
Efficient model based single and double
thresholding for real time recognition

Dror Aiger and Silvio Jamil Ferzoli Guimares

1 Google Inc.
2 Universidade Federal de Minas Gerais

Abstract. We present a very fast model based thresholding method
that allows real time object recognition suitable for mobile devices. Let
I be a gray level image of N pixels in d-dimensional space. Given a binary
model m (as a set of connected pixels), we present efficient algorithms for
thresholding I by single and double threshold to obtain connected com-
ponents that are the most similar tom among all possible connected com-
ponents according to a certain similarity measures. For warm-up we give
a very simple single thresholding algorithm with runtime O(Nα(N)) (for
fixed d), α(N) is the very slow growing Ackermann function, that finds a
connected component which has the smallest distance to the model where
the similarity is some metric on the Hu moment invariants space. Next
we use this algorithm to obtain the optimal connected component by
double thresholding in O(KNα(N)) time where K is the number of gray
levels. Last, let M(·) be any additive measure on a set of pixels such that
for every two disjoint sets S1 and S2, M(S1 ∪ S2) = M(S1) + M(S2).
Given some ε > 0 we show how to find all connected components Ci

among all connected component (with some limitations that we charac-
terize bellow) that can be obtained by any double threshold, that have
|M(Ci) − M(m)| < ε in practically O(N log2 N + k) time independent
of the number of gray levels, where k is the number of reported compo-
nents. We use these algorithms for detecting binary models in images by
threshold only, invariant to similarity and rigid transformations.

1 Introduction

Object segmentation aims to extract an object from the background in a given
image. This can be viewed also as object detection task if we seek a specific ob-
ject that is given as a prior. The addition of shape prior information has shown
to significantly improve segmentation results and is quite popular [6][16][17].
Variational methods and partial differential equations (PDEs) have been used
to analyze, understand and exploit properties of images. These methods com-
monly designed to solve local optimization problems thus true global optimal
solution cannot be found in general. There is an increased interest in graph
based segmentation algorithms [2][1] for global energy minimization, and sub-
sequently the addition of prior shape information into their formulations. The
graph methods of Felzenszwalb [7] and Schoenemann and Cremers [20] can seg-
ment objects under elastic deformations without needing any initialization and

2 Dror Aiger and Silvio Jamil Ferzoli Guimares

guarantee globally optimal solutions. In [7], non serial dynamic programming is
used to find the optimal matching between a deformable template represented
by triangulated polygons and the image pixels.

In this paper we present efficient and fast algorithms to find/segment objects
in images, which is invariant to transformations of a given geometric model,
where a geometric shape model of the object is given. The presented method is
by no mean a replacement for the more general yet complex methods described
above. It aims to serve in realtime application like in mobile devices or surveil-
lance cameras thanks to its simplicity and speed. The methods are based on
simple thresholding that minimizes globally a dissimilarity function between the
model and a segmented object. Although this method has limitations and it is
not as general as the above methods, it is shown that for many applications it
gives a very fast, globally optimal and easy to implement solution. We are based
on principles related to the component tree which we briefly survey bellow. It
has been used (under several variations) in numerous applications among which
we can cite: image filtering and segmentation [9][8][4][12], video segmentation
[18], image registration [13][14]. This tree is also fundamental for the efficient
computation of the topological watershed introduced by Couprie and Bertrand
[4][5].

The component tree concept was first introduced in statistics [10] for clas-
sification and clustering. For image processing, the use of this tree in order to
represent the ”meaningful” information contained in a numerical function can
be found in particular, in a paper by Hanusse and Guillataud [9][8], the authors
claim that this tree can play a central role in image segmentation. Several au-
thors, such as Breen and Jones [3], Salembier et al. [18] have used some variations
of this structure in order to implement efficiently some morphological operators
(e.g. connected operators) [19] and granulometries. Various algorithms have been
proposed in the literature for computing the component [3][18], the fastest was
proposed by Najman and Couprie and has complexity of O(Nα(N)) where N
is the number of pixels in the image [15]. It is based on Tarjanś union-find [21]
data structure.

2 Component Trees

Let A ⊂ N2, A = {0, . . . ,w− 1}× {0, . . . ,h− 1}, where w and h are two strictly
positive integers. A point x ∈ A is defined by its two coordinates (u, v). We
denote by F(A) the set composed of all functions from A to N. Such a function
I represents a gray level image.

Let I ∈ F(A), we define Ik = {x ∈ A; I(x) ≥ k} with k ∈ N; Ik is called a
cross-section of I. A connected component of a section Ik is called a (level k)
component of I. A component of I that has only strictly lower neighbors is called
a (regional) maximum of I. We define kmin = min {I(x), x ∈ A} and kmax = max
{I(x), x ∈ A}, which represent respectively, the minimum and the maximum
gray level in the image I.

Title Suppressed Due to Excessive Length 3

Definition 1 (Component tree – T) Let I be an image. Let Ck(I) be the
set of all connected components of level k of I. We define the component tree
T (I) as a directed tree such that: (i) the vertices of the component tree are the
elements of T (I); (ii) there is an arc from a component c ∈ Cj(I) to a component
c′ ∈ Ck(I) if j = k + 1 and c ⊆ c′.

3 Model based thresholding and a simple algorithm

3.1 Simple single threshold

Similarly to the process of building the component tree, we suggest a very sim-
ple algorithm for finding optimal connected component (and the corresponding
threshold). The same idea for filtering connected components based on the com-
ponent tree was previously suggested by several authors [12, 19, 22]. The opti-
mality is in the sense of a metric on the Hu invariants space [11] (any other shape
similarity can be used). We are given a model M that can be described by a set
of Hu moment invariants. We seek a connected component over all connected
components that can be obtained by a single threshold, which is the most similar
to M in this sense. The algorithm is exactly as the one for building the compo-
nent tree but the tree itself is not created. A description of the algorithm can be
viewed in Algorithm 1. The complexity is exactly as building the component tree
which is O(Nα(N)). Being based on moment invariants, the entire algorithm is
also invariant to similarity transformation (scale, rotation, translation).

Algorithm 1 Finding a model using threshold

Require: input image I(u, v)
Require: model image M(u, v)

compute Hu(M), the Hu moments of M
compute all level sets L(i), i = 0..K.
create an empty Union-Find structure, U augmented with general moments descriptors
for all i do

for all (x, y) in L(i) do
find and union sets that are connected to (x, y) if needed
updated the moment descriptors corresponding to the sets that were union, let it
be M ′

compute Hu(M ′)
compute the distance d(Hu(M), Hu(M ′))
update the best minimum and corresponding set if needed

end for
end for
output best i and corresponding set

An example of a result obtained by this algorithm can be viewed in Figure
1. We note that the algorithm is parameter-less. If we allow scale however, we
must bound it to some limit otherwise all small components are similar.

4 Dror Aiger and Silvio Jamil Ferzoli Guimares

Fig. 1. Optimal single threshold based on binary model and Hu invariants. Left - input
image, middle - the model, right - the output. The red component is the optimal com-
ponent while the output image on the right is the binarization by the optimal threshold
(containing several other components). Note that for every image I we consider both
I and Ī.

3.2 First algorithm for double thresholding

Threshold and the connected components created by the component tree algo-
rithm have been used extensively for simple segmentation due to their simplicity
and speed. However, in certain situations, an object cannot be distinguished
from the background (or other objects) based on a single threshold. For example
in Figure 2 the rectangle cannot be segmented from the triangles and the circle,
even though it has a unique intensity. The same case in real image is shown in
Figure 2 with our result. The use of double thresholding adds more power to the
process of segmenting objects. In Figures 3 we show another real image example
where an object can be segmented (by threshold) only using double threshold,
in complex image with a lot of other objects, clutter and background variations.
In terms of functions, single threshold can ”segment” local maximal (minimal)
regions while double threshold extends to ”inflection” regions.

Fig. 2. Left: Double threshold is more powerful - the rectangle cannot be binarized
with one threshold. Right: Double threshold is needed.

Using double threshold is much harder from the computational point of view.
A naive approach would take every pair t1, t2 ∈ 0..K − 1, use them to binarize
the image and search for optimal resemble to the model in the set of all connected
components. It is more efficient to compute the optimal solution by repeating
the algorithm from Section 3.1 K times. We sweep t1 from 1 to K − 1 and for
each iteration we apply the algorithm above where we ignore all pixels bellow t1.

Title Suppressed Due to Excessive Length 5

Fig. 3. The right car can be binarized with one threshold (t = 185) while the left
car needs a double threshold (t1 = 172, t2 = 224) to be well distinguished from the
background

The set of components obtained (again without actually building the tree) are
the components that can be obtained by all pairs (t1, t2), t1 ≤ t2 < K. Thus we
apply the single threshold algorithm K times spending O(Nα(N)) time in each
step. Maintaining the best component so far results in the optimal component
that can be obtained by any double threshold. For Hu invariants, it seems that
this is the best possible since Hu invariants are not additive. The runtime of
this algorithm depends on the number of gray levels and it can be considered
nearly linear only with fixed K. Moreover, the number of times we apply the
single threshold is always K. It thus takes O(KNα(N)) for any input and K is
typically 256 which means a quite slow algorithm. The advantage is that we can
maintain invariance under similarity transformation.

We show that having any additive measure (to be defined bellow) on sets of
pixels, we can get efficient algorithm which has runtime independent of K and
nearly linear in N . Our algorithm is limited in some sense (described bellow),
thus cannot detect any possible component but we can identify and characterize
exactly for which components it works and as we will show, it gives good results
in practical images. The main idea is to base on the inclusion of the compo-
nent tree and to apply binary search over levels on the component tree without
computing the tree for every level.

4 Efficient double thresholding using additive measure

In this section we propose efficient algorithm using any additive measure on
sets of pixels based on binary search over differences between levels in the
component tree. A measure M(·) is additive if for every disjoint sets, S1, S2,
M(S1 ∪ S2) = M(S1) + M(S2). A specific example is the area. While additive
measure cannot be used for invariance under similarity transformation (since the
size can change) it can be used as a first filter for rigid invariant model detection.
General moments are additive but central moments are not thus we cannot use
(maintain) them to measure similarity between components. However we can use
for example the area (first moment) to first filter out all connected components
of area close to the area of the model (since rigid transformations preserve the
area). Then we can use e.g. moments to find the one that is most similar to
our model. In this section we analyze the conditions that allow us to use this

6 Dror Aiger and Silvio Jamil Ferzoli Guimares

efficient algorithm and characterize the limitations of this algorithm. We show
that even though it has some limitations, its efficiency and effectiveness in real
images and its simplicity makes it a good candidate for model based segmenta-
tion. The algorithm is output sensitive in the sense that its complexity depends
on the number of extracted components. While this number can be O(KN) in
the worst case, it is much smaller in practical cases which makes the algorithm
much faster than the algorithm described in Section 3.2

A double threshold (t1, t2) partitions an image I into three kinds of regions:
regions that have all their pixels in the range [t1, t2] denoted by Ct1≤g≤t2 , regions
that have all their pixels bellow t1 denoted by Cg<t1 and regions that have all
their pixels above t2 denoted by Cg>t2 (g represents gray value). We are inter-
ested in the first kind. In particular, for a given model m with (additive) measure
M(m), we wish to extract all connected components of type Ct1≤g≤t2 possibly
with a pair (t1, t2) that realizes each one) that have a (additive) measure close
to M(m). Let C = {C1, C2, .., Ck} be the set of all connected components of the
first type for some (t1, t2). We can identify four different cases of connectivities
among the components of every subset of them. Figure 4 shows all four (for
simplicity we show just two components).

Ct1<g≤t2

Ct1<g≤t2

Cg≤t1

Ct1<g≤t2

Ct1<g≤t2

Cg>t2

Ct1<g≤t2

Ct1<g≤t2

Cg≤t1

Cg>t2

Ct1<g≤t2

Ct1<g≤t2

Cg≤t1

Cg>t2

Fig. 4. All kind of connectivities between two connected components of a given double
threshold (t1, t2) (the figures are not the most general ones for simplicity. There can
be of coarse more than two components).

For a given (t1, t2), we call any Ci ∈ C, 1-connected if for every other Cj ∈ C,
any path from Ci to Cj is not fully contained in a Cg>t2 component. Ci is called
2-connected if for every other Cj ∈ C, any path from Ci to Cj is not fully
contained in a Cg<t1 component. If there are component in C that are connected
to Ci by Cg<t1 and there are others (or the same) that are connected to it by
Cg>t2 components, we call Ci doubly-connected. For example, if C1 is connected
to C2 by Cg<t1 component and is connected to C3 by Cg>t2 component, then
C1 is doubly-connected. In Figure 4(d) the two Ct1≤g≤t2 components are both
doubly-connected.

For any given (t1, t2), our algorithm identifies subsets (not all of them) of C
that have together (their union) a measure that is close to a given measure. In
particular, it identifies every single component provided that it is not doubly–
connected. For doubly-connected components, our algorithm identifies only their

Title Suppressed Due to Excessive Length 7

union with some other components. As we show in our experimental results,
in most practical cases, most of the components are not doubly-connected thus
detected as single components by our algorithm.

To describe our efficient double thresholding algorithm we will need two lem-
mas. The first lemma states that computing the subtracted connected component
between a node in a component tree and all its sons of a specific level can be
done efficiently. The second lemma insures that all connected components that
are not doubly-connected and can be obtained by double thresholding will be
actually found by our algorithm.

Lemma 1. Given a component tree T with n nodes, a node N and a level L
(given by an order list of all nodes in it) we denote by T (N) the subtree of T
that is rooted from N . The leftmost node l in T (N) in the level L (if exists) can
be found in O(log(C)) time where C is the number of nodes of T in level L.

Proof: The set of nodes in T (N) is an interval in the ordered set of nodes in T
when these are taken as the index of a (e.g.) left turn post order traversal of T .
For a given node k in L we can find in constant time whether it is in T (N). All
the nodes in L that are to the left of l have smaller index in T (N) and all nodes
to the right of the rightmost have larger index. We can thus apply binary search
on L to find l.

Lemma 2. Let I be an image and Ī its complement. Let T (I) be the component
tree of I and T (Ī) the component tree of Ī. Any connected component that is not
doubly-connected and can be obtained by double threshold on I, must be one of
these:

1. A node in T (I)

2. A node in T (Ī)

3. The difference between a node either in T (I) or in T (Ī) and the union of all
its sons in the tree in some level.

Proof: A general configuration of a component that is not doubly-connected
(corresponding to a given double threshold) can be described by Figure 5 for
double threshold (t1, t2). If all neighbors components Ci have values above t2 or
all have values bellow t1 than C is a local (regional) maximum of either I or Ī and
thus is a node in one of the corresponding component trees. Otherwise without
limiting the generality, assume that all the pixels in Ca1 , Ca2 , .., Cak

among the
set of all Ci have values bellow t1. Then, the union of C,Ca1 , Ca2 , .., Cak

is a
node n in T (I) and we have C = n\(Ca1 ∪Ca2∪, ..,∪Cak

) as required. The same
is true for pixels above t2 with T (Ī). Note that some other component of type
Ct1≤g≤t2 can be connected to one of the Cai but since C is not doubly-connected
it can be connected only to one kind of the neighbors of C thus allowing the
subtraction above.

8 Dror Aiger and Silvio Jamil Ferzoli Guimares

C

C1

C2
C3

C4

C5

Fig. 5. Double threshold: the connected component C is obtained by thresholding I
with a double threshold (t1, t2) and has all Ci as its neighbors. The pixels in every Ci

have either all values bellow t1 or all values above t2. All pixels in C have values above
or equal t1 and equal or bellow t2.

The algorithm Based on the above lemmas we can now describe our main algo-
rithm. We are given an image I with N pixels and K gray levels and a model
C given as a set of connected pixels (a connected component). We assume an
additive measure M(·). We also have some accepted value on M , ε > 0. We wish
to obtain from I all connected components Ci that can be obtained by double
threshold on I and have |M(Ci)−M(C)| < ε. We limit ourself to those that are
not doubly-connected and bellow we assume only these components.

We first observe that for a double threshold (t1, t2), t1, t2 ∈ K, the set of
connected components obtained by thresholding I by (t1, t2) are all connected
components that are the subtraction of the union of all nodes in level t1 from
the union of all nodes in level t2. This is thanks to the inclusion we have in the
component tree. It can be seen that the entire set can be obtained by subtracting
from every node in level t2 the union of all its sons in level t1. We show bellow,
that given any additive measure we can do it efficiently by binary search.

Let n be a node in a component tree and let U be the union of all its sons in
some level. We use the notation n also to describe the connected component in
node n. n \ U can be a set of multiple connected components of coarse. Lemma
2 tells us that in the case that the subtraction has more than one connected
component, all of them are nodes in one of the component trees, T (I) or C(Ī),
or can be obtained as a single component by subtracting levels in T (Ī). It follows
that if we search the two trees and their nodes before, we can assume that we only
have to consider the cases where the subtraction contains only one connected
component.

We first construct the two component trees, T (I) and T (Ī) by the algorithm
in [15]. The two trees can be computed in time O(Nα(N)) and their size (the
number of nodes) is O(N). A component tree is compressed if for the tree de-
scribed in Section 2 in each path from the root to the leafs we replace every
consecutive set of similar nodes into one. We note that the component tree in its
uncompressed version as described in Section 2 has size O(N) only for fixed K
and it can be of size Ω(KN) in the worst case. Our algorithm uses the uncom-

Title Suppressed Due to Excessive Length 9

press version so in the worst case it can take Ω(KN) time but in contrast to the
algorithm in Section 3.2, this is rarely the case. In fact, only images that contain
Ω(N) number of very high gradient has this complexity. Moreover, we believe
that an algorithm that has worst case runtime O(N log2 N + k) can be found (k
is the number of reported components) but we leave this for future research. As
we mentioned before this is output/input sensitive algorithm and in the worst
case we can have k = Ω(KN).

We first search these trees by computing all O(N) measures of the nodes in
linear time, and we report in O(N+k1) all k1 connected components within these
nodes that agree with the above condition. Lemma 1 insures that all other needed
connected components (not doubly-connected) must be in the set of (singles)
connected components that are the subtraction of a node in a tree (one of the
two) and the union of all its sons in a specific level.

Let n be a node in a component tree T and let T (n) the sub tree of T rooted
from n and let l be some level in T (n). According to Lemma 1, in O(log(N)) time
we can compute the leftmost and rightmost nodes in T (n) in level l. Let al1 ..alt
be all connected component in level l. Thanks to inclusion relations in T , all
numbers M(n)−M(al1 ∪al2 ∪ ...alt) are sorted, thus using binary search we can
find all needed k connected components by first finding one (by binary search)
and then tracing its neighbor levels until we obtain all k connected components in
the given range (s.t. |M(Ci)−M(C)| < ε). Practically we can stop at the first one
if we need only a representative among the set of components that are included
in each other. The time thus for a single node n is O(log2(N)+kn). In each tree
we have O(N) nodes thus we have overall in both trees O(N log2(N) + k) time
for k = k1 + ..+ kN reported connected components.

5 Applications

Our method has essentially the same functionality as any object segmentation
with shape prior or model based object detection. It is therefore useful for the
same applications. Indeed, using threshold only is somewhat limited compared
to more general schemes, however it offers a much simpler, faster yet globally
optimal method that can be practical in many application as we show in this
section. The use of double threshold instead of the traditional single threshold
provides a much wider spectrum of applications. Generally speaking, our method
is applicable whenever there is an object in image (or 3D volume) which is
relatively homogeneous and its shape model is given. Thanks to the double
threshold the object can be connected to either brighter or darker regions. The
fact that our second double threshold method does not depend on the number of
colors or gray levels makes it also suitable for color images. The complexity only
depends on the number of pixels (voxels in 3D) nearly linearly. The idea can be
easily extended to 3D as it is solely based of the component tree computation.

We note that our method is not limited to any specific similarity measure
(here we use Hu moment invariants). Once we have a similarity measure between
two shapes we can plug it in our method. In particular non rigid measures can be

10 Dror Aiger and Silvio Jamil Ferzoli Guimares

used for articulated objects. Bellow we present some results for medical imaging,
gesture recognition, image retrieval and text analysis. Our method can be used
in a p reprocess stage to extract the most important edge features with respect
to a given model, thus it can be also viewed as a model based edge detection.
Next, other recognition schemes or further similarity measures can be used to
verify the exact detection.

Medical Imaging Medical imaging applications commonly need to segment or
detect organs in 2D or 3D data where a general shape of the organ is given. For
example, the knee can be easily processed as shown in Figure 6, left, to segment
the bones being invariant to rotation and limited scale.

Fig. 6. Medical Imaging: Organ segmentation (left) and cells segmentation (right)

Another application in medical imaging is detecting objects (like cells) in
images. In Figure 6, right, we show that our method is applicable for finding
multiple instances of an object by reporting all connected components that are
similar enough to the model (again, using any plugged in similarity measure).

Gesture Recognition This application aims in detecting specific gestures in im-
ages. Searching for the best model among a set of shapes and measuring its
similarity to on object in the image can be applied by our method and used for
recognition. An example is shown in Figure 7.

Fig. 7. Gesture detection - left: model, right: result

Image Retrieval In Figures 8,9,10 we demonstrate that based on a very general
template, we can relatively robustly search for similar objects in a data set of

Title Suppressed Due to Excessive Length 11

images. This can be used as a preprocessing stage in image retrieval system based
on a general shape template. It is important to note that some false objects can
be also detected (especially if the shape itself is not that unique) and they have to
be pruned by a subsequence more careful analysis (e.g. using colors and texture).

Fig. 8. Object retrieval by shape - left: model, right: result of some images retrieved
with a candidate object.

Fig. 9. Bottle retrieval by shape - left: model, right: result of some images retrieved
with a candidate object. The left bottle is out of scale limitation in this example.

Fig. 10. Car retrieval by shape - left: the model.

Text analysis Text and document processing commonly deals with binarizing
images prior to their processing by OCR or hand writing recognition. Our dou-
ble threshold algorithm can be viewed as a powerful adaptive threshold with
shape similarity criteria. We can use several models for letters to detect or seg-
ment letters in images with very hard conditions like the historical document in
Figure 11. In some specific cases (even though it is not very general) the fine
thresholding in our method can be used to segment hand writing letters that
is almost completely connected to others like in Figure 11, right. Due to false
detection, our method can only be used in this application as a p reprocess.

12 Dror Aiger and Silvio Jamil Ferzoli Guimares

Fig. 11. Text binarization and letter segmentation in hard documents

6 More experimental results

We implemented all our algorithms in C++ on a standard single CPU com-
puter under windows XP. In this section we show results concerning two issues:
correctness of the algorithms and computation time. The results show that al-
though the double thresholding algorithm has some limitations (characterized
in the paper), it works very well in practical cases. With respect to computation
time we show that our binary search algorithm for double thresholding is much
faster than the algorithm described in Section 3.2. In the set of images in Figures
12 we applied our algorithm for double thresholding from Section 4 on various
kinds of inputs. For every image, a binary model is given.

To demonstrate the speed of our second algorithm we compared (Figure 13)
its runtime to the runtime of our first double threshold algorithm (Section 3.2).
The first is more general but is slow (always O(KN)). The second is somewhat
limited but much faster (practically nearly linear inN). We also show the number
of output components that we obtain for the algorithm is Section 4.

7 Limitations

Being simple, fast and invariant to similarity transformations, our method can
be used in many applications. However, it is important to make clear that there
are obvious limitations in using threshold in general and even in using double
thresholding. The object in the image should be relatively homogeneous in order
to be contained between the two threshold values.

8 Conclusions

We have investigated the idea of optimal single and double thresholding based
on a model as a simple and fast alternative to more complex (thought more
general) methods for object segmentation with priors, object recognition and
edge detection for recognition. The idea was shown first for single threshold for
warm-up and then two algorithms for double threshold were presented and the

Title Suppressed Due to Excessive Length 13

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 12. Several inputs and their model based optimal double threshold. Left: image,
middle: model, right: result. The result shows only the most similar component (see
the text).

trade-offs were discussed. An important property of our algorithms is that they
have no parameters excluding the allowed size change of the object.

References

1. Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via
graph cuts. IEEE Trans. Pattern Anal. Mach. Intell., 23(11):1222-1239, Nov. 2001.

2. Y. Boykov and G. Funka-Lea. Graph cuts and efficient n-d image segmentation.
Intl J. Computer Vision, 70(2):109-131, Nov. 2006.

3. E.J. Breen, R. Jones, “Attribute Openings, Thinnings and Granulometries”, Com-
puter Vision and Image Understanding, Vol. 64, No. 3, pp. 377-389, 1996.

4. M. Couprie and G.Bertrand. Topological grayscale watershed transform. In SPIE
Vision Geom.V Proc.,volume 3168,pp. 136-146,1997.

5. M. Couprie, L.Najman and G.Bertrand. Quasi-linear algorithms for the topological
watershed. JMIV,22(2-3):231-249,2005.

6. D. Cremers, S. J. Osher, and S. Soatto. Kernel density estimation and intrinsic
alignment for shape priors in level set segmentation. Intl J. Computer Vision,
69(3):335-351, Sept. 2006.

7. F. Felzenszwalb. Representation and detection of deformable shapes. IEEE Trans.
Pattern Anal. Mach. Intell., 27(2):208-220, Feb. 2005

8. P.Guillataud, Contribution l’analyse dendroniques des images. PhD thesis, Uni-
versit’e de Bordeaux I,1992.

14 Dror Aiger and Silvio Jamil Ferzoli Guimares

Figure Alg. 1 (3.2) Alg. 2 (4) Number of CC

12 a 12928 281 110

12 d 10240 250 456

12 g 25728 481 19

12 j 8960 170 57

12 m 2560 80 186

12 p 2560 70 207

Fig. 13. The runtime of our two double threshold algorithms (miliseconds).

9. P. Hanusse, P. Guillataud, Sémantique des images par analyse dendronique, 8th
Conf. Reconnaissance des Formes et Intelligence Artificielle, Vol. 2, pp. 577-588,
AFCET Ed., Lyon, 1992.

10. J.A. Hartigan. Statistical theory in clustering. Journal of Classification, 2:63-
76,1985.

11. M-K. Hu, Visual pattern recognition by moment invariants, IRE Trans. on Infor-
mation Theory, pp. 179-187, 1962.

12. R. Jones. Component trees for image filtering and segmentation. In NSIP97,1997.
13. J. Mattes, M. Richard and J.Demongeot. Tree representation for image matching

and object recognition. In LNCS:1568, pp. 298-309,1999.
14. P. Monasse. Morphological representation of digital images and application to reg-

istration. PhD thesis,Paris-Dauphine Univ.,June 2000.
15. Laurent Najman and Michel Couprie, Building the Component Tree in Quasi-

Linear Time, IEEE Transactions on Image Processing, 15(11), pp. 3531-3539,
2006.

16. T. Riklin-Raviv, N. Kiryati, and N. Sochen. Prior-based segmentation and shape
registration in the presence of perspective distortion. Intl J. Computer Vision,
72(3):309-328, May 2007.

17. M. Rousson and N. Paragios. Shape priors for level set representations. In ECCV,
pp. 78-92, 2002.

18. P. Salembier, A. Oliveras, L. Garrido, Antiextensive Connected Operators for Im-
age and Sequence Processing, IEEE Trans. on Image Processing, Vol. 7, No. 4, pp.
555-570, 1998.

19. P.Salembier and J.Serra. Flat zones filtering,connected operators and filter by re-
construction. IEEETr.on Im.Proc.,3(8):1153-1160,1995.

20. T. Schoenemann and D. Cremers. Globally optimal image segmentation with an
elastic shape prior. In ICCV, 2007.

21. R.E. Tarjan. Efficiency of a good but not linear set union algorithm. Journal of
the ACM,22:215-225,1975

22. Erik R. Urbach and Jos B.T.M. Roerdink and Michael H.F. Wilkinson. Connected
Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-
Scale Images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29,pp 272-285, 2007.

