm which will be proposed in this section is based on the iterative
extraction of streams. In order to build such a procedure, we study stream
concatenation.

Let L1 and L2 be two disjoint streams (i.e., L1 ∩L2 = ∅) and let L = L1 ∪L2.
We say that L1 is under L2, written L1 ≺ L2, if there exist a top x of L1, a
bottom y of L2, and there is, from y to x, a path in L with steepest descent
for F . Note that, if L1 ≺ L2, then L is also a stream.
We say that a stream L is an ≺-stream if there is no stream under L.

In Fig. 5a the stream {a, b, e, i} is under the stream {j,m, n} and thus {a, b, e, i, j,m, n}
is also a stream. Furthermore, there is no stream under {a, b, e, i} and {a, b, e, i, j,m, n}.
Thus, these are two ≺-streams.

The streams extracted by our algorithm are ≺-streams. As said in the in-
troduction, this algorithm does not require minima precomputation. In fact,
there is a deep link between ≺-streams and minima.

Property 24 Let L be a stream. The three following statements are equiva-
lent:
(1) L is an ≺-stream;
(2) L contains the vertex set of a minimum of F ; and
(3) for any y ∈ V \ L adjacent to a bottom x of L, F ({x, y}) > F (x).

In Fig. 5a the two ≺-streams {a, b, e, i} and {a, b, e, i, j,m, n} contain the
set {a, b} which is the vertex set of a minimum of F .
Remark that any stream L which contains an ≺-stream is itself an ≺-stream.
We also notice that if L is an ≺-stream, the set of all bottoms of L constitutes
the vertex set of a minimum of F . Furthermore, a subset L of V is the vertex
set of a minimum of F if and only if it is an ≺-stream minimal for the inclusion
relationship, i.e., no proper subset of L is an ≺-stream.
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In order to partition the vertex set of G, from the ≺-streams of F , the vertices
of the graph can be arranged in the following manner.

Let L = {L1, . . . , Ln} be a set of n ≺-streams. We say that L is a flow family
if:
- ∪{Li | i ∈ {1, . . . , n}} = V ; and
- for any two distinct L1 and L2 in L, if L1∩L2 6= ∅, then L1∩L2 is the vertex
set of a minimum of F .
Let L be a flow family and let x ∈ V . It may be seen that, either x belongs to
a minimum of F (in this case, it may belong to several elements of L), or x
belongs to a unique ≺-stream of L which itself contains the vertex set of a
unique minimum of F . Thus, thanks to L, we can associate to each vertex x
of G a unique minimum of F .

Definition 25 Let L be a flow family. Let us denote by M1, . . . ,Mn the min-
ima of F . Let ψ be the map from V to {1, . . . , n} which associates to each
vertex x of V , the index (or label) i such that Mi is the unique minimum of F
included in an ≺-stream of L which contains x; we say that ψ a flow mapping
of F .
If ψ is a flow mapping of F , we say that the set S = {{x, y} ∈ E | ψ(x) 6=
ψ(y)} is a flow cut for F .

The next proposed algorithm produces a flow mapping, hence a flow cut. The
following theorem, which is a consequence of the definitions of flow families and
basin cuts and of the consistency theorem, states the equivalence between flow
cuts and watersheds. It constitutes the main tool to establish the correctness
of Algo. 2.

Theorem 26 Let S ⊆ E. The set S is a watershed of F if and only if S is a
flow cut for F .

We now present Algo. 2 which computes a flow mapping, hence, by Th. 26,
a watershed. It iteratively assigns a label to each point of the graph. To this
aim, from each non-labeled point x, a stream L composed of non-labeled
points and whose top is x is computed (line 4). If L is an ≺-stream (line 5),
a new label is assigned to the points of L. Otherwise (line 8), there exists an
≺-stream L1 under L and which is already labeled. In this case, the points
of L receive the label of L1 (line 9). The function Stream, called at line 4,
allows to compute the stream L. Roughly speaking, it performs an intermixed
sequence of depth-first and breadth-first exploration of the paths with steepest
descent. The main invariants of the function Stream are: i), the set L is, at
each iteration, a stream; and ii), the set L′ is made of all non-already explored
bottoms of L. The function halts at line 17 when all bottoms of L have been
explored or, at line 9, if a point z already labeled is found. In the former case,
by Prop. 24, the returned set L is an ≺-stream. In the latter case, the label lab
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of z is also returned and there exists a bottom y of L such that 〈y, z〉 is a path
with steepest descent. Thus, there is an ≺-stream L1, under L, included in
the set of all vertices labeled lab. Thus, by the preceding remarks, the output
of Algo. 2 is a flow mapping of F . Furthermore, using the data structures
presented in Sec. 4.2, we obtain a linear complexity.

Algorithm 2: Watershed

Data: (V,E, F ): an edge-weighted graph;
Result: ψ: a flow mapping of F .
foreach x ∈ V do ψ(x)← NO LABEL;1

nb labs← 0 ; /* the number of minima already found */2

foreach x ∈ V such that ψ(x) = NO LABEL do3

[L, lab]← Stream(V,E, F, ψ, x) ;4

if lab = −1 then /* L is an ≺-stream */5

nb labs+ + ;6

foreach y ∈ L do ψ(y)← nb labs;7

else8

foreach y ∈ L do ψ(y)← lab;9

Function Stream( V , E, F , ψ, x)

Data: (V,E, F ): an edge-weighted graph; ψ: a labeling of V ; x: a point
in V .

Result: [L, lab] where L is a stream such that x is a top of L, and lab is
either the label of an ≺-stream under L, or −1.

L← {x} ;1

L′ ← {x} ; /* the set of non-explored bottoms of L */2

while there exists y ∈ L′ do3

L′ ← L′ \ {y};4

breadth first← TRUE ;5

while (breadth first) and (there exists {y, z} ∈ E such that z /∈ L6

and F ({y, z}) = F (y)) do
if ψ(z) 6= NO LABEL then7

/* there is an ≺-stream under L already labelled */8

return [L, ψ(z)] ;9

else if F (z) < F (y) then10

L← L ∪ {z} ; /* z is now the only bottom of L */11

L′ ← {z} ; /* hence, switch to depth-first exploration */12

breadth first← FALSE ;13

else14

L← L ∪ {z} ; /* F (z) = F (y), thus z is also a bottom of L */15

L′ ← L′ ∪ {z} ; /* continue breadth-first exploration */16

return [L,−1] ;17
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Property 27 Algorithm 2 outputs a map ψ which is a flow mapping of F .
Furthermore, Algorithm 2 runs in linear-time with respect to |E|.

Remark that, in function Stream, the use of breadth-first iterations is required
to ensure that the produced set L is always an ≺-stream. Otherwise, if only
depth-first iterations were used, Stream could be stuck on plateaus (i.e., con-
nected subgraphs of G with constant altitude) since some bottoms of L would
never be explored.

6 Watersheds, shortest-path forests and topological watersheds

An interesting feature of the framework settled in this paper is that it allows
to understand the links and differences between several methods used in im-
age segmentation. Thanks to relative MSFs and border kernels, we provide a
mathematical comparison between watershed cuts and:

• shortest-path forests (the theoretical basis of the Image Foresting Transform
(IFT) [12] and the fuzzy connected image segmentation [15,33]); and
• topological watersheds [7, 8].

6.1 Connection Value

The connection value [8,10,34] (also called degree of connectivity [35] or fuzzy
connectedness [14] up to an inversion of F ) may be seen as a measure of
contrast between two subgraphs. This notion is central to both topological
watersheds and shortest-path forests. We begin the section by defining the
connection value. Then, we show that any MSF relative to a subgraph of G
“preserves” the connection values.

Definition 28 Let π = 〈x0, . . . , xl〉 be a path in G. If π is non-trivial, we
set F (π) = max{F ({xi−1, xi}) | i ∈ [1, l]}. If π is trivial, we set F (π) = F (x0).
Let X and Y be two subgraphs of G, we denote by Π(X,Y ) the set of all paths
from X to Y in G. The connection value between X and Y (in G and for F )
is F (X,Y ) = min{F (π) | π ∈ Π(X,Y )}.

Let X be any subgraph of G. The following theorem asserts that, if the con-
nection value between two components of X is equal to k, then the connection
value between the two corresponding components in any MSF relative to X
is also k: relative MSFs preserve the connection values.

Theorem 29 Let X be a subgraph of G. If Y is a MSF relative to X, then
for any two distinct components A and B of X, we have F (A,B) = F (A′, B′),
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where A′ and B′ are the two components of Y such that A ⊆ A′ and B ⊆ B′.

For example, in Fig. 5a, the connection value between the two minima at
altitude 1 is equal to 4. It can be verified that the connection value between the
two corresponding components of the MSFs relative to the minima, depicted
in Figs. 5c and d, is also 4.

Let S ⊆ E be a watershed cut of F . As a corollary of Th. 29, it may be
deduced that the connection value between two distinct catchment basins
(i.e., two components of S) is equal to the connection value between the two
corresponding minima of F . To put it briefly, watershed cuts preserve the
connection value.

6.2 Shortest-path forests

We investigate the links between relative MSFs and shortest-path forests. The
image foresting transform [12], the inter-pixel flooding watershed [4, 6], and
the relative fuzzy connected image segmentation [14,15,33,36] fall in the scope
of shortest-path forests. Roughly speaking these methods partition the graph
into connected components associated to seed points. The component of each
seed consists of the points that are “more closely connected” to this seed than
to any other. In many cases, in order to define the relation is “more closely
connected to”, the chosen measure is precisely the connection value, i.e., a
path π′ is considered as shorter than a path π whenever F (π ′) < F (π). The
resulting regions are then given by a shortest-path forest. We show that any
MSF relative to a subgraph X is a shortest-path spanning forest relative to X
and that the converse is not true. Furthermore, we prove that both concepts
are equivalent whenever X corresponds to the minima of the considered map.

If x is a vertex of G, to simplify the notation, the graph ({x}, ∅) will be also
denoted by x. Let X and Y be two subgraphs of G. We say that Y is a shortest-
path forest relative to X if Y is a forest relative to X and if, for any x ∈ V (Y ),
there exists, from x to X, a path π in Y such that F (π) = F (x,X). If Y is a
shortest-path forest relative to X and V (Y ) = V , we say that Y is a shortest-
path spanning forest relative to X. In this case, the unique cut induced by Y
is a SPF cut for X.

Let G be the graph in Fig. 7 and let F be the corresponding map. Let X,Y, Z
be the bold graphs depicted in respectively Figs. 7a,b and c. The two graphs Y
and Z are shortest-path spanning forests relative to X.

Property 30 Let X and Y be two subgraphs of G. If Y is a MSF relative
to X, then Y is a shortest-path spanning forest relative to X. Furthermore,
any MSF cut for X is a SPF cut for X.
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Fig. 7. A graph G and a function F . The bold edges and vertices represent: (a),
a graph X; (b), a MSF relative to X; (c), a shortest-path spanning forest relative
to X which is not a MSF relative to X.

The converse of Prop. 30 is, in general, not true. For example, the graph Z
(Fig. 7c), is a shortest-path spanning forest relative to the graph X (Fig. 7a)
whereas it is not a MSF relative to this graph. On the same example (Fig. 7c)
we can also observe that, contrarily to relative MSFs, shortest-path spanning
forests do not always preserve the connection value (in the sense of Th. 29). In
particular, in Fig. 7, the connection value between the two components of X
is equal to 8, whereas the connection value between the two components of Z
is equal to 0. Then, on the contrary of cuts induced by relative MSFs (see for
instance Fig. 7b), the cuts induced by shortest-path spanning forests are not
necessarily located on the “crests” of the function.

In fact, as stated by the following property, if the graph X constitutes precisely
the minima of F , the equivalence between both concepts can be established.

Property 31 Let X be a subgraph of G. A necessary and sufficient condition
for X to be a shortest-path spanning forest relative to M(F ) is that X is a
MSF relative to M(F ). Furthermore, a subset of E is a MSF cut for M(F ) if
and only if it is a SPF cut for M(F ).

Whereas the notions of shortest-path forests and relative MSFs are equivalent
when extensions of the minima are considered, in the general case, the relative
MSFs satisfy additional interesting properties, such as the preservation of the
connection value or the optimality (in the sense of Def. 8). Relative MSFs
thus constitute a method of choice for marker (seed) based segmentation pro-
cedures, an illustration of which is provided in Sec. 7.2.

6.3 Topological watershed

The notions of a W-thinning and a topological watershed, introduced in [7],
allow to rigorously define the watersheds of a vertex-weighted graph and to
prove important properties (see [8–10]) not guaranteed by most popular wa-
tershed algorithms for vertex-weighted graphs. In particular, in [8, 10], the
equivalence between a class of transformations which preserves the connection
value and the W-thinnings is proved. Thus, Th. 29 invites us to recover the
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links between watershed cuts and topological watersheds.

The W-thinnings and topological watersheds are defined for graphs whose ver-
tices are weighted by a cost function (denoted by I in the following). For that
purpose, we introduce a minimal set of definitions to handle this framework.

Let P ⊆ V . The subgraph of G induced by P , denoted by GP , is the graph
whose vertex set is P and whose edge set is made of all edges of G linking
two points in P , i.e., GP = (P, {{x, y} ∈ E | x ∈ P, y ∈ P}). Let I be a map
from V to Z, and let k ∈ Z. We denote by I[k] the subgraph of G induced
by the set of all points x ∈ V such that I(x) < k; I[k] is called a (level k)
lower-section of I.

Definition 32 Let I be a map from V to Z.
Let x in V and k = I(x). If x is adjacent to exactly one component of I[k],
we say that x is W-destructible for I.
Let J be a map from V to Z. We say that J is a W-thinning of I (in G)
if J = I or if J may be derived from I by iteratively lowering the values of
W-destructible points by one.
We say that J is a topological watershed of I if J is a W-thinning of I and
if there is no W-destructible point for J .

Let us consider the map I depicted in Fig. 8d. The points at altitude 2 are
both W-destructible whereas the point at altitude 5 is not. The maps J and K
depicted, respectively, in (e) and (f) are W-thinnings of F . The interested
reader can verify that there exists a sequence of maps which allows to obtain J
(resp. K) from I by iteratively lowering by one the values of W-destructible
points. Notice that J is a topological watershed of I, since there is no W-
destructible point for J . On the other hand, K is not a topological watershed
of I, indeed the points with altitude 10, 6 or 4 are W-destructible.

We now present the notion of line graph (see [37], and [32,38,39] for topological
watershed properties in this framework). This concept provides a simple way
to automatically infer definitions and properties from vertex-weighted graphs
to edge-weighted graphs.

Definition 33 The line graph of G = (V,E) is the graph (E,Γ), such that
{u, v} belongs to Γ whenever u ∈ E, v ∈ E, and u and v are adjacent, i.e.,
|u ∩ v| = 1.

To each graph G whose edges are weighted by a cost function F , we can
associate its line graph G′. The vertices of G′ are weighted by F and thus any
transformation of F can be performed either in G or in G′. Fig. 8 illustrates
such a procedure. Let G be the graph depicted in (a), (b) and (c). The line
graph of G is depicted in (d), (e) and (f). The map shown in (b) and (e) is a
topological watershed of the one shown in (a) and (d). The map in (c) and (f)
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is a border kernel.
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Fig. 8. Illustration of line graphs and topological watersheds. The graph in (d)
(resp. (e), (f)) is the line graph of the one in (a) (resp. (b), (c)). The minima of the
associated functions are depicted in bold. (c, f): the map is a border kernel of the
one in (a, d); (b, e) and (c, f): the maps are W-thinnings of (a, d); the map in (b, e)
is furthermore a topological watershed of the one in (a, d).

Definition 34 Let S ⊆ E. We say that S is a topological cut for F , if there
exists a W-thinning H of F in the line graph of G such that S is the only cut
for M(H).

Property 35 Let H ∈ F . If H is a border thinning of F in G, then H is a
W-thinning of F in the line graph of G. Furthermore, any border cut for F is
a topological cut for F .

The previous property is illustrated in Fig. 8 where the map depicted in Fig. 8c
is a border thinning of F (Fig. 8a), thus a W-thinning of F . The converse of
Prop. 35 is not true. The map H (Fig. 8b) is a topological watershed of F but
it is not a border kernel of F . Indeed, there is no MSF relative to the minima
of F associated to the cut produced by the topological watershed H. Observe,
in particular, that the produced cut is not located on the highest “crests” of
the original map F .

An important consequence of Prop. 35 is that border cuts (hence, by Th. 20,
watershed cuts) directly inherit all the properties of W-thinnings and topo-
logical watersheds proved for vertex-weighted graphs [8–10].

In recent papers [32,38,39], we have studied and proposed solutions to some of
the problems encountered by region merging methods which consider frontiers
made of vertices as initial segmentations. In particular, we have introduced an
adjacency relation on Zn which is adapted for region merging. An important
property (Prop. 54 in [38]) is that the induced grids, called the perfect fusion
grids, are line graphs. If we consider a map which assigns a weight to the
vertices of such a grid, then the set of definitions and properties given in this
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paper are still valid. Thus, the perfect fusion grids constitute an interesting
alternative for defining a watershed of an image which is based on vertices and
which satisfies the drop of water principle.

7 Illustrations and experimental results

In order to illustrate the notions introduced in this paper, we present two
segmentation schemes based on watersheds and relative MSFs. In Sec. 7.1, we
derive, from the classical framework of mathematical morphology, a segmenta-
tion scheme that allows to automatically segment an image into a predefined
number of regions. It consists of the three following steps: (i), computation of
a simple function that assigns a weight to the edges of the 4-adjacency graph
associated to the image; (ii), filtering of this cost function in order to reduce
the number of minima; and (iii) computation of a watershed of the filtered
cost function. The second illustration (Sec. 7.2) presents some results of rel-
ative MSF, used as a semi-automatic segmentation tool. At last, we provide
computation times of several watershed algorithms including the two that are
proposed in this paper.

7.1 Segmentation into k regions

In order to illustrate the use of watersheds in practical applications, we adapt
a classical scheme of morphological segmentation. We assume that the set V is
the domain of a 2-dimensional image, more precisely, of a rectangular subset
of Z2. A grayscale image I is a map from the set of pixels V to a subset of
the positive integers. For any x ∈ V , the value I(x) is the intensity at pixel x.
We consider the 4-adjacency relation [17] defined by: ∀x, y ∈ V , {x, y} ∈ E
iff |x1 − y1| + |x2 − y2| = 1, where x = (x1, x2) and y = (y1, y2). We consider
the map F , from E to Z, defined for any {x, y} ∈ E by F ({x, y}) = |I(x) −
I(y)|. Notice that more elaborated formulations can be used to define the cost
function F (see [40, 41] or an adaptation of [42]).

A watershed of F would contain to many catchment basins. Over-segmentation
is a well known feature of all grayscale watersheds due to the huge number
of local minima. In order to suppress many of the non-significant minima, a
classical approach consists of computing morphological closing of the function
[43,44]. In particular, attribute filters [45] (area, dynamic, volume) have shown
to be successful tools. For this illustration, we adapt a classical attribute filter
to the case of edge-weighted graphs.

The intuitive idea of this filter is to progressively “fill in” the minima of the
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map F that are not “important enough”. To make such an idea practicable, it
is necessary to quantify the relative importance of a minimum. To this aim, let
us define the area of a subgraph of G (e.g., a minimum of F ) as the number of
its vertices. In order to “fill in” a less significant minimum M of F (according
to its area), we consider the transformation that consists of increasing by one
the altitude of any edge of M . A common issue in image analysis is to segment
an image into k regions (where k is a predefined number). To reach this goal
thanks to watershed cut, we need a cost function which contains exactly k
minima. The map F is thus filtered by iterating the above transformation
until F contains k minima (see [46] for an efficient implementation).

In Figs. 9a,b, we present the results which have been obtained on the camera-
man image. Here, k is set to 22. In order to evaluate this result, we also use
a similar approach settled in the framework of vertex-weighted graph. More
precisely, it consists of: (i), computation of a gradient magnitude image: ei-
ther the Deriche’s optimal edge detector [42] in Figs. 9c,d or the morphological
gradient (see, for instance, chapter 3.10.1 in [47]) in Figs. 9e,f; (ii), area filter-
ing (k = 22) of the gradient; followed by (iii), computation of a watershed by
flooding (without dividing line, see [4] or [13]) of the filtered function. Observe,
in particular, the quality of the delineation of the man’s face in (b) compared
to (d) and (f).

7.2 Semi-automatic scheme for image segmentation

Another classical procedure in mathematical morphology consists of using the
watershed in an interactive manner. In this procedure, the user “paints”, on
the image, some markers corresponding to objects that have to be segmented.
Actually, the action of “painting” corresponds to the selection of some vertices
of the underlying graph. Let M be this set of vertices. From the set M the
subgraph M+ whose vertex set is M and whose edge set is made of the edges
of G which have their extremities in M , (i.e., M+ = (M, {{x, y} ∈ E with x ∈
M, y ∈ M})) is extracted. Then, a MSF relative to M+ is computed. Here,
we use a Prim-like minimum spanning tree algorithm [26]. We note that it
is possible to efficiently compute minimum spanning trees by an algorithm
which consists of a succession of watersheds [48]. Such an algorithm could be
also used to produce relative MSFs.

This interactive segmentation procedure is illustrated in Figs. 10a,b and c.
For comparison purpose, we also compute the watershed by flooding from
markers [4] of the gradient magnitude (the Deriche optimal edge detector [42]
in Figs. 10d and morphological gradient in Figs. 10e). We can observe the
quality of the delineation in 10c, compared to (d) and (e). See, in particular,
the behavior of our approach in low contrasted zones and in the thin parts of
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the apple.

7.3 Computation times of watershed algorithms

In Fig. 11, computation times (on a conventional personal computer) of several
watershed algorithms are plotted for different image sizes. Minima precompu-
tation is included in the execution time of the algorithms that have such a
requirement. For each image size, the plotted values correspond to the mean
time over ten tested images. Remark that, in accordance with the theoretical
study, the two algorithms proposed in this paper are the fastest ones. For
example, Flow Cut Algorithm runs five times faster than Meyer’s flooding
algorithm for images of 20482 pixels.

Conclusion

Fig. 12 provides a summary of the main results of this paper. In a unify-
ing framework of edge-weighted graphs, we have shown strong links existing
between several paradigms linked to the notion of watershed: topographical
paradigms, grayscale transforms paradigms and optimality paradigms. To this
aim, we introduced new watershed notions (watershed, basin, border and M-
border cuts) and proved the equivalence between watershed cuts, basin cuts,
flooding cuts, border cuts, M-border cuts, SPF cuts relative to the minima
and MSF cut relative to the minima. Furthermore, we have shown that all
these cuts are topological cuts, and thus inherit the mathematical proper-
ties of topological watersheds. We proposed two original algorithms (based
on grayscale transforms and topographical paradigms) to compute watershed
cuts. These two algorithms run in linear time whatever the range of the input
function. To our best knowledge, these are the first watershed algorithms sat-
isfying such a property. Furthermore, according to our experiments, they are
also the fastest ones. Finally, the defined concepts have been illustrated in im-
age segmentation leading to the conclusion that our approach can be applied
for improving the quality of segmentation methods based on watershed.

On the one hand, future works will be focused on hierarchical segmentation
schemes based on watersheds (including geodesic saliency of watershed con-
tours [49] and incremental MSFs) as well as on watershed in weighted simpli-
cial complexes, an image representation adapted to the study of topological
properties. On the other hand, we will study a new minimum spanning tree
algorithm based on watersheds.
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Rendus des Séances de l’Académie des Sciences 75 (1872) 1023–1025.
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A Proofs

A.1 Proof of Sec. 2

The following lemma is a direct consequence of the definition of a minimum.

Lemma 36 Let P ⊆ V, P 6= ∅. If there is no vertex of M(F ) in P , then there
exists an edge u = {x, y} of G such that x ∈ P , y ∈ V \ P , and F (u) is less
than or equal to the altitude of any vertex in P .

Proof of Th. 6:
(ii) Suppose that S is a basin cut of F . Let u = {x0, y0} be any edge in S.
There exists π1 = 〈x0, . . . , xl〉 (resp. π2 = 〈y0, . . . , ym〉) a path with steep-
est descent from x0 (resp. y0) to M(F ). By definition of a cut, x0 and y0

are in two distinct connected components of S. Thus, since S is an exten-
sion of M(F ), xl and xm are necessarily in two distinct minima of F . When-
ever π1 (resp. π2) is not trivial, by definition of a path with steepest de-
scent, F ({x0, x1}) = F (x0) (resp. F ({y0, y1}) = F (y0)). Hence, F ({x0, x1}) ≤
F ({x0, y0}) (resp. F ({y0, y1}) ≤ F ({x0, y0})). Hence, since by definition S is
an extension of M(F ), S is a watershed cut of F .
(ii) Suppose now that S is not a basin cut of F . If S is not an extension
of M(F ), S is not a watershed of F . Suppose now that S is an extension
of M(F ). Thus, there exists a point x ∈ V such that there is no path with
steepest descent in S from x to M(F ) (otherwise S would be a basin cut
of S). Let P be the set of all points of G that can be reached from x by a
path with steepest descent in S. By hypothesis, none of the points in P is a
vertex of M(F ). We denote by T the set of all edges with minimal altitude
among the edges {y, z} such that y ∈ P , z ∈ V \ P . Let v = {y, z} ∈ T
such that y ∈ P . Since none of the vertices of P is a vertex of M(F ), from
Lem. 36, we can deduce that F (y) = F ({y, z}). Thus, there is, from x to z, a
path in G, with steepest descent for F . Since z is not in P , there is no such
path in S. Thus, v ∈ S and T ⊆ S. Again, let us consider v = {y, z} ∈ T .
Let π = 〈y0 = y, . . . , yl〉 be any descending path in S from y to M(F ). If
such a path does not exist, then S is not a watershed: the proof is done. Sup-
pose now that such a path exists. There exists k ∈ [1, l] such that yk−1 ∈ P
and yk ∈ V \ P . Since any edge in T is in S and since {yk−1, yk} is in S,
F ({yk−1, yk}) > F (v). Thus, as π is descending, F ({y0, y1}) > F (v). Thus,
the edge v, which belongs to S, does not satisfy the condition for the edges in
a watershed: S is not a watershed. �
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A.2 Proofs of Sec. 3

Before proving the properties of Sec. 3, let us state the following propositions
whose proofs are elementary.

Thanks to the construction presented in Sec. 3.2, we can derive, from classical
properties of trees, the following properties.

Let X ⊆ G, u ∈ E(X). We write X \ u for (V (X), E(X) \ {u}). Let v ∈
E \ E(X). We write X ∪ v for the graph (V (X) ∪ v, E(X) ∪ {v}).

Lemma 37 Let X be a subgraph of G and let Y be a spanning forest relative
to X. If for any u ∈ E(Y ) \E(X) and v ∈ E \E(Y ) such that (Y \u)∪ v is a
spanning forest relative to X, we have F (u) ≤ F (v), then Y is a MSF relative
to X.

Lemma 38 Let X be a subgraph of G and Y be a spanning forest relative
to X. If u = {x, y} ∈ E(Y ) \ E(X), then there exists a unique component
of Y \u which does not contain a component of X. Furthermore, either x or y
is a vertex of this component.

Let π = 〈x0, . . . , xl〉 be a path in G. We say that π is a simple path if for any
two distinct i and j in [0, l], xi 6= xj. We say that π is an M-path (for F )
if π is a simple path, if xl is a vertex of M(F ) and if none of x0, . . . , xl−1 is a
vertex of M(F ). Remark that anM-path does not contain any edge of M(F ).
Furthermore, it may be seen that if Y is a forest relative M(F ), there exists
a unique M-path from each vertex of Y .

Proof of Lem. 9:
(i) Suppose that there exists x0, a vertex of X such that there is no path
from x0 to M(F ), with steepest descent for F . We are going to prove that X
is not a MSF relative to M(F ). Let π = 〈x0, . . . , xl〉 be the unique M-path
from x0 in X. Let i ∈ [0, l − 1] be such that 〈x0, . . . , xi〉 is a path with
steepest descent for F and such that 〈x0, . . . , xi+1〉 is not. We have: F (xi) <
F ({xi, xi+1}). Let Z = X \{xi, xi+1}. Since {xi, xi+1} is not an edge of M(F ),
from Lem. 38, there exists a unique connected component of Z, denoted by C,
which does not contain a minimum of F . Furthermore, the vertex set of C
does not contain any vertex of M(F ). Since π is an M-path , hence a simple
path, 〈xi+1, . . . , xl〉 is a path in Z and xl is a vertex of M(F ). Thus, xi is a
vertex of C. From Lem. 36, we deduce that there exists v = {y, z} ∈ E such
that y is a vertex of C whereas z is not and F (v) ≤ F (xi). Thus, F (v) <
F ({xi, xi+1}). By definition, we have V (Z) = V (X) = V . Hence, it may be
seen that Z ∪ v is a spanning forest relative to M(F ) whose weight is strictly
less than the weight of X. Thus, X is not a MSF relative to M(F ).
(ii) Suppose that X is not a MSF relative to M(F ). We are going to prove
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that there exists x ∈ V such that there is no path with steepest descent in X
from x to M(F ). By the converse of Lem. 37, there exists u ∈ E(X)\E(M(F ))
and v ∈ E \E(X) such that (X \ u)∪ v is a spanning forest relative to M(F )
and F (v) < F (u). Let X ′ = X\u. By Lem. 38, there exists a unique connected
component of X ′, denoted by C, which does not contain any minimum of F .
Since X ′ ∪ v is an extension of M(F ), there exists a unique vertex x in v
which is a vertex of C. As x ∈ v, F (x) ≤ F (v). Thus, F (v) < F (u) implies
F (x) < F (u). Let π be the unique M-path in X from x to M(F ). Since C
does not contain any minimum of F , we deduce that π passes through u
but F (x) < F (u). Hence, π is not a path with steepest descent for F . �

The following lemmas will be used in the proof of Th. 10.

Lemma 39 Let S ⊆ E be a watershed of F and Y ⊆ S be a forest rela-
tive to M(F ). If V (Y ) 6= V , then there exists an edge {x, y} in S outgoing
from Y such that either 〈x, y〉 or 〈y, x〉 is a path with steepest descent for F .
Furthermore, Y ∪ {x, y} is a forest relative to M(F ).

Proof: Since V (Y ) 6= V , there exists x0 ∈ V \V (Y ). Since S is a watershed, by
Th. 6, there exists, from x0 to M(F ), a path π = 〈x0, . . . , xl〉 in S with steepest
descent for F . Since M(F ) ⊆ Y , there exists i ∈ [0, l− 1] such that xi /∈ V (Y )
and xi+1 ∈ V (Y ). Thus, {xi, xi+1} is outgoing from Y . Furthermore, by the
very definition of a path with steepest descent for F , 〈xi, xi+1〉 is a path with
steepest descent for F .
Since xi /∈ V (Y ), any cycle in Y ∪{xi, xi+1} is also a cycle in Y . Thus, thanks
to Rem. 7, Y ∪ {xi, xi+1} is a forest relative to Y , hence a forest relative
to M(F ). �

The following lemma follows straightforwardly from the definition of a path
with steepest descent.

Lemma 40 If 〈x0, . . . , xl〉 and 〈xl, . . . , xm〉 are two paths with steepest descent
for F , then π = 〈x0, . . . , xm〉 is a path with steepest descent for F .

Proof of Th. 10:
(i) If S is a cut induced by a MSF relative to M(F ), then, by Lem. 9, there
exists a path with steepest descent in S from each point in V to M(F ). Hence,
by Th. 6, S is a watershed of F .
(ii) Suppose that S is a watershed of F . Let us consider a sequence of graphsX0, . . . , Xk

such that:
- X0 = M(F );
- Xi+1 = Xi ∪ {xi, yi} where {xi, yi} is an edge of S outgoing from Xi such
that 〈xi, yi〉 is a path with steepest descent for F ;
- Xk is such that there is no edge {xk, yk} of S outgoing from Xk such
that 〈xk, yk〉 is a path with steepest descent for F .
By induction on Lem. 39, Xk is a forest relative to M(F ). Furthermore, by
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the converse of Lem. 39, V (Xk) = V . Thus, Xk is a spanning forest relative
to M(F ). From Lem. 40, it can be deduced by induction that for any x ∈ V
there exists, from x to M(F ), a path in Xk with steepest descent for F .
Hence, by Lem. 9, Xk is a MSF relative to M(F ). Furthermore, since S is a
cut and Xk ⊆ S, it may be seen that S is the cut induced by Xk. �

A.3 Proofs of Sec. 4

Lemma 41 Let H ∈ F . If H is a border thinning of F , then any forest
relative to M(H) is a forest relative to M(F ).

Proof: Let u be a border edge for F and let H be the lowering of F at u.
We first prove the property for H. Then, Lem. 41 can be easily established by
induction. If u is not an edge of M(H) then M(H) = M(F ): the proof is done.
Suppose now that u is an edge of M(H). Let u = {x, y} with F (x) ≥ F (y).
The fact that u is border for F implies F (u) = F (x) and F (u) > F (y). Thus,
u is not an edge of M(F ) and x cannot belong to an edge of M(F ) (otherwise
we would have F (x) < F (u)). Therefore, x is not a vertex of M(F ). The
edge u belongs to S, the edge set of one minimum of H. Since H(u) = F (y)
and F (u) > F (y) (by definition of a lowering at a border edge), there is an edge
v 6= u which contains y such that F (v) = H(v) = F (y) = H(u). Necessarily v
belongs to S. Hence, S \ u 6= ∅ and it may be seen that S \ u is exactly the
edge set of a minimum of F . Thus y is a vertex of M(F ) and M(H) is an
extension of M(F ). Furthermore, since x is not a vertex of M(F ), any cycle
in M(H) is also a cycle in M(F ). Thus, by Rem. 7, M(H) is a forest relative
to M(F ) and any forest relative to M(H) is also a forest relative to M(F ). �

Lemma 42 Let H be a border thinning of F .
(i) For any vertex x of a minimum of H, there exists a path in M(H) from x
to M(F ) which is a path with steepest descent for F .
(ii) Any M-path (for H), with steepest descent for H is a path with steepest
descent for F .

Proof:
Let us first suppose that H is the lowering of F at a border edge u for F .
(i) Let x and y be the two vertices in u. If none of x and y is a vertex of M(F ),
then M(F ) = M(H) and the proof is trivial. Suppose that y is a vertex of
M(F ). Since u is a border edge, F (x) = F (u). Thus, 〈x, y〉 is a path in M(H)
with steepest descent for F . Let z be any vertex of M(H), z 6= x. Necessarily
z is also a vertex of M(F ). Hence, 〈z〉 is a path in M(H) from z to M(F )
with steepest descent for F .
(ii) The property is verified for any trivial path. Let us consider the case
of non-trivial paths. Let x0 ∈ V \ V (M(H)) and let π = 〈x0, . . . , xl〉 be an
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M-path (for H) with steepest descent for H. Since xl is a vertex of M(H)
and {xl−1, xl} is not an edge of M(H), by the very definition of a mini-
mum, H({xl−1, xl}) > H(xl). Hence, from the definition of a lowering, we
deduce that u 6= {xl−1, xl}.
Suppose that there exists i ∈ [1, l − 1] such that u = {xi−1, xi}. As π is
a path with steepest descent for H, H(xi) = H({xi, xi+1}). By the very
definition of a lowering, {xi−1, xi} is the only edge of G whose altitude is
different for F and H. Thus, F ({xi, xi+1}) = H({xi, xi+1}) = H(xi) and,
by definition, F (xi) ≤ H(xi). Since H is a lowering of F , H(xi) ≤ F (xi).
Hence, F (xi) = H(xi) = F ({xi, xi+1}). Therefore, since F ({xi−1, xi}) >
H({xi−1, xi}), necessarily F ({xi−1, xi}) > F (xi) and since u is border for F , F (xi−1) =
F ({xi−1, xi}). Furthermore, for any v ∈ E, v 6= u, F (v) = H(v). Thus, in this
case, π is a path with steepest descent for F .
Suppose now that for any i ∈ [1, l], u 6= {xi−1, xi}. By definition of a lower-
ing F (u) > H(u), hence, for any i ∈ [0, l], F (xi) = H(xi). Thus π is a path
with steepest descent for F .
By induction on (i) and (ii) and thanks to Lem. 40, it may be seen that
Lem. 42 holds for any border thinning of F . �

Lemma 43 The map F is a border kernel if and only if V is the vertex set
of M(F ).

Proof:
(i) Suppose that V is not the vertex set of M(F ). Then, there exists x0 ∈ V
which is not a vertex of M(F ). Since (V,E) is finite, there exists an M-path
π = 〈x0, . . . , xl〉 with steepest descent for F . Thus, F (xl−1) = F ({xl−1, xl}).
Since π is an M-path, F (xl) < F ({xl−1, xl}). Hence, {xl−1, xl} is a border
edge for F , and F is not a border kernel.
(ii) Suppose that F is not a border kernel. There exists u = {x, y} which is
a border edge for F . Without loss of generality, assume that F (x) = F (u)
and F (y) < F (u). There is no minimum of F whose vertex set contains x
since F (x) = F (u) and since there exists an edge which contains y whose
altitude is strictly less than the altitude of u. Hence, V is not the vertex set
of M(F ). �

Proof of Prop. 13:
(i) Let X be a MSF relative to M(H) for H. We will prove that for any
point x0 in V , there exists in X a path from x0 to M(F ) which is a path
with steepest descent for F . Thus, by Lem. 9, this will establish the first part
of Prop. 13. From Lem. 9, it may be seen that there exists in X an M-path
(for H), denoted by π = 〈x0, . . . , xl〉, which is a path with steepest descent
for H. By Lem. 42.ii, π is a path with steepest descent for F . Since xl is a
vertex of M(H), by Lem. 42.i, there exists in M(H) a path π ′ = 〈xl, . . . , xm〉
from xl to M(F ) which is a path with steepest descent for F . Since X is an
extension of M(H), M(H) ⊆ X. Hence, π′ is a path in X. Moreover, π is by
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construction a path in X. Therefore, π′′ = 〈x0, . . . , xm〉, is a path in X. Since
both π and π′ are paths in X with steepest descent for F , by Lem. 40, π ′′ is
also a path in X with steepest descent for F , which, by construction, is a path
from x0 to M(F ).
(ii) Suppose that H is a border kernel of F . From Lem. 43, V (M(H)) = V .
Then, any MSF relative to M(H) is equal to M(H). Hence, from (i), we
prove (ii). �

Proof of Prop. 18
Let u = {x, y0} ∈ E, with x being a vertex of M(F ), be a flooding edge
for F . By the very definition of a minimum, we have F (u) > F (x). Let π =
〈y0, . . . , yl〉 be anyM-path with steepest descent for F . It may be seen that F ({yl−1, yl}) ≤
F (y0). Since π is an M-path , {yl−1, yl} is outgoing from M(F ). By hypoth-
esis, F (u) ≤ F ({yl−1, yl}). Thus, F (u) ≤ F (y0) and since y0 ∈ u, necessarily
F (u) = F (y0). Hence, u is a border edge for F . �

The following lemma is used to prove Lem. 20. The proof is similar to the one
of Lem. 43 and, thus, omitted.

Lemma 44 The map F is an M-border (resp. flooding) kernel if and only
if V is the vertex set of M(F ).

Thanks to the construction presented in Sec. 3.2, the following lemma can be
derived from basic results on minimum spanning trees (see, for instance, Th.
23.1, p. 563, in [29]).

Lemma 45 Let X be a subgraph of G, let Y be a MSF relative to X, and
let Z ⊆ Y be a forest relative to X such that Z 6= Y . Let u be an edge of
minimal altitude among all the edges of Y outgoing from Z. Then, the altitude
of any edge of G outgoing from Z is greater than or equal to F (u).

Proof of Lem. 20:
(i) =⇒ (ii): Let H be a flooding kernel of F and let X = M(H). By Prop. 18,
H is a border thinning of F . Consequently to Lem. 44, V is the vertex set
of M(H) and, again by Lem. 44, H is an M-border kernel of F . (ii) =⇒ (iii):
Let H be an M-border kernel of F and let X = M(H). Trivially H is a border
thinning of F . By Lem. 44, V is the vertex set of M(H). Thus, by Lem. 43, H
is a border kernel of F .
(iii) =⇒ (iv): Prop. 13.
(iv) =⇒ (i): Let X be a MSF relative to M(F ) and let us consider a sequence
of graphs X0, . . . , Xk such that:
- X0 = M(F );
- for any i ∈ [1, k], Xi = Xi−1 ∪ ui where ui is an edge of minimal altitude
(for F ) among all the edges of X outgoing from Xi−1; and
- V is the vertex set of Xk.
It may be seen that such a sequence always exists. Consider also the associated
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sequence of maps F0, . . . Fk such that F0 = F and for any i ∈ [1, k], Fi is the
lowering of Fi−1 at ui.
We will proceed by induction to establish, for any i ∈ [1, k], the following
proposition:
(Pi): Fi is a flooding of F such that Xi = M(Fi).
Let i ∈ [1, k] and suppose that (Pi−1) holds. By Prop. 18 and Lem. 41,
(Pi−1) implies that Xi−1 is a forest relative to M(F ). Therefore, it follows
from Lem. 45, that the altitude (for F ) of any edge of G outgoing from Xi−1

is greater than or equal to F (ui). By construction of Fi−1, we have F (v) =
Fi−1(v) for any edge v outgoing from Xi−1. Thus, ui is an edge with mini-
mal altitude (for Fi−1) among all the edges outgoing from Xi−1. Furthermore,
thanks to (Pi−1), Xi−1 = M(Fi−1). Hence, ui is a flooding edge for Fi−1, and it
follows straightforwardly that Fi is a flooding of Fi−1. Moreover, by (Pi−1), Fi
is a flooding of F . Consequently to the definition of a lowering at a flooding
edge, M(Fi) = M(Fi−1)∪ui. Hence, M(Fi) = Xi−1∪ui = Xi, which completes
the proof of (Pi).
Since (P0) is trivially verified, by induction, Pk is established. Therefore, by
Prop. 18 and Lem. 41,M(Fk) = Xk is a forest relative toM(F ). Since V (Xk) =
V , since Xk ⊆ X (by construction) and since X is a forest relative to M(F ), by
the definition of a spanning forest, we have necessarilyXk = X. By Lem. 44, Fk
is a flooding kernel. Hence, by (Pk), X = Xk is the min-graph of Fk, a flooding
kernel of F . �

A.4 Proofs of Sec. 6

Proof of Th. 29: Suppose that Y is a MSF relative to X. Suppose also that
there exist A and B, two components of X such that F (A,B) 6= F (A′, B′),
where A′ and B′ are the two components of Y such that A ⊆ A′ and B ⊆ B′.
Since Π(A,B) ⊆ Π(A′, B′), F (A,B) > F (A′, B′). Let π = 〈xk, . . . , xl〉 be a
path from A′ to B′ such that F (π) = F (A′, B′) and such that xk (resp. xl)
is the only vertex of A′ (resp. B′) in π. Notice that {xk, xk+1} and {xl−1, xl}
are not edges of Y . Let πA = 〈x0, . . . , xk〉 (resp. πB = 〈xl, . . . , xm〉) be a
simple path in A′ (resp. B′), such that x0 (resp. xm) is the only point of
πA (resp. πB) which is a point of A (resp. B). Since π′ = 〈x0, . . . , xm〉 is a
path from A to B, F (π′) ≥ F (A,B). Thus, since F (π) < F (A,B), we have
either F (πA) ≥ F (A,B) or F (πB) ≥ F (A,B). Without loss of generality,
assume that F (πA) ≥ F (A,B). Let u be any edge of πA such that F (u) =
F (πA). Since F (π) < F (πA), F (u) > F ({xk, xk+1}). Since πA is a simple path
in A′, since x0 is the only point of πA which is in A, and since {xk, xk+1} is
not in Y , it may be seen that (Y \ u)∪{xk, xk+1} is a spanning forest relative
to X. Since F (u) > F ({xk, xk+1}), (Y \ u)∪ {xk, xk+1} has a cost strictly less
than Y . Thus, Y is not a MSF relative to X, a contradiction. �
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Proof of Prop. 30: Suppose that Y is a MSF relative to X which is not
a shortest-path spanning forest relative to X. There exists x0 ∈ V (Y ) such
that for any path π in Y from x0 to X, we have F (π) > F (x0, X). Let π =
〈x0, . . . , xl〉 be any such path and suppose, without loss of generality, that π
is a simple path. Let i ∈ [0, l − 1] be such that F ({xi, xi+1}) = F (π) and
let u = {xi, xi+1}. We denote by C the connected component of Y \ u such
that x0 ∈ V (C). Since π is a simple path, from Lem. 38, we deduce that C is
the unique connected component of Y \u which does not contain a connected
component of X. Let π′ = {y0 = x0, . . . , ym} be a path in G from x0 to X
such that F (π′) = F (x0, X). Let j ∈ [0,m − 1] be such that yj ∈ V (C)
whereas yj+1 /∈ V (C). Let v = {yj, yj+1}. Thus, (Y \u)∪v is a spanning forest
relative to X. Necessarily, F (v) ≤ F (π′). Hence, since F (π′) = F (x0, X) and
F (π) > F (x0, X), F (v) < F (π) and F (v) < F ({xi, xi+1}). Thus, from the
two previous observations, we deduce that Y is not a MSF relative to X, a
contradiction. �

Since G is a finite graph, for any x ∈ V there exists a path π with steepest
descent for F from x to M(F ). Then, it may be seen that F (π) = F (x) =
F (x,M(F )).

Proof of Prop. 31:
(i) Suppose that X is a spanning forest relative to M(F ) which is not a MSF
relative to M(F ). From Lem. 9, there exists a vertex x ∈ V such that none of
the paths in X from x to M(F ) is with steepest descent for F . Let P be the set
of all points that can be reached from x by a path in X with steepest descent
for F . Let y0 be the vertex of P with minimal altitude. By hypothesis, y0

is not a vertex of M(F ). Let π = 〈y0, . . . , yl〉 be the unique M-path ,in X,
from y0 to M(F ). Let i ∈ [0, l − 1] be the lowest index such that yi ∈ P
and yi+1 ∈ V \ P . If F ({yi, yi+1}) = F (yi), then there exists j ∈ [0, i −
1] such that F (yj) < F ({yj , yj+1}) (otherwise yi+1 would belong to P ) and
thus, F ({yj, yj+1}) > F (y0) (since F (yj) ≥ F (y0) by definition of y0, i and j).
If F ({yi, yi+1}) > F (yi), then F (y0) < F ({yi, yi+1}) since F (y0) ≤ F (yi). In
both cases, F (π) > F (y0). From the remark stated above this proof, we have
F (π) > F (y0,M(F )), hence, X is not a shortest path forest relative to M(F ).
(ii) a direct consequence of Prop. 30. �

Proof of Prop. 35: Let u = {x, y} ∈ E be a border edge for F such
that F (u) = F (x) = k . We will prove that the lowering of F at u is a
W-thinning of F , hence, by induction, this will establish Prop. 35. From the
definition of a border edge, F (y) < k. Thus, there exists a set of edges S ⊆ E,
such that S = {vi = {y, yi} ∈ E | yi 6= x and F (vi) < k}. Since any ele-
ment in S contains y, all the edges in S are in the same component of F [k].
Since F (x) = k, none of the edges vj = {x, zj} ∈ E with zj 6= y, is in
F [k]. Thus, u is adjacent to exactly one component of F [k]. Hence, u is W-
destructible for F and the map obtained by lowering the value of u by one is
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a W-thinning of F . By iterating the same arguments, it may be seen that u
can be lowered down to F (y). In other words, the lowering of F at u is a
W-thinning of F . �
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. Results obtained by applying a grayscale watershed on a filtered map. (a, b)
A watershed cut (k = 22) superimposed in white to the original image I; (c, d)
a watershed by flooding of the filtered (k = 22) Deriche optimal edge detector;
and (e, f) a watershed by flooding of a filtered (k = 22) morphological gradient. In
each image, the image resolution is doubled in order to superimpose the resulting
contours.

43



(a) (b)

(c) (d) (e)

Fig. 10. Comparison of different watersheds from markers. (a) Original image; (b)
the markers are superimposed in black. In the second row the resulting watersheds
are superimposed in black to the original image. (c): Relative MSF; (d): watershed
by flooding of the Deriche optimal edge detector; (e): watershed by flooding of a
morphological gradient of the image.
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Fig. 11. Computation times of four different watershed algorithms: watershed by
flooding (without dividing line) [4], watershed by Image Foresting Transform [13]
and the two algorithms (M-border Kernel and flow cut) proposed in this paper
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Graph cut

Topological cut
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(Boruvska, Prim, Kruskal)
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Fig. 12. Summary of the properties on cuts for the regional minima of a map. In
the figure, N ← N ′ means that the notion N is a particular case of the notion N ′,
hence, N ↔ N ′ means that the notions N and N ′ are equivalent; A L99 N means
that the notion N can be computed thanks to algorithm A. The new notions and
algorithms introduced in this paper are highlighted in bold.
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