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Abstract

We present a simple, fast, and effective method to de-
tect defects on textured surfaces. Our method is unsuper-
vised and contains no learning stage or information on the
texture being inspected. The new method is based on the
Phase Only Transform (PHOT) which correspond to the
Discrete Fourier Transform (DFT), normalized by the mag-
nitude. The PHOT removes any regularities, at arbitrary
scales, from the image while preserving only irregular pat-
terns considered to represent defects. The localization is ob-
tained by the inverse transform followed by adaptive thresh-
olding using a simple standard statistical method. The main
computational requirement is thus to apply the DFT on the
input image. The new method is also easy to implement in
a few lines of code. Despite its simplicity, the methods is
shown to be effective and generic as tested on various in-
puts, requiring only one parameter for sensitivity. We pro-
vide theoretical justification based on a simple model and
show results on various kinds of patterns. We also discuss
some limitations.

1. Introduction
Vision-based inspection of surfaces has many real-world

applications, for instance industrial wood, steel, ceramic
and silicon wafers, fruits, aircraft surfaces and many more.
It is in high demand in industry in order to replace the
subjective and repetitive process of manual inspection.
A comprehensive survey on recent developments in vi-
sion based surface inspection using image processing tech-
niques, particularly those that are based on texture analysis
methods, can be found in [21]. According to this work,
one can divide the methods for surface defect detection
into four categories, namely: statistical approaches, struc-
tural approaches, filter-based methods, and model-based ap-
proaches. A significant differentiating factor in visual in-
spection approaches is that of supervised classification ver-
sus novelty detection. For applications where both normal
and defective samples can be easily obtained, supervised

classification based approaches are usually favored. How-
ever, when defects are unpredictable and defective samples
are unavailable, novelty detection is more desirable.

Texture is one of the most important characteristics in
identifying defects or flaws. Much effort were invested in
extracting useful texture features [7, 18, 20]. Statistical tex-
ture analysis methods investigate the spatial distribution of
pixel values. In structural approaches, texture is character-
ized by primitives or texture elements, and the spatial ar-
rangement of these primitives [16]. The goals of structural
approaches are to extract texture primitives, and to model
the spatial arrangement. Filter based approaches share a
common characteristic, which is applying filter banks on
the image and compute the energy of the filter responses.
These methods can be divided into spatial domain, fre-
quency domain, and joint spatial/spatial-frequency domain
techniques. Model based methods include, among many
others, fractal models [6], autoregressive models [4], ran-
dom field models [10], and the texem model [22].

In a novelty detection task, the task is to identify whether
an input pattern is an expected part of the data or unknown.
As for defect detection, it involves assigning a normal or
abnormal label to a pattern (e.g. a surface or a pixel). In
contrast to supervised classification, novelty detection only
needs the normal samples for training purposes and usu-
ally uses a distance measure and a threshold for decision
making. Recently, Markou and Singh [14, 15] gave a de-
tailed review of novelty detection approaches, using statis-
tical and neural network based approaches. Statistical para-
metric approaches are commonly used in visual inspection
[12, 9, 1, 13]. A fundamental assumption is that the data
distribution is Gaussian in nature, thus, it can be easily sta-
tistically modeled by means and covariances.

Working in the frequency domain is closely related to
our contribution. Many methods apply filtering in the fre-
quency domain, particularly when no straightforward ker-
nel can be found in the spatial domain. The image is trans-
formed into the Fourier domain, multiplied with the filter
function and then re-transformed into the spatial domain.
In [3], Coggins and Jain used ring filters and orientation fil-
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ters for feature extraction. DAstous and Jernigan [5] used
peak features, such as strength and area, and power distribu-
tion features, such as power spectrum eigenvalues and cir-
cularity, to discriminate textures. In [19], the authors used
the Fourier transform (FT) to reconstruct textile images for
defect detection. Chan and Pang [2] extracted harmonic
peaks from horizontal and vertical power spectrum slices.
The phase of the DFT was used for matching images by
the Phase Only Correlation (POC) [8]. It was also used for
image coding [11].

The main focus of this paper is to develop an unsuper-
vised method for defect detection. We concentrated on a
method that does not require any prior information or learn-
ing stage. This solves the practical problem of collecting
good examples of good patterns and defected ones. In ad-
dition, in many inspection applications, the pattern of the
inspected surface is not known a-priori. As we work in the
frequency domain, we have the advantages of a global view,
solving the problems of selecting good kernel sizes. On the
other hand, our method localizes defects without the need
for any post processing. The idea is very simple. Instead
of trying to detect peaks in Fourier transform of the input
images, it simply removes all regularities in the image of
various sizes and patterns at once by normalizing the FT
of the input image by its magnitude. Through this opera-
tion, only the phase information remains while all regular
patterns at all scales are removed. The localization of the
defects is achieved by transforming back to the spatial do-
main. We show that since no analysis is being performed
in the Fourier domain, removing regularities by normaliz-
ing the magnitude serves as a multiscale regularity removal,
therefore, random textures are effectively removed as well.

2. The importance of the phase
In their important paper, Oppenheim and Lim investi-

gated the important of phase in signals [17]. We review
here some of their insights. In the Fourier representation
of signals, spectral magnitude and phase tend to play dif-
ferent roles and in some situations, many of the important
features of a signal are preserved even if only the phase is
retained. This is not true in general for the spectral mag-
nitude. This observation about phase has been made in a
number of different contexts and applications. In general,
reconstructing an object from the magnitude only is not of
much value in representing the original object, whereas re-
constructions from the phase only have many important fea-
tures in common with the original objects. A phase-only
image has Fourier transform phase equal to that of the orig-
inal image and a FT magnitude of unity. Figure 1 show re-
construction of Lenna with magnitude only and phase only.
It shows that although the rebuilt image contains the same
frequency terms as the original input, the magnitude-only
transform bears no resemblance to the original image, it

Figure 1. The Phase only inverse Vs. Magnitude Only inverse -
left: original, middle: magnitude only, right: phase only

does not allow recognition due to the missing phase. Con-
versely, a phase-only reconstruction shows a picture simi-
lar to the shape of the original Lenna. It appears that the
phase contains significant information, especially regarding
the edge location. In addition, the phase only transform re-
moves periodicity and regularity so it does more than just
preserving the edges. In Section 3.2 we model the prob-
lem, give some theoretical justifications and explain why it
works.

3. The new method
3.1. Applying the Phase Only Transform

In the context of this paper, our goal is not to reconstruct
a signal from its FT. In fact, we wish to do almost the op-
posite, namely, to filter out most patterns. We wish to elim-
inate part of the signal while preserving other. The above
discussion provides a way to do it for our application of de-
fect detection in images. Our purpose is to eliminate the
so-called regular patterns while preserving correspondingly
“rare” events in the image which can be considered to be
defects. The fact that phase-only reconstruction preserves
much of the correlation between signals would suggest that
the location of events tends to be preserved. If we assume
that in our application, a non defective region contains non
localized structures (e.g. regular patterns or homogeneous
regions) and that a defect is well localized, it is reasonable
to use the phase to filter all non localized patterns (see Sec-
tion 3.2).

Our algorithm is very simple and can be implemented
in a few lines of code. The first step is to apply the DFT
on the input (real) image. The discrete two-dimensional
Fourier transform of an image array F (u, v) is defined in
series form as:

F(u, v) =
1

N

N−1∑
j=0

N−1∑
k=0

F (j, k) exp{−2πi

N
(uj + vk)}

where i =
√
−1. The indices (u, v) are called the spatial

frequencies of the transformation. The result is a matrix of
complex numbers in the frequency domain,

F(u, v) = R(u, v) + iI(u, v)



or in magnitude and phase-angle form,

F(u, v) = M(u, v) exp{iΦ(u, v)}
where

M(u, v) =
√
R2(u, v) + I2(u, v)

and

Φ(u, v) = arctan{ I(u, v)
R(u, v)

}

By normalizing every complex number by dividing both
real and image parts by M(u, v) we essentially remove
all regular patterns at every scales at once. Note that we
don’t have to analyze the Fourier image. This normalization
works on all frequencies at once and eliminates the regular-
ities. The algorithm of the first stage can now be written
(algorithm 1):

Algorithm 1 The Phase Only Transform
Require: input image I(u, v)

compute F(u, v){I}
for all (u,v) do
F(u, v) = F(u,v)

M(u,v)

end for
O(u, v) = F−1(u, v)

The resulted image is O(u, v). The spectral magni-
tude of images tends to fall off at high frequencies, the
phase-only signal will experience a high-frequency empha-
sis which will accentuate narrow events without modifying
their position. It is reasonable to identify 1

M(u,v) as gener-
ally emphasizing high frequencies over low frequencies.

3.2. Theoretical justification

We wish to explain why Phase-Only Transform (PHOT)
works. For this we want to justify the apparent fact that for
texture, the integral excursion of the phase is small com-
pared to that of a defect in the texture.

3.2.1 Phase of regular texture

We limit ourselves to 1-D, as the discussion extends readily
to n-D due to the FT separability, and we carry out the dis-
cussion in the continuous domain for simplicity. We need
some definitions to start:

Definition 1 (Phase integral excursion) The integral ex-
cursion E of the phase of a real signal is a measure of the
range of values that the phase of its FT actually takes. More
precisely, let S(x) be a real signal. Let

F [S](ω) =
1√
2π

∫ +∞

−∞
S(x)e−iωxdx = aS(ω)e

iϕS(ω)

be its FT with ω real belonging to [0, 2π]. Assuming ϕS(x),
the phase of S, to be either monotonic or discrete on that
domain, we define E [S] =

∫ 2π

0
∥ϕ−1

S (y)∥dy, where ϕ−1
S is

the reciprocal function to ϕS .

In essence, the phase integral excursion is the projection
on the y-axis of the values of ϕS(ω), the phase of the FT
of the signal can take. We limit ourselves to monotonic or
discrete phases as this is sufficient for our formalism, and
this allows us to define ϕ−1

S implicitly.
To continue, we need a simple definition of texture.

Definition 2 (regular texture) We define a regular texture
as a real signal composed of at most countably infinite lin-
ear combinations of the form S(x) = cos(ax + b) with a
and b real.

Such a texture is essentially a slight generalization of a
Fourier series. We know Fourier series can represent any
bounded periodic signal to an arbitrary degree of precision,
which is what we require to represent regular textures.

We have then the following theorem :

Theorem 1 (Integral excursion of a regular texture)
The integral excursion of any regular texture over a finite
domain is zero.

Proof: The FT of S reduces to a superposition of a count-
able number of Dirac peaks and its phase is such that for all
countable a, ϕS(a) = b and zero everywhere else. There-
fore ϕ−1

S is zero almost everywhere, and its Lebesgue mea-
sure is zero, and so is the phase integral excursion.

3.2.2 Phase of a defect

A defect in a texture can be defined as an abrupt change in
its regularity. To study this we model it by a box function.

Definition 3 (Random box function) A random box func-
tion H(a, b) is a function which has the following form:

H(a, b)[x] =

 0 ifx < a
1 ifa ≤ x ≤ b
0 ifx > b

We use the following well-known properties of the
Fourier transform to derive the expression of the FT of
H(a, b).

• Translation invariance : F [f(x − x0)](ω) =
e−ix0ωF [f(x)](ω).

• Scale invariance : F [f(ax)](ω) = 1
|a|F [f(x)](ωa ).

• The expression of the centered box function :

H(− 1
2 ,

1
2 ) =

sinc(ω
2 )√

2π



The expression of the FT of the random box function is
therefore :

F [H(a, b)](ω) = e−i( a+b
2 )ω

[
sinc( ω

2(b−a) )√
2π

]
. (1)

The phase of this FT is simply

ϕH(a,b)[F [H(a, b)]](ω) = −(
a+ b

2
)ω. (2)

We now have the following theorem :

Theorem 2 (Phase excursion of the random box function)
The phase excursion of the random box function is non-zero
unless a+ b = 0.

Proof: Ignoring phase wraparound over 2π, If a+ b ̸= 0,
then ϕH(a,b) is monotonic non constant, and so, even in-
cluding phase wraparound, |ϕ−1

H(a,b)| is zero at at most a fi-
nite number of points and strictly positive elsewhere. Its in-
tegral over any measurable non-empty set is therefore non-
zero, and so is the integral phase excursion. We note that
since a and b are random, the probability of a + b = 0 is
zero.

Let us assume a regular texture on the one hand, and a
regular texture with a defect in the other. Theorem 1 tells
us that the former has a FT with a phase composed of neg-
ligibly few different values. On the other hand, the latter
might be viewed as a linear combination of a regular tex-
ture and a random box function with random values for a
and b. Theorem 2 tells us that the latter FT features a funda-
mentally different phase composed of uncountably infinite
different values with probability one. We now show that the
phase-only transform can readily distinguish between these
two cases even in the discrete case, as we now illustrate.

3.3. 1D examples

In this section we show a few examples on 1D signals
and give some insights about the behavior of the Phase Only
Transform. We refer to the PHOT here, as the signal that is
transformed back to the spatial domain, after being normal-
ized by the magnitude. As already shown by the 2D exam-
ple, most of the information on edges and sharp peaks is
contained in the phase. If a signal contains a single peak or
edge and a flat region, the phase part of the FFT must be
significant, to allow the sum of trigonometric function to be
flat. On the other hand, if a signal is constructed of a sum
of pure sine or cosine functions of various frequencies with
zero or little phase content, the PHOT will be almost zero.
This is true not only for signals that are periodic within a
finite support. Figure 2 shows such a signal. In Figure 3
we see a sharp peak that requires large phase content. We
conclude that signals (not necessarily periodic) that have

Figure 2. A signal with minor phase content - the PHOT is almost
flat. Top: signal (red) and its PHOT (black). Middle: magnitude
of frequencies. Bottom: phase of frequencies.

a small phase content would yield a smooth PHOT, while
those with large phase content representing a peak or an
edge yield a large peak in the PHOT which corresponds to
the location of the peak or edge in the input signal. As-
suming that a defected signal is composed of sum of sine
function of various frequencies and a peak, the result of the
PHOT is a collection of peaks in the spatial domain that are
localized in the original defect location while the part that
is corresponding to the first term is eliminated. Figure 4
shows a small defect (peak), composed with a sine (or co-
sine) wave. In Figure 5 we show another example on a sig-
nal that appears non-periodic due to the limited domain, yet,
is composed from a sum of trigonometric functions which
are all removed, while the defect remains.

Our model of an input signal is thus composed of two
terms, a non-defected term, A(x) which is a sum of sine or
cosine functions with relatively small phase content, and a
defect term, B(x) which is assumed to be a peak or step
edge, thus contains large phase content:

S(x) = A(x) +B(x)

Since the PHOT eliminates the sum of (low phase con-
tent) sines, we are left mainly with B(x), as expected from
section 3.2. The inverse transform then yields the localiza-
tion of the defect in the spatial domain.

3.4. Thresholding using Mahalanobis distance

In order to be able to use a totally unsupervised method
with no learning phase, we have to assume that for each in-
put image the majority of the image pixels are intact (see
Section 4). In this case, we can use simple statistics. We
use the result of the PHOT as a probability map of a pixel
being a defect. As commonly used, we assume a Gaussian
distribution and use the Mahalanobis distance. We com-
pute the mean and variance of the distribution from the im-
age obtained by the PHOT. Since we normalize each of the
FFT basis when we reconstruct the PHOT image, the global
mean and sigma of the image are now both 1/N where N is



Figure 3. A small defect in a sum of sine curves. Top: signal (red)
and its PHOT (black). Middle: magnitude of frequencies. Bottom:
phase of frequencies.

Figure 4. A defect in a single sine curve. Top: signal (red) and its
PHOT (black). Middle: magnitude of frequencies. Bottom: phase
of frequencies.

the number of pixels. However, since the noise can be sig-
nificant, we first smooth the PHOT image by a Gaussian
filter and only then compute the mean and variance (we
have used Gaussian of σ = 3.0). The user gives a value
in sense of Mahalanobis distance. We threshold the PHOT
result such that every pixel with a distance larger than this
value is considered as a defected pixel. Figure 6 shows an
input image, the PHOT result interpreted as Mahalanobis
distance from the mean and the thresholding result using a
Mahalanobis distance of 4.0. Of course, once the result of
the PHOT is obtained, any other statistical method can be

Figure 5. Non periodic (but with little phase) signal and a defect
(large phase content). Top: signal (red) and its PHOT (black).
Middle: magnitude of frequencies. Bottom: phase of frequencies.

Figure 6. Image in the process of defect detection: left - input
image, middle - Mahalanobis distance from the mean (multiply by
30 for visualization), right - thresholding using distance 4.0

also used instead of the normal distribution and the simple
Mahalanobis distance.

4. Characteristics and limitations of the Phase
Only Transform

The most appealing characteristic of the PHOT is that it
removes any regularities from the image without the need
to identify peaks in the Fourier domain. Only spikes that do
not correspond to a sum of trigonometric functions inside
the image domain are left. Note that the regularities should
not be presented in the entire image. Every large enough
regular patterns are removed by the transform by normaliz-
ing the resulted complex number by its magnitude. In this
sense, our method is different from those that work only on
periodic patterns. Figure 7 shows an example of image that
has several subpatterns that are regular but the entire image
is not. The only parameter in the threshold on the Maha-
lanobis distance and it is exactly the same in Figures 6 and
7. The result shows that the PHOT has no difficulty in de-
tecting defects in this image. The results look very similar
to the human perception of ”novel pattern”. The entire im-
age is not regular but contains patterns that in some way
similarly perceived. We should note here that this can be



Figure 7. Non regular patterns: left - input image, middle - Maha-
lanobis distance from the mean (multiply by 30 for visualization),
right - thresholding using distance 4.0

Figure 8. Limitation of 2D transform: Scratches could not be de-
tected as they are 1D regular.

also considered as a limitation of the method, since large
defects can be viewed as regular subpattern, thus might be
removed by the PHOT.

As can be expected, if we use 2D FFT on the image, ev-
ery periodicity or regularity (or homogeneity) is removed
by the PHOT. This contains also large defected patterns and
1D structures. For example, a defect structured as a line or
scratch in the image, would not be well detected as can be
seen in Figure 8. On the other hand, the same characteris-
tic, can be used (as an advantage) to obtain defect detection
on multiple patterns where nothing has to be known by the
algorithm in advance (”blind” defect detection). In Figure 9
the results of our algorithm on a image that contains two to-
tally different regularities are shown. It can be observed that
the boundary regions between regularities were removed by
the PHOT. This means that 1D long defected patterns may
not be detected. A way to solve this problem is to apply the
PHOT on lines instead on the entire 2D image. This would
work however only in a highly regular patterns. We will
investigate this direction in the future.

5. Complexity and real time performance
In many inspection system that apply defect detection al-

gorithms for quality assurance, the time performance of the
algorithm is critical as it might be used in a real manufac-
turing process. As can be easily concluded from our algo-
rithm, the complexity is O(n log n) where n is the number
of pixels in the input image. This, of course, comes from
the DFT that we have to apply. The further processing and
statistics is obviously linear with n. For very large or con-
tinuously inspected patterns, one can apply the algorithm
on partial sub-windows without affecting the detection per-

Figure 9. Multiple patterns: top - input image, bottom - threshold-
ing using distance 4.0

formance substantially . It is also very simple to implement
the algorithm on parallel machines by decomposing the in-
put. We successfully implemented the algorithm on a GPU
(Graphics Processing Unit) with Nvidia CUDA. The FFT is
also quite fast in practice and effective parallelization exists
using Intel’s SSE2 and SSE3 instructions.

6. Results
We implemented the algorithm using C++ and Visual

Studio. the results on a large set of images are shown in
Figures 10. All the results were obtained using the same
parameter for thresholding the Mahalanobis distance (4.0).
No other parameter is needed for our algorithm. The sensi-
tivity of the algorithm can be changed by the user by alter-
ing the Mahalanobis threshold.

6.1. Multiple subpatterns and arbitrary patterns

As already mentioned in Section 4, our method does
not require that the entire inspected pattern be regular. It
can process many sub-patterns simultaneously. In fact, the
PHOT is a detector for novel patterns. It emphasizes pat-
terns that do not appear much in the image. It is worth
noting that we do not assume anything about the size of
the pattern so it can vary. In Figure 11 an image contain-
ing many texture patches of different size and regularities is
proceeded and the result (using Mahalanobis threshold 4.0)
is shown on the right. The synthetic defect almost invisible
by eye in the image is detected since it is novel. Another
spike on top of the image is also detected. In Figure 12 a
scene that contains a house with textured roof is shown. The
image contains textures as well as homogeneous and irregu-
lar regions. The synthetic defect as well as the novel pattern
of the lamp on the right are well detected.

6.2. Images with no defects

We tested our simple adaptive threshold on input images
which are texture patches without any defect. The purpose



Figure 10. Results on various patterns: in each of the three columns, left - input image, right - results by thresholding using distance 4.0

Figure 11. Multiple textures of various size and regularities and a
synthetic defect: top - input image, bottom - thresholding using
distance 4.0

Figure 12. Arbitrary scene with synthetic defect: top - input image,
bottom - result

of this test is to verify that the method does not produce
false positives. We used exactly the same parameter as in



Figure 13. Images with no defects: left - input image, middle -
PHOT result (multiplied by 30 for visualization), right - result us-
ing threshold of 4.0

all other tests, namely, a Mahalanobis distance = 4.0. In
Figure 13 we show two texture patches which are not quite
regular (to make the test more difficult), their PHOT results
and the output using threshold equal to 4.0. It can be seen
that no false positive defects were produced for either in-
puts. It can be observed in the PHOT result (middle), how
the strength of the response is related to the perception of
”novelty”. Although no pixel exceeds distance 4.0, some
regions have larger response correlated to the measure of
their regularity.

7. Conclusions

A novel method for defect detection on surface patches
was presented. The main advantage of the new algorithm
is its extreme simplicity (it consists manly of a standard
FFT), its generality to work for various pattern without prior
knowledge and the fact that it is unsupervised. We gave
theoretical justification for a reasonable model. We show
results on a large set of inputs and the results are very sim-
ilar to the perception of defects where no prior information
is given. The new algorithm has only one parameter which
is the sensitivity of the algorithm. It is an advantage in real
inspection systems, where ease of use is important. The al-
gorithm is also fast in practice and can be used in real time
systems. Moreover, parallelization of the algorithm can be
easily obtained by simply subdividing the input.
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