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Abstract: This paper presents a novel approach to design
and optimize geometric nonlinear springs for wideband
vibration energy harvesting. To this end, we designed a
spring with several folds to increase its geometric non-
linearities. A numerical analysis is performed using the
Finite Element Method to estimate its quadratic and cu-
bic spring stiffness. A nonlinear effective spring constant
is then calculated for different values of the main folding
angle. We demonstrate that this angle can increase non-
linearities within the structure resulting in higher band-
widths, and that it is possible to control the behavior of the
system to have softening-type or hardening-type response
depending on the choice of the folding angle. Based on
the Lindstedt-Poincaré perturbation technique, a first or-
der approximation is determined to predict the frequency-
response of the system. In order to validate the perturba-
tion analysis, numerical solutions based on long-time inte-
gration method and mixed VHDL-AMS/Spice simulations
are presented. Finally, this method is applied to a previ-
ously published device and shows a good agreement with
experiments.

Keywords: Energy harvesting, nonlinear response, fre-
quency response curve, perturbation method.

Zusammenfassung: Dieser Artikel präsentiert einen neu-
artigen Ansatz zum Entwurf und zur Optimierung geo-
metrischer nichtlinearer Federn für die Energiegewinnung
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durch Breitbandvibrationen. Zu diesem Zweck verwen-
den wir ein gefaltetes Balkendesign. Wir fügen einen Fal-
tungswinkel im Hauptstrahl hinzu, um seine geometri-
schenNichtlinearitäten zuerhöhen. EinenumerischeAna-
lyse wird unter Verwendung der Finite-Elemente-Methode
durchgeführt, um ihre quadratische und kubische Feder-
steifigkeit abzuschätzen. Eine nichtlineare effektive Feder-
konstante wird dann für verschiedene Werte des Faltwin-
kels berechnet. Wir zeigen, dass dieser Winkel Nichtlinea-
ritäten innerhalb der Struktur erhöhen kann, was zu hö-
heren Bandbreiten führt, und dass es möglich ist, das Ver-
halten des Systems so zu steuern, dass je nach Wahl des
Faltwinkels eine Antwort vom Erweichungstyp oder vom
Härtungstyp erhalten wird. Basierend auf der Lindstedt-
Poincaré-Störungstechnik wird eine Näherung erster Ord-
nung zur Vorhersage der Frequenzantwort des Systems
bestimmt. Um die Störungsanalyse zu validieren, werden
numerische Lösungen basierend auf der Langzeit-Integra-
tionsmethode und gemischten VHDL-AMS/Spice-Simula-
tionen vorgestellt. Schließlich wird diese Methode auf ein
zuvor veröffentlichtesGerät angewendet und zeigt eine gu-
te Übereinstimmung mit Experimenten.

Schlagwörter: Energy Harvesting, nichtlineare Antwort,
Frequenzantwortkurve, Perturbations-Methode.

1 Introduction

The use of environmental vibrations as a source of energy
to feed autonomous systems was demonstrated by many
researchers in the last decade. However, the vibrations
coming from the surrounding environment are not con-
trollable; moreover, they are often non-harmonic, random
and broadband. In this framework, the use of linear-like
response energy harvester with narrow frequency band,
are not appropriate even if these transducers propose high
electromechanical coupling coefficients. The idea behind
introducingnonlinear energy-harvester is to overcome this
drawback by increasing the bandwidth of the system in
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terms of mechanical response and thus allowing a better
energy conversion for the case of wideband or variable vi-
bration sources.

Several mechanisms can be used to introduce nonlin-
earities in energy harvester. The nonlinearity could have,
in general, one of the following origins: geometrical [1],
material [2, 3] or boundary conditions (force [4] or dis-
placement [5]). Other kind of nonlinearities could also
be found in multiphysical systems such as piezoaeroe-
lastic energy harvesters [6] or nonlinear electronic inter-
faces [7]. Despite the source of nonlinearity, the nonlinear
behavior describing these energy harvesters can be cate-
gorized into two basic mechanisms: monostable [2] and
bistable systems [8]. The second category is characterized
by what is known as snap through solutions that can ex-
hibit large amplitude of motion and thus generates more
energy. However, the control of this kind of systems is com-
plicated [4] and subject to high sensitivity to initial condi-
tion. Therefore, the use of monostable systems is, in this
regards, more reliable. Other kind of nonlinearity can be
taken into account such as fractional damping that in-
duced chaotic response as demonstrated by Cao et al. [9].
Fractional order physical properties have been used also
by Kwuimy et al. [10] to different kind of energy harvesters.
On the other hand, cubic nonlinear damping using de-
layed feedback velocity has been introduced by [11] to im-
prove the response of a generic energy harvesting system.

Using bistable systems,many research groups have at-
tempted to enable collecting energy from non-harmonic
vibrations and random vibrations. For instance, Cottone
et al. [1, 4] proposed to use bistability in order to collect en-
ergy efficiently. It was achieved by combining two opposite
magnets andapiezoelectric invertedpendulum.Under ap-
propriate conditions, the nonlinear devicewas able to har-
vest 6 times more energy than a linear one. Similar ap-
proaches have been proposed by Erturk et al. [8] and Stan-
ton et al. [12]. In the absence of external magnetic forces,
buckled beams can also be used to generate dynamical
bistabilities, using piezoelectric [13, 14] or electromagnetic
[15] transduction.

For monostable systems, the nonlinearity is, in most
of the cases, due to large displacements. Which is very
common in microsystems because of scale effect. Vibra-
tion Energy Harvester (VEH) are also subject to this kind of
nonlinearity. This nonlinearity is in general of the Duffing
type [16]. It leads to possibly large bandwidth. However,
increasing the bandwidth in this case will be toward high
frequencies because of cubic positive nonlinearity, which
is undesirable for microscale VEH because its natural fre-
quencies are already high due to scale effect and ambient
vibrations tend to be low. Next we present some of the re-

cently proposed similar designs and their respective essen-
tial findings.

Hajati and Kim [17] designed a clamped-clamped
MEMS piezoelectric VEH allowing wide-bandwidth with
Duffing-type resonance. They showed that a power den-
sity of 2µW/cm3 could be achieved. Using an electro-
magnetic energy harvester with Duffing-type nonlinearity,
Green et al. [16] tested its performance when subjected to
a broadband white noise base acceleration. They showed
analytically and experimentally that the optimum load is
different to the one calculated by impedancematching. In-
corporating a stop-end to their flexible structure with in-
terdigitated electrodes, Basset et al. [18] designed an elec-
trostatic energy harvester working over the range of 140 to
160Hz and producingmore than 2µW. The nonlinear elec-
tromechanical coupling due to the presence of the elec-
trostatic force was modeled by Mahmoud et al. [19] for
an interdigitated VEH design. They proposed design rules
for realizing wideband electrostatic VEHs, and developed
closed-form formulae for the extracted power under mod-
erately large excitations.

Under the monostable system behavior, other re-
search groups proposed the use of deliberately nonlin-
ear structure that exhibit nonlinearity even at relatively
low displacements. Marzencki et al. [20] presented a non-
linear MEMS VEH based on clamped-clamped piezoelec-
tric beam leading to a hardening-type behavior due to
midplane stretching. Miki et al. [21] fabricated a micro
electret generator based on nonlinear springs made of
parylen. Nguyen [22, 23] used asymmetric, effectively soft-
ening springs, to harvest energy under colored noise exci-
tations. Tvedt et al. [5] presented an electrostatic VEH that
can have both hardening and softening behavior depend-
ing on the excitation levels: the hardening-type behav-
ior of four cantilever-guided beam was achieved thanks
to large displacements. However, the observed softening-
type response was attributed to the stresses due to pack-
aging without validation. Soliman et al. [24] and Phu and
Halvorsen [25] used piecewise oscillators with a harden-
ing behavior induced by impacts with stoppers to increase
the bandwidth. The same idea was used by Stoykov et al
for a piezoelectric energy harvester [26] and by Borowiec
et al. [27] with an electromagnetic transduction mecha-
nism. A softening behavior has been obtained thanks to
electrostatic nonlinearities and mechanical stoppers by
Guillemet et al. [28] and Cottone et al. [29].

In this work, we present a strategy to analyze the de-
sign parameters of a nonlinear springs with cubic and
quadratic nonlinearities that can provide either softening-
type or hardening-type behaviors. The objective is to de-
velop an analytical tool that generates easily the non-
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Figure 1: Layout of the proposed nonlinear spring to be used for
energy harvesting application.

linear dynamic response for different design parameters
of the nonlinear spring. An angle α is introduced in the
main beam of a crab-leg flexure. Depending on the an-
gle value, the spring can have either hardening or soften-
ing behavior. This paper is organized as follows. In sub-
section 2.1, we present the design of the nonlinear spring
and the lumped model of the energy harvester. A numeri-
cal stiffness analysis is presented in subsection 2.2 and the
frequency-response of the system is analyzed in subsec-
tion 2.3. In section 3, we compare experimental measure-
ments from [22] with the numerical analysis presented in
section 2.

2 Mechanical spring design and
analysis

In this section, we analyze the introduction of an angle α
in the main spring beam of a crab-leg flexure (Figure 1).
Firstly, we present the simplified dynamical model of the
nonlinear oscillator. A third order Taylor series expansion
is used in order to approximate the spring restoring force
as a function of the displacement. Then, the spring con-
stants are evaluated using Finite Element Method (FEM).
Finally, we use the Lindstedt-Poincaré Perturbation Tech-
nique (LPPT) to evaluate the frequency-response of the
system. For the best of our knowledge, this is the first time
the LPPT is used for this kind of systems.

2.1 Dynamical model

The studied vibration-driven energy harvester consists of
an inertial mass m, a nonlinear spring and a mechanical
damper b (Figure 2). The nonlinear spring’s restoring force

Figure 2: Simplified dynamical model of the vibration-driven energy
harvester including the nonlinear spring.

FR is defined by its constants k1, k2 and k3 in the displace-
ment x by:

FR = −(k1x + k2x
2 + k3x

3) (1)

We consider that the oscillator as a single degree of
freedom lumped system. When the rigid frame vibrates
with acceleration aext, the mass moves with respect to the
rigid frame; producing a relative displacement x(t). As an
example for this analysis, we use typical dimensions and
design rules based on the MEMS VEH described in [30].
The inertial mass is 1 cm×1 cm×380µm in dimensions. We
assume that viscous-air damping is the predominant en-
ergy dissipation mechanism in the structure and that it is
linear, i. e., the mechanical damping force is proportional
to the velocity and the total damping force FD can be writ-
ten as follows

FD = −bẋ (2)

where the over dot designate derivative with respect to
time.

Newton’s second law gives the equation of motion of
the nonlinear oscillator. It is written as

FR + FD + Fext = mẍ (3)

where Fext = −maext is the inertial force term.

2.2 Numerical spring constant analysis

Each segment of the spring (Figure 1) is 30µminwidth and
380µm in thickness. The total length of the spring is l =
2mm. In case of large displacements, the spring force FR
is not proportional to x due to geometric nonlinearities.
So, we take a third order Taylor’s series expansion of the
nonlinear restoring force given by Equation (1) where k1 is
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the normal linear spring constant, k2 and k3 are the second
and the third order corrections, respectively. Those con-
stants depend on spring dimensions, geometric parame-
ters α and a, and the boundary conditions.

An FEM commercial package (ANSYS) is used to deter-
mine the displacement-force curves for different angles α
and a. The length b is 100µm. This segment helps to keep
a low stiffness in the springwhile having nonlinear behav-
ior. Each beam segment is modeled by 40 elements. A hor-
izontal displacement is applied on the guided-end gradu-
ally. The value of spring force is then determined for each
load increment. The force-displacement curve is plotted in
Figure 3 for a set of angles and for a = 100µm. The curves
are asymmetric due to the asymmetry of the spring geome-
try and orientation. It can be seen that the curves are linear
only for small displacements.

Figure 3: Force-displacement curves of the nonlinear spring ob-
tained by FEM for various values of α, a = 100µm.

The spring constants k1, k2 and k3 are numerically
evaluated using the following optimization formulation
based on the Least Square Method [31]:

min
k1 ,k2 ,k3

m
∑
i=1
(FRi − (k1xi + k2x

2
i + k3x

3
i ))

2
(4)

where xi is the displacement from the equilibriumposition
and FRi is the restoring force at displacement i. The objec-
tive of this method is to find the best (k1, k2, k3) that min-
imize the quadratic error for each angle. Figure 3 shows
the FEM points (with markers) versus the cubic approxi-
mations (dashed lines) for α = 100∘, 150∘, 170∘ and 200∘.
An excellent agreement with absolute error less than 1%
is observed.

The obtained fitted spring constants to the FEM re-
sults are shown in Figures 4. It can be seen that all the
curves are asymmetric because of the asymmetry of the
spring. In addition, themost significant region is observed
for α between 140∘ and 200∘. The linear spring stiffness k1

Figure 4: Linear and nonlinear spring constants for the proposed
nonlinear spring design obtained from Finite Elements Method for
different values of a and α. (a): k1, (b): k2; (c): k3.

is maximum around α = 190∘ while the highest levels of
quadratic and cubic nonlinearities correspond to α = 180∘

and α = 160∘, respectively. One can observe that for high
values ofa, the cubic nonlinearity is relativelyweak. It also
can be seen that the angle α can lower the value of lin-
ear spring constant k1. Finally, it is interesting to note that
the rangewhere α generates higher cubic nonlinearity cor-
responds also to a lower linear stiffness inducing a lower
natural frequency. This is suitable to energy harvesting ap-
plications where low frequency and large bandwidth are
sought.

2.3 Frequency response

To study the effect of the springnonlinearities on the band-
width of a VEH, we will now determine the frequency-
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response of the system using perturbation analysis. To
limit rotationalmodes, the 1 cm2 siliconmass is suspended
by 4 identical nonlinear springs. The equation of motion
can be written out as

mẍ + bẋ + k̂1x + k̂2x
2 + k̂3x

3 = −maext (5)

where (k̂1, k̂2, k̂3) are the equivalent spring constants:
(k̂1, k̂2, k̂3) = 4 × (k1, k2, k3). In the following, for conve-
nience, we will drop the hats from the equivalent spring
constants. Equation (5) contains cubic and quadratic non-
linearities. Several possible perturbation techniques can
be applied in order to determine an analytical approxi-
mation of the frequency-response for nonlinear oscilla-
tions. Some methods are based on the nonlinear expan-
sion of the amplitude like the straightforward expansion
approach. But those methods are doomed to fail because
they do not take into account that the resonant frequency
becomes a function of the oscillation amplitude [32]. In
this paper, we analyze the dynamics of the system by us-
ing the Lindstedt-Poincaré Perturbation Technique (LPPT)
which gives a similar result as theMethod of Renormaliza-
tion, but with less algebra [32]. In order to validate the per-
turbation approach, numerical solutions given by Long-
Time Integrationmethod using a Runge-Kutta scheme and
VHDL-AMS simulations are also presented.

2.3.1 Lindstedt-Poincaré perturbation technique

The fundamental idea of the LPPT is the observation that
the nonlinearities alter the resonance frequency of the sys-
tem from the linear one ω0 = √

k1
m to ω耠0(ϵ), where ϵ is the

perturbation parameter [33]. Far from resonance, the non-
linearities can be neglected and the time harmonic linear
vibration amplitude X(ω) can be written as

X(ω) = aext(ω)

√(ω2 − ω0
2)2 + (ωω0

Q )
2

(6)

whereQ = ω0
m
b denotes the linear quality factor andω the

excitation frequency.
Near resonance, the frequency-response can be ap-

proximated using the LPPT. We first consider unforced-
undamped vibration problem given by:

mẍ + k1x + k2x
2 + k3x

3 = 0 (7)

We introduce the perturbation parameter ϵ and as-
sume that the nonlinear terms in Equation (7) will change

the resonance frequency toω耠0(ϵ), we introduce the follow-
ing transformations [34]:

τ = tω耠0, k2 = ϵλm, and k3 = ϵ
2γm (8)

Also we assume that x and ω耠0 can be expanded in
powers of ϵ:

{
x = x0 + εx1 + ε2x2 + ...
ω0

耠 = ω0 + εω1 + ε2ω2 + ...
(9)

Substituting Equations (9) and (16) into Equation (7),
expanding the results and keeping only terms to O(ϵ3),
equating the coefficients of like powers of ϵ to zero yields:

ω2
0x0,ττ + ω

2
0x0 = 0 (10)

ω2
0x1,ττ + ω

2
0x1 = −λx

2
0 − 2ω0ω1x0,ττ (11)

ω2
0x2,ττ + ω

2
0x2 = −λx0x1 − γx

3
0 − (2ω0ω2 + ω

2
1)x0,ττ

− 2ω0ω1x1,ττ (12)

The solution of Equation (10) can be expressed as

x0 = X cos τ (13)

Replacing Equation (13) into (11) and requesting that
secular terms should be eliminated, yields the condition
ω1 = 0. Therefore, the solution of Equation (11) is given by

x1 =
λX2

ω2
0
(−

1
2
+
1
6
cos 2τ) (14)

Nowusing Equation (14) and (13) into (12), eliminating
the secular terms leads to

ω2 = (
3
8
γ − 5

12
λ2

ω2
0
)
X2

ω0
(15)

Recalling thatω0
耠 = ω0+ε2ω2+O(ϵ3), and using Equa-

tion (8) we end up with ω0
耠 = ω0 + κX2, where κ denotes

the effective nonlinear spring constant that measures the
change of the resonance frequency, it is given by:

κ =
3k3
8k1

ω0 −
5k2

2

12k1
2ω0 (16)

Figure 5 illustrates the obtained results for κ. It can
be seen that when a increases, the nonlinearity decreases
and the nonlinearities become very small when a exceeds
400µm. For a = 100µm, the best angle that maximizes
nonlinearities is α = 170∘.

Figure 6 shows the first harmonic of the frequency-
response for an oscillator with a = 100µm under sinu-
soidal excitations for different values of α. The input accel-
eration amplitude is 1 g. All curves are normalized with re-
spect to the frequency and amplitude corresponding to α =
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Figure 5: Variation of the effective nonlinear spring constant κ, ob-
tained by LPPT, versus α the folding angle of the spring, for several
value of a.

Figure 6: Normalized frequency-response curves of the system un-
der harmonic excitation using LPPT, 1 g acceleration amplitude, for
various values of α (a = 100µm, normalization is done with respect
to the response when α = 180∘).

180∘. The largest bandwidth is associated with the highest
value of the nonlinear spring constant κ, i. e. α = 170∘.

It is interesting to note that the frequency-response
curve of different angle α can be lower or higher the
frequency-response curve of the straight spring configura-
tion, e. g. α = 180∘. In addition, by varying the angle α,
both softening andhardeningbehaviors are obtained. This
is explained by the presence of quadratic and cubic non-
linearities in the spring restoring force expression. Three
scenarios are possible, depending on the sign of:
1. If the impact of quadratic stiffness neutralize the effect

of the positive cubic stiffness ( 3k38k1
≈ 5k2

2

12k1
2 ). In this case,

the oscillator behaves linearly; which is the case for
α = 100∘.

2. If the impact of cubic stiffness is stronger than the one
of quadratic stiffness ( 3k38k1

> 5k2
2

12k1
2 ), becomes strictly

positive and the system will have the hardening-type
behavior; which is the case of α = 150∘ or 160∘ for in-
stance.

Figure 7: Comparison between the frequency-response curves of the
system obtained by VHDL-AMS, LTI and LPPT (α = 170∘, Q = 50,
aext = 0.5 g).

3. If the influence of cubic stiffness is weaker than
the one of quadratic stiffness ( 3k38k1

< 5k2
2

12k1
2 ), becomes

strictly negative and the system will have a softening-
type behavior; which is the case of α = 170∘ or 180∘.

In order to validate the perturbation analysis, Long-Time
Integration (LTI) Method and mixed VHDL-AMS/Spice
simulations are performed. In fact, VHDL-AMS is an in-
dustry standard (IEEE standard 1076-1993 and IEEE Std.
1076.1-1999) hardware description language used to model
mixed signal circuits, it is combined here with SPICE, the
famous electronic circuit simulator. These tools are used
in general in the microelectronic industry to model mixed
electric/non-electric designs. The LTI method consists of
integrating Equation (5) numerically for a long time using
the Runge-Kutta method. This method can only locate sta-
ble solutions. In addition, the simplified dynamical model
of the energy harvester is implemented using VHDL-AMS.
Then, this model is included in an Eldo circuit and the
whole problem is simulated using ADVanceMS simulator
for both direct and reverse frequency sweeps [35]. Figure 7
shows the frequency-response of the system given by the
three techniques. The results are very similar for the dif-
ferent approaches. However, a difference is observed for
high displacement. This can be explained by the fact that
we considered only the first harmonic when we used the
LPPT.

3 Experimental study

3.1 Description of the device

In this section, we apply the previous methodology on an
in-plane overlap electrostatic-VEH (e-VEH) developed pre-
viously in [22].

Authenticated | philippe.basset@esiee.fr author's copy
Download Date | 9/2/18 4:33 PM



M. Amri et al., Stiffness control of a nonlinear mechanical folded beam | 559

Figure 8: Schematic view of a MEMS in-plane overlap e-VEH with
four nonlinear springs used as suspensions of the inertial mass.

Figure 9: Geometry and dimensions of the nonlinear folded spring.

Figure 8 presents a schematic viewof aMEMS in-plane
overlap energy harvester. It is made of a silicon inertial
mass m = 35.25mg suspended by four angled springs and
two electrostatic transducers to extract themechanical en-
ergy of the harvester and convert it into electric energy. A
full description of the device can be found in [22]. Next, the
lumped model of the energy harvester is presented and a
comparison between the LPPT and the LTI solutions is pre-
sented.

3.2 The nonlinear spring force

Figure 9 shows a schematic view of the angled spring.
Nonlinearities are achieved through the angle intro-
duced in the main beam. Figure 10 shows the force-
displacement curve obtained from FEM analysis. One can
see that the response of the angled spring is not sym-
metric. For this reason, two asymmetrical electromechan-
ical transducers are used to convert a part of the me-
chanical energy into electrical form. A third order approx-
imation is proposed in order to represent the restoring
force:

FR = −(k1x + k2x
2 + k3x

3) (17)

The obtained coefficients are the following: 4.1147 ×
102 N/m, 7.1544 × 106 N/m2 and 5.6955 × 1010 N/m3 for k1,
k2 and k3 respectively.

Figure 10: Variation of the force developed by the nonlinear spring
as a function of the tip displacement using FEM and compared to a
fitted cubic polynomial function.

Figure 11: Schematic view of the conditioning circuit to be used with
the proposed e-VEH.

3.3 Conditioning circuit

Figure 11 shows the circuit used to extract energy from
the VEH. This lumped model is characterized by one me-
chanical degree of freedom x which represents the mass
displacement and two electrical degrees of freedom; the
chargesq1(x)andq2(x)on thevariable capacitor electrodes
C1(x) and C2(x), respectively. The variable capacities corre-
sponds to transducer 1 and 2 in Figure 8.

Let m be the mass of the system. We denote by FD =
−bẋ, FElec and FExt = maext the damping force, the elec-
trical force induced by the transducers and the excitation
force, respectively. The differential equations describing
the motion of the system and the charge variation in the
two capacitors are derived using Newton’s second law and
Ohm’s law as follows:

{{{
{{{
{

mẍ = FD + FR + FElec + FExt
RL1

dq1
dt +

q1
C1(x)
= Ve

RL2
dq2
dt +

q2
C2(x)
= Ve

(18)

whereRL1 andRL2 are the load resistances on the transduc-
ers 1 and 2, respectively.
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The fingers of the two electrodes are assumed to be
rigid and parallel. For C1(x) and C2(x) we use the parallel-
plate form with an additional parasitic capacitance:

{
C1(x) = Cp +

C01
x01
(x01 + x)

C2(x) = Cp +
C02
x02
(x02 − x)

(19)

where Cp represents the parasitic capacitances in circuit 1
and 2 (which are equal in this case), and C01 and C02 are
the nominal transducer capacitances that depend on the
transducer geometry [21]. This form can at least partially
account for some fringing field effects if the parameters are
obtained numerically or from measurements.

3.4 Simplified dynamical model

For this In-plane Overlap e-VEH with low bias voltage,
the electromechanical coupling is very weak. Hence, the
electrostatic forces can be ignored and the dimensionless
differential equation describing the motion of the inertial
mass can be written as:

mẍ + bẋ + k1x + k2x
2 + k3x

3 = −maext (20)

Figure 12 shows the peak output voltage on one trans-
ducer as a function of frequency under the frequency
sweep at the peak acceleration amplitude of 0.11 g. The
simulation curve is obtained by integrating the simplified
equation of motion (Equation (20)) based on Finite Differ-
ence Method (FDM). A good agreement can be observed
compared to experimental results. Hence, electrical forces
will be ignored in the rest of the paper.

3.5 LPPT versus experimental results

In this part, a comparison between the experiments and
the perturbation approach is presented. We conclude
the displacement x of the proof mass from experimental
data using an explicit scheme (Forward Finite Difference
Method). To do so, we integrate the following equation
where the unknown variable is x:

RL1
dq1
dt
+

q1
Cp +

C01
x01
(x01 + x)

= Ve (21)

Using the spring constants obtained from Figure 10,
we have found a good agreement between the measured
signal and theLPPT inaqualitativepoint of view.However,
the bifurcation points of the curves did not agree. In or-
der to avoid this problem, we have fit the spring constants

Figure 12: Peak output voltage on transducer 1 versus frequency
(chirp rate: 2.667Hz/s, RL1 = 18Mω, RL2 = 17.2Mω, bias voltage =
24.6 V and maximum peak acceleration amplitude = 0.11 g, Q = 50.

Figure 13: Displacement of the inertial mass versus frequency (fre-
quency rate: 2.667Hz/s, RL1 = 18Mω, RL2 = 17.2Mω, Bias voltage =
24.6 V and maximum acceleration amplitude = 0.11 g [22]).

of the model until the responses agree. The obtained re-
sults are shown in Fig. 13. The LPPT curve presents stable
and unstable solutions of the first harmonic while exper-
imental curve presents only stable solutions of a reverse
frequency sweep cycle. The experimental curve is almost
under the envelop of the theoretical resonance obtained
from LPPT. The main difference is that the DC shift ap-
pearing for high displacement amplitude is not taken into
account in the LPPT curve. This is expected because only
the first harmonic is considered in the perturbation tech-
nique.
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4 Conclusion

In this paper, we investigated a new strategy to design
and optimize nonlinear springs for wideband VEHs. We
were particularly interested in its intrinsic geometric non-
linearities that appear when the structure exhibits large
displacements. Those nonlinearities are included to the
dynamics of the system thanks to a folded beam design
with a folding angle α. FEM analysis was used in order
to estimate the behavior of the springs under relatively
large displacements. The spring restoring force is then ap-
proximated by a third order polynomial function. It ap-
pears that α adds both quadratic and cubic nonlinearities
to the behavior of the system. A perturbation analysis is
performed in order to predict the impact of α on nonlinear
oscillations. We used a first order approximation based on
the Lindstedt-Poincaré perturbation technique andwe an-
alyzed the frequency-response for different values of the
angle α. Tuning of the softening and hardening-types be-
haviors of the nonlinear spring have been obtained by
controlling the angle α through the effective stiffness. Nu-
merical solutions based on Long-Time Integration method
and VHDL-AMS are performed to valid the perturbation
method. The proposed approach is applied to the case
of an In-plane Overlap e-VEH with folded beam. A good
agreement is observed between experimental measure-
ments and the theoretical results obtained from our per-
turbation analysis. The proposed design and the accompa-
nying analytical solution, based on the Lindstedt-Poincaré
perturbation technique, can be used to improve existing
energy harvesting designs where only linear springs have
been used.
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