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Abstract—In this paper, we explore and describe the electro-
mechanical coupling which results from eKEH conditioning
circuits implementing a rectangular QV cycle, including but
not limited to the charge pump and Bennet’s doubler circuits.
We present numerical and semi-analytical analyses describing
the nonlinear relationship between the oscillating mass and the
conditioning circuit. We believe this is a poorly understood facet of
the device and, as we will portray, affects the potential harvested
energy. An approach to determine the frequency shift due to the
electromechanical coupling is presented and compared with novel
experimental results. We provide some examples of bifurcation
behavior and show that the only source of nonlinearity is in the
coupling between the electrical and mechanical domains. This
work continues from the electrical analysis presented in Part 1,
providing a full insight into the complex behavior of the electro-
mechanical coupling.
Index Terms—Bifurcation analysis, electromechanical coupling,

electrostatic kinetic energy harvesters, multiple scale methods,
steady-state oscillations.

I. INTRODUCTION

A S AN electrostatic kinetic energy harvester (eKEH) is a
type of transducer, converting mechanical vibrations into

electrical energy [1]–[4], an understanding of the relative effects
caused by both physical domains provides a greater insight into
how the system operates and so how it may be optimized.
Due to the use of a variable capacitor, eKEHs require an ini-

tial biasing. This can be provided in the form of an electret or
some power source. In either case, once an electrical bias is
placed across the capacitive plates (which oscillate freely with
the external mechanical vibrations when unbiased) the eKEH
experiences electromechanical coupling.
There are three general families of eKEH conditioning cir-

cuits which can be grouped according to the QV cycle they im-
plement: the tear drop QV cycle [5], [6], triangular QV cycle
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[7]–[9], and the rectangular QV cycle [10]. The work in [11]
presents a detailed qualitative comparison between the convert-
ible energy available to each configuration.
Building on the electrical analysis of the circuit presented in

Part 1, in this work, we will present the full coupled electro-
mechanical system and its analysis. In the electrical analysis we
normally assume that the maxima and minima of are known,

and respectively. In reality and are de-
fined by the amplitude of the resonator displacement which is
not known a priori. Indeed, the resonator displacement depends
on the external mechanical force, structure of the resonator and
the electrical force of the transducer, generated by the condi-
tioning circuit. To have a full picture of the coupled electrical
and mechanical domains, the system in both domains should
be considered in some unified analysis. Very few works have
addressed the coupling between the electrical and mechanical
forces in eKEHs [12] and to the authors' best knowledge, no
such analysis has been undertaken for conditioning circuits im-
plementing a rectangular QV cycle (e.g., the Bennet's doubler
[13]).
This study is applied to any conditioning circuit imple-

menting a rectangular QV cycle. The generality of this study
can be explained as follows: for a fixed rectangular cycle and
given transducer configuration , the transducer force
is fixed . Therefore the electromechanical
energy conversion and mechanical behavior is not sensitive to
the particular architecture of conditioning circuit as far as the
rectangular QV cycle is implemented.
In this study we have chosen the charge pump with resistive

flyback [14] for three reasons: i) it implements a rectangular QV
cycle, ii) by accurately choosing the resistive load this configu-
ration canmodel the behavior of the charge pumpwith inductive
flyback [10], [15], [16] or of the Bennet's doubler, and iii) it is
suitable for analytical analysis. Therefore, while this article is
presented in terms of the charge pump conditioning circuit, the
analysis is universal to all conditioning circuits implementing
the rectangular QV cycle.
Analytical and semi-analytical methods not only provide val-

idation of the numerical simulations but also provide a greater
understanding of the system dynamics, and where numerical
simulations are generally long computer intensive operations,
analytical and semi-analytical models allow faster solutions of
the system and the possibility of multi-parameter analysis.
We examine the nonlinear behavior in the system and de-

velop an analytical event driven model to aid numerical re-
sults. The system is examined using theMultiple Scales Method
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(MSM) perturbation technique, treating the eKEH as a non-
linear oscillator with a nonlinear transducer force. The applica-
tion of perturbation techniques allows us to determine the tran-
sient and steady-state dynamics for multi-parameter simulations
and gives a greater understanding of the system operation.
The original measurements used for the validation of this

study were done with the experimental set-up presented in [16].
This work implemented, for the first time, a charge pump with
inductive flyback employing a fabricated MEMS device. The
used MEMS device was characterized in [5].
In this paper the layout is as follows. In Section II the three

coupled mechanical models are presented. The Multiple Scales
Method analysis is presented in Section III along with steady-
state oscillations. The nonlinear dynamics which exist in cir-
cuits of this type are presented in Section IV. Section V presents
a novel method for calculating the frequency shift occurring as
a result of the nonlinear coupling. Finally, in Section VI, the re-
sults are compared with experimental results from the fabricated
device.

II. STATEMENT OF THE PROBLEM
In this work we employ three models to describe the system;

a behavioral model of the circuit implemented in the VHDL-
AMS/SPICE environment, a set of differential equations de-
rived from Newton's second law and Kirchhoff's circuit equa-
tions, and a simplified model that was the basis for semi-ana-
lytic results. Consistency between the models was ensured at
each stage of the work by comparing the solutions of the differ-
ential equations and simplified model with the VHDL results.

A. VHDL-AMS/Spice Behavioral Model
The model of the system was achieved using a mixed be-

havioral description implemented in the VHDL-AMS/SPICE
environment provided with the AdvanceMS tool of Mentor
Graphics. The model is realized as follows. The conditioning
circuit is described as an electrical network described by an
Eldo netlist, where Eldo is a commercial variant of SPICE.
The transducer and resonator block is implemented by a
VHDL-AMS model, seen as an electrical dipole behaving as a
variable capacitor [17].

B. Numerical Model
A simple electrostatic harvester consists of a high quality res-

onator, a variable capacitor (transducer) , and a conditioning
circuit (Fig. 1). Thus as the displacement, , of the mobile mass
is affected by both the external vibrations and the transducer
force , it can be described by the following Newtonian equa-
tion

(1)

where is the mass of the resonator, is the damping factor,
is the natural frequency, is the spring constant,

is the acceleration amplitude of external vibrations and
is the frequency of the external vibrations. The overdot

denotes the derivative with respect to time, t. Note that the initial
conditions for the displacement and velocity can be any, and
we can assume them to be zero . The initial
conditions for all voltages are the same:

Fig. 1. Electrostatic kinetic energy harvester employing a charge pump con-
ditioning circuit with resistive flyback. This harvested energy facilitates the
pumping of charges from the large reservoir capacitor, , to the smaller
storage capacitance, , where .

. The transducer force is dependent on (the
mobile mass position) and (the transducer voltage)

(2)

Making use of diode models, capacitor models and applying
Kirchhoff's circuit laws the system can be reduced to a further
three differential equations describing the voltages;

(3)

(4)

(5)

where is the diode model current
[18].
In this paper we consider the symmetrical gap closing trans-

ducer [5], denoted SGC throughout this paper for variables that
are directly changeable with the choice of transducer configura-
tion. This defines the form of the variable capacitance, , and
its derivative, . They are described by:

(6)

where and is the permittivity of a vacuum. To
reduce the number of parameters in the system and outline only
essential ones, the system was normalized

(7)

(8)

(9)

(10)
where , , ,

, , , ,
, , ,
, and is the dimensionless diode model

. The prime denotes the derivative
with respect to dimensionless time . The form of the functions

, and depend on the transducer
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TABLE I
PARAMETERS OF THE SYSTEM

geometry. To present the normalized system of (7)–(10) in a
more general manner, and highlight the transducer dependent
terms, we present the transducer dependent functions sepa-
rately. For the symmetrical gap closing transducer, the terms

, , and are:

(11)

where .

C. Simplified Model

The acceleration amplitude of external vibrations, , the
initial voltage on the capacitors, , and the load resistance, ,
may vary and affect the behavior of the system. We refer to
them as the control parameters of the dynamical system. The
experimental parameters used in this study are listed in Table I.
The simplified model is obtained by reducing the system of

differential equations to one differential (7) with a piecewise
defined transducer force . In order to do this, we take three
assumptions:
• can be assumed constant.
• is constant after the transient process.
• Diodes are ideal with a threshold voltage .

Such a circuit implements, exactly, the rectangular QV cycle
presented in Section II of the Part 1 article.
The first assumption is valid since by the circuit design,

is very large such that the voltage variation across it is indeed
negligible.
Since is significantly larger than , the variation of

the voltage across it is negligible compared to . Therefore,
, however the value of after the transient process

is not known and can be determined by assuming that, after a
sufficient transient has passed, has saturated and so draws
no further current (cf. Section III-B Part 1). Thus equating the
average change in charge on to the average current flowing
through the load , in one cycle, we obtain the following
equation:

(12)

where is the period of driven oscillations and and
are the maximum and minimum values of during one

cycle of oscillations. Note and are functions of the
resonator displacement , as shown in (6), which is a dynam-
ical quantity.

Fig. 2. A generic comparison of the dimensionless obtained from numerical
simulations (red line) and the solution of the improved simplified model (dotted
green line) employing (13). The figure describes the events during one half cycle
of oscillations in the resonator: both diodes are off (stage 1),

the second diode is on (stage 2), both diodes
are off again (stage 3) and the first diode is on (stage 4).

Fig. 3. QV cycle over one oscillation cycle for the charge pump circuit with
resistive flyback. The area enclosed in one cycle is equal to the energy harvested
during that cycle.

The approximation (12), presented in [19], was improved sig-
nificantly by including the threshold diode voltages. The re-
sulting approximation is shown in Fig. 2. The inclusion of the
threshold voltages resulted in the following equation:

(13)

where is the dimensionless diode threshold voltage.
The variable voltage across the transducer can be found by

analyzing one cycle of the resonator oscillations and sequencing
the stages of circuit operation. is approximated as an event
driven oscillation developed as a function of the capacitance.
From Fig. 3 one can see the change of state in at both
and , from D1 on to D1 off and from D2 on to D2 off
respectively. We model over one full cycle of steady-state
oscillations. While the model presented in [19] was a four piece
function, the configuration of the SGC transducer doubles the
frequency of , and therefore , oscillations. Therefore our
model of is an eight part function.
However, to simplify our explanation we will discuss the first

four terms which are simply repeated for the eight part piece-
wise function. Fig. 2 presents a four part approximation, detailed
below, against the corresponding numerical simulation.
Estimating themaxima andminima of as constants, simply

equal to and the four part approx-
imation requires two further and expressions. We achieve
this by finding the analytical solution of for both diodes off
and using it to calculate the times at which it reaches the mag-
nitude of the maximum or minimum . When both
diodes are off, (10) simplifies to:

(14)
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The analytical solution can easily be determined by subbing
into (14), where is the first

approximation for the displacement (see the Multiple Scales
Method in the next section), and solving for :

(15)

where is a constant of integration. The expressions in (15)
describe the behavior of in two regions, and

.
Stage 1 starts at the moment when the capacitance of the

transducer is maximal, i.e., . We denote this mo-
ment of time as , and both diodes are turned off. From
Fig. 3 we can see that, for this scenario, diode 1 has just turned
off. Thus our initial condition for is
and we can therefore calculate from (15). The resulting
expression is in (19).
Stage 2 starts at time . This event occurs when the

voltage reaches the value that is required to turn on diode 2,
i.e., D1 off, D2 on. As we approximate the diodes as an ideal
diode with dimensionless threshold voltage ,

. Therefore we realize the following equation which
allows us to calculate :

(16)

Note that is a function of which is presented in (19).
Stage 3 begins when the capacitance of the variable trans-

ducer reaches its minimal value . The corresponding mo-
ment in time is . As diode 2 has just turned off, the
initial condition for is . As in Stage
1 this allows us to evaluate , from (15), where (in
(19)) is the corresponding expression.
Finally, Stage 4 commences at , which is the moment

at which the voltage across the transducer reaches the value re-
quired to turn on diode 1:

(17)

Thus, as in Stage 2, the time can be calculated by letting the
two knowns equal each other:

(18)

Stage 4 lasts until reaches its maximal value at .
From this point, the piecewise approximation continues with

and found in a similar fashion with the difference being
that they are shifted by . After the eight part solution, the
new cycle of oscillation begins. The analytical terms of the
function are given below:

(19)
where and are two functions in the eight part
piecewise approximation and and represent
two of the switching times. Combining all parts of the piece-
wise approach, we describe the voltage with good accuracy
as shown in Fig. 2. Inserting the piecewise description of

into , in (11), allows a piecewise description of the trans-
ducer force, presented in (21). Thus, the simplified model of the
system is given by the equation:

(20)

.
(21)

where the dimensionless transducer force is scaled by
as described in (11) and the event driven time limits in (21) are:

(22)

This reduces the system of differential equations to one dif-
ferential equation, (7), with a piecewise force . Solving the
system of differential equations, above, is long and computer
intensive thus this approximation is very useful for numerical
solutions also as it greatly reduces the complexity. We can also
use this model to apply the multiple scales method in a similar
fashion as that described in [9].

III. MULTIPLE SCALES METHOD AND STEADY-STATE
OSCILLATIONS

The method of multiple scales (MSM) is an asymptotic
method that is often applied for the analysis of weakly non-
linear oscillators [20], both autonomous and under external
excitation.
The form of the method studied in this work, applied to the

constant charge eKEH conditioning circuit, is derived in full in
[9]. Only terms important to our study are included in this ar-
ticle. It is applicable to all eKEHs, as long as the dimensionless
parameters , , and in (7) are comparatively small rela-
tive to unity, where is the frequency mismatch be-
tween the external driving frequency and the natural resonance
frequency of the resonator. Typical values of the dimensionless
parameters for the real experimental data with (an external vi-
bration amplitude, , and a nominal initial voltage,
, of 20 V) give , and ,

which are clearly small terms.
A requirement of the presented method is that the transducer

force be periodic. It is also advantageous that the system be
high Q, which is the case for narrow band energy harvesters
and so is fulfilled. Please note, however, that this method can
incorporate higher Fourier coefficients and also allows for the
inclusion of mechanical nonlinearities as presented in [21].
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The multiple scales method approaches the eKEH as a simple
resonator with a perturbation term. It then solves this by intro-
ducing different time scales.
As the transducer force is periodic with period it can

be described as a Fourier series and as this is a narrow band
energy harvester the first harmonic of the Fourier series should
be sufficient in approximating :

(23)
The Fourier coefficients for the symmetrical gap closing

transducer are:

(24)

The total solution of can be described by

(25)

where . Obtained by the same method as in [9], the
equations providing information about the transient dynamics of
the system are presented in (26). They describe the slow ampli-
tude and phase of the mobile mass oscillations in the tran-
sient and steady-state modes:

(26)

By setting and and taking a phase we can
combine the steady-state solutions into one equation. The re-
sulting equation provides a solution for the steady-state ampli-
tude of oscillations, :

(27)

In conjunction with (25), we obtain the steady-state solution
of of the form

(28)

where and are the steady-state amplitude and phase of
oscillations. The index “0” is used to emphasize that this is a
steady-state solution. Formally, is a fixed point of
the set (26). Some transducer geometries experience a constant
shift in the oscillations (described by in [9]). However, due
to the symmetry of the SGC device in this study, there is no
average displacement.
According to the Routh-Hurwitz criterion, the point

is stable if the conditions in (29) are met. However, this stability
condition is necessary, but not entirely sufficient.

(29)

Fig. 4. The envelope of oscillations for a sweep of external vibration ampli-
tude comparing the numerical and MSM solutions, for different values
of the small parameter . The numerical solution at (i.e.,

) is shown by the squares. The MSM solution (full black line) clearly
agrees very well in this case. The other two cases represent the same simula-
tion with a difference of . The solutions for are
shown by circles (numerical) and the dashed blue line (MSM). The triangles
(numerical) and dotted red line (MSM) describe the envelope of oscillations for

.

If the conditions, in (29) are not satisfied, the orbit defined by
and is unstable (a saddle orbit). The importance of this sta-
bility will be presented later. The derivation of (29) is presented
in [9].
Envelopes of oscillations for varying external vibration

amplitudes and three different values of (normalized fre-
quency mismatch between external vibrations and the natural
frequency) are presented in Fig. 4. They compare the solution
of the numerical differential equations with the MSM solution.
Solutions of the differential equations were in very close agree-
ment with VHDL/Spice simulations and so can, essentially, be
considered equivalent.
Fig. 4 presents two example cases for compared

with the scenario when . Based on the figure, we verify the
accuracy of the simplified model with MSM to have good ac-
curacy with the numerical models of the system, even for an in-
crease in the magnitude of . Results of the semi-analytic model
are presented in later sections.

IV. BIFURCATION AND COMPLEX BEHAVIOR
For nonlinear oscillators it is established that an increase in

system parameters or in the amplitude of the external force re-
sults in bifurcations of previously stable orbits and, ultimately,
to irregular, chaotic behavior [22].
Without the transducer force, the system described by (1) is

simply a driven oscillator. We can solve this analytically and
thus understand the dynamics, amplitude of vibrations, etc., and
so determine the maximum harvested energies. The nonlinear
force describes the interaction of the mechanical and elec-
trical domains and its presence in (1) results in there being no
closed form solution. The effect of this nonlinearity is essen-
tially the focus of this paper as it is the electromechanical cou-
pling. This is what makes this study universal to all circuits
which implement a rectangular QV cycle as the force “seen”
by the mechanical resonator is equivalent for all similar QV cy-
cles.
Fig. 5 presents a bifurcation diagram depicting the change

of dynamics in the resonator displacement as the amplitude of
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Fig. 5. A bifurcation diagram, taken using a Poincaré section, showing the
changing dynamics in the resonator for a sweep of potential external vibrations

. Note the scale of the oscillations: the stoppers were moved to allow this
study of the nonlinear dynamics.

external vibrations is varied. Note that there are no me-
chanical nonlinearities included in this analysis and yet we find
that the nonlinear damping force results in a period dou-
bling cascade before reaching chaotic behavior. The nonlinear
effect of the non-conservative force is another example of
the complex behavior which results from the electromechanical
coupling in eKEHs.
We can characterize and analyze the change in dynamics pre-

sented in Fig. 5 in many ways. In this study we have calculated
Floquet multipliers and checked Lyapunov stability in the form
of Lyapunov exponents.
Due to spacial constraints we only briefly discuss some of

the techniques used in this study to understand the system dy-
namics. The Floquet multipliers provide an insight into the sta-
bility of the orbit. The orbit is asymptotically stable if there are
no eigenvalues outside the unit circle. If, for some change in
control parameter, a Floquet multiplier leaves the unit circle
it signifies that a bifurcation has occurred. Depending on the
point at which the multiplier exits the unit circle, the bifurcation
can be characterized. For the parameters presented in Fig. 5, a
Floquet multiplier leaves the unit circle through 1 at approxi-
mately 13.06 . Therefore, not only does this highlight the
existence of a bifurcation point around 13.06 , it also in-
dicates that the original orbit undergoes a doubling bifurcation.
Lyapunov exponents are the real parts of the Floquet multipliers.
The Lyapunov exponents or characteristic exponents are associ-
ated with a trajectory and essentially measure the average rates
of expansion and contraction of trajectories surrounding it [22].
The largest Lyapunov exponent provides a good understanding
of the systems transition to chaos. Formal mathematical defini-
tion of the largest Lyapunov exponent can be explained in the
following way. Take to be a steady state trajectory or a
fixed point in the state space. If at a perturbed trajectory,

, is initiated, locally, and allowed to run until a time t, the
resulting largest Lyapunov exponent is described by the expres-
sion:

(30)

where represents the original set of nonlinear equations and
is the system with the inclusion of a small perturbation to

its initial conditions. For a change in control parameters, if
becomes positive the system has entered a chaotic regime.
To extract a more comprehensive understanding of the

system dynamics, Lyapunov exponents corresponding to each
system variable can be calculated. This is formulated in a sim-
ilar manner as the largest exponent with the difference being
that each exponent is analyzed separately. To achieve this, each
perturbation has to be orthogonal. This can be implemented
using the Gram-Schmidt process [22]. The largest Lyapunov
exponent does not need orthogonality as for each solution it will
simply calculate the largest Lyapunov exponent on the most un-
stable plane. The benefit of calculating the separate Lyapunov
exponents is that we can see the individual evolutions.
From the Lyapunov analysis, we see that one of the expo-

nents is zero close to . This signifies a bi-
furcation has occurred and is in agreement with the first bifur-
cation point in Fig. 5. The exponents become negative again be-
fore becoming zero at approximately , cor-
responding to the second bifurcation point. The exponents be-
come positive at approximately signifying
chaotic behavior confirming the dynamics shown in Fig. 5.

V. MODIFICATION OF RESONANT FREQUENCY DUE TO
ELECTROMECHANICAL COUPLING

In the application of narrow band energy harvesters, for
which most eKEHs are designed, operating the system around
the resonant frequency is very important to maximise the
energy available for harvesting.
As discussed above in Section IV, the coupling between the

mechanical and electrical domains has a significant impact on
the resonator dynamics in the system. The transducer force
alters the effective spring stiffness of the system and therefore
changes the resonant frequency of the system.
If the force is conservative (only dependent on the displace-

ment) it can be assimilated as a nonlinear spring, whose stiffness
is the full derivative of the transducer force:

(31)

The term influences the resonant frequency according to
the simple equation:

(32)

Clearly, in the case when is positive it will result in elec-
trostatic hardening and in the case of a negative the resonant
frequency is lowered, softening the response. Any type of trans-
ducer can easily be accommodated in this formula.
In the case of capacitive energy harvesters the force depends

both on the velocity and the displacement. Thus the actual mod-
ification of the frequency can only be determined by a full anal-
ysis of the coupled system.
In the rectangular QV cycle conditioning circuit, the force

can be assumed conservative only in two extreme cases: i) for
the case when and ii) when the charge pump has
saturated (cf. saturation discussion in Part 1). In the first case i)
the bias voltage on the capacitor is fixed equal to such that
the force is:

(33)
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and for the second case ii) the charge on the capacitor is fixed
equal to , giving the transducer force:

(34)

Combining (31) and (32), it can be proven that the resonance
frequency shift for the two configurations presented in (33) and
(34) represent the limits of the shift in the resonance frequency,
for a given transducer.
The frequency shift for any nontrivial rectangular QV cycle,

for any transducer, will be inside the limits given by (32). For the
three most common transducer geometries, area overlap (AO),
simple gap closing (GC) and symmetrical gap closing trans-
ducer (SGC) the pair of extreme values are presented in
Table II. This provides further verification of the novel approach
to determine the frequency shift presented below.
We now present our novel method for calculating the fre-

quency shift due to the electromechanical force for any QV
cycle. To the best knowledge of the authors, a tool to determine
the magnitude of the potential electrostatic shift in oscillations
of eKEH devices has not previously been presented.
The method is a simple application of the multiple scales

method which allows the user calculate the resonant frequency
shift caused by electrostatic softening.
Equation (27) is an implicit function of both and .

Denoting (27) as and taking the partial derivatives
and we can determine the implicit

derivative:

(35)

Setting this equal to 0 to find its extremum, the resulting for-
mula for the frequency shift is:

(36)

This result highlights the dependence of the frequency shift
on the first Fourier cosine term of the transducer force, and as
this term is nonzero we will have a frequency shift for different
parameters. Interestingly, for the constant charge conditioning
circuit presented in [9], the formula is correct as
and there is no frequency shift in the oscillations.
Even in cases when is large and the multiple scales method

is no longer as accurate this tool is still very useful, at least to
give an impression of the scale of the resonance shift and so
limit the range of numerical simulations.
Fig. 6 compares the numerical frequency shift with the so-

lution of (36) for the experimental symmetrical gap closing de-
vice. Also included in the plot are comparisons of the frequency
shift for both a simple gap closing and area overlap transducer,
given as

(37)

respectively. The parameters from Table I were used for all
transducers with the exception that the area of the capacitor
plates was altered (and the gap between plates itself for the gap
closing transducer) to give equal and values, at
the maximum displacement allowed by the geometry (cf Sec-
tion VI-B). We have previously presented the multiple scales
analysis of these transducers in [19].

TABLE II
EXTREME LIMITS

Fig. 6. A comparison of the resonant frequencies at different initial biasing
voltages for the three most common transducer configurations. The numerical
symmetrical gap closing transducer solution is represented by the black trian-
gles and the corresponding solution of (36) shown by the black dot/dash line.
The filled blue squares describe the numerical area overlap transducer, in com-
parison with the AO solution of (36) plotted as the dotted blue line. The simple
gap closing transducer is the middle waveform, shown by the red squares (nu-
merical) and the solid red line (solution of (36)).

In Fig. 6 we see large electrostatic softening in the case of
the symmetrical gap closing transducer (hysteresis is present
at and higher voltages), a minimal change for the
simple gap closing transducer and a small increase in the reso-
nant frequency of the area overlap transducer. The frequency
shift is clearly a function of the transducer geometry, but it is
also dependent on the QV cycle and parameters of the system.
For different transducer parameters the simple gap closing
transducer also experiences a modification of the resonance
frequency.
Experimental confirmation of our analysis describing the res-

onant frequency shift due to electromechanical coupling is pre-
sented in Section VI.

VI. EXPERIMENTAL VERIFICATION OF MODEL

A. Experimental Set-Up
The experimental set-up which we use to validate our anal-

ysis was presented in [16]. It consists of a charge pump with
inductive flyback [10]. The inductive flyback was actuated by
a fixed periodic time sequence (cf. detailed description in Part
1). The used MEMS device is a micro resonator coupled with
a capacitive transducer, submitted to sinusoidal external vibra-
tions with fixed frequency and amplitude. The MEMS device
was characterized in [5] and these parameters are provided in
Table I.

B. Transducer Model
The transducer described in [5] experiences an undercut due

to the etching, by deep reactive ion etching (DRIE). This results
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in a more complicated model for the capacitance, including log-
arithmic functions.
To employ our analysis we introduced a simple equivalent

model of a symmetrical gap closing transducer, as shown in (6).
To accommodate the undercut by DRIE for our simplifiedmodel
we took the average gap between the fixed and movable fingers
to be:

where is the height of the silicon substrate and defined in the
orthogonal direction to the substrate plane, is the ratio of the
silicon undercut by DRIE and is the gap between the fixed
and movable fingers at the top of the comb.
In an equivalent manner to the fitting of the theoretical

values and experimental results described in [5] we calculated
the maxima and minima of the capacitance, , allowed by the
geometry. The net experimental values (88 pF/40 pF) compare
very well with our theoretical values of (86.8 pF/38.8 pF).

C. Description of Experiment and Model Equivalence

In the experimental setup, it is not possible to measure the
displacement of the MEMS resonator. This makes validation of
the analytical model difficult. However, based on our analytical
model, we can compute and derive quantities that can easily be
measured, and that are related to the dynamics of the resonator.
The implemented experiment measured the steady-state

value of the voltage (denoted ), when the charge
pump operated without flyback starting from the initial voltage
on capacitor:

(38)

where is a controlled (input) parameter of the experiment.
Such a model is equivalent to the architecture in Fig. 1, with

.
The actual steady-state value of is a result of the evolu-

tion of the system which starts at . Indeed, in this
experiment, the amplitude of the mass vibration and hence the
value of are affected as the charge pump increases the value

.
Fig. 7 explains the scenario of the experiment. The goal of the

experiment is to measure the saturation voltage on , when
the charge pump runs without a flyback. The only role of the
flyback is a periodic initialization of the circuit (setting

), after the charge pump reaches the steady-state. In order to
validate the proposed analytical method, the quantity was
obtained by the multiple scales method analysis, but with a very
large resistive load mimicking the operation of a freely running
charge pump without a flyback. Therefore, both experimental
and analytical models are equivalent as they compare a generic
charge pump without flyback. The external acceleration was of
amplitude 0.3 g, and the frequency was swept over the range
95 Hz–155 Hz. The same experiment was repeated for different
values of .
The plot in Fig. 8 represent the value .

This quantity represents the increase of the during the charge
pumping. It is directly related to the energy converted by the
charge pump as:

(39)

Fig. 7. Description of the experiment. The charge pump was allowed to reach
saturation voltage . Switched flyback was employed to reset the value
of to once its saturation voltage was measured.

Fig. 8. The experimental values are shown by the solid black line with
dots (a line is used to highlight the hysteresis effect). The solution of from
the multiple scales solution (equivalent to the solution of (36)) is shown with
the solid blue waveform. The green dotted line in the MSM solution highlights
the hysteresis due to the multistability. Each figure represents a different initial
charging voltage : (a) 5 V, (b) 10 V, (c) 15 V, (d) 20 V, (e) 25 V, (f) 30 V,
(g) 35 V, (h) 40 V. As the initial voltage continues to increase we see hysteresis
occur.

D. Experimental Results
The obtained by the MSM is in a very good agreement

with that obtained by the experiment, considering approxima-
tions used in our method (diode model, approximation about the
transducer capacitance, uncertainty about the lumped parame-
ters of the resonator). For all , the MSM predicts a consis-
tent frequency shift, as well as the shape of the resonance curve.
It also gives quite a correct value of , in particular for mod-
erate and large . Tolerances of the parameters in the diodes
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Fig. 9. A plot of the frequencies corresponding to the saturation voltage (and
therefore the maximum energy on , as shown in (39)) as a function of the
initial pre-charge voltage. The green triangle waveform describes the experi-
mental results and the red squares represent the MSM solution.

model may be a source of discrepancies at low , since the
is of the same order as the diode threshold.

It is remarkable that the nonlinear effect of the electrostatic
force is prominent on the plots for large . Indeed, hysteresis
in the resonance curves can be seen both in the analytical and
experimental data. At increased , the MSM solution shows
the existence of two stable branches joined by a third unstable
branch. The reproduction of the hysteresis in theMSM solutions
is interesting as it highlights the nonlinearity is due to electrical,
and not mechanical, forces. As noted previously in Section III, if
the Routh-Hurwitz criterion is not satisfied a saddle orbit exists.
For the unstable branch, in the area of the hysteresis, the Routh-
Hurwitz criterion is indeed negative and so we can deduce the
presence of a saddle orbit.
Fig. 9 provides a global view of the resonance frequency shift

as voltage increases, where experimental data is compared
with results from the MSM model. This shows good agreement
of the method (36) proposed in Section V with the experimental
modification of frequency due to electromechanical coupling.

VII. CONCLUSIONS

This work is the first fundamental study of the shift in reso-
nance due to electromechanical coupling for a complex condi-
tioning circuit employing electrostatic vibration energy conver-
sion. It is also one of the first studies to provide an analysis of the
nonlinearities arising from the electromechanical coupling of an
experimental device, particularly in the case of a multi-variable
conditioning circuit such as the charge pump circuit. The charge
pump is a very promising eKEH conditioning circuit. While in
this work we have modelled a charge pump with resistive fly-
back, both Part 1 and Part 2 have highlighted the ability to re-
late both flyback configurations equally by calculating an effec-
tive resistance. In terms of the electromechanical coupling be-
havior present in all eKEHs, the coupling is simply a function
of the charge and voltage on the variable capacitor. Therefore
this analysis is not simply applicable to the charge pump but to
any conditioning circuits implementing a rectangular QV cycle,
such as Bennet's doubler.
The electromechanical coupling due to the force is the

cause of all the nonlinearities in the system. The influences of
the nonlinear coupling described in this work include:

• The amplitude of the resonator displacement is directly af-
fected by the magnitude of the attractive force between the
capacitor plates.

• The resonant frequency of oscillations can shift due to the
electromechanical coupling, this also effects the amplitude
of oscillations in the resonator.

• The change in resonator dynamics such as a cascade of
bifurcations, shown in Fig. 5.

The necessity in gaining an enhanced understanding of the en-
tire system in order to truly optimize the energy harvested by
these devices is highlighted experimentally in Fig. 8. Even at
low electrostatic biasing the maximum energy is not harvested
at the resonance frequency. As shown in Fig. 6, there is no
way to determine what shift may occur for different transducers
and parameter values without modelling the nonlinear coupling.
Therefore we simply cannot afford to neglect the influence of
the transducer force and the nonlinearities it introduces.
The model resulting from the multiple scales method can be

relatively easily adapted to include mechanical nonlinearities
[21]. Therefore, from this work, it is envisaged that we will
be able to expand this analysis to include further nonlinear in-
fluences such as white noise and mechanical nonlinearities as
a potential route to widening the systems frequency response
[23]–[26].
Simulations of the differential equations describing the res-

onator and conditioning circuitry compare very accurately with
the corresponding VHDL-AMS/ELDO results. The models
presented in this study have been compared with novel ex-
perimental results and provide a greater understanding of the
electromechanical coupling which resulted in the experimental
data.
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