A Proof of Property 4

Proof. To prove Property 4, we prove its forward implication (Lemma 8) and its backward implication (Lemma 9).

Lemma 8. Let f be a map from E into \mathbb{R}^+ . If f is the saliency map of a hierarchical watershed of (G, w), then there exists an extinction map P of w such that, for any u in E, we have

 $f(u) = \min\{P(R) \text{ such that } R \text{ is a child of } R_u\}.$

Proof. Let us assume that the map f is the saliency map of a hierarchical \mathcal{H} watershed of (G, w). Then, there exists a sequence of minima \mathcal{S} such that \mathcal{H} is the hierarchical watershed of (G, w) for \mathcal{S} . As stated in [7], the saliency map of \mathcal{H} can be found trough the notion of persistence values of the edges in E. Given any edge u in E, the persistence value of u (for \mathcal{S}) is the minimum extinction value among the children of R_u . Since the value of u in the saliency map f is precisely the persistence value of u, as established in [7], we have $f(u) = \min\{P(R) \text{ such that } R \text{ is a child of } R_u\}$ where P is the extinction map of w for \mathcal{S} .

Lemma 9. Let f be a map from E into \mathbb{R}^+ . If there exists an extinction map P of w such that, for any u in E, we have

 $f(u) = \min\{P(R) \text{ such that } R \text{ is a child of } R_u\},\$

then the map f is the saliency map of a hierarchical watershed of (G, w).

Proof. Let P be an extinction map of w such that, for any u in E, we have $f(u) = \min\{P(R) \text{ such that } R \text{ is a child of } R_u\}$. If P is an extinction map of w, then there exists a sequence S of minima of w such that P is the extinction map of w for S. Therefore, for any edge u in E, the value f(u) is the persistence value of u for S. As established in [7], the map f is the saliency map of the hierarchical watershed of (G, w) for S.

B Proof of Lemma 6

In order to prove Lemma 6, we first establish the following property which characterizes extinction maps.

Property 10. Let P be a map from $\mathscr{R}(\mathcal{B})$ to \mathbb{R}^+ . The map P is an extinction map for w if the following statements hold true:

- 1. $range(P) = \{0, \dots, n\};$
- 2. for any two minima M_1 and M_2 if $P(M_1) = P(M_2)$, then $M_1 = M_2$; and
- 3. for any region R of \mathcal{B} , we have $P(R) = \bigvee \{P(M) \text{ such that } M \text{ is a minimum of } w \text{ included in } R\}.$

Proof. Let P be a map from $\mathscr{R}(\mathcal{B})$ to \mathbb{R}^+ for which the statements 1, 2 and 3 hold true. To prove that P is an extinction map, we have to show that there exists a sequence S of n pairwise distinct minima of w such that, for any region R of \mathcal{B} , the value P(R) is the extinction value of R for \mathcal{S} .

Let $S = (M_1, \ldots, M_n)$ be a sequence of n pairwise distinct minima of w ordered in non-decreasing order for P, i.e., for any two distinct minima M_i and M_j , for i and j in $\{1, \ldots, n\}$, if i < j then $P(M_i) \leq P(M_j)$.

By the statement 2, the sequence S is unique. By the statement 3, for any region R of \mathcal{B} such that there is no minimum of w included in R, $P(R) = \lor \{\} = 0$, so P(R) is the extinction value of R for S.

Since w has n minima, for any minimum M of w, the value P(M) is in $\{1, \ldots, n\}$. Otherwise, if there were a minimum M' of w such that P(M') = 0, then there would be a value i in $\{1, \ldots, n\}$ such that for any minimum M'' of w the value P(M'') is different from i. Consequently, the range of P would be $\{0, \ldots, n\} \setminus \{i\}$, which contradicts the statement 1. Therefore, for any minimum M_i , for i in $\{1, \ldots, n\}$, we have that $P(M_i) = i$, so $P(M_i)$ is the extinction value of M_i for S.

It follows that, by the statement 3, for any region R such that there is a minimum of \mathcal{B} included in R, the value P(R) is the maximum value i in $\{1, \ldots, n\}$ such that M_i is included in R.

Thus, for any region R of \mathcal{B} , the value P(R) is the extinction value of R for \mathcal{S} . Therefore, the map P is an extinction map of w.

Let f be a one-side increasing map for \mathcal{B} . To prove that the estimated extinction map ξ_f of f is an extinction map of w (Lemma 6), we introduce Lemmas 11, 12 and 16 which establish that the three statements of Property 10 hold for ξ_f .

Important notation: in the sequel, for any region X in $\mathscr{R}^*(\mathcal{B})$, we denote by u_X the building edge of X. For any region Y such that $Y \subseteq X$, we say that Y is a descendant of X.

Lemma 11. Let f be a one-side increasing map for \mathcal{B} . The range of the estimated extinction map ξ_f of f is $\{0, \ldots, n\}$.

Proof. We have to show that:

1. for any *i* in $\{0, ..., n\}$, there is a region X of \mathcal{B} such that $\xi_f(X) = i$; and 2. for any region X of \mathcal{B} , we have $\xi_f(X)$ in $\{0, ..., n\}$.

Proof of 1: By Definition 5, we have $\xi_f(V) = n$ and $\xi_f(Y) = 0$ for any region Y in $\mathscr{R}(\mathcal{B}) \setminus \mathscr{R}^*(\mathcal{B})$. Since f is a one-side increasing map, we know that, for any edge u, the value f(u) is nonzero if and only if u is a watershed edge of w. Moreover, we know that the range of f is $\{0, \ldots, n-1\}$. Therefore, we can conclude that the n-1 watershed edges of w have pairwise distinct values in f ranging from 1 to n-1. Thus, for any i in $\{1, \ldots, n-1\}$, there is a region R_u such that u is in WS(\mathcal{B}) and such that f(u) = i. Since u is in WS(\mathcal{B}), none of the children of R_u is a leaf region. Therefore, there is a child Y of R_u such that $\xi_f(Y) = f(u)$ (Third case of Definition 5).

Proof of 2: By Definition 5, we know that the value $\xi_f(X)$ for any region X of \mathcal{B} is either n (first case), 0 (second case), or f(u) (third case), where u is the building edge of the parent of X. Therefore, the range of ξ_f is the union of range of f with $\{0, n\}$, which is precisely the set $\{0, \ldots, n\}$.

Lemma 12. Let f be a one-side increasing map for \mathcal{B} and let ξ_f be the estimated extinction map for f. For any two minima M_1 and M_2 of w, if $\xi_f(M_1) = \xi_f(M_2)$, then $M_1 = M_2$.

To prove Lemma 12, we first present the Properties 13, 14 and 15.

Property 13. Let f be a one-side increasing map and let ξ_f be the estimated extinction map of f. For any region X such that there is a minimum of w strictly included in X, there is a child Y of X such that:

- $\xi_f(Y) = f(u_X);$
- $\xi_f(sibling(Y)) = \xi_f(X);$ and
- there is a minimum of w included in sibling(Y).

Proof. Let X be a region such that there is at least one minimum of w strictly included in X. Given a child Y of X:

- If Y is a leaf region of \mathcal{B} , then there is no minimum of w included in Y and $\xi_f(Y) = 0$ (second case of Definition 5). It follows that u_X is not a watershed edge of w and that $f(u_X) = 0 = \xi_f(Y)$. Moreover, if Y is a leaf region of \mathcal{B} , then $\xi_f(sibling(Y)) = \xi_f(Y)$ (fourth case of Definition 5). Since there is no minimum of w included in Y, there is at least one minimum of w included in sibling(Y).
- If Y is not a leaf region but sibling(Y) is a leaf region of \mathcal{B} , then this is equivalent to the previous case. Otherwise, let us consider that Y and sibling(Y) are not leaf regions of \mathcal{B} . This implies that there are minima of w included in both Y and sibling(Y). By contradiction, let us assume that $\xi_f(Y) = \xi_f(sibling(Y)) = f(u_X)$. This implies that:
 - (a) $\forall \{f(v) \text{ such that } R_v \text{ is a descendant of } Y \} < \forall \{f(v) \text{ such that } R_v \text{ is a descendant of sibling}(Y) \}$ or (b) $\forall \{f(v) \text{ such that } R_v \text{ is a descendant of } Y \} = \forall \{f(v) \text{ such that } R_v \text{ is a descendant of sibling}(Y) \}$ and $Y \prec sibling(Y)$; and
 - (c) $\lor \{f(v) \text{ such that } R_v \text{ is a descendant of sibling}(Y)\} < \lor \{f(v) \text{ such that } R_v \text{ is a descendant of } Y\}$ or (d) $\lor \{f(v) \text{ such that } R_v \text{ is a descendant of sibling}(Y)\} = \lor \{f(v) \text{ such that } R_v \text{ is a descendant of } Y\}$ and sibling $(Y) \prec Y$.

However, the assertions (a) and (c), (a) and (d), (b) and (c), and (b) and (d) are contradictory. Therefore, we have either $\xi_f(Y) = \xi_f(X)$ or $\xi_f(sibling(Y)) = \xi_f(X)$. We can use a similar argument to prove that we have either $\xi_f(Y) = f(u_X)$ or $\xi_f(sibling(Y)) = f(u_X)$. Therefore, we may conclude that there is a child Y of X such that $\xi_f(Y) = f(u_X)$ and $\xi_f(sibling(Y)) = \xi_f(X)$. IV Deise S. Maia, Jean Cousty, Laurent Najman, and Benjamin Perret

Property 14. Let u be any watershed edge of w and let f be a one-side increasing map. There is a minimum M of w such that $\xi_f(M) = f(u)$.

Proof. Let u be a watershed edge of w and let f be a one-side increasing map. By Property 13, there is a child X_1 of R_u such that $\xi_f(X_1) = f(u)$. Since u is a watershed edge, X_1 cannot be a leaf node. If X_1 is a minimum of w, then the property holds true. Otherwise, by Property 13, there is a child X_2 of X_1 such that $\xi_f(X_2) = \xi_f(X_1) = f(u)$ and such that there is a minimum of w included in X_2 . We can see that we define a sequence (X_1, \ldots, X_p) where X_p is a minimum of w and such that $\xi_f(X_p) = \cdots = \xi_f(X_1) = f(u)$ and $X_i \subset X_{i-1}$ for any i in $\{2, \ldots, p\}$. Therefore, there is a minimum X_p included in R_u such that $\xi_f(X_p) = f(u)$.

Property 15. Let X be a region in $\mathscr{R}^*(\mathcal{B})$. There exists a minimum M of w such that $\xi_f(M) = \xi_f(X)$.

Proof. If X is a minimum of w, then this is trivial. Otherwise, there is a minimum of w strictly contained in X. By Property 13, there is a child X_1 of X such that $\xi_f(X_1) = \xi_f(X)$ and such that there is a minimum of w included in X_1 . If X_1 is a minimum of w, then the property holds true. Otherwise, by Property 13, there is a child X_2 of X_1 such that $\xi_f(X_2) = \xi_f(X_1) = \xi_f(X)$ and such that there is a minimum of w included in X_2 . We can see that we define a sequence (X_1, \ldots, X_p) where X_p is a minimum of w and such that $\xi_f(X_p) = \cdots = \xi_f(X_1) = \xi_f(X)$ and $X_i \subset X_{i-1}$ for any i in $\{2, \ldots, p\}$. Therefore, there is a minimum X_p included in X such that $\xi_f(X_p) = \xi_f(X)$. \Box

Proof (of Lemma 12).

Let f be a one-side increasing map for \mathcal{B} and let ξ_f be the estimated extinction map for f. We need to prove that, for any two minima M_1 and M_2 of w, if $\xi_f(M_1) = \xi_f(M_2)$, then $M_1 = M_2$. By Property 14, we know that for any wateshed edge u of w, there is a minimum M such that $\xi_f(M) = f(u)$. By Property 15, we can say that there is a minimum M of w such that $\xi_f(M) =$ $\xi_f(V) = n$. Since the range of f for the set of watershed edges is $\{1, \ldots, n-1\}$, we can conclude, by Properties 14 and 15, that the range of ξ_f for the set of minima of w is $\{1, \ldots, n\}$. Since w has n minima, it implies that the values $\xi_f(M_1)$ and $\xi_f(M_2)$ should be distinct for any pair (M_1, M_2) of distinct minima of w. \Box

Lemma 16. Let f be a one-side increasing map for \mathcal{B} and let ξ_f be the estimated extinction map for f. For any region R in $\mathscr{R}(\mathcal{B})$, we have $\xi_f(R) = \bigvee \{\xi_f(M) \text{ such that } M \text{ is a minimum of } w \text{ included in } R\}.$

To prove this lemma, we introduce properties 17 and 18.

Property 17. Let f be a one-side increasing map and let X be a region of \mathcal{B} . Then $\xi_f(X) \ge \forall \{f(v) \mid R_v \subseteq X\}.$

Proof. Let X be a region of \mathcal{B} . We will prove that this property holds in the four cases of Definition 5.

- 1. If X = V, then $\xi_f(X) = n$ (first case of Definition 5). Since the range of f is $\{0, \ldots, n-1\}$, we have $\xi_f(X) \ge \lor \{f(v) \mid R_v \subseteq X\}$.
- 2. If there is no minimum of w included in X, then X is a leaf region. Therefore $\xi_f(X) = 0$ (second case of Definition 5) and $\{f(v) \mid R_v \subseteq X\} = \emptyset$. Thus, $\xi_f(X) \ge \forall \emptyset = 0$.
- 3. If $\xi_f(X) = f(parent(X))$, then $\vee \{f(v) \text{ such that } R_v \text{ is a descendant of } X\} \leq \vee \{f(v) \text{ such that } R_v \text{ is a descendant of sibling}(X)\}$ (Third case of Definition 5). Since f is a one-side increasing map, then $f(u_{parent}(X)) \geq \vee \{f(v) \text{ such that } R_v \text{ is included in } Z\}$ for a child Z of parent(X). Consequently, $f(u_{parent}(X)) \geq \vee \{f(v) \text{ such that } R_v \text{ is a descendant of } X\}$ and, therefore, $\xi_f(X) = f(u_{parent}(X)) \geq \vee \{f(v) \text{ such that } R_v \text{ is a descendant of } X\}$.
- 4. If $\xi_f(X) = \xi_f(parent(X))$, then we will prove that $\xi_f(X) \ge \forall \{f(v) \text{ such that } R_v \text{ is a descendant of } X\}$ by induction.
 - Base step: if parent(X) is V, then $\xi_f(X) = \xi_f(V) = n$ and our property holds true.
 - Inductive step: if the property holds for parent(X), then we have to show that it holds for X as well. If $\xi_f(parent(X)) \ge \lor \{f(v) \text{ such that } R_v \text{ is}$ a descendant of $parent(X)\}$ then $\xi_f(X) = \xi_f(parent(X)) \ge \lor \{f(v) \text{ such that } R_v \text{ is a descendant of } X\}$ because every descendant of X is a descendant of parent(X) as well.

Property 18. Let X be a region in $\mathscr{R}^*(\mathcal{B})$. Then, for any region Y such that $Y \subseteq X$, the value $\xi_f(Y)$ is in $\{\xi_f(X), 0\} \cup \{f(u) \mid R_u \subseteq X\}$

Proof. By induction:

- Base step: if X is a minimum of w. Then, for any child Y of X, $\xi_f(Y) = 0$ which is in $\{\xi_f(X), 0\} \cup \{f(u) \mid R_u \subseteq X\}.$
- Inductive step: if X is not a minimum and the property holds for both children of X. By Property 13, we know that there is a child Y of X such that $\xi_f(Y) = f(u_X)$ and $\xi_f(sibling(Y)) = \xi_f(X)$. Therefore, for any region Y such that $Y \subseteq X$, the value $\xi_f(Y)$ is in $\{\xi_f(Y), 0\} \cup \{f(u) \mid R_u \subseteq Y\} \cup \{\xi_f(sibling(Y)), 0\} \cup \{f(u) \mid R_u \subseteq sibling(Y)\} \cup \{\xi_f(X)\}$ which is equivalent to $\{\xi_f(X), 0\} \cup \{f(u) \mid R_u \subseteq X\}$.

Proof (of Lemma 16). We can now prove that, for any region R in $\mathscr{R}(\mathcal{B})$, we have $\xi_f(R) = \bigvee \{\xi_f(M) \text{ such that } M \text{ is a minimum of } w \text{ included in } R\}$. Given a region X of \mathcal{B} :

- If there is no minimum of w included in X, then $\xi_f(X) = 0$ (statement 2 of Property 10). Then, $\xi_f(X) = \bigvee \{\xi_f(M) \text{ such that } M \text{ is a minimum of } w \text{ included in } R\} = \lor \emptyset = 0$
- Otherwise, for any region $Y \subseteq X$, $\xi_f(Y)$ is in $\{\xi_f(X), 0\} \cup \{f(u) \mid R_u \subseteq X\}$ by Property 18. By Property 17, $\xi_f(X) \ge \{f(v) \mid R_v \subseteq X\}$. Therefore, $\xi_f(X) \ge \xi_f(Y)$. Then, ξ_f is increasing on the hierarchy \mathcal{B} , i.e., for any region X, we have $\xi_f(X) = \lor \{\xi_f(Y) \mid Y \subseteq X\}$. By Property 13, there is a minimum M of w such that $\xi_f(X) = \xi_f(M)$. Hence, $\xi_f(X) = \lor \{\xi_f(Y) \mid Y \subseteq X\}$ and Y is a minimum of w $\}$.

VI Deise S. Maia, Jean Cousty, Laurent Najman, and Benjamin Perret

C Proof of Lemma 7

Proof. Let f be a one-side increasing map. We will prove that, for any u in E, we have

 $- f(u) = \min\{\xi_f(R) \text{ such that } R \text{ is a child of } R_u\}.$

Let u be an edge in E. By Property 17, we can infer that $\xi_f(R_u) \ge f(u)$. By Property 13, we know that, for a child Y of R_u , we have $\xi_f(Y) = f(u)$ and $\xi_f(sibling(Y)) = \xi_f(R_u)$. Therefore, $min\{\xi_f(R) \text{ such that } R \text{ is a child}$ of $R_u\} = min\{\xi_f(Y), \xi_f(sibling(Y))\} = min\{f(u), \xi_f(R_u)\} = f(u)$ for a child Yof R_u .

D Proof of Theorem 3

Proof. We prove the forward and backward implications of Theorem 3 in Lemma 19 and Lemma 23, respectively.

Lemma 19. Let \mathcal{H} be a hierarchy and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . If the hierarchy \mathcal{H} is a hierarchical watershed of (G, w), then $\Phi(\mathcal{H})$ is a one-side increasing map for \mathcal{B} .

Let \mathcal{H} be a hierarchical watershed of (G, w) and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . To prove that $\Phi(\mathcal{H})$ is a one-side increasing map for \mathcal{B} , we prove in the following three properties that the statements of Definition 2 hold true for $\Phi(\mathcal{H})$.

Property 20. Let \mathcal{H} be a hierarchical watershed of (G, w) and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . The range of $\Phi(\mathcal{H})$ is $\{0, \ldots, n-1\}$.

Proof. We have to show that:

1. for any edge u in E, we have $\Phi(\mathcal{H})(u)$ in $\{0, \ldots, n-1\}$; and

2. for any *i* in $\{0, \ldots, n-1\}$, there is an edge *u* in *E* such that $\Phi(\mathcal{H})(u) = i$.

Let P be a extinction map of w such that $\Phi(\mathcal{H})(u) = \min\{P(R) \text{ such that } R \text{ is}$ a child of $R_u\}$ (by Property 4). Let $\mathcal{S} = (M_1, \ldots, M_n)$ be a sequence of pairwise distinct minima of w such that, for any region R of \mathcal{B} , the value P(R) is the extinction value of R for \mathcal{S} .

Let u be an edge in E. If u is not a watershed edge, then there is at least one child X of R_u such that X is a leaf node of \mathcal{B} . Then, P(X) = 0 and $\Phi(\mathcal{H})(u) =$ $min\{0, P(sibling(X))\} = 0$. Otherwise, if u is a watershed edge of w, then both children of R_u includes at least one minimum of w. Let Y and X be the children of R_u . Since the extinction values of the minima of w for S are in $\{1, \ldots, n\}$ and are pairwise distinct, the extinction values of Y and X are in $\{1, \ldots, n\}$ and are pairwise distinct as well because they include different minima of w. Then, the value $\Phi(\mathcal{H})(u) = min\{P(X), P(Y)\}$ is in $\{1, \ldots, n\}$. If P(X) = n (resp. P(Y) =n), then $P(Y) \neq n$ (resp. $P(X) \neq n$), which implies that $\Phi(\mathcal{H})(u) = P(Y) \neq$ n (resp. $\Phi(\mathcal{H})(u) = P(X) \neq n$). Therefore, the range of $\Phi(\mathcal{H})$ for the set of watershed edges of w is $\{1, \ldots, n-1\}$. Then, we have a proof for the statement 1.

Now, we will prove the statement 2. For i = 0, there is at least one edge u in E which is not a watershed edge of w. As stated in the previous paragraph, $\Phi(\mathcal{H})(u)$ should be i = 0. For i in $\{1, \ldots, n-1\}$, we will start by showing that, for any pair $\{u,v\}$ of watershed edges, we have $\Phi(\mathcal{H})(u) \neq \Phi(\mathcal{H})(v)$. Let $\{u,v\}$ be a pair of watershed edges of w. If the intersection between R_u and R_v is empty, then there is no intersection between the sets of minima included in the children of R_u and R_v , which implies that the children of R_u and R_v have pairwise distinct extinction values and, then, we have $\Phi(\mathcal{H})(u) \neq \Phi(\mathcal{H})(v)$. Otherwise, if there is an intersection between R_u and R_v , this implies that either $R_u \subset R_v$ or $R_v \subset R_u$. Let us assume that $R_u \subset R_v$. Let X be the child of R_u such that $R_v \subseteq X$. If P(X) > P(sibling(X)), then $\Phi(\mathcal{H})(u) = P(sibling(X))$, which is different from P(M) for any minimum M included in R_v . Otherwise, let us consider that P(X) < P(sibling(X)). Let Y be the child of R_v such that $\Phi(\mathcal{H})(v) =$ P(Y). Since $\Phi(\mathcal{H})(v) = P(Y)$, we know that P(sibling(Y)) is larger than P(Y). Since sibling(Y) is a subset of X as well, the extinction value of X is larger or equal to the extinction value of sibling(Y) and, thus, the extinction value of X is also larger than the extinction value of Y. Therefore, $\Phi(\mathcal{H})(u) = P(X) > 0$ $P(Y) = \Phi(\mathcal{H})(v)$. We may conclude that, for any pair $\{u, v\}$ of watershed edges, we have $\Phi(\mathcal{H})(u) \neq \Phi(\mathcal{H})(v)$. Since w has n-1 watershed edges, for any i in $\{1, \ldots, n-1\}$, there is an watershed edge u of w such that $\Phi(\mathcal{H})(u) = i$. \Box

Property 21. Let \mathcal{H} be a hierarchical watershed of (G, w) and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . For any edge in E, $\Phi(\mathcal{H})(u) > 0$ if and only if u is in WS(w).

Proof. Let P be a extinction map of w such that $\Phi(\mathcal{H})(u) = \min\{P(R) \text{ such that } R \text{ is a child of } R_u\}$ (by Property 4).

Let u be an edge in E. The edge u is not a watershed edge if and only if there is at least one child X of R_u such that X is a leaf node of \mathcal{B} . The extinction value of any leaf node of \mathcal{B} is zero. So, the edge u is not a watershed edge if and only if there is at least one child X of R_u such that P(X) = 0 and, consequently, $\Phi(\mathcal{H})(u) = \min\{0, P(sibling(X))\} = 0$.

Let u be an edge in E. The edge u is a watershed edge of w if and only if both children of R_u include at least one minimum of w. The extinction value of any region X which includes at least one minimum of w is in $\{1, \ldots, n\}$ because the extinction value of any minimum of w is in $\{1, \ldots, n\}$. Then, the edge u is a watershed edge of w if and only if the extinction values of both children of R_u are in $\{1, \ldots, n\}$, consequently, $\Phi(\mathcal{H})(u) > 0$.

Property 22. Let \mathcal{H} be a hierarchical watershed of (G, w) and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . For any u in E, there exists a child R of R_u such that $\Phi(\mathcal{H})(u) \geq \bigvee \{ \Phi(\mathcal{H})(v) \text{ such that } R_v \text{ is included in } R \}.$

Proof. Let P be a extinction map of w such that $\Phi(\mathcal{H})(u) = \min\{P(R) \text{ such that } R \text{ is a child of } R_u\}$ (by Property 4). We may affirm that P is increasing on the hierarchy \mathcal{B} in the sense that, given two regions X and Y of \mathcal{B} , if $Y \subseteq X$ then $P(Y) \leq P(X)$.

VIII Deise S. Maia, Jean Cousty, Laurent Najman, and Benjamin Perret

Let u be en edge in E. If there is a child X of R_u such that X is a leaf node of \mathcal{B} , then $\Phi(\mathcal{H})(u) \geq \bigvee \{ \Phi(\mathcal{H})(v) \text{ such that } R_v \text{ is included in } X \} = \lor \{ \} =$ 0. Otherwise, let X be the child of R_u such that $\Phi(\mathcal{H})(u) = P(X)$. For any region Y such that $Y \subseteq X$, we have $P(Y) \leq P(X)$. Thus, for any edge v such that $R_v \subseteq X$, we have $\Phi(\mathcal{H})(v) \leq P(X)$. Therefore, there is a child X of R_u such that $\Phi(\mathcal{H})(u) \geq \lor \{ \Phi(\mathcal{H})(v) \text{ such that } R_v \text{ is included in } X \}$. \Box

Lemma 23. Let \mathcal{H} be a hierarchy and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . If $\Phi(\mathcal{H})$ is a one-side increasing map for \mathcal{B} , then the hierarchy \mathcal{H} is a hierarchical watershed of (G, w).

Proof. Let \mathcal{H} be a hierarchy and let $\Phi(\mathcal{H})$ be the saliency map of \mathcal{H} . If $\Phi(\mathcal{H})$ is a one-side increasing map for \mathcal{B} , then $\Phi(\mathcal{H})(u) = \min\{\xi_{\Phi(\mathcal{H})}(R) \text{ such that } R \text{ is}$ a child of $R_u\}$ by Lemma 7. By Lemma 6, the estimated extinction map $\xi_{\Phi(\mathcal{H})}$ of $\Phi(\mathcal{H})$ is an extinction map of w. Then, by the backward implication of Property 4, the saliency map $\Phi(\mathcal{H})$ is the saliency map of a hierarchical watershed of (G, w). Hence, the hierarchy \mathcal{H} is a hierarchical watershed of (G, w). \Box