
Efficient robust digital hyperplane fitting with
bounded error

Dror Aiger, Yukiko Kenmochi, Hugues Talbot, and Lilian Buzer

Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge, France

Abstract. We consider the following fitting problem: given an arbitrary
set of N points in a bounded grid in dimension d, find a digital hyperplane
that contains the largest possible number of points. We first observe that
the problem is 3SUM-hard in the plane, so that it probably cannot be
solved exactly with computational complexity better than O(N2), and
it is conjectured that optimal computational complexity in dimension
d is in fact O(Nd). We therefore propose two approximation methods
featuring linear time complexity. As the latter one is easily implemented,
we present experimental results that show the runtime in practice.

Keywords: fitting, digital hyperplane, approximation, linear program-
ming, randomization

1 Introduction

This article is about efficient and effective hyperplane fitting in the presence of
outliers, formulated in the discrete setting. This is a well-known problem with
many applications in computer vision and image analysis. In the following we
consider an arbitrary set of pixels S in discrete space Zd, (with typically d = 2 or
3), and ask the question of what is the closest co-dimension 1 hyperplane (i.e. a
line in 2D or a plane in 3D) that best fits this set of pixels. Clearly this problem
depends on the notion of fitting and the definition of hyperplane.

Irrespective of the formulation, recent applications of this problem include
shape approximation [3, 20], image registration [19, 21] and image segmenta-
tion [14, 12]. More generally, the problem of robust parameter estimation from
noisy data is also closely related [10].

The problem is connected to the problem of robust regression, for instance
using least squares, weighted least-squares, least-absolute-value regression and
least median of squares (LMS) [4, 15, 18]. In this setting, an hyperplane H of
co-dimension 1 corresponds to the following continuous model:

H = {(x1, x2, . . . , xd) ∈ Rd : a1x1 + a2x2 + . . .+ adxd + ad+1 = 0}, (1)

with the ai ∈ R. Note it is common to add an additional normalization con-
straint such as

∑d
i=1 |ai| = 1 or

∑d
i=1 a

2
i = 1. Such a formulation corresponds to

minimizing various cost functions. For instance least-square fitting, which has a
closed-form solution, minimizes the geometric distance from all the given points

to the model, whereas least-absolute-value regression optimizes the `1 distance
instead. Both models are very efficient but not very robust to outliers. In con-
trast, LMS minimizes the median of either the geometric or `1 distance to the
model, and is robust to the presence of outliers, as long as they do not represent
more than half of the dataset. There exists polynomial, optimal algorithms for
LMS, but their space and computational complexity grow at least as quickly as
O(Nd), and there does not seem to exist dependable implementations for d ≥ 3.

1.1 Approximate line and plane fitting

Well-known and most used methods for hyperplane fitting include the Hough
Transform (HT) [7, 11], RANSAC [8] and associated variations [5]. HT uses an
accumulative approach in the discretized dual space and an ad-hoc detection
of high accumulated values. The computational complexity of traditional HT is
O(Nδd−1), where N is the number of given points and δ is the (discrete) size of
image sides. This is linear for a fixed δ and a fixed d.

RANSAC and its variation consider random d-tuples of points (i.e. pairs and
triplets respectively for 2D or 3D) within the pixel set S, forming respectively a
candidate hyperplane, and compute a distance from S to the candidate hyper-
plane. Many distances can be considered, including robust versions that may or
may not be true distances. A distance or score is associated with every candidate
hyperplane. After a number of candidate trials that depend on the size of S, the
best-fitting line featuring the minimum distance or score is given as the output.
The computational complexity of RANSAC is linear in N if the number of inliers
is a constant fraction of the size of S.

Both HT and RANSAC are efficient, linear-time complexity algorithms. How-
ever neither can claim to find a global or even error-bounded approximate solu-
tion to an associated optimization problem.

1.2 Discrete, optimal formulation

Because the problem is inherently discrete, it is useful to consider a purely dis-
crete formulation of the problem.

Recently, such a discrete, optimization-based framework for this problem was
proposed in [25] for 2D lines and 3D planes. This approach consists of considering
a discrete line or plane using Reveillès definition [16], i.e. a set of grid points
between a pair of continuous-domain lines or planes with rational coefficients
separated by a distance w. For a given pixel set S of size N and a given w, an
optimal hyperplane is one for which a maximal number of pixels lie between the
two continuous hyperplanes. Even though the pair of hyperplanes form a convex
set, the problem is combinatorial in nature, and a non-polynomial, branch-and-
bound approach was initially suggested to find the optimal solution. This was
later solved with an O(Nd logN) algorithm for d = 2, 3 in [22–24], and improved
in [13] with an O(N2) solution in 2D using a topological sweep method. While
a polynomial solution of degree equal to the dimension of the problem is useful,

it is still too inefficient for many application. Typically, the problem is currently
solvable for N = 103 but impractical for N = 106 in 3D.

In the rest of the paper we first show that the problem is 3SUM-hard in 2D,
i.e. that a computational complexity of O(N2) is likely the best that can be
expected for 2D, as well as O(Nd) for higher dimension d. This motivated us
to pursue an approximate solution with known bounded error, with linear-time
complexity. We present two algorithms that give us different bounded errors;
one is the number of inliers, and another is the width of digital hyperplanes.
Since algorithms based on HT and RANSAC provide no error bound, and no
guarantee of optimality of any kind, this render our solution competitive with
RANSAC and HT, while insuring a good quality solution. We demonstrate this
on a pair of artificial and real examples.

2 The problem of digital hyperplane fitting

2.1 Definition

An hyperplane in Euclidean space Rd, d ≥ 2, is defined by (1), and in this
paper we use the following normalization constraint instead of the above more
conventional ones: −1 ≤ ai ≤ 1 for i = 1, 2, . . . , d such that there exists at
least one ai that equals to 1. Note that this normalization technique enables
us to bound the range of every coefficient between −1 and 1, except for ad+1:
practically ad+1 is also bounded by the size of an input image.

A digital hyperplane, which is the digitization of a hyperplane H in the
discrete space Zd, is then defined by the set of discrete points satisfying two
inequalities:

D(H) = {(x1, x2, . . . , xd) ∈ Zd : 0 ≤ a1x1 + a2x2 + . . .+ adxd + ad+1 < w} (2)

where w is a given constant. From the digital geometrical viewpoint, if we set
w = 1, then the definition is equivalent to that of naive hyperplanes [16], where
parameters can be rational numbers. As mentioned above, at least one coefficient
ai equals 1 among ai for i = 1, 2 . . . , d, so hereafter we set ad = 1 for simplicity.
In other words, we mainly deal with the following linear inequalities

0 ≤ a1x1 + a2x2 + . . .+ ad−1xd−1 + xd + ad+1 < w (3)

instead of the ones in (2). Note that practically we use d different types of the
inequalities for representing digital hyperplanes depending on d settings of ai = 1
for all i = 1, . . . , d.

2.2 Problem formulation

Given a set S of discrete points coming from the [0, δ]d grid (i.e. the hypercubic
grid with a distance between two neighbours = 1), the problem is to find a digital
hyperplane that contains a maximum number of points, called an optimal digital

hyperplane. Discrete points that are contained in the fitted digital hyperplane,
are called inliers; the complement points are called outliers. Our problem is then
equivalent to finding a digital hyperplane such that the number of inliers be
maximum.

We need the following definition for geometric understanding:

Definition 1. A slab is the region on and in between two parallel hyperplanes
in d-space. An ω-slab is a slab of size ω, meaning that the distance between the
two hyperplanes is ω.

If the distance ω is taken in the xd-axis direction in the space (x1, x2, . . . , xd) and
ω = w, then D(H) can be geometrically interpreted as a w-slab. Thus, finding
the optimal digital hyperplane for a given S is equivalent to finding a w-slab that
contains the maximum number of points in S. Using standard geometric duality
induced by (3), the problem of finding this w-slab is equivalent to finding a point
that is covered by a maximum number of w-slabs in the dual space as follows:
every point p in the d-dimensional primal space (x1, x2, . . . , xd) is mapped to a
hyperplane H in the d-dimensional dual space (a1, a2, . . . , ad−1, ad+1) and the
set of all hyperplanes in the primal that have a distance (in the xd-axis direction)
smaller than w to p are mapped to the set of points in the dual contained in a
w-slab (distance w in the ad+1-axis direction) one of whose sides is equal to H.
Details for the d = 2 case can be found in [13].

In the following sections, the problem of digital hyperplane fitting will be
considered either in the primal space (Sections 3 and 5) or in the dual space
(Section 4).

3 Theoretical observation on exact fitting

We consider the [0, δ]d grid, and a set S of N discrete points is given. As our
input is a binary image, N is necessarily smaller than δd. We show in this section
that, for any N that is smaller than δd, the exact solution of the fitting problem
is as hard to obtain as that of O(Nd) problems; for d = 2, we call such a class of
problems the 3SUM problem. For the sake of simplicity, we start our discussion
in the 2D plane.

3SUM is the following computational problem, introduced by Gajentaan and
Overmars [9] and conjectured to require roughly quadratic time complexity:
given a set T of n integers, are there elements a, b, c in T such that a+b+c = 0?
A problem is called 3SUM-hard if solving it in subquadratic time implies a
subquadratic time algorithm for 3SUM.

Observation 1 The problem of digital line fitting is 3SUM-hard.

Proof. The problem of finding three colinear points among a given set of discrete
points was proven to be 3SUM-Hard in [9]. We now reduce our problem of digital
line fitting to the problem of finding three colinear points.

Given a set S of discrete points, we can compute the value δ corresponding to
the length of the bounding box of S in linear time. For three points a = (xa, ya),

b = (xb, yb), c = (xc, yc) such that xa 6= xb, the vertical distance between a
straight line lab going through a and b and a point c is given by d(lab, c) =
|(c−a)∧(b−a)|
|(0,1)∧(b−a)| . Note that ∧ is the exterior product between two vectors, which

is an algebraic generalization of the cross product between two 3D vectors to
any d dimension (here, d = 2), so that the result is a bivector. As we process
integer coordinates, if we consider three non colinear points, we thus know that
|(c − a) ∧ (b − a)| ≥ 1. Then, we know that |(0, 1) ∧ (b − a)| = |xa − xb| ≤ δ
by definition of δ. Therefore, we can conclude that for any three non-colinear
points d, e, f of S, we have: d(lde,f) ≥ 1

δ . We can scale the points of S in linear
time by an integer factor δ in order to obtain the new set S′. Then, any three
non-colinear points d′, e′, f ′ of S′ must satisfy d(ld′e′ ,f ′) ≥ 1.

To conclude, if our algorithm for finding an optimal digital line detects at
least three points d, e, f that can be covered by a digital line, this means that
they satisfy d(lde,f) < 1. However, as we know that in S′, three non colinear
points would generate a thickness equal or greater than 1, this means that these
three points are colinear. Therefore, using our algorithm, using a linear-time
reduction, we can detect if S contains three colinear points, therefore our problem
is 3SUM-hard.

The extension of 3SUM problem to higher dimensions is considered as the
problem of detecting affine degeneracy of a given collection of N hyperplanes,
i.e. finding a subset of d+ 1 hyperplanes intersecting in a common point. This is
conjectured to require O(Nd) time. In this paper, we do not seek a proof since
we the case for d = 2 is sufficient for our purpose, as we seek a linear algorithm.

As solving the problem exactly in arbitrary dimension is likely at least
quadratic, we next suggest two approximations. The first has a theoretical proved
characteristics but is not easy to implement. The second is a more practical algo-
rithm that features a proven worst case runtime and can be easily implemented.
Moreover, its practical runtime can be much better than what is suggested by
its worst case analysis.

4 Approximation with bounded error in number of inlier
points

In this section, we show that if the optimal number of inlier points is not too
small (i.e. Ω(N)), an approximation of the optimal digital hyperplane can be
found in linear time, with respect to N and the runtime also depends on the
given approximation value ε. We use the dual space and make a simple use of the
tool to solve approximately the problem of linear programming with violations,
presented in [2]. In this approximation, we do not use the fact that the points
lie on a grid and it is correct for any set of points in Rd.

We start with the results of Aronov et al. [2] on linear programming with
violations. They obtained a randomized algorithm which is correct with high
probability. Afshani et al. also [1] obtained a Las Vegas algorithm (i.e. one that
either provides the correct answer or informs about failure).

Theorem 1 (Aronov et al. [2]). Let L be a linear program with n constraints
in Rd, and let f be the objective function to be minimized. Let kopt be the min-
imum number of constraints that must be violated to make L feasible, and let v
be the point minimizing f(v) with kopt constraints violated. Then one can out-
put a point u ∈ Rd such that u violates at most (1 + ε)kopt constraints of L,
and f(u) ≤ f(v). The results returned are correct with high probability. The
expected running time (which also holds with high probability) of this algorithm
is O(n+ ε−4 log n) for d = 2, and O(n(ε−2 log n)d+1) for larger d.

In our case, we are only interested in finding a point in the dual space that
is covered by the maximum number of w-slabs. We reduce this problem to the
problem of linear programming with violations and solve it using the result of [2].
The following observation is a result of replacing each w-slab with two halfspaces
that have the w-slab as their intersection, represented by (3). We thus have 2N
constraints and a point in space is violating (i.e., not covered by) k w-slabs
among N , if and only if it is violating k halfspaces among the 2N . Therefore,
the tool for finding a point violating the minimum number of halfspaces finds
also a point that is covered by the maximum number of w-slabs. Let nopt be the
maximum possible number of w-slabs that can contain a point in d-space (i.e.,
inliers) and let kopt the optimal number of violations, N = kopt + nopt. For the
approximation parameter, we observe that since we find a point that violates
at most (1 + ε)kopt slabs, we actually find a point that is covered by at least
N − (1 + ε)kopt w-slabs. Let n be the number of points that are covered by the
w-slab we just found. If nopt = Ω(N) we have n > (1− cε)nopt for some fixed c.
We now observe the following:

Observation 2 Given a set of N points in the d-dimensional space and some
ε > 0, assuming nopt = Ω(N), we can find a w-slab that contains at least
(1 − ε)nopt points, where nopt is the maximum possible number of points that
can be found in a w-slab . The runtime is O(N + ε−4 logN) for d = 2 and
O(N(ε−2 logN)d+1) for larger d.

This result can be immediately used for our original problem of finding the
optimal digital hyperplane by using the set of grid points.

5 Approximation with bounded error in digital
hyperplane width

In this section, we show another kind of approximation that makes use of the
fact that the input points are in a bounded grid as well. The meaning of this
approximation is slightly different from the previous one. The advantage of this
version is that it is easy to implement, unlike the previous one that is mainly
of theoretical interest and is probably hard to implement. Moreover, using this
approximation, we can do both: prove its worst case runtime and also allow to get
optimal solution with practical good runtime and/or to have an approximation
to any desired level in better runtime than the worst case. We need the following
result from Fonseca and Mount [6].

Theorem 2 (Fonseca and Mount [6]). For a set of N points in the unit
d-dimensional cube and some ε > 0, one can build a data structure with O(ε−d)
storage space, in O(N + ε−d logO(1)(ε−1)) time, such that for a given query hy-
perplane H, the number of points on and bellow H can be approximately reported
in O(1) time, in the following sense: all the points (below H) that have a larger
distance1 than ε from H are counted. Points that are closer to H on both sides
may or may not reported.

See the next section for the detail of building a specially-designed data struc-
ture for the query.

We can now state and prove the main theorem of this section:

Theorem 3. Given a set of N points on a grid [0, δ]d, and some ε > 0, w > 0,
a digital hyperplane of width w+ 5ε that contains n > nopt points, can be found
in O(N+(δε)d logO(1)(δε)) time where nopt is the maximum number of points that
any digital hyperplane of width w in [0, δ]d can contain.

Proof. For simplicity, we can assume that all points are given in the unit d-
dimensional cube such that their coordinates are integer multiplication of 1/δ.
Let w′ = w/δ be the new width and ε′ = ε/δ be the new approximation pa-
rameter. We first build the data structure for halfspace range count in O(N +
ε′−d logO(1)(ε′−1)) time (Theorem 2) and then we query all O(ε′−d) hyperplanes
twice (every digital hyperplane is a w-slab that is the intersection of two halfs-
paces) in constant time for each one of them.

For the approximation, we will consider the 2-dimensional case, which is
simpler to describe. Our algorithm queries all (w′ + 3ε′)-slabs by querying two
parallel lower halfplanes of distance w′ + 3ε′ and subtract their returned num-
bers. As seen in Figure 1, any optimal digital line must be contained between
two such parallel lines of distance w′ + 3ε′, Q1, Q2. Let nopt be the optimal
number of points contained in the optimal digital line. Let n1 be the number of
points returned by querying a line Q1 and n2 be the number of points returned
by querying Q2. We only build the database for lower halfplanes (i.e. those con-
tain (0,−∞)). Note that we query all possible halfplanes that exist in the data
structure, which is discretized so that the minimum distance between two is ε.
The runtime is indeed linear in N and in δd since we only have O(δε

d
) halfplanes.

Recall that by the approximation guaranteed by the data structure, if the
optimal line is contained between Q1 and Q2, then n1−n2 ≥ nopt. On the other
hand, a larger number can be found elsewhere when we query some other slab,
but it is guaranteed (see Figure 1) that all reported points lie within a slab of
width w′+5ε′. Thus we either found a slab containing the optimal digital line or
we found another slab. In both cases, the number of reported points is greater
than or equal to nopt and the width of the slab containing them is w′ + 5ε′.

A typical use for digital lines would be to use w = 1 and 0 < ε < 0.5.
1 The `2 distance is used in [6] while the `1 distance is used in this paper. However,

the theorem still holds since the `1 distance is always greater than or equal to the
`2 distance.

w

ε

Optimal digital line L

ε

ε

ε

ε

Q1

Q2

Fig. 1. The relations between optimal and approximate digital lines (see the text).
Note that the approximate digital line does not necessarily contains the optimal line.

6 Implementation

We first note that for most practical situations, the set of points given as input
is obtained through some sort of feature extraction algorithm (e.g. corner or
edge detector). These extractors always require runtime which is at least linear
in the size of the bounding box (in voxels). This means that our approximate
algorithm is optimal in the sense of its runtime.

We implemented the algorithm described in Section 5 in C++ on a standard
PC. In contrast to the optimal algorithm, the new algorithm is very simple to
implement using recursion. We implemented the algorithm for d = 3 as this case
is relatively expensive to solve with an optimal algorithm that would have a run-
time of O(N3). Optimal algorithms in 3D and above are also effectively difficult
to implement. Our implementation is conceptually similar in any dimension. For
every box in space we first build the range counting data structure recursively.
We first find the points that lie inside each one of the 8 children of the box (this
is performed in logarithmic time using orthogonal range searching) and then we
create the range counting data structure for each one of them recursively using
the box of size ε as the smallest box. Then for building the data structure for
the current box we create the set of all possible digital planes (depending on ε)
and query each one of them in all children, summing the number of points.

We now go over all planes in the outer box (the bounding box of the set
of input points) and for each plane, we query the number of points bellow this
plane and bellow a parallel plane of distance w+ 5ε as described in the previous
section. We simply take the pair (which is a slab) in which the number of points
resulting from the subtraction of the two is the largest. A practical problem
however is the memory requirement, since the algorithm has space (and roughly
time) complexity O((δ/ε)3), so in 3D it may require large amounts of memory
depending on the approximation parameter.

(a) (b) (c)

(d) (e)

Fig. 2. Experimental results of digital plane fitting for a 3D synthetic volume data
generated by 400 points in a digital plane and 100 randomly generated points (outliers).
The approximation algorithm with bounded error in digital plane width is applied with
the value of ε set to be 2.0 (a), 1.0 (b), 0.5 (c), and 0.25 (d): rose points are inliers and
blue points are outliers. A fitted digital plane is visualized as a pair of rose parallel
planes. The optimal solution (e) obtained by the exact algorithm [23] is also illustrated.

7 Experimental results

We used two 3D digital images for our experiments: some synthetic test data
and a real electron nano-tomography image.

The 3D synthetic data was created such that 400 grid points were samples
from a digital plane formulation with setting w = 1, and 100 grid points were
added randomly. Four different ε values were used: 2.0, 1.0, 0.5 and 0.25. For
comparison, the exact algorithm [23] with time complexity O(N3 logN) was also
applied. As seen in Table 1, the computation time is long, however it does yield
the optimal solution containing 406 inlier points (i.e. the 400 expected points
plus 6 random ones).

The approximation results indicate, as illustrated in Fig. 2 and Table 1,
that the smaller the value of ε, the more precise the solution; when ε = 2, a
solution relatively far from the optimal was obtained. Table 1 also shows that
two different numbers of points were obtained for each value of ε: the first one
is the number of points in a fitted digital plane with width w, and the second
one is the number of points in a fitted digital plane with width w + 5ε. Note
that the second number is guaranteed to be greater than or equal to the optimal
number of inlier points by design, and it indeed converges to the optimum as ε is

Table 1. The runtimes, parameters and numbers of points of fitted digital planes in
Fig. 2.

parameters nb. of points
runtime a1 a2 a3 a4 w w + 5ε

Approximate fitting
ε = 2.0 31 msec −0.0625 −0.0625 1 −10.9 110 485
ε = 1.0 266 msec −0.5 −0.5 1 −3.0002 300 435
ε = 0.5 2172 msec −0.5 −0.5 1 −3.0002 300 421
ε = 0.25 16640 msec −0.5625 −0.546875 1 −2.55002 362 410

Exact fitting [23]
with exact comp. 35 min 29.109 sec −47/81 −43/81 1 −203081/81000 406

without exact comp. 4 min 36.908 sec −0.580247 −0.530864 1 −2.507173

decreasing (see Table 1). We can observe as well from Table 1 that the smaller the
value of ε, the higher the runtime. Therefore, it is necessary in practice to find
an appropriate value for ε, which provides a sufficiently approximate solution
within a reasonable timeframe.

The second data we used was a 3D binary image generated from a electron
nano-tomography image containing a cubical crystal. The image is very noisy
due to the dimension of the sample and the physically-constrained tomography
reconstruction method. The original image is of 512×511×412 with gray values.
After binarizing the image by a threshold, we detected the boundary points by
using the 6-neighborhood and extracted the maximum connected component by
using the 26-connectivity. Finally, we obtained 205001 points in the 512× 511×
412 grid. This number of points is too large to apply the exact algorithm [23]:
it would have required on the order of 1018 operations, i.e. many months of
runtime. Instead we ran the approximate algorithm with some adjustments of
the values for ε and w. We set ε = 4 to obtain its runtime around 12 seconds
with w = 1; the result is illustrated in Fig. 3 (a). As we saw that the cube wall
is very noisy, we also performed a fitting with w = 25 to obtain a thicker digital
plane (see Fig. 3 (b)).

8 Conclusion

In this article we have presented two approximate discrete hyperplane fitting
methods with outliers. The first uses an approach based on linear programming
with violations. It is continuous in nature and features interesting complexities
but is difficult to implement. The second is discrete in nature, it uses an ac-
cumulation and query data structure and is easy to implement. This method
features bounded error defined in this way: for a given N points, a width w and
an error factor ε, the hyperplane found contains in a width equal to w + 5ε at
least as many points as the optimum would with a width of w. It features a
computational complexity in O(N +

(
δ
ε

)d
), where δ is the distance between two

neighbours in the hypergrid. The algorithm is therefore linear in the number of
points in the set being considered, but exponential in the approximation factor

(a) (b)

Fig. 3. Results of digital plane fitting for a pre-processed 3D binary nano-tomography
image containing 205001 points.The approximation algorithm with bounded error in
digital plane width is applied with ε = 4 for w = 1 (a) and w = 25 (b).

with d, the geometric dimension. Memory requirements are also exponential with
ε and d in the same way.

Nonetheless, as we show in the article that the exact solution is 3SUM-hard,
this method is useful. The computational complexity is given in the worst case,
in practice it can be much better. The algorithm is in particular well-behaved
when there are few outliers. Due to lack of space, we did not show it in the
paper, but the algorithm converges to the optimal solution, and in the discrete
case there exists a finite ε for which the algorithm provides the optimal solution,
even though this ε might be too small to be practical.

References

1. P. Afshani and T. M. Chan. On approximate range counting and depth. Discrete
& Computational Geometry, 42(1):3–21, 2009.

2. B. Aronov and S. Har-Peled. On approximating the depth and related problems.
SIAM J. Comput., 38(3):899–921, 2008.

3. P. Bhowmick and P. Bhaattacharya. Fast approximation of digital curves using
relaxed straightness properties. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 29(9):1590–1602, 2007.

4. S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press,
2004.

5. Ondrej Chum. Two-View Geometry Estimation by Random Sample and Consensus.
PhD thesis, Czech Technical University, Prague, Czech Republic, July 2005.

6. G. D. da Fonseca and D. M. Mount. Approximate range searching: The absolute
model. Comput. Geom., 43:434–444, 2010.

7. R. O. Duda and P. E. Hart. Use of the hough transformation to detect lines and
curves in pictures. Comm. ACM, 15:11–15, 1972.

8. M.A. Fischler and R.C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Commu-
nications of the ACM, 24(6):381–395, 1981.

9. A. Gajentaan and M. H. Overmars. On a class of o(n2) problems in computational
geometry. Comput. Geom., 5:165–185, 1995.

10. R. Hartley and R. Zisserman. Multiple view geometry in computer vision. Cam-
bridge University Press, 2003.

11. P.V.C. Hough. Machine analysis of bubble chamber pictures. In Proc. Int. Conf.
High Energy Accelerators and Instrumentation, 1959.

12. Y. Kenmochi, L. Buzer, A. Sugimoto, and I. Shimizu. Discrete plane segmentation
and estimation from a point cloud using local geometric patterns. International
Journal of Automation and Computing, 5(3):246–256, 2008.

13. Y. Kenmochi, L. Buzer, and H. Talbot. Efficiently computing optimal consensus
of digital line fitting. In International Conference on Pattern Recognition, pages
1064–1067, 2010.

14. K. Köster and M. Spann. An approach to robust clustering - application to range
image segmentation. IEEE Transaction on Pattern Analysis and Machine Intelli-
gence, 22(5):430–444, 2000.

15. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
recipes: the art of scientific computing. Cambridge University Press, 3rd edition,
2007.

16. J. P Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique.
PhD thesis, Thèse d’Etat, Université Louis Pasteur, 1991.

17. J.P. Reveillès. Géométrie discrète, calculs en nombres entiers et algorithmique.
Thèse d’État, University of Strasbourg, 1991.

18. P.J. Rousseeuw. Least median of squares regression. Journal of the American
statistical association, 79(388):871–880, 1984.

19. H.Y. Shum, K. Ikeuchi, and R. Reddy. Principal component analysis with missing
data and its application to polyhedral object modeling. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 17(9):854–867, 1995.

20. I. Sivignon, F. Dupont, and J.M. Chassery. Decomposition of a three-dimensional
discrete object surface into discrete plane pieces. Algorithmica, 38:25–43, 2004.

21. B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision
Computing, 21:977–1000, 2003.

22. R. Zrour, Y. Kenmochi, H. Talbot, L. Buzer, Y. Hamam, I. Shimizu, and A. Sug-
imoto. Optimal consensus set for digital line fitting. In Proceedings of IWCIA
2009, Cancun, Mexico, 2009.

23. R. Zrour, Y. Kenmochi, H. Talbot, L. Buzer, Y. Hamam, I. Shimizu, and A. Sug-
imoto. Optimal consensus set for digital plane fitting. In Proceedings of 3DIM
2009, workshop of ICCV, Kyoto, Japan, 2009.

24. Rita Zrour, Yukiko Kenmochi, Hugues Talbot, Lilian Buzer, Yskandar Hamam,
Ikuko Shimizu, and Akihiro Sugimoto. Optimal consensus set for digital line and
plane fitting. International Journal of Imaging Systems and Technology, 2010. In
print.

25. Rita Zrour, Yukiko Kenmochi, Hugues Talbot, Ikuko Shimizu, and Akihiro Sugi-
moto. Combinatorial optimization for fitting of digital line and plane. In Proceed-
ings of PSIVT’09. CVIM Workshop, january 2009.

