
Recognizing hierarchical watersheds I

A Proof of Property 4

Proof. To prove Property 4, we prove its forward implication (Lemma 8) and its
backward implication (Lemma 9).

Lemma 8. Let f be a map from E into R+. If f is the saliency map of a
hierarchical watershed of (G,w), then there exists an extinction map P of w
such that, for any u in E, we have

f(u) = min{P (R) such that R is a child of Ru}.

Proof. Let us assume that the map f is the saliency map of a hierarchical H
watershed of (G,w). Then, there exists a sequence of minima S such that H is
the hierarchical watershed of (G,w) for S. As stated in [7], the saliency map of H
can be found trough the notion of persistence values of the edges in E. Given any
edge u in E, the persistence value of u (for S) is the minimum extinction value
among the children of Ru. Since the value of u in the saliency map f is precisely
the persistence value of u, as established in [7], we have f(u) = min{P (R) such
that R is a child of Ru} where P is the extinction map of w for S.

Lemma 9. Let f be a map from E into R+. If there exists an extinction map P
of w such that, for any u in E, we have

f(u) = min{P (R) such that R is a child of Ru},

then the map f is the saliency map of a hierarchical watershed of (G,w).

Proof. Let P be an extinction map of w such that, for any u in E, we have f(u) =
min{P (R) such that R is a child of Ru}. If P is an extinction map of w, then
there exists a sequence S of minima of w such that P is the extinction map of w
for S. Therefore, for any edge u in E, the value f(u) is the persistence value of u
for S. As established in [7], the map f is the saliency map of the hierarchical
watershed of (G,w) for S.

B Proof of Lemma 6

In order to prove Lemma 6, we first establish the following property which char-
acterizes extinction maps.

Property 10. Let P be a map from R(B) to R+. The map P is an extinction
map for w if the following statements hold true:

1. range(P ) = {0, . . . , n};
2. for any two minima M1 and M2 if P (M1) = P (M2), then M1 =M2; and
3. for any region R of B, we have P (R) = ∨{P (M) such that M is a minimum

of w included in R}.
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Proof. Let P be a map from R(B) to R+ for which the statements 1, 2 and 3 hold
true. To prove that P is an extinction map, we have to show that there exists a
sequence S of n pairwise distinct minima of w such that, for any region R of B,
the value P (R) is the extinction value of R for S.

Let S = (M1, . . . ,Mn) be a sequence of n pairwise distinct minima of w
ordered in non-decreasing order for P , i.e., for any two distinct minima Mi

and Mj, for i and j in {1, . . . , n}, if i < j then P (Mi) ≤ P (Mj).
By the statement 2, the sequence S is unique. By the statement 3, for any

region R of B such that there is no minimum of w included in R, P (R) = ∨{} =
0, so P (R) is the extinction value of R for S.

Since w has n minima, for any minimum M of w, the value P (M) is
in {1, . . . , n}. Otherwise, if there were a minimumM ′ of w such that P (M ′) = 0,
then there would be a value i in {1, . . . , n} such that for any minimum M ′′

of w the value P (M ′′) is different from i. Consequently, the range of P would
be {0, . . . , n} \ {i}, which contradicts the statement 1. Therefore, for any mini-
mum Mi, for i in {1, . . . , n}, we have that P (Mi) = i, so P (Mi) is the extinction
value of Mi for S.

It follows that, by the statement 3, for any region R such that there is a min-
imum of B included in R, the value P (R) is the maximum value i in {1, . . . , n}
such that Mi is included in R.

Thus, for any region R of B, the value P (R) is the extinction value of R
for S. Therefore, the map P is an extinction map of w.

Let f be a one-side increasing map for B. To prove that the estimated ex-
tinction map ξf of f is an extinction map of w (Lemma 6), we introduce Lem-
mas 11, 12 and 16 which establish that the three statements of Property 10 hold
for ξf .

Important notation: in the sequel, for any region X in R∗(B), we denote
by uX the building edge of X. For any region Y such that Y ⊆ X, we say that
Y is a descendant of X.

Lemma 11. Let f be a one-side increasing map for B. The range of the esti-
mated extinction map ξf of f is {0, . . . , n}.

Proof. We have to show that:

1. for any i in {0, . . . , n}, there is a region X of B such that ξf (X) = i; and
2. for any region X of B, we have ξf (X) in {0, . . . , n}.

Proof of 1: By Definition 5, we have ξf (V ) = n and ξf (Y ) = 0 for any
region Y in R(B) \R∗(B). Since f is a one-side increasing map, we know that,
for any edge u, the value f(u) is nonzero if and only if u is a watershed edge
of w. Moreover, we know that the range of f is {0, . . . , n−1}. Therefore, we can
conclude that the n− 1 watershed edges of w have pairwise distinct values in f
ranging from 1 to n− 1. Thus, for any i in {1, . . . , n− 1}, there is a region Ru
such that u is in WS(B) and such that f(u) = i. Since u is in WS(B), none
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of the children of Ru is a leaf region. Therefore, there is a child Y of Ru such
that ξf (Y ) = f(u) (Third case of Definition 5).

Proof of 2: By Definition 5, we know that the value ξf (X) for any region X
of B is either n (first case), 0 (second case), or f(u) (third case), where u is the
building edge of the parent of X. Therefore, the range of ξf is the union of range
of f with {0, n}, which is precisely the set {0, . . . , n}.

Lemma 12. Let f be a one-side increasing map for B and let ξf be the estimated
extinction map for f . For any two minimaM1 andM2 of w, if ξf (M1) = ξf (M2),
then M1 =M2.

To prove Lemma 12, we first present the Properties 13, 14 and 15.

Property 13. Let f be a one-side increasing map and let ξf be the estimated
extinction map of f . For any region X such that there is a minimum of w strictly
included in X, there is a child Y of X such that:

– ξf (Y ) = f(uX);
– ξf (sibling(Y )) = ξf (X); and
– there is a minimum of w included in sibling(Y ).

Proof. Let X be a region such that there is at least one minimum of w strictly
included in X. Given a child Y of X:

– If Y is a leaf region of B, then there is no minimum of w included in Y
and ξf (Y ) = 0 (second case of Definition 5). It follows that uX is not a
watershed edge of w and that f(uX) = 0 = ξf (Y ). Moreover, if Y is a leaf
region of B, then ξf (sibling(Y )) = ξf (Y ) (fourth case of Definition 5). Since
there is no minimum of w included in Y , there is at least one minimum of w
included in sibling(Y ).

– If Y is not a leaf region but sibling(Y ) is a leaf region of B, then this is equiv-
alent to the previous case. Otherwise, let us consider that Y and sibling(Y )
are not leaf regions of B. This implies that there are minima of w included
in both Y and sibling(Y ). By contradiction, let us assume that ξf (Y ) =
ξf (sibling(Y )) = f(uX). This implies that:
• (a) ∨{f(v) such that Rv is a descendant of Y } < ∨{f(v) such that Rv is
a descendant of sibling(Y )} or (b) ∨{f(v) such that Rv is a descendant
of Y } = ∨{f(v) such that Rv is a descendant of sibling(Y )} and Y ≺
sibling(Y ); and

• (c) ∨{f(v) such that Rv is a descendant of sibling(Y )} < ∨{f(v) such
that Rv is a descendant of Y } or (d) ∨{f(v) such that Rv is a de-
scendant of sibling(Y )} = ∨{f(v) such that Rv is a descendant of Y }
and sibling(Y ) ≺ Y .

However, the assertions (a) and (c), (a) and (d), (b) and (c), and
(b) and (d) are contradictory. Therefore, we have either ξf (Y ) = ξf (X)
or ξf (sibling(Y )) = ξf (X). We can use a similar argument to prove that
we have either ξf (Y ) = f(uX) or ξf (sibling(Y )) = f(uX). Therefore,
we may conclude that there is a child Y of X such that ξf (Y ) = f(uX)
and ξf (sibling(Y )) = ξf (X).
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Property 14. Let u be any watershed edge of w and let f be a one-side increas-
ing map. There is a minimum M of w such that ξf (M) = f(u).

Proof. Let u be a watershed edge of w and let f be a one-side increasing map.
By Property 13, there is a child X1 of Ru such that ξf (X1) = f(u). Since u
is a watershed edge, X1 cannot be a leaf node. If X1 is a minimum of w, then
the property holds true. Otherwise, by Property 13, there is a child X2 of X1

such that ξf (X2) = ξf (X1) = f(u) and such that there is a minimum of w
included in X2. We can see that we define a sequence (X1, . . . , Xp) where Xp is
a minimum of w and such that ξf (Xp) = · · · = ξf (X1) = f(u) and Xi ⊂ Xi−1
for any i in {2, . . . , p}. Therefore, there is a minimum Xp included in Ru such
that ξf (Xp) = f(u).

Property 15. Let X be a region in R∗(B). There exists a minimum M of w
such that ξf (M) = ξf (X).

Proof. If X is a minimum of w, then this is trivial. Otherwise, there is a min-
imum of w strictly contained in X. By Property 13, there is a child X1 of X
such that ξf (X1) = ξf (X) and such that there is a minimum of w included
in X1. If X1 is a minimum of w, then the property holds true. Otherwise, by
Property 13, there is a child X2 of X1 such that ξf (X2) = ξf (X1) = ξf (X)
and such that there is a minimum of w included in X2. We can see that
we define a sequence (X1, . . . , Xp) where Xp is a minimum of w and such
that ξf (Xp) = · · · = ξf (X1) = ξf (X) and Xi ⊂ Xi−1 for any i in {2, . . . , p}.
Therefore, there is a minimum Xp included in X such that ξf (Xp) = ξf (X).

Proof (of Lemma 12).
Let f be a one-side increasing map for B and let ξf be the estimated ex-

tinction map for f . We need to prove that, for any two minima M1 and M2

of w, if ξf (M1) = ξf (M2), then M1 = M2. By Property 14, we know that for
any wateshed edge u of w, there is a minimum M such that ξf (M) = f(u). By
Property 15, we can say that there is a minimum M of w such that ξf (M) =
ξf (V ) = n. Since the range of f for the set of watershed edges is {1, . . . , n− 1},
we can conclude, by Properties 14 and 15, that the range of ξf for the set of min-
ima of w is {1, . . . , n}. Since w has n minima, it implies that the values ξf (M1)
and ξf (M2) should be distinct for any pair (M1,M2) of distinct minima of w.

Lemma 16. Let f be a one-side increasing map for B and let ξf be the estimated
extinction map for f . For any region R in R(B), we have ξf (R) = ∨{ξf (M) such
that M is a minimum of w included in R}.

To prove this lemma, we introduce properties 17 and 18.

Property 17. Let f be a one-side increasing map and let X be a region of B.
Then ξf (X) ≥ ∨{f(v) | Rv ⊆ X}.

Proof. Let X be a region of B. We will prove that this property holds in the four
cases of Definition 5.
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1. If X = V , then ξf (X) = n (first case of Definition 5). Since the range of f
is {0, . . . , n− 1}, we have ξf (X) ≥ ∨{f(v) | Rv ⊆ X}.

2. If there is no minimum of w included in X, then X is a leaf region. There-
fore ξf (X) = 0 (second case of Definition 5) and {f(v) | Rv ⊆ X} = ∅.
Thus, ξf (X) ≥ ∨∅ = 0.

3. If ξf (X) = f(parent(X)), then ∨{f(v) such that Rv is a descendant
of X} ≤ ∨{f(v) such that Rv is a descendant of sibling(X)} (Third case
of Definition 5). Since f is a one-side increasing map, then f(uparent(X)) ≥
∨{f(v) such that Rv is included in Z} for a child Z of parent(X). Conse-
quently, f(uparent(X)) ≥ ∨{f(v) such that Rv is a descendant of X} and,
therefore, ξf (X) = f(uparent(X)) ≥ ∨{f(v) such that Rv is a descendant
of X}.

4. If ξf (X) = ξf (parent(X)), then we will prove that ξf (X) ≥ ∨{f(v) such
that Rv is a descendant of X} by induction.
– Base step: if parent(X) is V , then ξf (X) = ξf (V ) = n and our property

holds true.
– Inductive step: if the property holds for parent(X), then we have to show

that it holds for X as well. If ξf (parent(X)) ≥ ∨{f(v) such that Rv is
a descendant of parent(X)} then ξf (X) = ξf (parent(X)) ≥ ∨{f(v)
such that Rv is a descendant of X} because every descendant of X is a
descendant of parent(X) as well.

Property 18. Let X be a region in R∗(B). Then, for any region Y such
that Y ⊆ X, the value ξf (Y ) is in {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}
Proof. By induction:

– Base step: if X is a minimum of w. Then, for any child Y of X, ξf (Y ) = 0
which is in {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}.

– Inductive step: if X is not a minimum and the property holds for both chil-
dren of X. By Property 13, we know that there is a child Y of X such
that ξf (Y ) = f(uX) and ξf (sibling(Y )) = ξf (X). Therefore, for any re-
gion Y such that Y ⊆ X, the value ξf (Y ) is in {ξf (Y ), 0} ∪ {f(u) | Ru ⊆
Y } ∪ {ξf (sibling(Y )), 0} ∪ {f(u) | Ru ⊆ sibling(Y )} ∪ {ξf (X)} which is
equivalent to {ξf (X), 0} ∪ {f(u) | Ru ⊆ X}.

Proof (of Lemma 16). We can now prove that, for any region R in R(B), we
have ξf (R) = ∨{ξf (M) such that M is a minimum of w included in R}. Given
a region X of B:
– If there is no minimum of w included in X, then ξf (X) = 0 (statement 2

of Property 10). Then, ξf (X) = ∨{ξf (M) such that M is a minimum of w
included in R} = ∨∅ = 0

– Otherwise, for any region Y ⊆ X, ξf (Y ) is in {ξf (X), 0}∪{f(u) | Ru ⊆ X}
by Property 18. By Property 17, ξf (X) ≥ {f(v) | Rv ⊆ X}. There-
fore, ξf (X) ≥ ξf (Y ). Then, ξf is increasing on the hierarchy B, i.e., for
any region X, we have ξf (X) = ∨{ξf (Y ) | Y ⊆ X}. By Property 13, there is
a minimum M of w such that ξf (X) = ξf (M). Hence, ξf (X) = ∨{ξf (Y ) |
Y ⊆ X and Y is a minimum of w}.
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C Proof of Lemma 7

Proof. Let f be a one-side increasing map. We will prove that, for any u in E,
we have

– f(u) = min{ξf (R) such that R is a child of Ru}.
Let u be an edge in E. By Property 17, we can infer that ξf (Ru) ≥ f(u).

By Property 13, we know that, for a child Y of Ru, we have ξf (Y ) = f(u)
and ξf (sibling(Y )) = ξf (Ru). Therefore, min{ξf (R) such that R is a child
of Ru} = min{ξf (Y ), ξf (sibling(Y ))} = min{f(u), ξf (Ru)} = f(u) for a child Y
of Ru.

D Proof of Theorem 3

Proof. We prove the forward and backward implications of Theorem 3 in
Lemma 19 and Lemma 23, respectively.

Lemma 19. Let H be a hierarchy and let Φ(H) be the saliency map of H. If
the hierarchy H is a hierarchical watershed of (G,w), then Φ(H) is a one-side
increasing map for B.

Let H be a hierarchical watershed of (G,w) and let Φ(H) be the saliency map
of H. To prove that Φ(H) is a one-side increasing map for B, we prove in the
following three properties that the statements of Definition 2 hold true for Φ(H).
Property 20. Let H be a hierarchical watershed of (G,w) and let Φ(H) be the
saliency map of H. The range of Φ(H) is {0, . . . , n− 1}.

Proof. We have to show that:

1. for any edge u in E, we have Φ(H)(u) in {0, . . . , n− 1}; and
2. for any i in {0, . . . , n− 1}, there is an edge u in E such that Φ(H)(u) = i.

Let P be a extinction map of w such that Φ(H)(u) = min{P (R) such that R is
a child of Ru} (by Property 4). Let S = (M1, . . . ,Mn) be a sequence of pairwise
distinct minima of w such that, for any region R of B, the value P (R) is the
extinction value of R for S.

Let u be an edge in E. If u is not a watershed edge, then there is at least one
child X of Ru such that X is a leaf node of B. Then, P (X) = 0 and Φ(H)(u) =
min{0, P (sibling(X))} = 0. Otherwise, if u is a watershed edge of w, then both
children of Ru includes at least one minimum of w. Let Y and X be the children
of Ru. Since the extinction values of the minima of w for S are in {1, . . . , n} and
are pairwise distinct, the extinction values of Y and X are in {1, . . . , n} and are
pairwise distinct as well because they include different minima of w. Then, the
value Φ(H)(u) = min{P (X), P (Y )} is in {1, . . . , n}. If P (X) = n (resp. P (Y ) =
n), then P (Y ) 6= n (resp. P (X) 6= n), which implies that Φ(H)(u) = P (Y ) 6=
n (resp. Φ(H)(u) = P (X) 6= n). Therefore, the range of Φ(H) for the set of
watershed edges of w is {1, . . . , n−1}. Then, we have a proof for the statement 1.
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Now, we will prove the statement 2. For i = 0, there is at least one edge u in E
which is not a watershed edge of w. As stated in the previous paragraph, Φ(H)(u)
should be i = 0. For i in {1, . . . , n − 1}, we will start by showing that, for any
pair {u, v} of watershed edges, we have Φ(H)(u) 6= Φ(H)(v). Let {u, v} be a
pair of watershed edges of w. If the intersection between Ru and Rv is empty,
then there is no intersection between the sets of minima included in the children
of Ru and Rv, which implies that the children of Ru and Rv have pairwise distinct
extinction values and, then, we have Φ(H)(u) 6= Φ(H)(v). Otherwise, if there is
an intersection between Ru and Rv, this implies that either Ru ⊂ Rv or Rv ⊂ Ru.
Let us assume that Ru ⊂ Rv. Let X be the child of Ru such that Rv ⊆ X.
If P (X) > P (sibling(X)), then Φ(H)(u) = P (sibling(X)), which is different
from P (M) for any minimum M included in Rv. Otherwise, let us consider
that P (X) < P (sibling(X)). Let Y be the child of Rv such that Φ(H)(v) =
P (Y ). Since Φ(H)(v) = P (Y ), we know that P (sibling(Y )) is larger than P (Y ).
Since sibling(Y ) is a subset of X as well, the extinction value of X is larger or
equal to the extinction value of sibling(Y ) and, thus, the extinction value of X
is also larger than the extinction value of Y . Therefore, Φ(H)(u) = P (X) >
P (Y ) = Φ(H)(v). We may conclude that, for any pair {u, v} of watershed edges,
we have Φ(H)(u) 6= Φ(H)(v). Since w has n − 1 watershed edges, for any i
in {1, . . . , n− 1}, there is an watershed edge u of w such that Φ(H)(u) = i.

Property 21. Let H be a hierarchical watershed of (G,w) and let Φ(H) be the
saliency map of H. For any edge in E, Φ(H)(u) > 0 if and only if u is inWS(w).

Proof. Let P be a extinction map of w such that Φ(H)(u) = min{P (R) such
that R is a child of Ru} (by Property 4).

Let u be an edge in E. The edge u is not a watershed edge if and only if there
is at least one child X of Ru such that X is a leaf node of B. The extinction
value of any leaf node of B is zero. So, the edge u is not a watershed edge
if and only if there is at least one child X of Ru such that P (X) = 0 and,
consequently, Φ(H)(u) = min{0, P (sibling(X))} = 0.

Let u be an edge in E. The edge u is a watershed edge of w if and only if
both children of Ru include at least one minimum of w. The extinction value of
any region X which includes at least one minimum of w is in {1, . . . , n} because
the extinction value of any minimum of w is in {1, . . . , n}. Then, the edge u is
a watershed edge of w if and only if the extinction values of both children of Ru
are in {1, . . . , n}, consequently, Φ(H)(u) > 0.

Property 22. Let H be a hierarchical watershed of (G,w) and let Φ(H) be
the saliency map of H. For any u in E, there exists a child R of Ru such
that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in R}.

Proof. Let P be a extinction map of w such that Φ(H)(u) = min{P (R) such
that R is a child of Ru} (by Property 4). We may affirm that P is increasing on
the hierarchy B in the sense that, given two regions X and Y of B, if Y ⊆ X
then P (Y ) ≤ P (X).
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Let u be en edge in E. If there is a child X of Ru such that X is a leaf
node of B, then Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in X} = ∨{} =
0. Otherwise, let X be the child of Ru such that Φ(H)(u) = P (X). For any
region Y such that Y ⊆ X, we have P (Y ) ≤ P (X). Thus, for any edge v such
that Rv ⊆ X, we have Φ(H)(v) ≤ P (X). Therefore, there is a child X of Ru
such that Φ(H)(u) ≥ ∨{Φ(H)(v) such that Rv is included in X}.

Lemma 23. Let H be a hierarchy and let Φ(H) be the saliency map of H.
If Φ(H) is a one-side increasing map for B, then the hierarchy H is a hierarchical
watershed of (G,w).

Proof. Let H be a hierarchy and let Φ(H) be the saliency map of H. If Φ(H) is
a one-side increasing map for B, then Φ(H)(u) = min{ξΦ(H)(R) such that R is
a child of Ru} by Lemma 7. By Lemma 6, the estimated extinction map ξΦ(H)

of Φ(H) is an extinction map of w. Then, by the backward implication of Prop-
erty 4, the saliency map Φ(H) is the saliency map of a hierarchical watershed
of (G,w). Hence, the hierarchy H is a hierarchical watershed of (G,w).


