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Preface

Read This First

About This Manual

This manual describes the peripherals, interfaces, and related hardware that
are available on TMS320C55x  DSPs. It also describes how you can use soft-
ware to turn on or off individual portions of the C55x  DSP, so that you can
manage power consumption (see Chapter 8, Idle Configurations).

The chapters of this document are in alphabetical order.

Notational Conventions

This document uses the following conventions.

� The device number TMS320C55x is often abbreviated as C55x.

� If an underscore is appended to the name of a signal (for example,
RESET_), the signal is active low. Similarly, if an underscore is appended
to the name of a register bit (for example, XEMPTY_), the bit has a nega-
tive polarity; that is, the bit is 0 rather than 1 when it is active.

� Program listings, program examples, and interactive displays are shown
in a special typeface  similar to a typewriter’s.

� In most cases, hexadecimal numbers are shown with the suffix h. For
example, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers usually are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

� Bits and signals are sometimes referenced with the following notations:

Notation Description Example

Register(n–m) Bits n through m of Register AC0(15–0) represents the 16
least significant bits of the regis-
ter AC0.

Bus[n:m] Signals n through m of Bus A[21:1] represents signals 21
through 1 of the external ad-
dress bus.
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� The following terms are used to name portions of data:

Term Description Example

LSB Least significant bit In AC0(15–0), bit 0 is the LSB.

MSB Most significant bit In AC0(15–0), bit 15 is the MSB.

LSByte Least significant byte In AC0(15–0), bits 7–0 are the LSByte.

MSByte Most significant byte In AC0(15–0), bits 15–8 are the MSByte.

LSW Least significant word In AC0(31–0), bits 15–0 are the LSW.

MSW Most significant word In AC0(31–0), bits 31–16 are the MSW.

Related Documentation From Texas Instruments

The following books describe the C55x  devices and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please identify
the book by its title and literature number.

TMS320C55x Technical Overview (SPRU393). This overview is an
introduction to the TMS320C55x digital signal processor (DSP). The
TMS320C55x is the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform.  Like the previous generations, this proc-
essor is optimized for high performance and low-power operation. This
book describes the CPU architecture, low-power enhancements, and
embedded emulation features of the TMS320C55x.

TMS320C55x DSP CPU Reference Guide  (literature number SPRU371)
describes the architecture, registers, and operation of the CPU.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide  (literature
number SPRU374) describes the mnemonic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the algebraic instruction set.

TMS320C55x DSP Algebraic Instruction Set Reference Guide  (literature
number SPRU375) describes the algebraic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the mnemonic instruction set.

TMS320C55x Optimizing C Compiler User’s Guide  (literature number
SPRU281) describes the ’C55x C compiler. This C compiler accepts
ANSI standard C source code and produces assembly language source
code for TMS320C55x devices.
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TMS320C55x Assembly Language Tools User’s Guide  (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP Programmer’s Reference Guide  (literature number
SPRU376) describes ways to optimize C and assembly code for the
TMS320C55x DSPs and includes application program examples.

Trademarks

TMS320, TMS320C55x, and C55x are trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.

Related Documentation From Texas Instruments / Trademarks
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Analog-to-Digital Converter (ADC)

Some TMS320C55x  (C55x ) DSPs include a 10-bit successive-approxima-
tion analog-to-digital converter (ADC). To determine whether a particular C55x
DSP has an ADC, see the data sheet for that DSP.
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1.1 Introduction to the ADC

The ADC module (Figure 1–1) converts an analog input signal to a digital value
for use by the DSP. The ADC can sample one of up to four inputs (AIN0–AIN3)
at a time, and generates a 10-bit digital representation (ADCData) of the sam-
ples. The maximum sampling rate of the ADC is 21.5 KHz. This performance
makes the ADC suitable for sampling analog signals that change at a slow
rate. For example, the ADC could be used to monitor the voltage drop across
a potentiometer on a user interface panel or to sample the voltage on a battery
monitoring circuit. The ADC is not intended to be used as the source of the
main data stream for the DSP.

Figure 1–1. ADC Block Diagram
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The ADC is based on a successive approximation architecture that achieves
very low power consumption. A sample and hold feature is employed to help
produce evenly spaced samples. The ADC uses external reference voltages
to allow isolation of the conversion process from other system supply voltage
planes. Three programmable clock dividers are included to allow flexibility in
the choice of DSP input clock.
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1.1.1 Total Conversion Time

The total conversion time of the ADC (Figure 1–2) has two components — the
sample and hold period, and the conversion period.

� The sample and hold period is the time required for an analog sample to
be acquired by the sample and hold circuitry; this time period is greater
than or equal to 40 µs.

� The conversion time period is the time required for the successive approxi-
mation process to complete for one sample, producing the corresponding
digital value. This conversion period requires 13 conversion clock cycles
to complete. The internal conversion clock has a maximum frequency of
2 MHz.

Figure 1–2. ADC Total Conversion Time Diagram
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The following equations describe the relationship between the ADC program-
mable clock dividers:

ADC Clock = (System Clock) / (SystemClkDiv + 1)

ADC Conversion Clock = (ADC Clock) / (2 ��(ConvRateDiv + 1))
                                        must be less than or equal to 2MHz

ADC Sample and Hold Period =
(1 / (ADC Clock)) / (2 ��(ConvRateDiv + 1 + SampTimeDiv))
                                        must be greater than or equal to 40 µs

ADC Total Conversion Time =
(ADC Sample and Hold Period) + (13 � (1 / (ADC Conversion Clock)))
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1.1.2 Functional Overview

The ADC does not include a continuos mode; therefore, the DSP must initiate
each conversion by writing a 1 to the ADCStart bit in the ADC control register
(ADCR).

Once a conversion is initiated, the DSP must wait until the conversion com-
pletes before selecting another channel or initiating a new conversion. The
ADC does not support interrupts to the DSP or DMA, so the DSP must poll the
status of a conversion using the ADCBusy bit in the ADC data register (ADDR).

After the conversion process completes, the ADCBusy bit value changes from
1 to 0, indicating that the conversion data is available. The DSP can then read
the data from the ADCData bits in ADDR. The value of the channel select
(ChSelect) bits in ADCR is reproduced in ADDR, so that the DSP can identify
which samples were acquired from which channel.

1.2 ADC Registers

The ADC memory-mapped registers are listed in Table 1–1.

Table 1–1. ADC Memory-Mapped Registers

Address (Hex) Name Description

6800 ADCR ADC Control Register

6801 ADDR ADC Data Register

6802 ADCDR ADC Clock Divider Register

6803 ADCCR ADC Clock Control Register
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1.2.1 ADC Control Register (ADCR)

The ADC control register (Figure 1–3) is a read/write register that resets the
ADC, selects the analog input channel, and indicates to start a conversion.

Figure 1–3. ADC Control Register (ADCR)

15 14 12 11 0

ADCStart ChSelect reserved

R/W-0 R/W-111 R-0

Note: R/W-x =  Read/Write-Reset value

Table 1–2. ADC Control Register (ADCR) Field Values  

Bit field symval Value Description

15 ADCStart Start conversion bit.

0 No effect.

1 Start conversion cycle. After conversion is complete, the ADC
automatically goes into power-down mode unless the ADCStart bit
is high again.

14–12 ChSelect Analog input channel select bits determine which one of four ana-
log inputs to perform a conversion on.

000 Analog input AIN0 is selected

001 Analog input AIN1 is selected

010 Analog input AIN2 is selected. (BGA package only.)

011 Analog input AIN3 is selected. (BGA package only.)

100–111 All analog switches are off.

11–0 reserved Reserved. The reserved bit locations are always read as zero.
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1.2.2 ADC Data Register (ADDR)

The ADC data register (Figure 1–4) is a read/write register that indicates if a
conversion is in process, the actual digital data converted from the analog sig-
nal, and which channel the data came from.

Figure 1–4. ADC Data Register (ADDR)

15 14 12 11 10 9 0

ADCBusy ChSelect reserved ADCData

R-0 R/W-111 R-0 R-0

Note: R/W-x =  Read/Write-Reset value

Table 1–3. ADC Data Register (ADDR) Field Values  

Bit field symval Value Description

15 ADCBusy ADC busy bit.

0 ADC data is available.

1 ADC is busy performing a conversion. After ADCStart bit is high,  the
ADCBusy bit becomes high.

14–12 ChSelect Channel select bits indicate which one of four analog inputs the
conversion data in the ADCData bits is from.

000 Analog input AIN0 is selected

001 Analog input AIN1 is selected

010 Analog input AIN2 is selected. (BGA package only.)

011 Analog input AIN3 is selected. (BGA package only.)

100–111 reserved

11–10 reserved Reserved. The reserved bit locations are always read as zero.

9–0 ADCData ADC data bits. The 10-bit digital data converted from the analog
signal.
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1.2.3 ADC Clock Divider Register (ADCDR)

The ADC clock divider register (Figure 1–5) is a read/write register that indi-
cates the divider values for the conversion clock and the sample and hold time.

Figure 1–5. ADC Clock Divider Register (ADCDR)

15 8 7 4 3 0

SampTimeDiv reserved ConvRateDiv

R/W-0 R-0 R/W-1111

Note: R/W-x =  Read/Write-Reset value

Table 1–4. ADC Clock Divider Register (ADCDR) Field Values  

Bit field symval Value Description

15–8 SampTimeDiv 0–255 Sample and hold time divider bits. This 8-bit value in
conjunction with the ConvRateDiv bits and the ADC clock
period determines the sample and hold period.

ADC Sample and Hold Period =
(ADC Clock Period) ��(2 ��(ConvRateDiv + 1 + SampTimeDiv))

7–4 reserved Reserved. The reserved bit locations are always read as
zero.

3–0 ConvRateDiv Conversion clock rate divider bits indicate the divider rate
of the ADC clock. Also, this 4-bit value in conjunction with
the SampTimeDiv bits and the ADC clock period deter-
mines the sample and hold period.

ADC Conversion Clock = (ADC Clock) / (2 ��(ConvRateDiv + 1))

0000 Conversion clock = ADC clock divided by 2.

0001 Conversion clock = ADC clock divided by 4.

0010 Conversion clock = ADC clock divided by 6.

0011 Conversion clock = ADC clock divided by 8.

0100 Conversion clock = ADC clock divided by 10.

0101 Conversion clock = ADC clock divided by 12.

0110 Conversion clock = ADC clock divided by 14.

0111 Conversion clock = ADC clock divided by 16.

1000 Conversion clock = ADC clock divided by 18.

1001 Conversion clock = ADC clock divided by 20.
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Table 1–4. ADC Clock Divider Register (ADCDR) Field Values  (Continued)

Bit DescriptionValuesymvalfield

1010 Conversion clock = ADC clock divided by 22.

1011 Conversion clock = ADC clock divided by 24.

1100 Conversion clock = ADC clock divided by 26.

1101 Conversion clock = ADC clock divided by 28.

1110 Conversion clock = ADC clock divided by 30.

1111 Conversion clock = ADC clock divided by 32.

1.2.4 ADC Clock Control Register (ADCCR)

The ADC clock control register (Figure 1–6) is a read/write register that indi-
cates the divider rate of the system clock and enables the ADC clock.

Figure 1–6. ADC Clock Control Register (ADCCR)

15 9 8 7 0

reserved IdleEn SystemClkDiv

R-0 R/W-0 R/W-07h

Note: R/W-x =  Read/Write-Reset value

Table 1–5. ADC Clock Control Register (ADCCR) Field Values  

Bit field symval Value Description

15–9 reserved Reserved. The reserved bit locations are always read as zero.

8 IdleEn ADC clock enable bit.

0 ADC clock is active.

1 ADC clock is disabled at execution of an IDLE instruction.

7–0 SystemClkDiv 0–255 System clock divider bits indicate the divider rate of the system
clock.

ADC Clock = (System Clock) / (SystemClkDiv + 1)
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1.3 Conversion Example

The clock dividers are used to derive the total conversion time from the system
clock within the DSP. The following example shows through the programming
of these clock dividers how to obtain the maximum sampling frequency in a
system where the DSP operates at 144 MHz. After the ADC sampling rate has
been programmed, the DSP can begin using the ADC for sampling analog
inputs.

1) Divide down the system clock to generate the main clock to the ADC (ADC
clock). It is desirable to program the ADC clock to as low a frequency as
possible to minimize the power consumption of the ADC.

In this example, program the ADC clock to 4 MHz. To obtain the 4 MHz
value, the system clock of 144 MHz must be divided by 36. An 8-bit divider,
SystemClkDiv bits in ADCCR, is provided.

ADC Clock = (System Clock) / (SystemClkDiv + 1)
ADC Clock = (144 MHz) / (SystemClkDiv + 1)
ADC Clock = (144 MHz) / (35 + 1) = 4 MHz

ADC Clock Control Register (ADCCR)

15 9 8 7 0

reserved IdleEn SystemClkDiv = 0010 0011

The 4-MHz ADC clock is now divided to generate the two components of
the total conversion time.

2) Divide down the 4-MHz ADC clock to generate the conversion clock.

In this example, program the conversion clock rate divider to generate the
maximum possible conversion clock frequency of 2 MHz. To obtain the
2-MHz conversion clock frequency, the ADC clock must be divided by the
lowest value. A 5-bit divider, ConvRateDiv bits in ADCDR, is provided.

ADC Conversion Clock = (ADC Clock) / (2 ��(ConvRateDiv + 1))
ADC Conversion Clock = (4 MHz) / (2 ��(ConvRateDiv + 1))
ADC Conversion Clock = (4 MHz) / (2 ��(0 + 1)) = 2 MHz

ADC Clock Divider Register (ADCDR)

15 8 7 4 3 0

SampTimeDiv reserved ConvRateDiv = 0000

The actual conversion time is 13 cycles of this clock, so the conversion
time is 6.5 µs.

ADC Conversion Time = 13 � (1 / ADC Conversion Clock)
ADC Conversion Time = 13 � (1 / (2 MHz)) = 6.5 µs
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3) Program the clock divider for the sample and hold time. The sample and
hold time must be greater than or equal to 40 µs.

In this example, program the sample and hold time to 40 µs. An 8-bit divid-
er, SampTimeDiv bits in ADCDR, is used in conjunction with the conver-
sion rate divider to obtain the sample and hold time from the ADC clock.

ADC Sample and Hold Period =
(1 / (ADC Clock)) / (2 ��(ConvRateDiv + 1 + SampTimeDiv))
= (1 / (4 MHz)) / (2 ��(0 + 1 + SampTimeDiv))
= 250 ns � (2 ��(0 + 1 + 79)) = 40 µs

ADC Clock Divider Register (ADCDR)

15 8 7 4 3 0

SampTimeDiv= 0100 1111 reserved ConvRateDiv = 0000

4) The final results of this example are summarized (Figure 1–7). The total
conversion time is composed of a 40-µs sample and hold time plus a
6.5-µs conversion time. A new conversion can begin every 46.5 µs, giving
a maximum sampling rate of 21.5 KHz.

Total Conversion Time = (Sample and Hold Period) + (Conversion Period)
Total Conversion Time = 40 µs + 6.5 µs = 46.5 µs

Sampling Frequency = 1 / (Total Conversion Time)
Sampling Frequency = 1 / 46.5 µs = 21.5 KHz

Figure 1–7. Total Conversion Time for Example
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Clock Generator

This chapter describes the clock generator of the TMS320C55x  DSP. The
clock generator accepts an input clock at the CLKIN pin and enables you to
modify that signal internally to produce an output clock with the desired
frequency. The clock generator passes this output clock (the CPU clock) to the
CPU, to peripherals, and to other modules inside the C55x DSP. The CPU
clock is also passed through a programmable clock divider to the CLKOUT pin
(see section 2.6).
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2.1 Introduction to the DSP Clock Generator

The DSP clock generator supplies the DSP with a clock signal that is based
on an input clock signal connected at the CLKIN pin. Included in the clock gen-
erator is a digital phase-lock loop (PLL), which can be enabled or disabled. You
can configure the clock generator to create a CPU clock signal that has the
desired frequency.

The clock generator has a clock mode register, CLKMD (see page 2-12), for
controlling and monitoring the activity of the clock generator. For example, you
can write to the PLL ENABLE bit in CLKMD to toggle between the two main
modes of operation:

� In the bypass mode (see page 2-5), the PLL is bypassed, and the
frequency of the output clock signal is equal to the frequency of the input
clock signal divided by 1, 2, or 4. Because the PLL is disabled, this mode
can be used to save power.

� In the lock mode (see page 2-6), the input frequency can be both multi-
plied and divided to produce the desired output frequency, and the output
clock signal is phase-locked to the input clock signal. The lock mode is
entered if the PLL ENABLE bit of the clock mode register is set and the
phase-locking sequence is complete. (During the phase-locking
sequence, the clock generator is kept in the bypass mode.)

The clock generator also has an idle mode (see page 2-8) for power con-
servation. You place the clock generator into its idle mode by turning off the
CLKGEN idle domain. For information on turning on and off idle domains, see
Chapter 8, Idle Configurations.

The output of the clock generator or a divided down version of that output can
be seen on the CLKOUT pin. For details, see The CLKOUT Pin and the Associ-
ated Clock Divider on page 2-9.
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2.2 Operational Flow of the DSP Clock Generator

Figure 2–1 and Table 2–1 describe the operational states (A–F) of the DSP
clock generator. The clock mode register (CLKMD) is loaded by software or
by a DSP reset. If the write to CLKMD enables the PLL, the PLL begins its
phase-locking sequence (state A). If the write disables the PLL, the clock gen-
erator enters its bypass mode (state D).

Figure 2–1. Operational Flow of the DSP Clock Generator
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Table 2–1. Operational States Shown in Figure 2–1

State Description

A Locking the phase.  The clock generator enters the bypass mode, and the
PLL locks the phase of the output clock signal to that of the input clock sig-
nal. Once the phase is locked and the output signal is at the frequency de-
fined by the PLL MULT bits and the PLL DIV bits of CLKMD (see page
2-12), the clock generator enters its lock mode (state B). You can reconfi-
gure the clock generator by writing to CLKMD.

B Lock mode.  In the lock mode, the PLL is generating an output signal with
the selected frequency. The output signal is phase-locked to the input sig-
nal. If the PLL loses the lock and the IOB bit of CLKMD is 1, the clock gener-
ator returns to the bypass mode and reacquires the lock (state A); if the IOB
bit is 0, the clock generator does not reacquire the lock. An idle instruction
can place the clock generator into its idle mode (state C). To change to the
bypass mode or to reconfigure the clock generator in other ways, you can
write to CLKMD. For more details about the lock mode, see section 2.4
page 2-6.

C Idle mode (entered from the lock mode).  An idle instruction has placed
the clock generator into its idle mode. If the idle mode is properly exited, the
clock generator starts again and reacquires the phase lock (state A). The
method used to reacquire the lock depends on the IAI bit of CLKMD.

D Bypass mode.  The PLL is disabled, and the clock generator is in the by-
pass mode. The divider within the clock generator produces an output clock
signal at the frequency defined by the BYPASS DIV bits of CLKMD. An idle
instruction can place the clock generator into its idle mode (state E). To
change to the lock mode or to reconfigure the clock generator in other ways,
you can write to CLKMD. For more details about the bypass mode, see sec-
tion 2.3 page 2-5.

E Idle mode (entered from the bypass mode).  An idle instruction has
placed the clock generator into its idle mode. If the idle mode is properly
exited, the clock generator starts again in the bypass mode.
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2.3 Bypass Mode

When the DSP clock generator is in the bypass mode and the phase-lock loop
(PLL) is disabled, the frequency of the output clock signal is equal to the
frequency of the input clock signal divided by 1, 2, or 4.

2.3.1 Entering and Exiting the Bypass Mode

To enter the bypass mode, write a 0 to the PLL ENABLE bit in the clock mode
register (CLKMD). The PLL will be disabled.

To exit the bypass mode, write a 1 to the PLL ENABLE bit. The PLL will start
up and enter its phase-locking sequence. After the PLL is generating the con-
figured output frequency and the phase of the output clock signal is locked to
the phase of the input clock signal, the clock generator enters the lock mode.
Until then, the clock generator stays in the bypass mode.

If the clock generator is in the lock mode and the PLL must reacquire its phase
lock (IOB = 1), the clock generator enters the bypass mode until the phase is
locked again.

2.3.2 CLKMD Bits Used in the Bypass Mode

Table 2–2 describes the bits of the clock mode register (CLKMD) that are used
in the bypass mode. The reserved bits in CLKMD (Rsvd and TEST) should not
be used in either the bypass mode or the lock mode. For a detailed description
of CLKMD, see section 2.8 on page 2-12.

Table 2–2. CLKMD Bits Used in the Bypass Mode

CLKMD Bit Field Role In The Bypass Mode

PLL ENABLE Allows you to switch to the lock mode

BYPASS DIV Determines how the input clock frequency is divided (if at
all) to produce the output clock frequency

LOCK Is 0 in the bypass mode

2.3.3 Setting the Output Frequency for the Bypass Mode

The output frequency is determined by the input frequency and the value in the
BYPASS DIV bits. Load BYPASS  DIV as required to divide the input frequen-
cy by 1, 2, or 4.
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2.4 Lock Mode

In the lock mode, the input frequency can be both multiplied and divided to
produce the desired output frequency, and the output clock signal is phase-
locked to the input clock signal.

2.4.1 Entering and Exiting the Lock Mode

To enter the lock mode, write a 1 to the PLL ENABLE bit in the clock mode reg-
ister (CLKMD). The PLL will start up and will enter its phase-locking sequence.
After the PLL is generating the configured output frequency and the phase of
the output clock signal is locked to the phase of the input clock signal, the clock
generator enters the lock mode. Until then, the clock generator stays in the
bypass mode.

If the clock generator is in the lock mode and the PLL must reacquire its phase
lock (IOB = 1 in CLKMD), the clock generator will enter the bypass mode until
the phase is locked again.

To exit the lock mode (enter the bypass mode), write a 0 to the PLL ENABLE
bit. The PLL will be disabled.

2.4.2 CLKMD Bits Used in the Lock Mode

Table 2–3 describes the bits of the clock mode register (CLKMD) that are used
in the lock mode. The reserved bits (Rsvd and TEST) in CLKMD should not
be used in either the lock mode or the bypass mode. For a detailed description
of CLKMD, see section 2.8 on page 2-12.

Table 2–3. CLKMD Bits Used in the Lock Mode

CLKMD Bit Field(s) Role In The Lock Mode

PLL ENABLE Allows you to switch to the bypass mode (disable the
PLL)

PLL MULT and
PLL DIV

Determine how the input clock frequency is modified (if at
all) to produce the output clock frequency

IAI Determines whether the PLL returns to the beginning of
the phase-locking sequence when the clock generator
exits its idle mode

BREAKLN Indicates when the phase lock has been broken

IOB Determines whether the PLL will reacquire a lost phase
lock

LOCK Is 1 in the lock mode
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2.4.3 Setting the Output Frequency for the Lock Mode

The input frequency is multiplied by the PLL MULT value of CLKMD and is di-
vided according to the PLL DIV value of CLKMD. PLL MULT can be a value
from 2 to 31. PLL DIV can be a value from 0 (divide by 1) to 3 (divide by 4). The
output frequency can be calculated with the following equation:

Output frequency � PLL MULT
( PLL DIV � 1 )

� Input frequency

Table 2–4 shows some examples of using PLL MULT and PLL DIV to select
an output frequency.

Table 2–4. Examples of Selecting a Lock Mode Frequency

PLL MULT PLL DIV Output Frequency

31 0 (divide by1) 31 × Input frequency (maximum frequency)

10 1 (divide by 2) 5 × Input frequency

2 2 (divide by 3) 2/3 × Input frequency

2 3 (divide by 4) 1/2 × Input frequency (minimum frequency)

2.4.4 Calculating the Lock Time

The time needed for phase locking (the lock time) depends on the PLL MULT
and PLL DIV values and on the output clock frequency. The lock time in num-
ber of input  clock cycles is given by Equation 2–1.

Equation 2–1. Lock Time for the PLL

Lock time � 4 � ( PLL DIV � 1 ) � �10D � 30 ( PLL MULT � 1 ) � 2�

where D � 1 � log2 � 200
PLL MULT � Output frequency

� rounded to the

nearest integer.
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2.5 Idle (Low-Power) Mode

To save power, you can put the DSP clock generator into its idle mode by load-
ing an idle configuration that turns off the CLKGEN idle domain. When the
clock generator is idle, the output clock is stopped and held high. For more
details, see Chapter 8, Idle Configurations.

When the clock generator exits its idle mode, the reaction of the clock genera-
tor depends on several factors. If the clock generator was in its bypass mode
before the idle instruction was executed, the PLL returns to the bypass mode.
If the clock generator was in its lock mode before the idle instruction was
executed, the clock generator switches to its bypass mode, reacquires the
phase lock, and then returns to the lock mode. The method used for reacquir-
ing the phase lock depends on the IAI bit of CLKMD:

IAI Method Used For Reacquiring The Phase Lock

0 The PLL reacquires the phase lock using the same process that was
underway before the idle mode was entered.

1 The PLL restarts the phase-locking sequence.
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2.6 The CLKOUT Pin and the Associated Clock Divider

The DSP clock generator generates the CPU clock that is supplied to the CPU,
to peripherals, and to other modules inside the DSP. As shown in Figure 2–2,
the CPU clock is also passed to a clock divider that supplies a signal
(CLKOUT) to the CLKOUT pin. The frequency of CLKOUT depends on the
CLKDIV bits of the system register, SYSR (see Table 2–5). SYSR is an
I/O-mapped register and is described in section 12.2 on page 12-3.

Figure 2–2. Dividing the CPU Clock for the CLKOUT Pin

CLKDIV

CPU clock ÷ To CLKOUT pinDSP clock generator

To CPU, peripherals, other modules

CLKOUT

Table 2–5. Effect of CLKDIV Bits on CLKOUT Frequency

CLKDIV Frequency of CLKOUT

000b 1/1 × CPU clock frequency

001b 1/2 × CPU clock frequency

010b 1/3 × CPU clock frequency

011b 1/4 × CPU clock frequency

100b 1/5 × CPU clock frequency

101b 1/6 × CPU clock frequency

110b 1/7 × CPU clock frequency

111b 1/8 × CPU clock frequency
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2.7 DSP Reset Conditions of the DSP Clock Generator

The following sections describe the operation of the DSP clock generator
when the DSP is held in its reset state and when the DSP is removed from its
reset state.

2.7.1 Clock Generator During Reset

The DSP can make use of the output clock signal during reset. While the DSP
reset signal is held low:

� The clock generator is in the bypass mode.

� The output clock frequency is determined by the level of the signal on the
CLKMD input pin:

CLKMD Signal Output Frequency

Low Input frequency

High 1/2 × Input frequency

2.7.2 Clock Generator After Reset

On the rising edge of the DSP reset signal (when reset is deasserted), the
clock mode register is loaded with a value determined by the level on the
CLKMD pin:

CLKMD Signal Output Frequency

Low 2002h

High 2006h

Table 2–6 summarizes the effects of this load to the clock mode register.
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Table 2–6. Reset Values of CLKMD Bits and The Effects

Reset Value Effect

IAI =  0 Only applicable in the lock mode. Initialize-after-idle is
not selected. After the idle mode is exited, the PLL
reacquires the phase lock using the same process
that was underway before the idle mode was entered
(the phase-locking sequence is not restarted).

IOB=  1 Only applicable in the lock mode. Initialize-on-break is
selected. Any time the PLL loses its phase lock, the
clock generator switches to its bypass mode and
starts a new phase-locking sequence.

PLL MULT=  00000b
PLL DIV=  00b

Only applicable in the lock mode. The output frequen-
cy is equal to the input frequency.

PLL ENABLE =  0 The PLL is disabled. The clock generator is in its by-
pass mode.

If CLKMD signal is low
  BYPASS DIV= 00b
If CLKMD signal is high
  BYPASS DIV= 01b

If CLKMD signal is low
  Output frequency = Input frequency 
If CLKMD signal is high
  Output frequency = 1/2 × Input frequency

BREAKLN = 1 The break-lock indicator is reset.

LOCK = 0 The lock-mode indicator reflects the fact that the clock
generator is in the bypass mode.
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2.8 Clock Mode Register

You control the DSP clock generator with the clock mode register, CLKMD.
Figure 2–3 and Table 2–7 describe the contents of CLKMD, which is accessi-
ble in I/O space. After the DSP reset signal becomes inactive, the CLKMD reg-
ister is initialized with a predetermined value dependent only upon the state
of the CLKMD input pin (the difference is in the BYPASS DIV bits):

CLKMD Signal
Level at Reset

CLKMD Register
Reset Value

Low 2002h

High 2006h

Figure 2–3. Clock Mode Register (CLKMD)
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R Read-only access
R/W Read/write access
– X X is the value after a DSP reset. X = pin indicates that the reset value depends on the signal

level on the CLKMD pin.

Table 2–7. Bit Field Descriptions for the Clock Mode Register (CLKMD) 

Bit(s) Name Description Reset Value

15 Rsvd This bit is reserved; it is not available for your use. This bit is al-
ways 0.

–

14 IAI Initialize after idle bit. IAI determines how the PLL reacquires the
phase lock after the clock generator exits its idle mode (when the
CLKGEN idle domain is reactivated):

0

0 The PLL locks using the same process that was underway
before the idle mode was entered.

1 The PLL restarts the phase-locking sequence.
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Table 2–7. Bit Field Descriptions for the Clock Mode Register (CLKMD) (Continued)

Bit(s) Reset ValueDescriptionName

13 IOB Initialize on break bit. IOB determines whether the clock
generator initializes the PLL phase-locking sequence whenever
the phase lock is broken.

If the PLL indicates a break in the phase lock:

1

0 The clock generator does not interrupt the PLL. The clock
generator stays in the lock mode, and the PLL continues
to output the current clock signal.

1 The clock generator switches to its bypass mode and re-
starts the PLL phase-locking sequence.

12 TEST This reserved test bit is cleared during a DSP reset and your pro-
gram must be keep it 0 for proper operation of the clock genera-
tor. Make sure that whenever your program modifies CLKMD, it
writes a 0 to bit 12.

0

11–7 PLL MULT PLL multiply value. When the PLL is enabled (PLL ENABLE = 1),
the frequency of the input clock signal is multiplied according to
the value in PLL MULT. PLL MULT can be a value from 2 to 31.
The input clock is multiplied by the unsigned integer in PLL MULT
and is divided according to the value in the PLL DIV bits.

The maximum frequency for the PLL output clock signal is 31
times the frequency of the input clock signal. To obtain this maxi-
mum frequency, load PLL MULT with 31 (multiply by 31), and load
PLL DIV with 0 (divide by 1).

The minimum frequency for the output clock signal is 1/2 the fre-
quency of the input clock signal. To obtain this minimum frequen-
cy, load PLL MULT with 2 (multiply by 2) and load PLL DIV with
3 (divide by 4).

00000b
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Table 2–7. Bit Field Descriptions for the Clock Mode Register (CLKMD) (Continued)

Bit(s) Reset ValueDescriptionName

6–5 PLL DIV PLL divide value. When the PLL is enabled (PLL ENABLE = 1),
the two PLL DIV bits select one of four divide options listed in the
following table. The PLL also uses the multiply value supplied by
the PLL MULT bits.

To program the minimum or maximum frequency, see the de-
scription for the PLL MULT bits.

00b

00b No division/divide by 1
The input frequency is not divided.

01b Divide by 2
The input frequency is divided by 2.

10b Divide by 3
The input frequency is divided by 3.

11b Divide by 4
The input frequency is divided by 4.

4 PLL ENABLE PLL enable bit. Write to PLL ENABLE to enable or disable the
PLL. When you set PLL ENABLE, you request the clock
generator to enter the lock mode. The clock generator does not
enter the lock mode until the PLL is creating a phase-locked
signal with the frequency selected by the PLL MULT bits and the
PLL DIV bits.

0

0 Disable the PLL (enter the bypass mode).

1 Enable the PLL and, when the correct output clock signal
is generated, enter the lock mode.

3–2 BYPASS DIV Bypass-mode divide value. In the bypass mode, BYPASS DIV
determines the frequency of the output clock signal. During a
DSP reset, if the level on the CLKMD pin is low, BYPASS DIV is
reset to 00b (no division). If the level on CLKMD is high, BYPASS 
DIV is reset to 01b (divide by 2).

00b if CLKMD
signal is low

01b if CLKMD
signal is high

00b No division/divide by 1
The frequency of the output clock signal is the same as the
frequency of the input clock signal.

01b Divide by 2
The frequency of the output clock signal is 1/2 the
frequency of the input clock signal.

10b
or
11b

Divide by 4
The frequency of the output clock signal is 1/4 the
frequency of the input clock signal.
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Table 2–7. Bit Field Descriptions for the Clock Mode Register (CLKMD) (Continued)

Bit(s) Reset ValueDescriptionName

1 BREAKLN Break-lock indicator. BREAKLN indicates whether the PLL has
broken the phase lock. In addition, if you write to CLKMD,
BREAKLN is forced to 1.

1

0 The PLL has broken the phase lock.

1 The phase lock is restored, or a write to CLKMD has oc-
curred.

0 LOCK Lock-mode indicator. LOCK indicates whether the clock
generator is in its lock mode:

0

0 The clock generator is in the bypass mode. The output
clock signal has the frequency determined by the
BYPASS DIV bits, or the PLL is in the process of getting
a phase lock.

1 The clock generator is in the lock mode. The PLL has a
phase lock, and the output clock has the frequency deter-
mined by the PLL MULT bits and the PLL DIV bits.
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DMA (Direct Memory Access) Controller

This chapter describes the DMA controller of the TMS320C55x  (C55x )
DSP. The DMA controller allows movement of data among internal memory,
external memory, peripherals, and the enhanced host port interface (EHPI) to
occur without intervention from the CPU and in the background of CPU opera-
tion. The EHPI is described in Chapter 4.
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3.1 Introduction to the DMA Controller

Acting in the background of CPU operation, the DMA controller can:

� Transfer data among internal memory, external memory, and on-chip
peripherals.

� Transfer data between the enhanced host port interface (EHPI) and
memory.

3.1.1 Key Features of the DMA Controller

The DMA controller has the following important features:

� Operation that is independent of the CPU.

� Four standard ports, one for each data resource: internal dual-access
RAM (DARAM), internal single-access RAM (SARAM), external memory,
and peripherals.

� An auxiliary port to enable certain transfers between the enhanced host
port interface (EHPI) and memory.

� Six channels, which allow the DMA controller to keep track of the context
of six independent block transfers among the standard ports.

� Bits for assigning each channel a low priority or a high priority. For details,
see Service Chain on page 3-8.

� Event synchronization. DMA transfers in each channel can be made
dependent on the occurrence of selected events. For details, see
Synchronizing Channel Activity on page 3-17.

� An interrupt for each channel. Each channel can send an interrupt to the
CPU on completion of certain operational events. See Monitoring Channel
Activity on page 3-19.

� Software-selectable options for updating addresses for the sources and
destinations of data transfers.

� A dedicated idle domain (see 8-2). You can put the DMA controller into a
low-power state by turning off this domain. Each multichannel buffered
serial port (McBSP) on the C55x DSP has the ability to temporarily take
the DMA domain out of this idle state when the McBSP needs the DMA
controller.

To read about the registers used to program the DMA controller, see section
3.12 on page 3-27.
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3.1.2 Block Diagram of the DMA Controller

Figure 3–1 is a conceptual diagram of connections between the DMA control-
ler and other parts of the DSP. The DMA controller ports in the diagram are:

� Four standard ports. The DMA controller has a standard port for each of
the following resources: internal dual-access RAM (DARAM), internal
single-access RAM (SARAM), external memory, and peripherals. Data
transfers among the standard ports occur in the six DMA channels. (The
DMA channels are described on page 3-5.)

� Auxiliary port. A fifth port supports data transfers between memory and the
enhanced host port interface (EHPI). The EHPI cannot access the periph-
erals port. If you want to transfer data from the EHPI to the peripherals port,
you must use data memory as a temporary buffer. Transfers between the
EHPI and the memory ports do not use a DMA channel.

The EHPI shares the auxiliary port with the USB module (see Chapter 14).
The USB module is given the higher priority at the port.

It is possible for multiple channels (or for one or more channels and the EHPI)
to request access to the same standard port at the same time. To arbitrate
simultaneous requests, the DMA controller has one programmable service
chain that is used by each of the standard ports. For details on the service
chain, see page 3-8.



Introduction to the DMA Controller

 3-4

Figure 3–1. Conceptual Block Diagram of the DMA Controller Connections
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3.2 Channels and Port Accesses

The DMA controller has six paths, called channels, to transfer data among the
four standard ports (for DARAM, SARAM, external memory, and peripherals).
Each channel reads data from one port (from the source) and writes data to
that same port or another port (to the destination).

Each channel has a first in, first out (FIFO) buffer that allows the data transfer
to occur in two stages (see Figure 3–2):

Port read access Transfer of data from the source port to the channel
FIFO buffer.

Port write access Transfer of data from the channel FIFO buffer to the
destination port.

Figure 3–2. The Two Parts of a DMA Transfer

n = 0, 1, 2, 3, 4, or 5

Source
port

Destination
port

Channel n
FIFO buffer

Read access Write access

The set of conditions under which transfers occur in a channel is called the
channel context. Each of the six channels contains a register structure for
programming and updating the channel context (see Figure 3–3). Your code
modifies the configuration registers. When it is time for data transferring, the
contents of the configuration registers are copied to the working registers, and
the DMA controller uses the working register values to control channel activity.
The copy from the configuration registers to the working registers occurs
whenever your code enables the channel (EN = 1 in DMA_CCR). In addition,
if the autoinitialization mode is on (AUTOINIT = 1 in DMA_CCR), the copy
occurs between block transfers. For more information about the DMA control-
ler registers, see page 3-27.



Channels and Port Accesses

 3-6

Figure 3–3. Registers for Controlling a Channel’s Context
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3.3 EHPI Access Configurations

As shown in Figure 3–4, the EHPI EXCL bit in DMA_GCR determines the rela-
tionship between the EHPI and the DMA channels. When EHPI EXCL = 0, the
EHPI shares memory with the channels. When EHPI EXCL = 1, the EHPI can-
not access external memory, but it can access internal RAM without interrup-
tions from the channels. When EHPI EXCL = 1, the DARAM port and the
SARAM port operate as if all the channels were disconnected from the service
chain. (The service chain is described in section 3.4.)

Figure 3–4. EHPI Access Configurations
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3.4 Service Chain

Each of the standard ports can arbitrate simultaneous access requests sent
by the six DMA channels and the enhanced host port interface (EHPI). Each
of the standard ports has an independently functioning service chain—a soft-
ware- and hardware-controlled scheme for servicing access requests. Al-
though the four service chains function independently, they share a common
configuration. For example, if you disable channel 2, it is disabled in all four
ports, and if you make channel 4 high-priority, it is high-priority in all four of the
ports. One possible configuration for the service chains is shown in
Figure 3–5. Important characteristics of the service chain are listed after the
figure.

Section 3.4.1 contains an example that shows a service chain configuration
applied to three ports.

Figure 3–5. One Possible Configuration for the Service Chains
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Channel
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Channel
4
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Channel
5
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� The channels and the EHPI have a programmable priority level. Each
channel has a PRIO bit in DMA_CCR for selecting a high priority or a low
priority. You assign the EHPI a high priority or low priority with the
EHPI PRIO bit in DMA_GCR. The DMA controller only services the low-
priority items when all the high-priority items are done or stalled. After a
DSP reset, all channels and the EHPI are low priority.

In the figure, channels 0, 2, and 5 are high-priority (in each of these chan-
nels, PRIO = 1). DMA channels 1, 3, and 4 and the EHPI are low priority (in
each of these channels, PRIO = 0, and for the EHPI, EHPI PRIO = 0).
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� The channels and the EHPI have fixed positions in the service chain. Re-
gardless of the programmed priorities, the port checks the channels and
the EHPI in a repeating circular sequence: 0, 1, 2, 3, 4, 5, EHPI, 0, 1, 2,
3, 4, 5, EHPI, and so on. At each position in the service chain, the port
checks whether the channel/EHPI is ready and able to be serviced. If so,
it is serviced; otherwise, the port skips to the next position. After a DSP
reset, the port restarts its circular sequence, beginning with channel 0.

� The channels can be individually connected or disconnected from the ser-
vice chain through software. If a channel is enabled (EN = 1 in
DMA_CCR), it is connected to the service chain; if it is disabled (EN = 0),
it is disconnected. After a DSP reset, all channels are disconnected.

In the figure, only channel 1 is disconnected. As a port checks the chan-
nels and the EHPI in its repeating circular sequence, it will keep skipping
channel 1 until the channel is reconnected.

� The EHPI cannot access the peripherals port. The peripherals port oper-
ates as if the EHPI is disconnected from the service chain.

� By writing a 1 to the EHPI EXCL bit in DMA_GCR, you can give the EHPI
exclusive access to the DARAM and SARAM ports. Then the DARAM and
SARAM ports operate as if only the EHPI is connected to the service chain
(as if none of the channels are connected, regardless of whether the chan-
nels are enabled). For more details, see EHPI Access Configurations on
page 3-7.

In the figure, EHPI EXCL = 0. The EHPI shares the RAM ports with the
channels.

� If a channel is tied to a synchronization event, the channel does not gener-
ate a DMA request (and, therefore, cannot be serviced) until the synchro-
nization event occurs. To avoid long response times to synchronization
events, always give synchronized channels a high priority.
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3.4.1 Service Chain Example

Figure 3–6 shows a DMA service chain applied to the DARAM port, the exter-
nal memory port, and the peripherals port. The service chain has the following
programmed characteristics. A list of activity in the ports is provided after the
figure.

� Channels 0, 2, and 5 are high-priority (PRIO = 1 in DMA_CCR). Channels
1, 3, and 4 are low-priority (PRIO = 0).

� Channels 1, 2, and 4 are enabled (EN = 1 in DMA_CCR). Channels 0, 3,
and 5 are disabled (EN = 0).

� The EHPI is sharing the internal memory with the channels
(EHPI EXCL = 0 in DMA_GCR) and is treated like a low-priority channel
(EHPI PRIO = 0 in DMA_GCR). Notice that the EHPI is shown as discon-
nected in the peripherals port. This is because the EHPI cannot access the
peripherals port.

Table 3–1 summarizes the activity at the ports in the figure.

Table 3–1. Activity Shown in Figure 3–6

Port This Port Arbitrates …

DARAM Write access requests from channel 2
Read access requests from channel 4
Read or write access requests from the EHPI

External memory Write access requests from channel 1
Write access requests from channel 4
Read or write access request from the EHPI

Peripherals Read access requests from channel 1
Read access requests from channel 2

Finally, notice that for each port in the figure, there is a channel that is
connected to the service chain but does not use the port. For example, the
peripherals port is not used by channel 4. If channel 4 were redefined to include
the peripherals port as source or destination, the port would handle channel
4 according to its position and priority in the service chain.
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Figure 3–6. Service Chain Applied to Three DMA Ports
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3.5 Units of Data: Byte, Element, Frame, and Block

This documentation on the DMA controller refers to data in four levels of granu-
larity:

Byte An 8-bit value. A byte is the smallest unit of data transferred in
a DMA channel.

Element One or more bytes to be transferred as a unit. Depending on the
programmed data type, an element is an 8-bit, 16-bit, or a 32-bit
value. An element transfer cannot be interrupted; all of its bytes
are transferred to a port before another channel or the EHPI can
take control of the port.

Frame One or more elements to be transferred as a unit. A frame trans-
fer can be interrupted between element transfers.

Block One or more frames to be transferred as a unit. Each channel
can transfer one block of data (once or multiple times). A block
transfer can be interrupted between frame transfers and ele-
ment transfers.

For each of the six DMA channels, you can define the number of frames in a
block (with DMA_CFN), the number of elements in a frame (with DMA_CEN),
and the number of bytes in an element (with the DATA TYPE bits in
DMA_CSDP). For descriptions of DMA_CFN, DMA_CEN, DMA_CSDP, and
other registers of the DMA controller, see section 3.12 on page 3-27.
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3.6 Start Addresses in a Channel
During a data transfer in a DMA channel, the first address at which data is read
is called the source start address. The first address to which the data is written
is called the destination start address. These are byte addresses. From the
standpoint of the DMA controller, every 8 bits in memory or I/O space has its
own address. Each channel contains the following registers for specifying the
start addresses:

Table 3–2. Registers Used to Define the Start Addresses for a DMA Transfer

Register Load With …

DMA_CSSA_L Source start address (lower part)

DMA_CSSA_U Source start address (upper part)

DMA_CDSA_L Destination start address (lower part)

DMA_CDSA_U Destination start address (upper part)

The following sections explain how to load the start address registers for
memory accesses and I/O accesses. The DMA controller can access all of the
internal and external memory and all of I/O space (which contains registers for
the DSP peripherals).

3.6.1 Start Address in Memory

Figure 3–7 is a high-level memory map for TMS320C55x DSPs. The diagram
shows both the word addresses (23-bit addresses) used by the CPU and byte
addresses (24-bit addresses) used by the DMA controller. To load the source/
destination start address registers:

1) Identify the correct start address. Check for any alignment constraint for
the data type; see the description for the DATA TYPE bits in section 3.12.4
(page 3-40). If you have a word address, shift it left by 1 bit to form a byte
address with 24 bits. For example, word address 02 4000h should be con-
verted to byte address 04 8000h.

2) Load the 16 least significant bits (LSBs) of the byte address into
DMA_CSSA_L (for source) or DMA_CDSA_L (for destination).

3) Load the 8 most significant bits (MSBs) of the byte address into the 8 LSBs
of DMA_CSSA_U (for source) or DMA_CDSA_U (for destination).

Note:

Word addresses 00 0000h–00 005Fh (which correspond to byte addresses
00 0000h–00 00BFh) are reserved for the memory-mapped registers
(MMRs) of the DSP CPU.
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Figure 3–7. High-Level Memory Map for TMS320C55x DSPs
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3.6.2 Start Address in I/O Space

Figure 3–8 is an I/O space map for TMS320C55x DSPs. The diagram shows
both the word addresses (16-bit addresses) used by the CPU and byte
addresses (17-bit addresses) used by the DMA controller. To load the source/
destination start address registers:

1) Identify the correct start address. Check for any alignment constraint for
the data type; see the description for the DATA TYPE bits in section 3.12.4
(page 3-40). If you have a word address, shift it left by 1 bit to form a byte
address with 17 bits. For example, word address 8000h should be con-
verted to byte address 1 0000h.

2) Load the 16 least significant bits (LSBs) of the byte address into
DMA_CSSA_L (for source) or DMA_CDSA_L (for destination).

3) Load the most significant bit (MSB) of the byte address into the LSB of
DMA_CSSA_U (for source) or DMA_CDSA_U (for destination).
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Figure 3–8. High-Level I/O Map for TMS320C55x DSPs
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3.7 Updating Addresses in a Channel

During data transfers in a DMA channel, the DMA controller begins its read and
write accesses at the start addresses you specify (as described in section 3.6).
In many cases, after a data transfer has begun, these addresses must be up-
dated so that data is read and written at consecutive or indexed locations. You
can configure address updates at two levels:

� Block-level address updates. In the autoinitialization mode
(AUTOINIT = 1 in DMA_CCR), block transfers can occur one after anoth-
er until you turn off autoinitialization or disable the channel. If you want
different start addresses for the block transfers, you can update the start
addresses between the block transfers.

� Element-level address updates. You can have the DMA controller update
the source address and/or the destination address after each element
transfer. You can make sure the source address points to the start of the
next element, and you can make sure the element will be precisely posi-
tioned at the destination. Choose an addressing mode for the source with
the SRC AMODE bits in DMA_CCR. Choose an addressing mode for the
destination with the DST AMODE bits in DMA_CCR.
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3.8 Synchronizing Channel Activity

Activity in a channel can be synchronized to an event in a DSP peripheral or
to an event signaled by the driving of an external interrupt pin. Using the SYNC
bits of DMA_CCR, you can specify which synchronization event (if any) trig-
gers activity.

Each channel also has an FS bit in DMA_CCR that allows you to choose
among two synchronization modes:

� Element synchronization mode (FS = 0) requires one event per element
transfer. When the selected synchronization event occurs, a read access
request is sent to the source port and then a write access request is sent
to the destination port. When all the bytes of the current element are trans-
ferred, the channel makes no more requests until the next occurrence of
the synchronization event.

� Frame synchronization mode (FS = 1) requires one event to trigger an en-
tire frame of elements. When the event occurs, the channel sends a read
access request and a write access request for each element in the frame.
When all the elements are transferred, the channel makes no more
requests until the next occurrence of the event.

If you specify a synchronization event, the source port does not receive an
access request until the event occurs. Once the request is received, it is han-
dled according to the predefined position and the programmed priority of the
channel in the DMA service chain (see page 3-8). To avoid long delays, it is
best to give all synchronized channels a high priority.

If you choose not to synchronize the channel (SYNC = 00000b), the channel
sends an access request to the source port as soon as the channel is enabled
(EN = 1 in DMA_CCR).

3.8.1 Checking the Synchronization Status

Each channel has a synchronization flag (SYNC) in its status register,
DMA_CSR. When the synchronization event occurs, the DMA controller sets
the flag (SYNC = 1). The flag is cleared (SYNC = 0) when the DMA controller
has completed the first read access (transfer from source port to channel buff-
er) after receiving synchronization.
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3.8.2 Dropped Synchronization Events

If a synchronization event occurs before the DMA controller is done servicing
the previous one (before the DMA controller clears the SYNC bit in
DMA_CSR), a synchronization event has been dropped. The DMA controller
responds to an event drop in the following manner:

� After the current element transfer, the DMA controller disables the channel
(EN = 0 in DMA_CCR); activity in the channel stops after the current ele-
ment transfer.

� If the corresponding interrupt enable bit is set (DROP IE = 1 in
DMA_CICR), the DMA controller also sets the event drop status bit
(DROP = 1 in DMA_CSR) and sends an interrupt request to the CPU. For
more details, see Monitoring Channel Activity on page 3-19.
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3.9 Monitoring Channel Activity

The DMA controller can send an interrupt to the CPU in response to the opera-
tional events listed in the following table. Each channel has interrupt enable
(IE) bits in the interrupt control register (DMA_CICR) and some corresponding
status bits in the status register (DMA_CSR). (DMA_CICR and DMA_CSR are
described in section 3.12.3 on page 3-36.) If one of the operational events in
the table occurs, the DMA controller checks the corresponding IE bit and acts
accordingly:

� If the IE bit is 1 (the interrupt is enabled), the DMA controller sets the corre-
sponding status bit and sends the associated interrupt request to the CPU.
DMA_CSR is automatically cleared if your program reads the register.

� If the IE bit is 0, no interrupt is sent and the status bit is not affected.

DMA_CSR also has a SYNC bit that is used if you choose a synchronization
event for the channel. SYNC indicates when the selected synchronization
event has occurred (SYNC  =  1) and when it has been serviced (SYNC  =  0).
For more details about synchronization events, see Synchronizing Channel
Activity on page 3-17.

Table 3–3. DMA Controller Operational Events and Their Associated Bits and Interrupts

Operational Event
Interrupt
Enable Bit Status Bit Associated Interrupt

Block transfer is complete BLOCK IE BLOCK Channel interrupt

Last frame transfer
has started

LAST IE LAST Channel interrupt

Frame transfer is complete FRAME IE FRAME Channel interrupt

First half of current frame
has been transferred

HALF IE HALF Channel interrupt

Synchronization event
has been dropped

DROP IE DROP Channel interrupt

Time-out error has occurred TIMEOUT IE TIMEOUT Bus-error interrupt
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3.9.1 Channel Interrupt

Each of the six channels has its own interrupt. As shown Figure 3–9, the chan-
nel interrupt is the logical OR of all the enabled operational events except the
time-out event (the time-out event generates a bus-error interrupt request).
You can choose any combination of these five events by setting or clearing the
appropriate interrupt enable (IE) bits in the interrupt control register
(DMA_CICR) for the channel. You can determine which event(s) caused the
interrupt by reading the bits in the status register (DMA_CSR) for the channel.

Figure 3–9. Triggering a Channel Interrupt Request
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For example, suppose you are monitoring activity in channel 1. In DMA_CICR:

DROP IE = 1
HALF IE = 0
FRAME IE = 1
LAST IE = 0
BLOCK IE = 0

If a synchronization event is dropped (see 3.8.2 on page 3-18) or if the current
frame transfer is done, the channel 1 interrupt request is sent to the CPU. No
other event can generate the channel 1 interrupt. To determine whether one
or both of the events triggered the interrupt, you can read the DROP and
FRAME bits in DMA_CSR.

The channel 1 interrupt sets its corresponding flag bit in an interrupt flag regis-
ter of the CPU. The CPU can respond to the interrupt or ignore the interrupt.

For more details about DMA_CICR and DMA_CSR, see section 3.12.3 on
page 3-36.
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3.9.2 Time-Out Conditions

A time-out condition exists when a memory access has been stalled for too
many cycles. Each of the four standard ports of the DMA controller is sup-
ported by hardware to detect a time-out condition:

� DARAM port: A time-out counter in the DARAM port keeps track of how
many cycles have passed since a request was made to access the
DARAM. When the counter reaches 255, the DARAM port generates a
time-out signal.

� SARAM port: A time-out counter in the SARAM port keeps track of how
many cycles have passed since a request was made to access the
SARAM. When the counter reaches 255, the SARAM port generates a
time-out signal.

� External memory port: A time-out counter in the external memory interface
(EMIF) keeps track of how many cycles the external ready pin (ARDY) has
been sampled low. The external memory map is divided into four memory
spaces, each of which has a programmable time-out value up to 255
cycles. When the counter reaches the time-out value, the EMIF sends a
time-out signal to the DMA controller. For more details about the effects
of a time-out condition in the EMIF, see Configuring the EMIF for Asyn-
chronous Accesses on page 5-28.

� Peripherals port: A time-out counter in the peripheral bus controller counts
how many cycles have passed since a request was made to access a
peripheral. When the counter reaches 127, the peripheral bus controller
sends a time-out signal to the DMA controller.

In response to a time-out signal, the DMA controller disables the channel
(EN = 0 in DMA_CCR); activity in the channel stops after the current element
transfer. If the corresponding interrupt enable bit is set (TIMEOUT IE = 1 in
DMA_CICR), the DMA controller also sets the time-out status bit
(TIMEOUT = 1 in DMA_CSR) and sends the time-out signal to the CPU as an
interrupt request. The interrupt request sets the bus-error interrupt (BERRINT)
flag bit in the CPU. The CPU can respond to the interrupt request or ignore the
interrupt request.
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3.10 Latency in DMA Transfers

Each element transfer in a channel is composed of a read access (a transfer
from the source location to the channel buffer) and a write access (a transfer
from the channel buffer to the destination location). The time to complete this
activity depends on factors such as:

� The selected frequency of the CPU clock signal. This signal, as propa-
gated to the DMA controller, determines the timing for all DMA transfers.

� Wait states or other extra cycles added by or resulting from an interface

� Competition from other channels. The DMA controller divides cycles
among all enabled channels according to their position and priority level
in the service chain (see section 3.4 on page 3-8). If fewer channels are
enabled, more cycles are allotted per channel during a given interval of
time.

� Competition from the enhanced host port interface (EHPI). If the EHPI is
sharing internal RAM with the channels, the DMA controller allocates
cycles to the EHPI like it does to channels. If you give the EHPI exclusive
access to the internal RAM, no channels can access the internal RAM until
you change the EHPI access configuration (see section 3.3 on page 3-7).

� The timing of synchronization events (if the channel is synchronized). The
DMA controller cannot service a synchronized channel until the synchro-
nization event has occurred. For more details on synchronization, see
Synchronizing Channel Activity on page 3-17.
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3.11 Power, Emulation, and Reset Considerations

The following sections describe how to put the DMA controller into a low-power
state, how to program the response of the DMA controller to debugger break-
points, and what values the DMA controller registers have after a DSP reset.

3.11.1 Reducing Power Consumed By the DMA Controller

The DSP is divided into idle domains that can be programmed to be idle or
active. The state of all domains is called the idle configuration. Any idle config-
uration that disables the clock generator (CLKGEN) domain and/or the DMA
domain stops the DMA clock and, therefore, stops activity in the DMA control-
ler. For more details, see Chapter 8, Idle Configurations.

3.11.2 Emulation Modes of the DMA Controller

The FREE bit of DMA_GCR controls the behavior of the DMA controller when
a breakpoint is encountered in the debugger software. If FREE = 0 (the reset
value), a breakpoint suspends DMA transfers. If FREE = 1, DMA transfers are
not interrupted by a breakpoint.

3.11.3 DMA Controller after DSP Reset

Table 3–4 shows the effects of a DSP reset on the DMA controller registers,
and the resulting effects on the DSP. A number of registers are undefined and
must be initialized/reinitialized.

Table 3–4. Effects of Resetting the DMA Controller Registers  

Register
Reset
Value Key Effects on the DMA Controller

DMA_GCR 0000h FREE = 0: A breakpoint in the software debugger suspends DMA
transfers.

EHPI EXCL = 0: The enhanced host port interface (EHPI) shares the
internal RAM with the DMA channels.

EHPI PRIO = 0: The EHPI has a low priority in the DMA service chain.

DMA_CSDP in
every channel:

DMA_CSDP0
DMA_CSDP1
DMA_CSDP2
DMA_CSDP3
DMA_CSDP4
DMA_CSDP5

0000h In every channel:

SRC BEN = DST BEN = 00b: Burst transfers are disabled at both the
source port and the destination port.

SRC PACK = DST PACK = 0: Data packing is disabled at both the
source port and the destination port.

SRC = DST = 0000b: The SARAM port is both the source port and the
destination port.

DATA TYPE = 00b: An 8-bit data type is selected.
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Table 3–4. Effects of Resetting the DMA Controller Registers (Continued)

Register Key Effects on the DMA Controller
Reset
Value

DMA_CCR in
every channel:

DMA_CCR0
DMA_CCR1
DMA_CCR2
DMA_CCR3
DMA_CCR4
DMA_CCR5

0000h In every channel:

SRC AMODE = 00b: Each element transfer uses the same source
address.

DST AMODE = 00b: Each element transfer uses the same destination
address.

AUTOINIT = 0: The autoinitialization mode is off. The channel will stop
after completing a block transfer.

EN = 0: The channel is disabled. No data transfers can occur in the
channel until EN = 1.

PRIO = 0: The channel has a low priority in the DMA service chain.

SYNC = 00000b: The channel does not wait for a synchronization event
to trigger data transfers. Data transfers begin as soon as the channel is
enabled (EN = 1).

DMA_CICR in
every channel:

DMA_CICR0
DMA_CICR1
DMA_CICR2
DMA_CICR3
DMA_CICR4
DMA_CICR5

0003h In every channel:

The channel interrupt can be triggered only by a dropped
synchronization event. The bus-error interrupt can be triggered by a
time-out condition.

DMA_CSR in
every channel:

DMA_CSR0
DMA_CSR1
DMA_CSR2
DMA_CSR3
DMA_CSR4
DMA_CSR5

0000h In every channel:

All of the channel status bits have been cleared.
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Table 3–4. Effects of Resetting the DMA Controller Registers (Continued)

Register Key Effects on the DMA Controller
Reset
Value

DMA_CSSA_L and
DMA_CSSA_U in
every channel:

DMA_CSSA_L0
DMA_CSSA_U0
DMA_CSSA_L1
DMA_CSSA_U1
DMA_CSSA_L2
DMA_CSSA_U2
DMA_CSSA_L3
DMA_CSSA_U3
DMA_CSSA_L4
DMA_CSSA_U4
DMA_CSSA_L5
DMA_CSSA_U5

Undefined In every channel:

You must load these registers to provide a known source start address
for the channel.

DMA_CDSA_L and
DMA_CDSA_U in
every channel:

DMA_CDSA_L0
DMA_CDSA_U0
DMA_CDSA_L1
DMA_CDSA_U1
DMA_CDSA_L2
DMA_CDSA_U2
DMA_CDSA_L3
DMA_CDSA_U3
DMA_CDSA_L4
DMA_CDSA_U4
DMA_CDSA_L5
DMA_CDSA_U5

Undefined In every channel:

You must load these registers to provide a known destination start
address for the channel.

DMA_CEN in
every channel:

DMA_CEN0
DMA_CEN1
DMA_CEN2
DMA_CEN3
DMA_CEN4
DMA_CEN5

Undefined In every channel:

You must load this register to provide a known number of elements for
the channel.
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Table 3–4. Effects of Resetting the DMA Controller Registers (Continued)

Register Key Effects on the DMA Controller
Reset
Value

DMA_CFN in
every channel:

DMA_CFN0
DMA_CFN1
DMA_CFN2
DMA_CFN3
DMA_CFN4
DMA_CFN5

Undefined In every channel:

You must load this register to provide a known number of frames for the
channel.

DMA_CFI in
every channel:

DMA_CFI0
DMA_CFI1
DMA_CFI2
DMA_CFI3
DMA_CFI4
DMA_CFI5

Undefined In every channel:

You must load this register to provide a known frame index for the
channel.

DMA_CEI in
every channel:

DMA_CEI0
DMA_CEI1
DMA_CEI2
DMA_CEI3
DMA_CEI4
DMA_CEI5

Undefined In every channel:

You must load this register to provide a known element index for the
channel.
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3.12 DMA Controller Registers

Table 3–5 lists the types of registers in the direct memory access (DMA) con-
troller. There is one global control register (DMA_GCR). In addition, for each
of the DMA channels, there are 12 channel configuration registers. For the I/O
address of each register, see the data sheet for your TMS320C55x DSP.

Table 3–5. Registers of the DMA Controller 

Register Type Description For Details, See ...

DMA_GCR Global control register
(only one)

Page 3-28

DMA_CCR Channel control register
(one for each channel)

Page 3-29

DMA_CICR Interrupt control register
(one for each channel)

Page 3-36

DMA_CSR Status register
(one for each channel)

Page 3-36

DMA_CSDP Source and destination parameters register
(one for each channel)

Page 3-40

DMA_CSSA_L Source start address (lower part) register
(one for each channel)

Page 3-44

DMA_CSSA_U Source start address (upper part) register
(one for each channel)

Page 3-44

DMA_CDSA_L Destination start address (lower part) register
(one for each channel)

Page 3-45

DMA_CDSA_U Destination start address (upper part) register
(one for each channel)

Page 3-45

DMA_CEN Element number register
(one for each channel)

Page 3-45

DMA_CFN Frame number register
(one for each channel)

Page 3-45

DMA_CEI Element index register
(one for each channel)

Page 3-46

DMA_CFI Frame index register
(one for each channel)

Page 3-46
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3.12.1 Global Control Register (DMA_GCR)

The global control register (see Figure 3–10) is a 16-bit read/write register
used to configure global conditions in the DMA controller. Use this I/O-mapped
register to set the emulation mode of the DMA controller (FREE) and to define
how the DMA controller treats the enhanced host port interface (EHPI EXCL
and EHPI PRIO).

Figure 3–10. Global Control Register (DMA_GCR)
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 3–6. DMA_GCR Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–3 Reserved These bits are not available for your use. –

2 FREE Emulation mode bit. FREE controls the behavior of the DMA controller when a
breakpoint is encountered in the software debugger:

0

0 A breakpoint suspends DMA transfers.

1 DMA transfers continue uninterrupted when a breakpoint occurs.

1 EHPI EXCL EHPI exclusive access bit. EHPI EXCL determines whether the enhanced host
port interface (EHPI) has exclusive access to the internal RAM of the DSP:

0

0 The EHPI shares the internal RAM with the DMA channels. The EHPI can
access any internal and external memory in its address reach.

1 The EHPI has exclusive access to the internal RAM. If any channels must
access the DARAM port or the SARAM port, activity in these channels is
suspended.

In this EHPI access configuration, the EHPI can only access the DARAM
port and the SARAM port. It cannot access the external memory port.

Note: Regardless of the value of EHPI EXCL, the EHPI cannot access the pe-
ripherals port.
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Table 3–6. DMA_GCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

0 EHPI PRIO EHPI priority bit. EHPI PRIO assigns the EHPI a high or low priority level in the
service chain of the DMA controller:

0

0 Low priority level

1 High priority level

Note: When the EHPI has exclusive access to the DARAM and SARAM ports
(EHPI EXCL = 1), the EHPI priority is irrelevant at these ports because none of
the DMA channels can access the DARAM and SARAM ports.

3.12.2 Channel Control Register (DMA_CCR)

Each channel has a channel control register of the form shown in the following
figure. This I/O-mapped register enables you to:

� Choose how the source and destination addresses are updated
(SRC AMODE and DST AMODE)

� Enable and control repeated DMA transfers (AUTOINIT, REPEAT, and
END PROG)

� Enable or disable the channel (EN)

� Choose a low or high priority level for the channel (PRIO)

� Select element synchronization or frame synchronization (FS)

� Determine what synchronization event (if any) initiates a transfer in the
channel (SYNC)

Figure 3–11.Channel Control Register (DMA_CCR)
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– X X is the value after a DSP reset.
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Table 3–7. DMA_CCR Bit Descriptions  

Bit(s) Name Description
Reset
Value

15–14 DST AMODE Destination addressing mode. DST AMODE determines the
addressing mode used by the DMA controller when it writes to the
destination port of the channel:

00b

00b Constant address

The same address is used for each element transfer.

01b Automatic post increment

After each element transfer, the address is incremented
according to the selected data type:

If data type is 8-bit
  Address = Address + 1

If data type is 16-bit
  Address = Address + 2

If data type is 32-bit
  Address = Address + 4

10b Single index

After each element transfer, the address is incremented by
the programmed element index amount:

  Address = Address + element index

11b Double index (sort)

After each element transfer, the address is incremented by
the appropriate index amount:

If there are more elements to transfer in the current frame
  Address = Address + element index

If the last element in the frame has been transferred
  Address = Address + frame index
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Table 3–7. DMA_CCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

13–12 SRC AMODE Source addressing mode. SRC AMODE determines the addressing
mode used by the DMA controller when it reads from the source port
of the channel:

00b

00b Constant address

The same address is used for each element transfer.

01b Automatic post increment

After each element transfer, the address is incremented
according to the selected data type:

If data type is 8-bit
  Address = Address + 1

If data type is 16-bit
  Address = Address + 2

If data type is 32-bit
  Address = Address + 4

10b Single index

After each element transfer, the address is incremented by
the programmed element index amount:

  Address = Address + element index

11b Double index (sort)

After each element transfer, the address is incremented by
the appropriate index amount:

If there are more elements to transfer in the current frame
  Address = Address + element index

If the last element in the frame has been transferred
  Address = Address + frame index
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Table 3–7. DMA_CCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

11 END PROG End-of-programmation bit. Each DMA channel has two sets of
registers: configuration registers and working registers. When block
transfers occur repeatedly because of auto-initialization
(AUTOINIT = 1), you can change the context for the next DMA transfer
by writing to the configuration registers during the current block
transfer. At the end of the current transfer, the contents of the
configuration registers are copied into the working registers, and the
DMA controller begins the next transfer using the new context. For
proper auto-initialization, the CPU must finish programming the
configuration registers before the DMA controller copies their contents.
To make sure auto-initialization waits for the CPU, follow this
procedure:

1) Make auto-initialization wait for END PROG = 1 by clearing the
REPEAT bit (REPEAT = 0)

2) Clear END PROG (END PROG = 0) to indicate that
programmation of the configuration registers is in process.

3) Program the configuration registers.

4) Set END PROG (END PROG = 1) to indicate the end of
programmation.

0

10 Rsvd This is a reserved bit (not available for your use) and must be kept 0.
Make sure that whenever your program modifies DMA_CCR, it writes
a 0 to bit 10.

–

9 REPEAT Repeat condition bit. If autoinitialization is selected for a channel
(AUTOINIT = 1), REPEAT specifies one of two special repeat
conditions:

0

0 Repeat only if END PROG = 1

Once the current DMA transfer is complete, auto-initialization
only occurs if the end-of-programmation bit (END PROG) is
set.

1 Repeat regardless of END PROG

Once the current DMA transfer is complete, auto-initialization
occurs regardless of whether END PROG is 0 or 1.
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Table 3–7. DMA_CCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

8 AUTOINIT Auto-initialization bit. The DMA controller supports auto-initialization,
which is the automatic reinitialization of the channel between DMA
transfers. Use AUTOINIT to enable or disable this feature:

0

0 Auto-initialization is disabled

Activity in the channel stops at the end of the current block
transfer. To stop a transfer immediately, clear the channel
enable bit (EN).

1 Auto-initialization is enabled

Once the current block transfer is complete, the DMA
controller reinitializes the channel and starts a new block
transfer. To stop activity in the channel you have two options:

� To stop activity immediately, clear the channel enable bit
(EN = 0).

� To stop activity after the current block transfer, clear
AUTOINIT (AUTOINIT= 0)

7 EN Channel enable bit. Use EN to enable or disable transfers in the
channel. The DMA controller clears EN once a block transfer in the
channel is complete.

0

0 Channel is disabled

The channel cannot be serviced by the DMA controller. If a
DMA transfer is already active in the channel, the DMA
controller stops the transfer and resets the channel.

1 Channel is enabled

The channel can be serviced by the DMA controller at the
next available time slot.

Note: If the CPU attempts to write to EN at the same time that the DMA
controller must clear EN, the DMA controller is given higher priority. EN
is cleared, and the value from the CPU is discarded.

6 PRIO Channel priority bit. All six of the DMA channels are given a fixed
position and programmable priority level on the service chain of the
DMA controller. PRIO determines whether the associated channel has
a high priority or a low priority. High-priority channels are serviced
before low-priority channels.

0

0 Low priority

1 High priority
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Table 3–7. DMA_CCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

5 FS Frame/element synchronization bit. You can use the SYNC bits of
DMA_CCR to specify a synchronization event for the channel. The FS
bit determines whether the synchronization event initiates the transfer
of an element or an entire frame of data:

0

0 Element synchronization

When the selected synchronization event occurs, one
element is transferred in the channel. Each element transfer
waits for the synchronization event.

1 Frame synchronization

When the selected synchronization event occurs, an entire
frame is transferred in the channel. Each frame transfer waits
for the synchronization event.

4–0 SYNC Synchronization control bits. SYNC in DMA_CCR determines which
event in the DSP (for example, a timer countdown) initiates a DMA
transfer in the channel. Multiple channels can have the same SYNC
value; in other words, one synchronization event can initiate activity in
multiple channels.

A DSP reset selects SYNC = 00000b (no synchronization event).
When SYNC = 00000b, the DMA controller does not wait for a
synchronization event before beginning a DMA transfer in the channel;
channel activity begins as soon as the channel is enabled (EN = 1).

To see what events are tied to values of SYNC other than 00000b, see
the data sheet for your TMS320C55x DSP. As an example, Table 3–8
shows the event mapping for the TMS320VC5510 DSP.

00000b
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Table 3–8. Synchronization Event Mapping for the TMS320VC5510 DSP

SYNC
Synchronization Event For The Channel
(TMS320VC5510 DSP)

00000b No synchronization event

00001b McBSP 0 receive event (REVT0)

00010b McBSP 0 transmit event (XEVT0)

00011b McBSP 0 A-bis mode receive event (REVTA0)

00100b McBSP 0 A-bis mode transmit event (XEVTA0)

00101b McBSP 1 receive event (REVT1)

00110b McBSP 1 transmit event (XEVT1)

00111b McBSP 1 A-bis mode receive event (REVTA1)

01000b McBSP 1 A-bis mode transmit event (XEVTA1)

01001b McBSP 2 receive event (REVT2)

01010b McBSP 2 transmit event (XEVT2)

01011b McBSP 2 A-bis mode receive event (REVTA2)

01100b McBSP 2 A-bis mode transmit event (XEVTA2)

01101b Timer 1 event (TEVT1)

01110b Timer 2 event (TEVT2)

01111b External interrupt 0

10000b External interrupt 1

10001b External interrupt 2

10010b External interrupt 3

10011b External interrupt 4

10100b External interrupt 5

Other values Reserved (do not use these values)
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3.12.3 Interrupt Control Register (DMA_CICR) and
Status Register (DMA_CSR)

Each channel has an interrupt control register (DMA_CICR) and a status reg-
ister (DMA_CSR). DMA_CICR and DMA_CSR are I/O-mapped registers.
Their bits are shown in Figure 3–12 and described in Table 3–9 and
Table 3–10.

Use DMA_CICR to specify that one or more DMA controller events will trigger
an interrupt. If an event occurs and its interrupt enable (IE) bit is 1, an interrupt
request is sent to the DSP CPU, where it can be serviced or ignored. Each
channel has its own interrupt line to the CPU and one set of flag and enable
bits in the CPU. In addition the DMA controller can send a bus-error interrupt
request to the CPU in response to a time-out error. The bus-error interrupt also
has a set of flag and enable bits in the CPU.

To see which event or events have occurred in the DMA controller, your pro-
gram can read DMA_CSR. The SYNC bit is always set when its event occurs
(when the DMA controller responds to the chosen synchronization event). The
other status bits are not necessarily set when their events occur; the DMA con-
troller sets one of these bits only if the event occurs and the associated inter-
rupt enable bit is set in DMA_CICR. After your program reads DMA_CSR, all
of its bits are cleared automatically.

Figure 3–12. Interrupt Control Register (DMA_CICR) and Status Register (DMA_CSR)
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Legend:

R Read-only access
R/W Read/write access
– X X is the value after a DSP reset.
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Table 3–9. DMA_CICR Bit Descriptions  

Bit(s) Name Description
Reset
Value

15–6 Reserved These bits are not available for your use. –

5 BLOCK IE Whole block interrupt enable bit. BLOCK IE determines how the
DMA controller responds when all of the current block has been
transferred from the source port to the destination port:

0

0 Do not record the event.

1 Set the BLOCK bit and send the channel interrupt request
to the CPU.

4 LAST IE Last frame interrupt enable bit. LAST IE determines how the
DMA controller responds when the DMA controller starts
transferring the last frame from the source port to the
destination port:

0

0 Do not record the event.

1 Set the LAST bit and send the channel interrupt request
to the CPU.

3 FRAME IE Whole frame interrupt enable bit. FRAME IE determines how
the DMA controller responds when the all of the current frame
has been transferred from the source port to the destination
port:

0

0 Do not record the event.

1 Set the FRAME bit and send the channel interrupt
request to the CPU.

2 HALF IE Half frame interrupt enable bit. HALF IE determines how the
DMA controller responds when the first half of the current frame
has been transferred from the source port to the destination
port:

0

0 Do not record the event.

1 Set the HALF bit and send the channel interrupt request
to the CPU.
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Table 3–9. DMA_CICR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

1 DROP IE Synchronization event drop interrupt enable bit. If a DMA
synchronization event occurs again before the DMA controller
is done servicing the previous DMA request, an error has
occurred—a synchronization event drop. DROP IE determines
how the DMA controller responds when a synchronization
event drop occurs in the channel:

1

0 Do not record the drop.

1 Set the DROP bit and send the channel interrupt request
to the CPU.

0 TIMEOUT IE Timeout interrupt enable bit. TIMEOUT IE determines how the
DMA controller responds to a timeout error at the source port
or the destination port of the channel:

1

0 Do not record the timeout error.

1 Set the TIMEOUT bit and send the bus-error interrupt
request to the CPU.

Table 3–10. DMA_CSR Bit Descriptions  

Bit Name Description
Reset
Value

15–7 Reserved These bits are not available for your use. –

6 SYNC Synchronization event status bit. The DMA controller updates
SYNC to indicate when the synchronization event for the
channel has occurred and when the synchronized channel has
been serviced:

0

0 The DMA controller has finished servicing the previous
access request.

1 The synchronization event has occurred. In response to
the event, the synchronized channel submits an access
request to its source port.

Note 1: If a synchronization event occurs again before the DMA
controller is done servicing the previous DMA request, an error
has occurred—a synchronization event drop. You can track this
type of error using the DROP IE bit and the DROP bit.

Note 2: To select a synchronization event for a channel, use the
SYNC bits of DMA_CCR.
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Table 3–10. DMA_CSR Bit Descriptions (Continued)

Bit
Reset
ValueDescriptionName

5 BLOCK Whole block status bit. The DMA controller sets BLOCK only if
BLOCK IE = 1 in DMA_CICR and all of the current block has
been transferred from the source port to the destination port:

0

0 The whole-block event has not occurred yet, or BLOCK
has been cleared.

1 The whole block has been transferred. A channel
interrupt request has been sent to the CPU.

4 LAST Last frame status bit. The DMA controller sets LAST only if
LAST IE = 1 in DMA_CICR and the DMA controller has started
transferring the last frame from the source port to the
destination port:

0

0 The last-frame event has not occurred yet, or LAST has
been cleared.

1 The DMA controller has started transferring the last
frame. A channel interrupt request has been sent to the
CPU.

3 FRAME Whole frame status bit. The DMA controller sets FRAME only
if FRAME IE = 1 in DMA_CICR and all of the current frame has
been transferred from the source port to the destination port:

0 The whole-frame event has not occurred yet, or FRAME
has been cleared.

1 The whole frame has been transferred. A channel
interrupt request has been sent to the CPU.

2 HALF Half frame status bit. The DMA controller sets HALF only if
HALF IE = 1 in DMA_CICR and the first half of the current frame
has been transferred from the source port to the destination
port:

0

0 The half-frame event has not occurred yet, or HALF has
been cleared.

1 The first half of the frame has been transferred. A channel
interrupt request has been sent to the CPU.
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Table 3–10. DMA_CSR Bit Descriptions (Continued)

Bit
Reset
ValueDescriptionName

1 DROP Synchronization event drop status bit. If a DMA synchronization
event occurs again before the DMA controller is done servicing
the previous DMA request, an error has occurred—a
synchronization event drop. The DMA controller sets DROP
only if DROP IE = 1 in DMA_CICR and a synchronization event
drop has occurred in the channel:

0

0 A synchronization event drop has not occurred, or DROP
has been cleared.

1 A synchronization event drop has occurred. A channel
interrupt request has been sent to the CPU.

0 TIMEOUT Timeout status bit. The DMA controller sets TIMEOUT only if
TIMEOUT IE = 1 in DMA_CICR and a time-out error has
occurred at the source port or the destination port of the
channel:

0

0 A time-out error has not occurred, or TIMEOUT has been
cleared.

1 A time-out error has occurred. A bus-error interrupt
request has been sent to the CPU.

3.12.4 Source and Destination Parameters Register (DMA_CSDP)

Each channel has a source and destination parameters register of the form
shown in Figure 3–13. This I/O-mapped register enables you to choose a
source port (SRC) and a destination port (DST), specify a data type
(DATA TYPE) for port accesses, enable or disable data packing (SRC PACK
and DST PACK), and enable or disable burst transfers (SRC BEN and
DST BEN).

Figure 3–13. Source and Destination Parameters Register (DMA_CSDP)
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– X X is the value after a DSP reset.
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Table 3–11. Source and Destination Parameters Register (DMA_CSDP)  

Bit(s) Name Description
Reset
Value

15–14 DST BEN Destination burst enable bit. A burst in the DMA controller is four
consecutive 32-bit accesses at a DMA port. DST BEN determines
whether the DMA controller performs a burst at the destination port of the
channel.

00b

00b Bursting disabled (single access enabled) at the destination

01b Bursting disabled (single access enabled) at the destination

10b Bursting enabled at the destination

When writing to the destination, the DMA controller performs
four consecutive 32-bit accesses.

11b Reserved (do not use)

13 DST PACK Destination packing enable bit. The DMA controller can perform data
packing to double or quadruple the amount of data passed to the
destination. For example, if an 8-bit data type is selected and the
destination port has a 32-bit data bus, four 8-bit pieces of data can be
packed into 32 bits before being sent to the destination. DST PACK
determines whether data packing is used at the destination port.

0

0 Packing disabled at the destination

1 Packing enabled at the destination

Where possible, the DMA controller packs data before each
write to the destination. Table 3–12 (page 3-44) shows the
instances where data packing is performed.

12–9 DST Destination selection bit. DST selects which DMA port is the destination
for data transfers in the channel (a bit shown as X can be 0 or 1):

0000b

XX00b SARAM (single-access RAM inside the DSP)

XX01b DARAM (dual-access RAM inside the DSP)

XX10b External memory (via the external memory interface, EMIF)

XX11b Peripherals (via the peripheral bus controller)
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Table 3–11. Source and Destination Parameters Register (DMA_CSDP) (Continued)

Bit(s)
Reset
ValueDescriptionName

8–7 SRC BEN Source burst enable bit. A burst in the DMA controller is four consecutive
32-bit accesses at a DMA port. SRC BEN determines whether the DMA
controller performs a burst at the source port of the channel.

00b

00b Bursting disabled (single access enabled) at the source

01b Bursting disabled (single access enabled) at the source

10b Bursting enabled at the source

When reading from the source, the DMA controller performs
four consecutive 32-bit accesses.

11b Reserved (do not use)

6 SRC PACK Source packing enable bit. The DMA controller can perform data packing
to double or quadruple the amount of data gathered at the source. For
example, if an 8-bit data type is selected and the source port has a 32-bit
data bus, four 8-bit pieces of data can be packed into 32 bits before being
sent through the channel. SRC PACK determines whether data packing
is used at the source port.

0

0 Packing disabled at the source

1 Packing enabled at the destination

Where possible, the DMA controller packs data from the source
before beginning a data transfer in the channel. Table 3–12
(page 3-44) shows the instances where data packing is
performed.

5–2 SRC Source selection bit. SRC selects which DMA port is the source for data
transfers in the channel (a bit shown as X can be 0 or 1):

0000b

XX00b SARAM (single-access RAM inside the DSP)

XX01b DARAM (dual-access RAM inside the DSP)

XX10b External memory (via the external memory interface, EMIF)

XX11b Peripherals (via the peripheral bus controller)
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Table 3–11. Source and Destination Parameters Register (DMA_CSDP) (Continued)

Bit(s)
Reset
ValueDescriptionName

1–0 DATA TYPE Data type bit. DATA TYPE indicates how data is to be accessed at the
source and at the destination of the channel. Note that the DMA
controller uses byte addresses  for its accesses; each byte in data space
or I/O space has its own address. For information on how addresses are
updated between element transfers, see the descriptions for the
SRC AMODE bits and the DST AMODE bits in DMA_CCR (page 3-29).

00b

00b 8-bit

The DMA controller makes 8-bit accesses at the source and at
the destination of the channel. The source and destination start
addresses have no alignment constraint:

  Start address: XXXX XXXX XXXX XXXXb (X can be  0 or 1)

If you choose the automatic post increment addressing mode
at the source or the destination, the corresponding address is
updated by an increment of 1 after each element transfer.

01b 16-bit

The DMA controller makes 16-bit accesses at the source and
at the destination. The source and destination start addresses
must each be on an even 2-byte boundary; the least significant
bit (LSB) must be 0:

  Start address: XXXX XXXX XXXX XXX0b (X can be 0 or 1)

If you choose the automatic post increment addressing mode
at the source or the destination, the address is updated by an
increment of 2 after each element transfer.

10b 32-bit

The DMA controller makes 32-bit accesses at the source and
at the destination. The source and destination start addresses
must be on an even 4-byte boundary; the 2 LSBs must be 0:

  Start address: XXXX XXXX XXXX XX00b (X can be 0 or 1)

If you choose the automatic post increment addressing mode
at the source or the destination, the address is updated by an
increment of 4 after each element transfer.

11b Reserved (do not use)
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Table 3–12. Data Packing Performed by the DMA Controller

Data Type Port Bus Size Data Packing

8-bit 16-bit Two data values packed into 16 bits.

8-bit 32-bit Four data values packed into 32 bits.

16-bit 32-bit Two data values packed into 32 bits.

3.12.5 Source Start Address Registers (DMA_CSSA_L and DMA_CSSA_U)

Each channel has two source start address registers, which are shown in
Figure 3–14. For the first access to the source port of the channel, the DMA
controller generates a byte address by concatenating the contents of the two
I/O-mapped registers. DMA_CSSA_U supplies the upper bits, and
DMA_CSSA_L supplies the lower bits:

Source start address: DMA_CSSA_U:DMA_CSSA_L

Notes:

1) You must load the source start address registers with a byte address. If
you have a word address, shift it left by 1 before loading the registers.

2) If you have a 16-bit or 32-bit data type, the start address must be aligned
properly. See the description for the DATA TYPE bits of DMA_CSDP
(page 3-40).

Figure 3–14. Source Start Address Registers (DMA_CSSA_L and DMA_CSSA_U)
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Legend:

R/W Read/write access
– undefined The contents of the registers is undefined after a DSP reset.

The destination start address is supplied by DMA_CDSA_L and
DMA_CDSA_U, which are described in section 3.12.6.
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3.12.6 Destination Start Address Registers (DMA_CDSA_L and DMA_CDSA_U)

Each channel has two destination start address registers, which are shown in
Figure 3–15. For the first access to the destination port of the channel, the
DMA controller generates a byte address by concatenating the contents of the
two I/O-mapped registers. DMA_CDSA_U supplies the upper bits, and
DMA_CDSA_L supplies the lower bits:

Destination start address: DMA_CDSA_U:DMA_CDSA_L

Notes:

1) You must load the destination start address registers with a byte ad-
dress. If you have a word address, shift it left by 1 before loading the reg-
isters.

2) If you have a 16-bit or 32-bit data type, the start address must be aligned
properly. See the description for the DATA TYPE bits of DMA_CSDP
(page 3-40).

Figure 3–15. Destination Start Address Registers (DMA_CDSA_L and DMA_CDSA_U)
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R/W Read/write access
– undefined The contents of the registers is undefined after a DSP reset.

The source start address is supplied by DMA_CSSA_L and DMA_CSSA_U,
which are described in section 3.12.5.

3.12.7 Element Number Register (DMA_CEN) and
Frame Number Register (DMA_CFN)

Each channel has an element number register and a frame number register,
which are shown in Figure 3–16. Load DMA_CFN with the number of frames
you want in the channel. Load DMA_CEN with the number of elements you
want in each frame. You must have at least one frame and one element, and
you can have as many as 65535 of each:

1 ≤ frame number ≤ 65535
1 ≤ element number ≤ 65535
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Figure 3–16. Element Number Register (DMA_CEN) and
Frame Number Register (DMA_CFN)
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3.12.8 Element Index Register (DMA_CEI) and
Frame Index Register (DMA_CFI)

Each channel has an element index register and a frame index register, which
are shown in Figure 3–17. Load DMA_CFI with the frame index you want to
use for the double-index addressing mode. Load DMA_CEI with the element
index you want to use for the single- or double-index addressing mode. You
select the single- or double-index addressing mode separately for the source
and destination ports by using the SRC AMODE bits and the DST AMODE
bits, respectively, in DMA_CCR (page 3-29).

Both indexes are 16-bit signed numbers, providing the following range:

–32768 bytes ≤ frame index ≤ 32767 bytes
–32768 bytes ≤ element index ≤ 32767 bytes

Note:

If you use an index addressing mode, make sure that all the addresses com-
puted by the DMA controller will match the alignment constraint for the
chosen data type. For more details, see the description for the DATA TYPE
bits of DMA_CSDP (page 3-40).
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Figure 3–17. Element Index Register (DMA_CEI) and
Frame Index Register (DMA_CFI)
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Enhanced Host Port Interface (EHPI)

This chapter describes the enhanced host port interface (EHPI) of the
TMS320C55x  DSP. The EHPI enables an external host processor (host) to
directly access a portion of the memory in the memory map of the C55x DSP.
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4.1 Introduction to the EHPI

The enhanced host port interface (EHPI) provides a 16-bit-wide parallel port
through which a host processor (host) can directly access the memory of the
DSP. The host and the DSP can exchange information via memory internal or
external to the DSP and within the address reach of the EHPI. The EHPI uses
23-bit addresses, where each address is assigned to a 16-bit word in memory.
Figure 4–1 is a conceptual diagram of the connections between the EHPI and
other components of a host-DSP system.

Figure 4–1. The Position of the EHPI in a Host-DSP System

Host DSP

DMA controller

EMIF

DARAM

External memory

SARAM

EHPI

The DMA controller (see Chapter 3) handles all EHPI accesses. Through the
DMA controller, you can choose one of two EHPI access configurations (see
page 3-7). In one configuration, the EHPI shares internal memory with the
DMA channels. In the other configuration, the EHPI has exclusive access to
the internal memory.
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The EHPI cannot directly access the peripherals of the DSP. Data from periph-
erals must be transferred to memory before being transferred to the host. Like-
wise, data from the host must be transferred to memory before being trans-
ferred to peripherals.

When the DSP reset signal is low, the EHPI can access only the internal single-
access RAM (SARAM). The EHPI can prolong the DSP reset process so that
the host can load code into the SARAM before the CPU fetches the DSP reset
vector. For more details, see section 4.8 on page 4-20.

To provide flexibility in the choice of a host, the EHPI allows two modes for
passing data and addresses. The nonmultiplexed mode (see page 4-7)
provides the host processor with separate address and data buses. The multi-
plexed mode (see page 4-12) provides a single bus to transport address and
data information. The different modes require some different connections to
EHPI signals. There are three EHPI registers for data, addresses, and control
information (see page 4-23).
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4.2 EHPI Signals
Table 4–1 provides a summary of the signals. In the Type column, Z refers to
the high impedance state. There are some differences in the signal connec-
tions between the two modes of the EHPI: Nonmultiplexed mode (see page
4-7) and multiplexed mode (see page 4-12).

Table 4–1. Signals of the EHPI  

Signal(s) Type Description

HD[15:0] Input/Output/Z Host data bus.

HD in the nonmultiplexed mode: These signals are used to
carry data only.

HD in the multiplexed mode: These 16 signals are used to
carry both addresses and data.

The EHPI places HD in the high impedance state whenever
HD is not being used for a read operation or a write operation.

HA[19:0] Input Host address bus.

HA in the nonmultiplexed mode: These signals transfer ad-
dresses from the host processor to the EHPI.

HA in the multiplexed mode: Pin HA[1] is used for the signal
HCNTL1. Pin HA[2] is available for the signal HAS_. The oth-
er pins are not used.

HBE[1:0] Input Host byte-enable signals. These two signals determine
whether the host processor is accessing the whole word, the
least significant byte, or the most significant byte at the ad-
dressed memory location.

The effect of the HBE pins is shown in the following table. In
the first table column, 0 indicates a low signal level, and 1 indi-
cates a high signal level.

HBE[1:0] Access
00 Word
01 MSByte
10 LSByte
11 Reserved (do not use)

HCS_ Input Chip-select signal. This input is used to indicate when the ad-
dress and control input lines are valid. It serves as the enable
input of the EHPI, and must be low during an access.

HR/W_ Input Read/write signal. This input indicates the direction of the
host access. When high, HR/W_ indicates a read from the
DSP memory. When low, HR/W_ indicates a write to the DSP
memory. This signal is valid at the same time the address bus
is valid.
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Table 4–1. Signals of the EHPI (Continued)

Signal(s) DescriptionType

HDS1_,
HDS2_

Input Data strobe signals. The exclusive-NOR of HDS1_ and
HDS2_ forms a strobe signal for controlling data transfers
during host-access cycles. The width of the strobe signal
must be a minimum of 2 CPU clock cycles. Connections to
HDS1_ and HDS2_ depend on the host’s strobe signal(s):

Available Host
Data Strobe Pins

Connections to EHPI
Data Strobe Pins

Host has separate read
and write strobe pins,
both active-low

Connect one strobe to
HDS1_ and the other to
HDS2_.

Host has one active-low
strobe pin

Connect the strobe to
HDS1_ or HDS2_, and
connect the other pin to
logic level 1.

Host has one active-high
strobe pin

Connect the strobe to
HDS1_ or HDS2_ and
connect the other pin to
logic level 0.

HRDY Output EHPI ready signal. This signal tells the host whether the EHPI
is ready for an access. When low, HRDY indicates that the
EHPI is busy and the host should extend the current transfer
cycle. When high, HRDY indicates that the EHPI has com-
pleted the data transfer and is ready for the host to continue.
HRDY is always high (EHPI ready) when HCS_ is inactive
(high).

HCNTL0,
HCNTL1

Input EHPI control signals.

HCNTL signals in the nonmultiplexed mode: HCNTL0 deter-
mines whether the EHPI accesses the DSP data memory
(HCNTL0 high) or the EHPI control register (HCNTL0 low).
HCNTL1 is not used.

HCNTL signals in the multiplexed mode: HCNTL1 and
HCNTL0 together select the type of register access. HCNTL1
is multiplexed with line 1 of the address bus, HA[1], but this
creates no conflict because HA is not used in the multiplexed
mode.
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Table 4–1. Signals of the EHPI (Continued)

Signal(s) DescriptionType

HAS_ Input Address strobe signal. This signal is used only in the multi-
plexed mode. This address strobe signal allows HCNTL[1:0]
and HR/W_ to be removed earlier in an access cycle, which
allows more time to switch bus states from address to data
information. HAS_ facilitates interfacing to multiplexed ad-
dress and data type buses. An address latch enable (ALE)
signal is often provided and would normally be the signal con-
nected to HAS_.

HAS_ is multiplexed with line 2 of the address bus, HA[2], but
this creates no conflict because HA is not used in the multi-
plexed mode.

HMODE Input EHPI mode signal. When held high, HMODE selects the non-
multiplexed mode. When held low, HMODE selects the multi-
plexed mode.

RST_MODE Input Reset mode signal.

If RST_MODE is high:
When the DSP reset signal is asserted at the pin, the RESET
bit of HPIC is cleared and remains 0 after the reset signal
returns to the high level. At this time, the EHPI can access the
single-access RAM (SARAM) inside the DSP. The DSP CPU
does not start running until the host sets the RESET bit.

If RST_MODE is low:
The RESET bit is ignored. When the DSP reset signal is
asserted, the DSP CPU starts running immediately after the
reset signal goes high.

HINT_ Output DSP-to-host interrupt signal. HINT_ enables you to send an
interrupt pulse to the host processor. The signal level is con-
trolled by the HINT bit in status register ST3_55 (HINT = 0
means HINT_ low; HINT = 1 means HINT_ high).
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4.3 Nonmultiplexed Mode

In its nonmultiplexed mode, the EHPI uses separate buses for addresses
and data . To select this mode, hold the HMODE signal high. This section cov-
ers the following topics:

� Signal connections (this page)
� Transferring addresses and data (page 4-11)
� Using HPIC (EHPI control register) (page 4-11)

4.3.1 Signal Connections in the Nonmultiplexed Mode

Figure 4–2 shows signal connections for the nonmultiplexed mode, and de-
tails about these connections follow the figure.

Figure 4–2. Host-EHPI Connections in the Nonmultiplexed Mode

HD[15:0]

EHPIHost

HA[19:0]

HBE[1:0]

HCS

HR/W

HDS1
HDS2

HCNTL0

HRDY

HMODE

RST_MODE

HINT

16

20

2



Nonmultiplexed Mode

 4-8

HD[15:0] HD[15:0] is a parallel, bidirectional, 3-state data bus. The
EHPI places HD in the high impedance state whenever HD
is not being used for a read operation or a write operation.
In this EHPI mode (the nonmultiplexed mode), HD is used
for data only.

HA[19:0] HA[19:0] is a parallel, unidirectional address bus that car-
ries 20-bit addresses from the host processor to the EHPI.
The 20 lines of this bus allow the addressing of 1024K
words of the DSP memory.

HBE[1:0] Byte-enable signals. These two signals determine whether
the EHPI accesses the whole word, the least significant
byte (LSByte), or the most significant byte (MSByte) at the
addressed location in the DSP memory.

Table 4–2 shows the available HBE signal combinations
and describes their effects. In the first table column, 0 indi-
cates a low signal level, and 1 indicates a high signal level.

Table 4–2. Effect of Driving the EHPI Byte-Enable Signals in the Nonmultiplexed Mode

HBE[1:0] Access For Reading ... For Writing ...

00 Word The EHPI reads a word at
the address specified on
HA[19:0] and sends the
word out on HD[15:0].

The EHPI accepts a word
from HD[15:0] and writes
the word to the address
specified on HA[19:0].

01 MSByte The EHPI reads the
8 MSBs at the address
specified on HA[19:0] and
sends the byte out on
HD[15:8].

The EHPI accepts a byte
from HD[15:8] and writes
the byte to the 8 MSBs at
the address specified on
HA[19:0]. The 8 LSBs are
not modified.

10 LSByte The EHPI reads the
8 LSBs at the address
specified on HA[19:0] and
sends the byte out on
HD[7:0].

The EHPI accepts a byte
from HD[7:0] and writes
the byte to the 8 LSBs at
the address specified on
HA[19:0]. The 8 MSBs are
not modified.

11 Reserved – –
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HCS_ Chip-select signal. This input is used to indicate when the
address and control input lines are valid. It serves as the
enable input of the EHPI, and must be low during an
access.

HCS_ high: Address and control input lines not valid
HCS_ low: Address and control input lines valid

HR/W_ Read/write signal. This input indicates the direction of the
host access:

HR/W_ high: Read from DSP memory
HR/W_ low: Write to DSP memory

This signal is valid at the same time the address bus is
valid.

HDS1_, HDS2_ Data strobe signals. The exclusive-NOR of HDS1_ and
HDS2_ forms a strobe signal for controlling data transfers
during host-access cycles. The width of the strobe signal
must be a minimum of 2 CPU cycles. Connections to
HDS1_ and HDS2_ depend on the host’s strobe signal(s),
as shown in Table 4–3.

Table 4–3. Host-EHPI Data Strobe Connections

Available Host
Data Strobe Pins

Connections to EHPI
Data Strobe Pins

Host has separate read and write
strobe pins, both active-low

Connect one strobe to HDS1_ and the other
to HDS2_.

Host has one active-low strobe pin Connect the strobe to HDS1_ or HDS2_,
and connect the other pin to logic level 1.

Host has one active-high strobe
pin

Connect the strobe to HDS1_ or HDS2_,
and connect the other pin to logic level 0.
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HRDY This ready signal tells the host whether the EHPI is ready
for an access:

HRDY low: The EHPI is busy. The host should extend the
current transfer cycle.
HRDY high: The EHPI has completed the data transfer and
is ready for the host to continue.

HRDY is always high (EHPI ready) when HCS_ is high
(inactive).

HCNTL0 This signal indicates whether the EHPI accesses the DSP
data memory or the EHPI control register (HPIC):

HCNTL0 high: EHPI accesses DSP data memory
HCNTL0 low: EHPI accesses HPIC

HMODE This signal must be held high to enable the nonmultiplexed
mode of the EHPI.

HMODE high: Nonmultiplexed mode (separate address
and data buses)
HMODE low: Multiplexed mode (data bus carries address-
es and data)

RST_MODE If you want the host to prolong the DSP reset process, hold
this signal high. Otherwise, hold RST_MODE low.

RST_MODE high: When the DSP reset signal is asserted
at the pin, the RESET bit of HPIC is cleared and remains 0
after the reset signal returns to the high level. At this time,
the EHPI can access the SARAM inside the DSP. The DSP
CPU does not start running until the host sets the RESET
bit.
RST_MODE low: The RESET bit is ignored. When the
DSP reset signal is asserted, the DSP CPU starts running
immediately after the reset signal goes high.

HINT_ This is the DSP-to-host interrupt signal, which enables you
to interrupt the host processor. The signal level is con-
trolled by the HINT bit in status register ST3_55 of the CPU
(HINT = 0 means HINT_ is low; HINT = 1 means HINT_ is
high).
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4.3.2 Transferring Addresses and Data in the Nonmultiplexed Mode

In this mode, the EHPI receives 20-bit addresses via the address bus (HA).
For each data transfer, an address must be driven on HA. The EHPI address
register (HPIA) is not used.

The EHPI data register (HPID) acts as a temporary holding place for data to
be transferred through the EHPI. If the current access is a read, HPID contains
the data that was read from the DSP memory. If the current access is a write,
HPID contains the data that will be written to the DSP memory. The DSP CPU
cannot access HPID.

The EHPI registers are described in section 4.12 on page 4-23.

4.3.3 Using HPIC in the Nonmultiplexed Mode

HPIC provides the host with important options for controlling data transfers.
By writing to HPIC, you can send interrupt requests to the DSP and control the
timing of the DSP reset process.

To access HPIC in the nonmultiplexed mode, the host must drive the HCNTL0
signal low. The DSP CPU cannot access HPIC.

HPIC and the other EHPI registers are described in section 4.12 on page 4-23.
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4.4 Multiplexed Mode

In the multiplexed mode of the EHPI, addresses and data are carried on the
same bus  (the EHPI data bus, HD[15:0]). To select this mode, hold the
HMODE signal low. This section covers the following topics:

� Signal connections (this page)
� Transferring addresses and data (page 4-16)
� Autoincrement mode (for automatic address incrementing) (page 4-17)
� Using HPIC (EHPI control register) (page 4-17)

4.4.1 Signal Connections in the Multiplexed Mode

Figure 4–3 shows signal connections for the multiplexed mode, and details
about these connections follow the figure. HAS_ and HCNTL1 each use one
of the lines of the address bus (HA), which is not otherwise used in the multi-
plexed mode. The other lines of HA are pulled up internally.

Figure 4–3. Host-EHPI Connections in the Multiplexed Mode

HD[15:0]

EHPIHost

HBE[1:0]

HCS

HR/W

HDS1
HDS2

HCNTL0
HCNTL1 = HA[1]
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RST_MODE

HINT

16
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HD[15:0] HD[15:0] is a parallel, bidirectional, 3-state data bus. The
EHPI places HD in the high impedance state whenever HD
is not being used for a read operation or a write operation.
In this EHPI mode (the multiplexed mode), HD is used for
addresses and data.

HBE[1:0] Byte-enable signals. These two signals determine whether
the EHPI accesses the whole word, the least significant
byte (LSByte), or the most significant byte (MSByte) at the
addressed location in the DSP memory.

Table 4–4 shows the available HBE signal combinations
and describes their effects. In the first table column, 0 indi-
cates a low signal level, and 1 indicates a high signal level.

Table 4–4. Effect of Driving the EHPI Byte-Enable Signals in the Multiplexed Mode

HBE[1:0] Access For Reading ... For Writing ...

00 Word The EHPI reads a word at
the address specified in
HPIA and sends the word
out on HD[15:0].

The EHPI accepts a word
from HD[15:0] and writes
the word to the address
specified in HPIA.

01 MSByte The EHPI reads the 8
MSBs at the address spe-
cified in HPIA and sends
the byte out on HD[15:8].

The EHPI accepts a byte
from HD[15:8] and writes
the byte to the 8 MSBs at
the address specified in
HPIA. The 8 LSBs are not
modified.

10 LSByte The EHPI reads the 8
LSBs at the address spe-
cified in HPIA and sends
the byte out on HD[7:0].

The EHPI accepts a byte
from HD[7:0] and writes
the byte to the 8 LSBs at
the address specified in
HPIA. The 8 MSBs are not
modified.

11 Reserved – –

HCS_ Chip-select signal. This input is used to indicate when the
address and control input lines are valid. It serves as the
enable input of the EHPI, and must be low during an
access.

HCS_ high: Address and control input lines not valid
HCS_ low: Address and control input lines valid
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HR/W_ Read/write signal. This input indicates the direction of the
host access:

HR/W_ high: Read from DSP memory
HR/W_ low: Write to DSP memory

This signal is valid at the same time the address bus is
valid.

HDS1_, HDS2_ Data strobe signals. The exclusive-NOR of HDS1_ and
HDS2_ forms a strobe signal for controlling data transfers
during host-access cycles. The width of the strobe signal
must be a minimum of 2 CPU cycles. Connections to
HDS1_ and HDS2_ depend on the host’s strobe signal(s),
as shown in Table 4–5.

Table 4–5. Host-EHPI Data Strobe Connections

Available Host
Data Strobe Pins

Connections to EHPI
Data Strobe Pins

Host has separate read and write
strobe pins, both active-low

Connect one strobe to HDS1_ and the other
to HDS2_.

Host has one active-low strobe pin Connect the strobe to HDS1_ or HDS2_,
and connect the other pin to logic level 1.

Host has one active-high strobe
pin

Connect the strobe to HDS1_ or HDS2_,
and connect the other pin to logic level 0.

HAS_ This address strobe signal allows HCNTL[1:0] and HR/W_
to be removed earlier in an access cycle, which allows
more time to switch bus states from address to data infor-
mation. HAS_ facilitates interfacing to multiplexed address
and data type buses. An address latch enable (ALE) signal
is often provided and would normally be the signal
connected to HAS_. HAS_ is multiplexed with line 2 of the
address bus, HA[2], but this creates no conflict because
HA is not used in this EHPI mode (the multiplexed mode).
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HRDY This ready signal tells the host whether the EHPI is ready
for an access:

HRDY low: The EHPI is busy. The host should extend the
current transfer cycle.
HRDY high: The EHPI has completed the data transfer and
is ready for the host to continue.

HRDY is always high (EHPI ready) when HCS_ is high
(inactive).

HCNTL[1:0] These control signals determine which EHPI register is
being accessed. You can select the EHPI address register
(HPIA), the EHPI data register (HPID), or the EHPI control
register (HPIC) as shown in the following table (0 indicates
a low signal level, and 1 indicates a high signal level).
Notice that for accesses to HPID, HCNTL[1:0] also deter-
mine whether the address is automatically incremented by
1 during each access. HCNTL1 is multiplexed with line 1 of
the address bus, HA[1], but this creates no conflict
because HA is not used in the multiplexed mode.

Table 4–6. Effect of Driving the EHPI Control Signals in the Multiplexed Mode

HCNTL[1:0] Register Access Type

00 HPIC read or write

01 HPID read/write with address autoincrement by 1

10 HPIA read/write

11 HPID read/write without address autoincrement by 1

HMODE This signal must be held low to enable the multiplexed
mode of the EHPI:

HMODE high: Nonmultiplexed mode (separate address
and data buses)
HMODE low: Multiplexed mode (data bus carries address-
es and data)
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RST_MODE If you want the host to prolong the DSP reset process, hold
this signal high. Otherwise, hold RST_MODE low.

RST_MODE high: When the DSP reset signal is asserted
at the pin, the RESET bit of HPIC is cleared and remains 0
after the reset signal returns to the high level. At this time,
the EHPI can access the SARAM inside the DSP. The DSP
CPU does not start running until the host sets the RESET
bit.
RST_MODE low: The RESET bit is ignored. When the
DSP reset signal is asserted, the DSP CPU starts running
immediately after the reset signal goes high.

HINT_ This is the DSP-to-host interrupt signal, which enables you
to interrupt the host processor. The signal level is con-
trolled by the HINT bit in status register ST3_55 of the CPU
(HINT = 0 means HINT_ is low; HINT = 1 means HINT_ is
high.)

4.4.2 Transferring Addresses and Data in the Multiplexed Mode

In the multiplexed mode, the data bus (HD) is used for both addresses and
data. Thus, an address register (HPIA) is needed to store an address while the
bus is carrying data. HPIA is 20 bits wide in order to support up to 1024K words
of accessible memory. The multiplexing of addresses and data means that the
host must load HPIA before performing reads and writes to the DSP memory.

When reading from or writing to the DSP memory, the EHPI uses its data regis-
ter (HPID) as a temporary holding place for the data. HPID contains the data
that was read from the DSP memory (for a host read operation) or the data that
will be written to the DSP memory (for a host write operation). The DSP CPU
cannot access HPID.

It is important to keep in mind that the host must drive the signals HCNTL1 and
HCNTL0 to the appropriate levels to indicate whether the host is accessing
HPIA or HPID, and whether address autoincrementing is used. Autoincre-
menting is explained in section 4.4.3.

Loading HPIA With an Address:

1) Drive both HCNTL1 and HCNTL0 low to indicate an HPIC access.

2) Clear the XADD bit in HPIC (XADD = 0), so that writes to HPIA go to
HPIA(15–0).

3) Drive HCNTL1 high and keep HCNTL0 low to indicate an HPIA access.
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4) Send the 16 LSBs of the memory address on the data bus (HD). The 16
LSBs fill HPIA(15–0).

5) Drive HCNTL1 low and keep HCNTL0 low to indicate an HPIC access.

6) Set the XADD bit (XADD = 1), so that writes to HPIA go to HPIA(19–16).

7) Drive HCNTL1 high and keep HCNTL0 low to indicate an HPIA access.

8) Send the 4 MSBs of the memory address on HD[3:0]. Because of the
XADD setting, the 4 MSBs fill HPIA(19–16). Now HPIA contains the full
20-bit address.

Note:

If you are making a series of accesses within one main data page, you need
to load HPIA(19–16) only one time, before the first access. For each subse-
quent access within that page, a change to HPIA(15–0) is sufficient.

4.4.3 Autoincrement Mode: Automatic Address Increment Between Transfers
(Multiplexed Mode Only)

If the host is reading and/or writing at random addresses, it must write to HPIA
before each data transfer. If the host performs accesses at sequential ad-
dresses and the EHPI is in its multiplexed mode, it can reduce the required
number of cycles by using the address autoincrement mode: Drive HCNTL1
low and HCNTL0 high. In the autoincrement mode, the host needs to write only
the start address to HPIA; for each subsequent HPID access, the address in
HPIA is automatically incremented by 1.

4.4.4 Using HPIC in the Multiplexed Mode

HPIC provides the host with important options for controlling data transfers.
By writing to HPIC, you can select which portion of HPIA is being loaded, send
interrupt requests to the DSP, and control the timing of the DSP reset process.
To access HPIC in the multiplexed mode, the host must drive the signals
HCNTL1 and HCNTL0 low. The DSP CPU cannot access HPIC.
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4.5 Interrupts Between Host and DSP

By modifying special interrupt bits, the host and the DSP can send interrupt
requests to each other.

4.5.1 Sending an Interrupt Request from the Host to the DSP

You can have the host send an interrupt request to the DSP as follows:

1) Make sure the EHPI is configured to write to the EHPI control register
(HPIC).

In the nonmultiplexed mode of the EHPI, the HCNTL0 signal must be held
low to select HPIC. In the multiplexed mode of the EHPI, HCNTL1 and
HCNTL0 must both be held low to select HPIC.

2) Write a 1 to bit 1 (DSPINT) of HPIC.

Setting this bit causes the DSP to set the DSPINT flag bit in the CPU. If this
maskable interrupt is properly enabled in the CPU, the CPU will fetch the
DSPINT interrupt vector and branch to the corresponding interrupt service
routine.

4.5.2 Sending an Interrupt Request from the DSP to the Host

The DSP can send an interrupt request to the host by clearing and then setting
the HINT bit in status register ST3_55 of the CPU. A change to the HINT bit
changes the level of the HINT_ output signal of the EHPI. If the DSP writes a
0 to the HINT bit, HINT_ goes low (active). If the DSP writes a 1 to the HINT
bit, HINT_ goes high (inactive). Thus, the interrupt pulse width is managed by
software.

There is no direct acknowledging path from the host to the HINT bit. You can
select a space in the memory shared by the host and the DSP to create an
acknowledging path to the interrupt.

During a DSP reset, the CPU sets the HINT bit and HINT_ goes high (inactive).
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4.6 Memory Accessible Through the EHPI

Addresses driven by a host on the external address lines of the EHPI are
treated as word addresses, not byte addresses. Each EHPI address corre-
sponds to a 16-bit word in data space.

Figure 4–4 shows a map of the memory available on the DSP and highlights
the portion of data space that is accessible to a host through the EHPI. Data
space is divided into 128 main data pages (0 through 127). The 20 address
lines of the EHPI enable the host to access internal and external memory on
main data pages 0 through 15 (at addresses 00 0060h–0F FFFFh). On main
data page 0, the first 96 addresses (00 0000h–00 005Fh) are reserved for the
memory-mapped registers (MMRs) of the CPU and are not accessible through
the EHPI.

Figure 4–4. Memory Accessible Through EHPI
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4.7 Boot Loading with the EHPI

When the DSP reset signal is low, the EHPI can access the single-access RAM
(SARAM) internal to the DSP. During this time, you can load boot code from
the host to the SARAM. More details are in section 4.8.

4.8 Changing the DSP Reset Process to Accommodate a Host

The DSP reset process is controlled by the reset input signal of the DSP and
the reset mode signal (RST_MODE). When RST_MODE is high, the RESET
bit of the EHPI control register (HPIC) determines how long the DSP stays in
reset.

� RST_MODE is high.  The DSP assumes there is a host interfaced to the
EHPI. The reset process is controlled by both the reset pin on the DSP and
by the RESET bit located in HPIC.

When the reset signal is driven low, the RESET bit is cleared and remains
0 after the reset signal returns to its high level. If the host then sets the
RESET bit, the DSP CPU starts running and fetches its reset vector.

During the time when the reset signal is high and the RESET bit is 0, the
host can access the SARAM internal to the DSP. This is a good time for the
host to download code to the DSP RAM. When this download is complete,
the host can set the RESET bit to start the DSP CPU.

� RST_MODE is low.  The DSP assumes there is no host interfaced to the
EHPI and initiates a standard reset process: When the reset signal goes
high, the DSP CPU fetches its reset vector and starts running.

Boot Loading With the EHPI / Changing the DSP Reset Process to Accommodate a Host
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4.9 EHPI Affected by Certain Idle Configurations

To reduce power consumption, you might want to turn off certain idle domains
within the DSP (for details, see Chapter 7, Idle Configurations). The EHPI does
not belong to any of the idle domains, but it is affected by the clock generator
(CLKGEN) and DMA idle domains. If the CLKGEN domain is idle, the host can-
not access the DSP memory. If the DMA domain is idle, the EHPI cannot make
any accesses that depend on the DMA controller.

4.10 EHPI Emulation Mode

The FREE bit of the DMA controller determines how the DMA controller reacts
to a breakpoint in the debugger software:

� If FREE = 0 (the reset value), a breakpoint suspends DMA transfers. If the
EHPI is using the DMA controller at the time, the suspension interrupts the
EHPI data transfer.

� If FREE = 1, DMA transfers are not interrupted by a breakpoint.

EHPI Affected by Certain Idle Configurations / EHPI Emulation Mode
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4.11 EHPI and DSP Reset

If you drive the DSP reset signal low, the DSP undergoes a reset. Table 4–7
describes the effects of a DSP reset on the EHPI registers, and the resulting
effects on the DSP. The EHPI registers are described in section 4.12 on page
4-23.

While the reset signal is low, if the RST_MODE signal is high, the EHPI can
access the internal SARAM of the DSP. This time could be used to move pro-
gram code to the SARAM. For more details, see section 4.8 on page 4-20.

Table 4–7. Affect of a DSP Reset on the EHPI

Register Reset Value Effect on the DSP

HPIC 0000h XADD = 0: If the multiplexed mode is selected
(HMODE signal is low), host address writes
go to the 16 LSBs of the address register,
HPIA(15–0).

RESET = 0: If EHPI is enabled, the DSP can
be held in the reset state until RESET is
changed to 1.

HPIA Not affected

HPID Not affected
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4.12 EHPI Registers

The enhanced host port interface (EHPI) contains three registers (see the fol-
lowing list) that a host processor can use to access the memory of the DSP.
The registers share a data bus; therefore, the host must drive the signals
HCNTL1 and/or HCNTL0 to the appropriate levels to indicate which EHPI reg-
ister host is to access. The DSP can neither read from nor write to these regis-
ters.

� EHPI data register (HPID). This 16-bit register acts as a temporary holding
place for data to be transferred through the EHPI. HPID contains the data
that was read from the DSP memory if the current access is a read, or the
data that will be written to the DSP memory if the current access is a write.

� EHPI address register (HPIA). In the multiplexed mode of the EHPI (see
page 4-12), this 20-bit register acts as a temporary holding place for a 16-
or 20-bit address for a read or write operation. In the nonmultiplexed mode
of the EHPI (see page 4-7), HPIA is not needed because the address is
directly available on input signals HA[19:0].

� EHPI control register (HPIC). HPIC provides important options for control-
ling data transfers. The fields of HPIC are shown in Figure 4–5 and
described in Table 4–8.

Figure 4–5. EHPI Control Register (HPIC)
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Legend:

H_W Write-only access for host. DSP cannot access HPIC.
H_R/W Read/write access for host. DSP cannot access HPIC.

– X X is the value after a DSP reset.
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Table 4–8. HPIC Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–6 Reserved These bits are not available for your use. –

5 XADD Extended address enable bit. In the multiplexed mode of the EHPI,
the EHPI address register (HPIA) is loaded via the 16-bit data bus,
HD[15:0]. When a 20-bit address is used, HPIA must be loaded with
two transfers across HD[15:0]. To load bits 15–0 of HPIA, clear
XADD beforehand. To load bits 19–16, set XADD beforehand.

0

0 Values written to HPIA go to HPIA(15–0).

1 Values written to HPIA go to HPIA(19–16).

In the nonmultiplexed mode of the EHPI, XADD is ignored because
HPIA is not used; instead, the address comes directly from the
20-bit address bus, HA[19:0].

4–2 Reserved These bits are not available for your use. –

1 DSPINT Host-to-DSP interrupt request bit. The host can send a maskable
interrupt request to the DSP CPU by writing a 1 to DSPINT. If the
interrupt is properly enabled, the CPU will respond to the interrupt
request; otherwise, the CPU will ignore it.

0

0 Clear DSPINT.

1 Send an interrupt request to the DSP CPU.
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Table 4–8. HPIC Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

0 RESET Reset exit bit.

If RST_MODE signal low:
The RESET bit is ignored. When the DSP reset signal is asserted,
the DSP CPU starts running immediately after the reset signal goes
high.

If RST_MODE signal high:
The RESET bit allows the host to prolong the DSP reset process.
When the DSP reset signal is asserted at the pin, the RESET bit is
cleared and remains 0 after the reset signal returns to the high level.
The DSP CPU does not start running until the host sets the RESET
bit.

During the time when the DSP reset signal is high and the RESET
bit is 0, the host can access the single-access RAM (SARAM) inside
the DSP. This is a good time for the host to download code to the
SARAM. When the download is complete, the host can set the
RESET bit to start the CPU.

0

0 Clear RESET.

1 Start the DSP./Stop holding the DSP in reset.

Note:  If the host clears RESET and then sets RESET while the CPU
is running, the CPU fetches the reset vector and switches execution
to the reset interrupt service routine.
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External Memory Interface (EMIF)

This chapter describes the external memory interface (EMIF) of the
TMS320C55x  DSP. The EMIF controls all data transfers between the C55x
DSP and external memory.
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5.1 Introduction to the EMIF

Figure 5–1 illustrates how the EMIF is interconnected with other parts of the
DSP and with external memory devices. The connection to the peripheral bus
controller allows the CPU to access the EMIF registers.

Figure 5–1. Diagram of EMIF Inputs and Outputs
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The EMIF provides a glueless interface to three types of memory devices:

� Asynchronous devices, including ROM, flash memory, and asynchronous
SRAM. For details on using asynchronous memory, see section 5.7 on
page 5-27.

� Synchronous burst SRAM (SBSRAM) running at 1/2 or 1 times the CPU
clock rate. For details on using SBSRAM, see section 5.8 on page 5-36.

� Synchronous DRAM (SDRAM) running at either 1/2 or 1 times the CPU
clock rate. For details on using SDRAM, see section 5.9 on page 5-41.
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The EMIF supports the following types of accesses:

� Program accesses (see page 5-13)

� 32-bit data accesses (see page 5-16)

� 16-bit data accesses (see page 5-21)

� 8-bit data accesses (see page 5-23)

To see what parts of the DSP can send external-memory requests to the EMIF
and the order in which the EMIF services simultaneous requests, see EMIF
Request Priorities on page 5-8.

If you want the DSP to share memory chips with an external device, see HOLD
Requests on page 5-41.

If you would like to buffer CPU write operations to reduce delays, see Write
Posting on page 5-42.



EMIF Signals

 5-4

5.2 EMIF Signals

Table 5–1 provides a summary of the signals. In the Type column, I = Input,
O = Output, and Z = High impedance state.

Related topics:

� Signal Connections for External Asynchronous Memory on page 5-27
� Signal Connections for External SBSRAM on page 5-36
� HOLD Requests on page 5-41

Table 5–1. EMIF Signals  

Signal(s) Type Description

D[31:0] I/O/Z 32-bit EMIF data bus

The EMIF drives 32-bit, 16-bit, or 8-bit data on these pins. The pins you need
to connect to the memory chip depend on the type of access and the width of
the memory. For more details, see the following topics:

Program Accesses on page 5-13
32-Bit Data Accesses on page 5-16
16-Bit Data Accesses on page 5-21
8-Bit Data Accesses on page 5-23

D is placed in the high impedance state when D is not carrying data or when
the EMIF acknowledges a HOLD request from an external device.

A[21:0] O/Z 22-bit EMIF address bus

A[21:0] used for asynchronous memory:  Which of these pins you connect
to the asynchronous memory chip depends on the width of the memory
(8-bit, 16-bit, or 32-bit).

A[21:0] used for SBSRAM:  The SBSRAM is assumed to be 32 bits wide.
You use pins A[(N+2):2], where N is the number of the most significant ad-
dress pin of the SBSRAM.

The A pins are placed in the high impedance state when the EMIF acknowl-
edges a HOLD request from an external device.

CE0_
CE1_
CE2_
CE3_

O/Z Chip enable pins, one for each CE space

Connect these active-low pins to the chip select pins of the appropriate
memory chips. For example, if an SBSRAM chip is to be in space CE2, con-
nect CE2_ to the chip select pin of that SBSRAM chip. When the EMIF
makes an access in space CE2, that particular chip is enabled.

The CE_ pins are each placed in the high impedance state when the EMIF
acknowledges a HOLD request from an external device.
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Table 5–1. EMIF Signals (Continued)

Signal(s) DescriptionType

BE[3:0]_ O/Z Byte enable pins

The EMIF drives signal combinations on these active-low pins to indicate the
size of the data being accessed. In some cases, the signal combination also
indicates which portion of the EMIF data bus, D[31:0], carries the data. More
details are in the following sections:

Program Accesses on page 5-13
32-Bit Data Accesses on page 5-16
16-Bit Data Accesses on page 5-21
8-Bit Data Accesses on page 5-23

The BE_ pins are each placed in the high impedance state when the EMIF
acknowledges a HOLD request from an external device.

ARDY I Asynchronous ready pin

For details, see Inserting Extra Cycles with the Ready (ARDY) Signal on
page 5-35.

AOE_ O/Z Asynchronous output enable pin

For details, see Signal Connections for External Asynchronous Memory on
page 5-27.

AOE_ is placed in the high impedance state when the EMIF acknowledges a
HOLD request from an external device.

AWE_ O/Z Asynchronous write strobe pin

For details, see Signal Connections for External Asynchronous Memory on
page 5-27.

AWE_ is placed in the high impedance state when the EMIF acknowledges a
HOLD request from an external device.

ARE_ O/Z Asynchronous read strobe pin

For details, see Signal Connections for External Asynchronous Memory on
page 5-27.

ARE_ is placed in the high impedance state when the EMIF acknowledges a
HOLD request from an external device.

SSADS_ O/Z Address strobe/enable pin for SBSRAM

For details, see Signal Connections for External SBSRAM on page 5-36.

SSADS_ is placed in the high impedance state when the EMIF acknowl-
edges a HOLD request from an external device.
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Table 5–1. EMIF Signals (Continued)

Signal(s) DescriptionType

SSOE_ O/Z Output buffer enable pin for SBSRAM

For details, see Signal Connections for External SBSRAM on page 5-36.

SSOE_ is placed in the high impedance state when the EMIF acknowledges
a HOLD request from an external device.

SSWE_ O/Z Write enable pin for SBSRAM

For details, see Signal Connections for External SBSRAM on page 5-36.

SSWE_ is placed in the high impedance state when the EMIF acknowledges
a HOLD request from an external device.

SDRAS_ O/Z Row strobe pin for SDRAM

SDRAS_ is placed in the high impedance state when the EMIF acknowl-
edges a HOLD request from an external device.

SDCAS_ O/Z Column strobe pin for SDRAM

SDCAS_ is placed in the high impedance state when the EMIF acknowl-
edges a HOLD request from an external device.

SDWE_ O/Z Write enable pin for SDRAM

SDWE_ is placed in the high impedance state when the EMIF acknowledges
a HOLD request from an external device.

SDA10 O/Z A10 address line/autoprecharge disable for SDRAM

This pin serves as a row address bit (logically equivalent to A12) during
ACTV commands and also disables the autoprecharging function of the
SDRAM during read or write operations.

SDA10 is placed in the high impedance state when the EMIF acknowledges
a HOLD request from an external device.

CLKMEM O/Z Memory clock pin for SBSRAM and SDRAM

This pin is locked high or reflects the memory clock, depending on the value
of the MEMCEN bit. If the pin reflects the clock, the frequency of the clock
(equal to or 1/2 the frequency of the CPU clock) depends on the MEMFREQ
bits.

MEMCEN and MEMFREQ are in the EMIF global control register, which is
described beginning on page 5-43.

CLKMEM is placed in the high impedance state when the EMIF acknowl-
edges a HOLD request from an external device.
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Table 5–1. EMIF Signals (Continued)

Signal(s) DescriptionType

HOLD_ I HOLD request pin

To request the DSP to release control of external memory chips, an external
device can drive this active-low signal. For details, see HOLD Requests on
page 5-41.

HOLDA_ O HOLD acknowledge pin

When the EMIF receives a HOLD request from an external device (on the
HOLD_ pin), the EMIF completes any current activity. Then it places the ex-
ternal bus pins in the high impedance state and sends acknowledgement on
the HOLDA_ pin. The external device should wait until HOLDA_ is driven low
before accessing external memory chips. For details, see HOLD Requests on
page 5-41.
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5.3 EMIF Request Priorities

The EMIF services the requests shown in Table 5–2. If multiple requests arrive
simultaneously, the EMIF prioritizes them as shown in the Priority column.

Table 5–2. EMIF Request Priorities

EMIF Request Type Priority Description

HOLD 1 (highest) A request made by an external device to take control of external
memory. This request is initiated when the external device
drives the HOLD_ pin low. For details, see HOLD Requests on
page 5-41.

Urgent refresh 2 A request from synchronous DRAM that needs an immediate
refresh.

E bus 3 A request from the E bus to write to external memory. The E
bus is one of the data-write data buses of the DSP CPU.

F bus 4 A request from the F bus to write to external memory. The F
bus is one of the data-write data buses of the DSP CPU.

D bus 5 A request from the D bus to read from external memory. The D
bus is one of the data-read data buses of the DSP CPU.

C bus 6 A request from the C bus to read from external memory. The C
bus is one of the data-read data buses of the DSP CPU.

P bus 7 A request from the P bus to read code from external memory.
The P bus is the program-read program bus of the DSP CPU.

Cache 8 A line fill request from the DSP instruction cache.

DMA controller 9 A request from the DSP DMA controller to read from or write to
external memory.

Trickle refresh 10 (lowest) A request from synchronous DRAM that needs the next period-
ic refresh.
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5.4 Memory Considerations

When programming the EMIF, you must understand how the external memory
addresses are divided into chip enable (CE) spaces (see section 5.4.1), what
type of memory can be attached in each CE space (see section 5.4.2), and
what register bits are used to configure the CE spaces (see section 5.4.3).

5.4.1 Memory Map and CE Spaces

The portion of the TMS320C55x memory map that is available for external
memory is divided into spaces that correspond to the chip enable signals of
the EMIIF. For example, a memory chip in the CE1 space must have its chip
select pin connected to the CE1_ pin of the EMIF. When the EMIF performs
an access in the CE1 space, it drives CE1_ low. To illustrate the concept of the
CE spaces, Figure 5–2 shows the external memory map of the
TMS320VC5510 DSP.

Notice that both word addresses and byte addresses are given in the figure.
When the TMS320C55x CPU is accessing data, it uses 23-bit addresses to
access words (16-bit values). The 7 most significant bits of the 23-bit address
specify one of the main data pages (0 through 127), each of which has 64K
addresses. When the CPU is accessing program code, it uses 24-bit address-
es to access bytes (8-bit values). When the DMA controller accesses memory,
it always uses byte addresses.

The highest addresses in the TMS320VC5510 external memory map can be
assigned solely as the CE3 space or can be shared by memory in the CE3
space and the internal DSP ROM. The assignment of these addresses is de-
termined by the MPNMC bit in CPU status register ST3_55. You can change
the bit any time, but during a DSP reset, the value in MPNMC depends on the
signal level on the MP/MC_ pin of the DSP. If the signal is low, MPNMC is
cleared (MPNMC = 0); if the signal is high, MPNMC is set (MPNMC = 1).
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Figure 5–2. TMS320VC5510 External Memory Address Map

Word Addresses
(Hexadecimal Ranges)
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and
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C0 0000–FF 7FFF

FF 8000–FF FFFF

Main Data Pages External Memory
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5.4.2 Supported Memory and Access Types

Each CE space of the external memory map can use any one of the memory
types listed in the following table. You select the memory types by writing to
each CE space’s MTYPE bits. In addition to the memory types, Table 5–3
shows the types of accesses the EMIF can perform for each memory type.

For details on how the EMIF performs the types of accesses, see the following
topics:

� Program Accesses on page 5-13
� 32-Bit Data Accesses on page 5-16
� 16-Bit Data Accesses on page 5-21
� 8-Bit Data Accesses on page 5-23

Table 5–3. Available Memory Types and the Allowable Access Types For Each

Memory Type Allowable Access Types

Asynchronous, 8 bits wide
(MTYPE = 000b)

Program

Asynchronous, 16 bits wide
(MTYPE = 001b)

Program
32-bit data
16-bit data
8-bit data

Asynchronous, 32 bits wide
(MTYPE = 010b)

Program
32-bit data
16-bit data
8-bit data

SDRAM, 32 bits wide
(MTYPE = 011b)

Program
32-bit data
16-bit data
8-bit data

SBSRAM, 32 bits wide
(MTYPE = 100b)

Program
32-bit data
16-bit data
8-bit data
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Table 5–4 shows one possible MTYPE configuration for the CE spaces:

Table 5–4. One Possible MTYPE Configuration for the CE Spaces

CE Space Memory Type

CE0 MTYPE = 100b: 32-bit-wide SBSRAM

CE1 MTYPE = 001b: 16-bit-wide asynchronous memory

CE2 MTYPE = 001b: 16-bit-wide asynchronous memory

CE3 MTYPE = 011b: 32-bit-wide SDRAM

5.4.3 Configuring the CE Spaces

You configure the CE spaces by using the global control register (EGCR) and
the CE space control registers (three for each CE space). EGCR is described
beginning on page 5-43. For a description of the CE space registers, see page
5-50.

For each CE space, you must load the following bit field in control register 1:

MTYPE Specifies the memory type

If you choose an asynchronous memory type , you must initialize access pa-
rameters in the other bits of the CE space control registers (see Configuring
the EMIF for Asynchronous Accesses on page 5-28).

If you choose a synchronous memory type , MTYPE is the only field you
need to initialize in the CE space control registers. However, you must load two
fields in the global control register:

MEMFREQ Determines the frequency of the memory clock signal
(1 or 1/2 times the frequency of the CPU clock signal)

MEMCEN Determines whether the signal on the CLKMEM pin
reflects the memory clock signal or is held high

Regardless of the memory type  in each CE space, make sure you write to
the following control bits in the global control register. These bits affect all CE
spaces as a group:

WPE Enables or disables write posting for all CE spaces

NOHOLD Enables or disables HOLD requests for all CE spaces
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5.5 Program Accesses

When fetching instruction code from external memory, the CPU sends an
access request to the EMIF. The EMIF must read 32 bits from the external
memory and then pass all 32 bits to the program-read data bus (P bus) of the
CPU. The EMIF can manage the 32-bit access for three memory widths:
32 bits, 16 bits, and 8 bits.

5.5.1 Program Access of 32-Bit-Wide Memory

Figure 5–3 shows how the EMIF behaves when reading program code from
32-bit-wide external memory. The least significant line of the external address
bus that is required by 32-bit-wide memory is A2. The external address lines
A[21:2] of the EMIF correspond to bits 21–2 of the internal program address.
The whole external data bus, D[31:0], is used to transport the data from exter-
nal memory to the DSP. During an access, the EMIF drives low all four of the
byte enable signals, BE[3:0]_. After the access, the EMIF passes all 32 bits to
the P bus, which then carries them to the CPU.

Figure 5–3. Program Access of 32-Bit-Wide External Memory

DSP

CPU EMIF
32 bits

32-bit-wide memory

code(31–0)

BE[3:0] low

SDRAM: A[13:2]

D[31:0]

Other: A[21:2]

Asynchronous memory,
SDRAM, or SBSRAM

on P bus
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5.5.2 Program Access of 16-Bit-Wide Memory

Figure 5–4 illustrates the data transfers involved in a program access of 16-bit-
wide external memory. The EMIF places a word address on address lines
A[21:1]. The 32-bit access is performed as two 16-bit transfers, in two consec-
utive cycles. During the second cycle, the EMIF automatically increments the
first address by 1 to create the second address value.

For both 16-bit accesses, the EMIF uses data lines D[15:0]. The 32-bit code
block is transferred in the following manner:

1) Bits 31 through 16 of the code block are read at the first address.

2) Bits 15 through 0 are read at the second address.

During an access, BE3_ and BE2_ stay high (inactive), and BE1_ and BE0_
are driven low. After an access, the EMIF passes all 32 bits of the code to the
P bus of the CPU.

Figure 5–4. Program Access of 16-Bit-Wide External Memory

Word1

Word0

DSP

CPU EMIF

16-bit-wide memory

code(31–16)

BE[3:2] high, BE[1:0] low

A[21:1]

Word1, then Word0

32 bits

on P bus
code(15–0)

on D[15:0]

Asynchronous memory
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5.5.3 Program Access of 8-Bit-Wide Memory

As shown in Figure 5–5, when the EMIF performs a program access of 8-bit-
wide memory, the EMIF places a byte address on address lines A[21:0]. The
32-bit access is performed as four 8-bit transfers, in four consecutive cycles.
During the second, third, and fourth cycles, the EMIF automatically generates
a new address by incrementing the previous address by 1.

For all four 8-bit accesses, the EMIF uses data lines D[7:0]. As shown in the
figure, the 32-bit code block is transferred in the following manner:

1) Bits 31 through 24 of the code block are read at the first address.

2) Bits 23 through 16 are read at the second address.

3) Bits 15 through 8 are read at the third address.

4) Bits 7 through 0 are read at the fourth address.

During an access, BE3_, BE2_, and BE1_ stay high (inactive), and BE0_ is
driven low. After an access, the EMIF passes all 32 bits of the code to the P bus
of the CPU.

Figure 5–5. Program Access of 8-Bit-Wide External Memory

DSP

CPU EMIF

8-bit-wide memory

code(31–24)

BE[3:1] high, BE0 low

A[21:0]

Byte3, Byte2, Byte1, then Byte0

32 bits

on P bus

on D[7:0]

Byte3

code(23–16)Byte2

code(15–8)Byte1

code(7–0)Byte0

Asynchronous memory
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5.6 Data Accesses

The EMIF supports data accesses for:

� 32-bit data (see section 5.6.1)
� 16-bit data (see section 5.6.2 on page 5-21)
� 8-bit data (see section 5.6.3 on page 5-23)

5.6.1 32-Bit Data Accesses

A 32-bit data access is generated by a CPU instruction or a DMA controller
operation that reads or writes a 32-bit value. For each 32-bit read or write
operation, the EMIF must communicate with two 16-bit CPU buses. For read
operations, the C and D buses carry the data from the EMIF to the CPU. For
write operations, the E and F buses carry the data from the CPU to the EMIF.
The EMIF can manage the 32-bit access for two memory widths: 32 bits and
16 bits.

5.6.1.1 32-Bit Data Access of 32-Bit-Wide Memory

The process for accessing 32-bit data from 32-bit-wide external memory is
illustrated in the two parts of Figure 5–6. The least significant line of the exter-
nal address bus that is required by 32-bit-wide memory is A2. The external
address lines A[21:2] of the EMIF correspond to bits 21–2 of the internal data
address. The whole external data bus, D[31:0], is used to transport the data
between the DSP and the external memory. All four of the byte enable signals,
BE[3:0]_, are forced low (active) during an access.



Data Accesses

5-17External Memory Interface (EMIF)

Although only bits 21–2 of the internal address are used by the external
memory chip, the EMIF uses bit 1 to determine the positions of the most signifi-
cant word (MSW) and least significant word (LSW) of the 32-bit value (see
Table 5–5). The relative positions of the MSW and LSW determine how the
EMIF data lines are used. D[31:16] carry the word to/from the even word
address. Lines D[15:0] carry the word to/from the odd word address.

If the DMA controller is to make a 32-bit data access, the MSW must be at an
even address.

Table 5–5. The Role of Internal Address Bit 1 During a 32-Bit Data Access of
32-Bit-Wide External Memory

Internal
Address
Bit 1 MSW and LSW Positions Use of D[31:0]

0 The MSW is at an even word address,
and the LSW is at the following odd
word address.

D[31:16] carry the MSW.
D[15:0] carry the LSW.

1 The MSW is at an odd word address,
and the LSW is at the previous even
word address.

D[31:16] carry the LSW.
D[15:0] carry the MSW.
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Figure 5–6. 32-Bit Data Access of 32-Bit-Wide External Memory

DSP 32-bit-wide memory

MSW atBE[3:0] low

MSW

MSW at even word address
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even address LSW

on D[31:16]
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SDRAM: A[13:2]

Other: A[21:2]

Asynchronous memory,
SDRAM, or SBSRAM

MSW:LSW

EMIFCPU
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on 2 buses
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DMA
on DMA buscontroller

DSP

EMIF

32-bit-wide memory

MSW atBE[3:0] low

SDRAM: A[13:2]

LSW

MSW at odd word address

MSW

odd addressLSW

on D[31:16]

on D[15:0]

Other: A[21:2]

Asynchronous memory,
SDRAM, or SBSRAM

CPU

MSW:LSW

on 2 buses

MSW:LSW

on 2 buses
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5.6.1.2 32-Bit Data Access of 16-Bit-Wide Memory

The two parts of Figure 5–7 illustrate the data transfers involved in a 32-bit
data access of 16-bit-wide external memory. The least significant address line
required by 16-bit-wide memory is A1. The external address lines A[21:1] of
the EMIF correspond to bits 21–1 of the internal data address. Data bus lines
D[15:0] are used to transport the data between the DSP and the external
memory. During an access, BE3_ and BE2_ stay high (inactive), and BE1_
and BE0_ are driven low.

The 32-bit access is performed as two 16-bit transfers across data bus lines
D[15:0]. The transfers are performed in two consecutive cycles. During the
second cycle, the EMIF automatically generates the second address as
described in Table 5–6.

If the DMA controller is to make a 32-bit data access, the MSW must be at an
even address.

Table 5–6. The Role of Internal Address Bit 1 During a 32-Bit Data Access of
16-Bit-Wide External Memory

Internal
Address
Bit 1 MSW and LSW Positions Generation of LSW Address

0 The MSW is at an even word ad-
dress, and the LSW is at the fol-
lowing odd word address.

After the first access, the EMIF
adds 1 to the MSW address to
generate the LSW address.

1 The MSW is at an odd word ad-
dress, and the LSW is at the pre-
vious even word address.

After the first access, the EMIF
subtracts 1 from the MSW ad-
dress to generate the LSW ad-
dress.
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Figure 5–7. 32-Bit Data Access of 16-Bit-Wide External Memory
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5.6.2 16-Bit Data Accesses

A 16-bit data access is generated by a CPU instruction or a DMA controller
operation that reads or writes a 16-bit value. For CPU operations, the D bus
carries read data, and the E bus carries write data. The EMIF manages the
16-bit access for two memory widths: 32 bits and 16 bits.

5.6.2.1 16-Bit Data Access of 32-Bit-Wide Memory

As shown in Figure 5–8, when the EMIF makes 16-bit accesses in 32-bit-wide
external memory, the actual width of the access is different for read operations
and write operations. When a word is written to external memory, the EMIF
modifies an individual word. However, when the EMIF reads a word from exter-
nal memory, the EMIF reads the full width of the memory, and the desired word
is isolated in the DSP.

Figure 5–8. Accessing 16-Bit Data in 32-Bit-Wide Memory

All 32 bits are taken.
Word1 is isolated in the DSP.

Word1 Word0

Word read operation:

The individual word is modified.
Word write operation:

Word1 Word0

The process for accessing 16-bit data from 32-bit-wide external memory is
illustrated in the two parts of Figure 5–9. The least significant address line
required by 32-bit-wide memory is A2. The external address lines A[21:2] of
the EMIF correspond to bits 21–2 of the internal data address. The EMIF uses
bit 1 of the internal address to determine which half of the data bus is used and
which byte enable signals are active (see Table 5–7).

Table 5–7. The Role of Internal Address Bit 1 During a 16-Bit Data Access of
32-Bit-Wide External Memory

Internal
Address
Bit 1 Word Is At an … Data Lines Used

Byte Enable
Signal Levels

0 Even word address D[31:16] BE[3:2]_ low (active)
BE[1:0]_ high

1 Odd word address D[15:0] BE[3:2]_ high
BE[1:0]_ low (active)
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Figure 5–9. 16-Bit Data Accesses of 32-Bit-Wide External Memory
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DMA
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EMIFCPU
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on D bus

Word
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DMA
on DMA buscontroller
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5.6.2.2 16-Bit Data Access of 16-Bit-Wide Memory

Figure 5–10 illustrates the data transfers involved in a 16-bit data access of
16-bit-wide external memory. The least significant address line required by
16-bit-wide memory is A1. The external address lines A[21:1] of the EMIF cor-
respond to bits 21–1 of the internal data address. Data bus lines D[15:0] are
used to transport the data between the DSP and the external memory. During
an access, BE3_ and BE2_ stay high (inactive), and BE1_ and BE0_ are driv-
en low.

Figure 5–10. 16-Bit Data Accesses of 16-Bit-Wide External Memory

DSP 16-bit-wide memory

BE[3:2] high, BE[1:0] low

A[21:1]

Word

on D[15:0]

Word at even or
odd address

Asynchronous memory

Word

EMIFCPU

Word

on D bus

Word

on E bus

DMA
on DMA buscontroller

5.6.3 8-Bit Data Accesses

Some CPU instructions and DMA controller operations access 8-bit data
(bytes). These byte accesses can be done in 16-bit-wide or 32-bit-wide
memory. The CPU buses used are the D bus (for byte read operations) and
the E bus (for byte write operations).

As shown in Figure 5–11, the actual width of the memory access is different
for byte read operations and byte write operations. When a byte is written to
external memory, the EMIF modifies an individual byte. However, when the
EMIF reads a byte from external memory, the EMIF reads the full width of the
memory, and the desired byte is isolated in the DSP.

The EMIF manages 8-bit accesses for two memory widths: 32 bits and 16 bits.
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Figure 5–11.Accessing 8-Bit Data in 32-Bit-Wide and 16-Bit-Wide External Memory

Byte3 Byte2 Byte1 Byte0

All 32 bits are taken.
Byte3 is isolated in the DSP.

Byte3 Byte2 Byte1 Byte0

Byte1 Byte0

Byte1 Byte0

32-bit-wide memory 16-bit-wide memory

Byte read operation:

The individual byte is modified.
Byte write operation:

The individual byte is modified.
Byte write operation:

The whole word is taken.
Byte read operation:

Byte1 is isolated in the DSP.

5.6.3.1 8-Bit Data Access of 32-Bit-Wide Memory

Reading 8-bit data. The EMIF reads 8-bit data from 32-bit-wide memory the
same way that it reads 16-bit data from 32-bit-wide memory (see 16-Bit Data
Access of 32-Bit-Wide Memory on page 5-21). The EMIF reads the full width
of the memory, and the desired byte is isolated in the DSP.

Writing 8-bit data.  The way the EMIF writes 8-bit data to 32-bit-wide external
memory is illustrated by Figure 5–12. Specifically, this figure shows the CPU
or the DMA controller modifying the 8 LSBs (bits 7–0) of a memory location.
External address lines A[21:2] correspond to bits 21–2 of the internal data
address. The EMIF uses bits 1 and 0 of the internal address to determine which
byte is loaded, which data lines carry the data, and which byte enable signal
is active (see Table 5–8).

Table 5–8. The Role of Internal Address Bits 1–0 During an 8-Bit Data Write to
32-Bit-Wide External Memory

Internal Address
Bits 1–0

Bits Loaded At
Memory Location

Data Lines
Used Byte Enable Signal Levels

00 31–24 (the 8 MSBs) D[31:24] BE3_ low (active), others high

01 23–16 D[23:16] BE2_ low (active), others high

10 15–8 D[15:8] BE1_ low (active), others high

11 7–0 (the 8 LSBs) D[7:0] BE0_ low (active), others high
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Figure 5–12. Writing to the 8 LSBs of a 32-Bit-Wide External Memory Location

DSP 32-bit-wide memory

8 LSBsBE[3:1] high,
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Byte
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5.6.3.2 8-Bit Data Access of 16-Bit-Wide Memory

Reading 8-bit data.  The EMIF reads 8-bit data from 16-bit-wide memory the
same way that it reads 16-bit data from 16-bit-wide memory (see 16-Bit Data
Access of 16-Bit-Wide Memory on page 5-23). The EMIF reads the full width
of the memory, and the desired byte is isolated in the DSP.

Writing 8-bit data.  Figure 5–13 illustrates the data transfers involved in an
8-bit write operation that uses 16-bit-wide external memory. Specifically, the
figure shows the CPU or the DMA controller modifying the 8 MSBs (bits 15–8)
of a memory location. External address lines A[21:1] correspond to bits 21–1
of the internal data address. The EMIF uses bit 0 of the internal address to
determine which byte is loaded, which data lines carry the data, and which byte
enable signal is active (see Table 5–9).

Table 5–9. The Role of Internal Address Bit 0 During an 8-Bit Data Write to
16-Bit-Wide External Memory

Internal Address
Bit 0

Bits Loaded At
Memory Location

Data Lines
Used Byte Enable Signal Levels

0 15–8 (the 8 MSBs) D[15:8] BE1_ low (active), others high

1 7–0 (the 8 LSBs) D[7:0] BE0_ low (active), others high
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Figure 5–13. 8-Bit Write Operation Using 16-Bit-Wide External Memory
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5.7 Using Asynchronous Memory

The EMIF offers configurable timing parameters so that you can interface the
DSP to a variety of asynchronous memory types, including flash memory,
SRAM, and EPROM. This section includes the following topics:

Topic See ...

Signal connections for external asynchronous memory Page 5-27

Configuring the EMIF for asynchronous accesses Page 5-28

Asynchronous read operations of the EMIF Page 5-31

Asynchronous write operations of the EMIF Page 5-33

Inserting extra cycles with the ready (ARDY) signal Page 5-35

5.7.1 Signal Connections for External Asynchronous Memory

Figure 5–14 shows generalized connections between the EMIF and an asyn-
chronous memory chip. Descriptions of the EMIF pins follow the figure.

Figure 5–14. EMIF Connected to an Asynchronous Memory Chip
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Output enable
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ARDY Á
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Ready

ARE Read enable

memory

CEn_ Chip enable pin for space CEn (n can be 0, 1, 2, ...). Connect this
active-low pin to the chip select pin of the memory chip, so that
when the EMIF makes an access in CE space n, the memory chip is
enabled.

ARDY Asynchronous ready pin. The memory chip can drive this active-
high signal low whenever it needs to delay the asynchronous
accesses of the EMIF. For details, see Inserting Extra Cycles with
the Ready (ARDY) Signal on page 5-35.

AOE_ Asynchronous output enable pin. Connect this active-low pin to the
output enable pin of the memory chip.
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ARE_ Asynchronous read strobe pin. Connect this active-low pin to the
read enable pin of the memory chip. ARE_ defines the boundaries
of a memory read access.

AWE_ Asynchronous write strobe pin. Connect this active-low pin to the
write enable pin of the memory chip. AWE_ defines the boundaries
of a memory write access.

BE[3:0]_ Byte enable pins. The EMIF drives signal combinations on these
active-low pins to indicate the size of the data being accessed. In
some cases, the signal combination also indicates which portion of
the EMIF data bus, D[31:0], carries the data. For more details, see
the following topics:
Program Accesses on page 5-13
32-Bit Data Accesses on page 5-16
16-Bit Data Accesses on page 5-21
8-Bit Data Accesses on page 5-23

A[21:0] Address bus pins. For 32-bit-wide memory, connect pins A[21:2] to
the memory chip. For 16-bit-wide memory, connect pins A[21:1].
For 8-bit-wide memory, connect A[21:0].

D[31:0] Data bus pins. The EMIF drives 32-bit, 16-bit, or 8-bit data on these
pins. The pins you need to connect to the memory chip depend on
the type of access and the width of the memory. For more details,
see the following topics:
Program Accesses on page 5-13
32-Bit Data Accesses on page 5-16
16-Bit Data Accesses on page 5-21
8-Bit Data Accesses on page 5-23

5.7.2 Configuring the EMIF for Asynchronous Accesses

The external memory is divided into CE spaces (see section 5.4.1 on page
5-9). For asynchronous accesses, first configure the CE spaces that must
support asynchronous memory (see section 5.4.3 on page 5-12). For each CE
space, program the parameters described in Table 5–10. Each CE space has
control registers 1, 2, and 3 (see page 5-50), which together contain all the bit
fields for the programmable parameters. These parameters are ignored
unless the MTYPE bits in CE space control register 1 indicate asynchronous
memory.
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Note:

The SETUP and STROBE fields have a minimum count of 1, and because
of this, a 0 in one of these fields is interpreted by the DSP as a 1. For the first
access (even if there is only one), the setup period will have a minimum of
2. Table 5–11 shows examples to illustrate the constraints on the setup
behavior.

Table 5–10. Parameters for an Access of External Asynchronous Memory  

Parameters Control Bits Definition

Setup periods READ SETUP
WRITE SETUP

A setup period is the time in CPU clock cycles given to
setup the address, chip enable (CE_), and byte enable
(BE_) signals before the read strobe signal (ARE_) or write
strobe signal (AWE_) falls. For an asynchronous read
operation, this is also the setup period for the output enable
signal (AOE_) before ARE_ falls.

Strobe periods READ STROBE
WRITE STROBE

A strobe period is the time in CPU clock cycles between the
falling (activation) and rising (deactivation) of the read or
write strobe signal.

Hold periods READ HOLD
WRITE HOLD

A hold period is the time in CPU clock cycles during which
the address and byte enable lines are held active after the
read or write strobe signal rises. For an asynchronous read
operation, this is also the hold period for the output enable
signal after ARE_ rises.
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Table 5–10. Parameters for an Access of External Asynchronous Memory (Continued)

Parameters DefinitionControl Bits

Extended hold periods READ EXT HOLD
WRITE EXT HOLD

An extended hold period is the number of additional CPU
cycles inserted when (a) the EMIF must switch to a different
CE space before performing the next access, or (b) the
next access requires a change in the data direction (for
example, the EMIF has completed a read access and must
now perform a write access). All chip enable signals are
inactive during this period.

Whenever the EMIF must change to another CE space
between accesses, the EMIF automatically adds 1 cycle in
addition to any cycles you have programmed. For example,
if WRITE EXT HOLD = 0 and the EMIF must switch CE
spaces, the extended hold period is 1 cycle.

Time-out value TIMEOUT A single time-out value applies to both read operations and
write operations. During an operation, an internal counter
counts the number of CPU clock cycles that the ARDY
signal is sampled low (indicating that the memory is not
ready for an access). If the counter reaches the time-out
value, the EMIF records an error in the bus error status
register (see page 5-47). If a CPU bus requested the
memory access, the EMIF sends a bus-error interrupt
request to the CPU. If the DMA controller requested the
memory access, the EMIF sends a time-out signal to the
DMA controller. The DMA controller can ignore the signal
or send a bus-error interrupt request to the CPU. The bus
error interrupt is maskable; the CPU ignores it or services
it depending on whether the interrupt is properly enabled.

Table 5–11. Examples to Illustrate the Constraints on Setup Behavior

SETUP
Setup Period For First Access

(CPU Clock Cycles)
Setup Period For Following

Accesses (CPU Clock Cycles)

0 2 1

1 2 1

2 2 2

3 3 3

4 4 4
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5.7.3 Asynchronous Read Operations of the EMIF

The descriptions in Table 5–12 and the timing diagram in Example 5–1 explain
the signal activity of the EMIF when it reads from an asynchronous memory
chip. The write strobe signal (AWE_) is driven high (inactive) during a read
operation. For more detailed timing information, see the data sheet for your
TMS320C55x DSP.

Table 5–12. EMIF Signal Activity During an Asynchronous Read Operation  

Time Interval Signal Activity

Start of setup period If this is the first memory read cycle in the selected CE space,  the following
signal changes occur simultaneously (n is the number of the selected CE
space):

� CEn_ falls to enable the memory chip.

� The byte enable lines become valid to indicate the number and positions
of the bytes being accessed.

� The address lines become valid to carry the address to the memory chip.

� AOE_ falls to activate the output enable function of the memory chip.

If this is a subsequent read cycle,  CEn_ and AOE_ stay low, while new
values become valid on the byte enable and address lines.

Note:  In any asynchronous read operation, the setup period is a minimum of
2 cycles for the first memory access. After the first access, the setup period is
a minimum of 1 cycle.

Strobe period
(may be extended with ARDY)

1) ARE_ falls to mark the start of the strobe period.

2) The memory chip can drive ARDY low to request additional cycles if it
needs more time to provide the data. If ARDY is low on the third rising edge
of the CPU clock before the end of the programmed strobe period, the
strobe period is extended by 1 CPU clock cycle. For each subsequent
CPU clock rising edge that ARDY is sampled low, the strobe period is
extended by 1 CPU clock cycle. More details are in section 5.7.5 on page
5-35.

3) Data is sampled by the EMIF on the CPU clock rising edge that is concur-
rent with the end of the strobe period, just prior to the rising of ARE_.

4) ARE_ rises.
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Table 5–12. EMIF Signal Activity During an Asynchronous Read Operation (Continued)

Time Interval Signal Activity

End of hold period If there is another read access in the same CE space, new values become
valid on the byte enable and address lines to begin a new memory cycle.
Otherwise, the following signal changes occur simultaneously:

� The byte enable lines become invalid.

� The address lines become invalid.

� AOE_ rises to deactivate the output enable function of the memory chip.

Extended hold period All chip enable (CE_) signals are deactivated, to prevent accidental conten-
tion while the active memory chip is disabled and another memory chip is
enabled.

The extended hold period is only inserted if the EMIF receives no new ac-
cess request in the same CE space and with the same data direction (read,
in this case). If a request of the same type occurs during this period, the
extended hold is aborted and a new memory cycle begins.

Example 5–1. Timing Diagram of an EMIF Asynchronous Read Operation
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5.7.4 Asynchronous Write Operations of the EMIF

For an explanation of signal activity during a write to asynchronous memory,
see Table 5–13 and Example 5–2. The output enable signal (AOE_) and the
read strobe signal (ARE_) are driven high (inactive) during a write operation.
For more detailed timing information, see the data sheet for your
TMS320C55x DSP.

Table 5–13. EMIF Signal Activity During an Asynchronous Write Operation  

Time Interval Signal Activity

Start of setup period If this is first memory write cycle in the selected CE space,  the following
signal changes occur (n is the number of the selected CE space):

� CEn_ falls to enable the memory chip.

� The byte enable lines become valid to indicate the number and positions
of the bytes being accessed.

� The address lines become valid to carry the address to the memory chip.

� The data lines become valid to carry data to the memory chip.

If this is a subsequent write cycle,  CEn_ stays low, while new values
become valid on the byte enable, address, and data lines.

Note:  In any asynchronous write operation, the setup period is a minimum
of 2 cycles for the first memory access. After the first access, the setup
period is a minimum of 1 cycle.

Strobe period
(may be extended with ARDY)

1) AWE_ falls to mark the start of the strobe period.

2) The memory chip can drive ARDY low to request additional cycles if it
needs more time to accept the data. If ARDY is low on the third rising edge
of the CPU clock before the end of the programmed strobe period, the
strobe period is extended by 1 CPU clock cycle. For each subsequent
CPU clock rising edge that ARDY is sampled low, the strobe period is
extended by 1 CPU clock cycle. More details are in section 5.7.5 on page
5-35.

3) Data is sampled by the memory chip on the CPU clock rising edge that is
concurrent with the end of the strobe period, just prior to the rising of
AWE_.

4) AWE_ rises.



Using Asynchronous Memory

 5-34

Table 5–13. EMIF Signal Activity During an Asynchronous Write Operation (Continued)

Time Interval Signal Activity

End of hold period If there is another write access in the same CE space, new values become
valid on the byte enable, address, and data lines to begin a new memory
cycle. Otherwise, the following signal changes occur:

� The byte enable lines become invalid.

� The address lines become invalid.

� The data lines become invalid.

Extended hold period All chip enable (CE_) signals are deactivated, to prevent accidental conten-
tion while the active memory chip is disabled and another memory chip is
enabled.

The extended hold period is only inserted if the EMIF receives no new
access request in the same CE space and with the same data direction
(write, in this case). If a request of the same type occurs during this period,
the extended hold is aborted and a new memory cycle begins.

Example 5–2. Timing Diagram of an EMIF Asynchronous Write Operation
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5.7.5 Inserting Extra Cycles with the Ready (ARDY) Signal

In addition to programmable access shaping, you can insert extra cycles into
the strobe period by activating the ARDY input signal. The ready input signal
is internally synchronized to the CPU clock. Ready operation is as follows:

If ARDY is low on the third rising edge of the CPU clock before the end of the
programmed strobe period, the strobe period is extended by 1 CPU clock
cycle. For each subsequent CPU clock rising edge that ARDY is sampled low,
the strobe period is extended by 1 CPU clock cycle. Thus, the minimum value
of STROBE should be 4. If STROBE is less than 4, ARDY must be held high;
otherwise unexpected behavior may occur in the EMIF. The maximum number
of cycles that ARDY can be used depends on the time-out value in the
TIMEOUT bits. A time-out counter in the EMIF starts to count on the third rising
edge of the CPU clock cycle before the end of the programmed strobe period.
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5.8 Using SBSRAM (Synchronous Burst SRAM)

The EMIF interfaces directly to 32-bit-wide industry standard synchronous
burst SRAMs. SBSRAMs are available in both Flow Through and Pipeline
types; however, the EMIF supports only Pipeline SBSRAM, which has the
capability to operate at higher frequencies with sustained throughput. The
SBSRAM interface runs at the speed of the CPU clock or at half the speed of
the CPU clock. This section includes the following topics:

Topic See ...

Signal connections for external SBSRAM Page 5-36

Configuring the EMIF for SBSRAM accesses Page 5-38

SBSRAM read operations of the EMIF Page 5-38

SBSRAM write operations of the EMIF Page 5-39

5.8.1 Signal Connections for External SBSRAM

Figure 5–15 shows connections between the EMIF and an SBSRAM chip.
Descriptions of the EMIF pins follow the figure.

The three SBSRAM control signals are latched by the SBSRAM on the rising
CLKMEM edge to determine the current operation. These signals are only
valid if the chip select line for the SBSRAM is low. The ADV_ signal of the
SBSRAM allows the SBSRAM device to generate addresses internally for
controllers that cannot provide addresses quickly enough. The EMIF gener-
ates the addresses at the required rate, and thus does not use ADV_.

Figure 5–15. EMIF Connected to an SBSRAM Chip
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CEn_ Chip enable pin for space CEn (n can be 0, 1, 2, ...). Connect
this active-low pin to the chip select pin of the SBSRAM chip, so
that when the EMIF makes an access in CE space n, the
SBSRAM chip is enabled.

CLKMEM Memory interface clock pin. Connect CLKMEM to the clock input
of the memory. CLKMEM is controlled by the MEMFREQ bits
and the MEMCEN bits of EGCR (see page 5-43). Make sure that
you write to the MEMFREQ bits to select the frequency of this
clock, and make sure there is a 1 in the MEMCEN bit of EGCR. If
MEMCEN = 1, the signal on the CLKMEM pin does not reflect
the memory interface clock; instead, it stays high.

SSADS_ Address strobe/enable pin. Connect this active-low pin to the
active-low ADSC_ pin of the SBSRAM chip. Driving SSADS_
low then causes a new address to be registered.

SSOE_ Output buffer enable pin. Connect this active-low pin to the out-
put enable pin of the SBSRAM chip.

SSWE_ Write enable pin. Connect this active-low pin to the write enable
pin of the SBSRAM chip.

BE[3:0]_ Byte enable pins. The EMIF drives signal combinations on these
active-low pins to indicate the size of the data being accessed. In
some cases, the signal combination also indicates which portion
of the EMIF data bus, D[31:0], carries the data.  For more details,
see the following topics:
Program Accesses on page 5-13
32-Bit Data Accesses on page 5-16
16-Bit Data Accesses on page 5-21
8-Bit Data Accesses on page 5-23

A[(N+2):2] Address bus pins. N is the number of the most significant
address pin on the SBSRAM chip. As an example, suppose the
SBSRAM chip has 20 address pins, 19 through 0. Connect these
pins with EMIF pins A[21:2].

D[31:0] Data bus pins. The EMIF drives 32-bit, 16-bit, or 8-bit data on
these pins. The pins you need to connect to the memory chip
depend on the type of access and the width of the memory.  For
more details, see the following topics:
Program Accesses on page 5-13
32-Bit Data Accesses on page 5-16
16-Bit Data Accesses on page 5-21
8-Bit Data Accesses on page 5-23
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5.8.2 Configuring the EMIF for SBSRAM Accesses

If any of the CE spaces in the external memory map will contain SBSRAM, you
must make sure each of those CE spaces is configured for SBSRAM, and you
must configure the MEMCLK frequency and pin. You must also decide wheth-
er you want write posting and HOLD requests enabled for those CE spaces.
For details, see Configuring the CE Spaces on page 5-12.

5.8.3 SBSRAM Read Operations of the EMIF

Example 5–3 shows signal activity involved when the EMIF performs a DMA
burst to read four 32-bit values from an SBSRAM. Every access strobes a new
address into the SBSRAM. The period during which the addresses are driven
is indicated by the address strobe signal (SSADS_) being low. Pipelined
SBSRAM has a read latency of two cycles. The address is strobed into the
SBSRAM on the first rising CLKMEM edge after SSADS_ goes active, and
data is latched by the EMIF 2 cycles later. Although the first access requires
a delay of 2 cycles before the data is present on the bus, each subsequent data
transfer has single-cycle throughput.

For more detailed timing information, see the data sheet for your
TMS320C55x DSP.
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Example 5–3. Timing Diagram of an EMIF SBSRAM Read Operation
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5.8.4 SBSRAM Write Operations of the EMIF

Example 5–4 shows signal activity involved when the EMIF performs a DMA
burst to write four 32-bit values to an SBSRAM. For more detailed timing infor-
mation, see the data sheet for your TMS320C55x DSP.
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Example 5–4. Timing Diagram of an EMIF SBSRAM Write Operation
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5.9 Using SDRAM (Synchronous DRAM)

The EMIF features for interfacing to external SDRAM are to be documented
in a future draft of this guide.

5.10 HOLD Requests: Sharing External Memory

The EMIF provides the following two signals to allow an external device and
the EMIF to share the external memory:

� HOLD_ (HOLD request pin): The external device drives this active-low pin
to request exclusive access to memory that it is sharing with the EMIF. A
HOLD request is the highest priority request that the EMIF can receive
during active operation. When it receives the HOLD request, the EMIF
stops accessing the external memory at the earliest possible moment,
which may entail completion of the current accesses and memory device
deactivation. The external device must continue to drive HOLD low for as
long as it wants to use the bus.

� HOLDA_ (HOLD acknowledge pin): Once HOLD_ has been asserted, the
EMIF places all of its other output pins in the high impedance state and
then asserts HOLDA_ by driving it low. The external device may then use
the pins of the external memory without the chance of interference from
the EMIF.

You can block HOLD requests by setting the NOHOLD bit in the EMIF global
control register (see page 5-43).

While the external device has control of the memory, the CPU can continue to
execute instructions (from internal memory) or stop. You choose one of these
options by writing to the HOLD mode bit (HM) of status register ST1_55.
ST1_55 is a register in the CPU.

Using SDRAM (Synchronous DRAM) / HOLD Requests: Sharing External Memory
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5.11 Write Posting: Buffering Writes to External Memory

The EMIF has two write post registers and a write posting enable bit (WPE).
WPE is a bit in the EMIF global control register (see page 5-43).

If write posting is enabled (WPE = 1), the write posting registers are used to
store the write address and data, so that the EMIF can acknowledge the CPU
with zero wait states. The CPU is free to begin the next access while the EMIF
assumes control of the posted write operations. The EMIF runs the posted
write operations externally as time slots become available. If the next access
is not for the EMIF and is for internal memory, that access is able to run concur-
rently with a slow external write operation.

The write post registers may be freely associated with either of the two data-
write data buses of the CPU (the E bus and the F bus). A section of code that
just comprises, for example, E bus writes, benefits from two levels of write
posting.

When write posting has been disabled (WPE = 0), a request from the
E bus/F bus is acknowledged as the write data is driven onto the external bus.
It might be useful during debugging to disable write posting.
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5.12 EMIF Registers

For the EMIF, the DSP contains the registers listed in Table 5–14. For the I/O
address of each register, see the data sheet for your TMS320C55x DSP.

Table 5–14. Registers of the External Memory Interface (EMIF) 

Register(s) Description For Details, See ...

EGCR EMIF global control register Page 5-43

EMI_RST EMIF global reset register Page 5-46

EMI_BE EMIF bus error status register Page 5-47

CE0_1–CEx_1
(x = number of CE spaces – 1)

CE space control registers 1
(one for each CE space)

Page 5-50

CE0_2–CEx_2
(x = number of CE spaces – 1)

CE space control registers 2
(one for each CE space)

Page 5-50

CE0_3–CEx_3
(x = number of CE spaces – 1)

CE space control registers 3
(one for each CE space)

Page 5-50

SDC1 SDRAM control register 1 Details to be in a future
draft of this document

SDC2 SDRAM control register 2 Details to be in a future
draft of this document

SDPER SDRAM period register Details to be in a future
draft of this document

SDCNT SDRAM counter register Details to be in a future
draft of this document

INIT SDRAM initialization register Details to be in a future
draft of this document

5.12.1 EMIF Global Control Register (EGCR)

The global control register (see Figure 5–16) is a 16-bit I/O-mapped register
used to configure and monitor global conditions in the EMIF. Use this register
to set up the clock for synchronous memory chips (MEMFREQ and
MEMCEN), to enable or disable write posting (WPE), to monitor certain EMIF
pins (ARDY, HOLD, and HOLDA), and to allow or disallow HOLD requests
(NOHOLD). Table 5–15 describes the bit fields of EGCR.
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Figure 5–16. EMIF Global Control Register (EGCR)
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Table 5–15. EGCR Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–11 Rsvd These are reserved bits (not available for your use). They are read-
only bits and return 0s when read.

–

10–9 MEMFREQ Memory clock frequency bit. The CLKMEM pin of the EMIF provides
the clock signal for synchronous memory (SBSRAM or SDRAM)
chips. MEMFREQ determines the relationship between the
frequency of the CPU clock signal and the frequency of the signal on
the CLKMEM pin:

00b

00b The CLKMEM frequency is equal to the CPU clock
frequency.

01b The CLKMEM frequency is 1/2 the CPU clock frequency.

other Reserved (do not use)

Note: When CLKMEM is needed for synchronous memory ac-
cesses, make sure that the memory clock is enabled at the
CLKMEM pin (MEMCEN = 1).

8 Rsvd This is a reserved bit (not available for your use). It is a read-only bit
and returns a 0 when read.

–
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Table 5–15. EGCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

7 WPE Write posting enable bit. Use WPE to enable or disable the write
posting feature of the EMIF (see page 5-42). WPE affects all of the
CE spaces.

0

0 Disabled

1 Enabled

6 Rsvd This is a reserved bit (not available for your use). It is a read-only bit
and returns a 0 when read.

–

5 MEMCEN Memory clock enable bit. MEMCEN determines whether the memory
clock is enabled at the CLKMEM pin:

1

0 Disabled

The signal on the CLKMEM pin is held high.

1 Enabled

The memory clock is reflected on the CLKMEM pin. The
frequency of the clock depends on the MEMFREQ bits.

4 Rsvd This is a reserved bit (not available for your use). It is a read-only bit
and returns a 0 when read.

–

3 ARDY ARDY signal status bit. The ARDY bit reflects the signal level on the
asynchronous ready (ARDY) pin:

Reflects
signal

0 ARDY signal is low

External memory is not ready to accept or present data.

1 ARDY signal is high

External memory is ready to accept or present data.

2 HOLD HOLD_ signal status bit. The HOLD bit reflects the signal level on the
active-low HOLD request (HOLD_) pin:

Reflects
signal

0 HOLD_ signal is low

An external device is driving a HOLD request (a request
for the DSP to hold its external memory accesses and
allow the external device to access external memory
chips).

1 HOLD_ signal is high

No HOLD request
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Table 5–15. EGCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

1 HOLDA HOLDA_ signal status bit. The HOLDA bit reflects the signal level on
the active-low HOLD acknowledge (HOLDA_) pin:

0

0 HOLDA_ signal is low

The EMIF has acknowledged a HOLD request (see page
5-41). The EMIF has relinquished its control over external
memory chips, so that an external device can access the
chips.

1 HOLDA_ signal is high

The EMIF is in control of the external memory (it is not in
the HOLD state).

0 NOHOLD HOLD_ disable bit. Use NOHOLD to enable or disable the HOLD_
pin and thus allow or disallow HOLD requests (see page 5-41).

0

0 HOLD_ enabled

HOLD requests are accepted by the EMIF.

1 HOLD_ disabled

No HOLD requests are accepted by the EMIF.

5.12.2 EMIF Global Reset Register (EMI_RST)

Any write to this register (see Figure 5–17) resets the EMIF state machine but
does not change the current configuration values. This register cannot be
read.

Figure 5–17. EMIF Global Reset Register (EMI_RST)
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5.12.3 EMIF Bus Error Status Register (EMI_BE)

The bus error status register (see Figure 5–18) is a 16-bit I/O-mapped register
used to record errors that occur during accesses to external memory. For each
bus error that is recognized by the EMIF, the EMIF sets at least two bits in
EMI_BE:

� One of the CE bits (bits 10 through 7), to identify which CE space was
being accessed when the error occurred.

� One of the requester bits (6 through 2 and 0), to identify which DSP
resource requested the external memory access.

In addition, if the error is the result of a time-out during an access to asynchro-
nous memory, the EMIF sets the TIME bit.

After EMI_BE is read, it is automatically cleared. The bits of EMI_BE are
described in Table 5–16.

EMIF bus errors also have interrupt activity associated with them. If the
requester was a CPU bus, the EMIF sends a bus-error interrupt request to the
CPU. If the requester was the DMA controller and a time-out error has
occurred, the EMIF sends a time-out signal to the DMA controller. The DMA
controller can ignore the signal or send a bus-error interrupt request to the
CPU. The bus-error interrupt is maskable; the CPU ignores it or services it
depending on whether the interrupt is properly enabled.

Figure 5–18. EMIF Bus Error Status Register (EMI_BE)
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EMIF Registers

 5-48

Table 5–16. EMI_BE Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–13 Rsvd These are reserved bits (not available for your use). They are read-only
bits and return 0s when read.

–

12 TIME Time-out error status bit. The EMIF sets TIME when a time-out error
occurs during an access to asynchronous memory.

0

0 No error

1 Error

11 Rsvd This is a reserved bit (not available for your use). It is a read-only bit and
returns a 0 when read.

–

10 CE3 CE3 error status bit. The EMIF sets CE3 when an error occurs during
an access to memory in the address range defined as the CE3 space.

0

0 No error

1 Error

9 CE2 CE2 error status bit. The EMIF sets CE2 when an error occurs during
an access to memory in the address range defined as the CE2 space.

0

0 No error

1 Error

8 CE1 CE1 error status bit. The EMIF sets CE1 when an error occurs during
an access to memory in the address range defined as the CE1 space.

0

0 No error

1 Error

7 CE0 CE0 error status bit. The EMIF sets CE0 when an error occurs during
an access to memory in the address range defined as the CE0 space.

0

0 No error

1 Error

6 DMA DMA error status bit. The EMIF sets DMA when an error occurs during
an access requested by the DMA controller.

0

0 No error

1 Error
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Table 5–16. EMI_BE Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

5 FBUS F bus error status bit. The EMIF sets FBUS when an error occurs during
an access requested by the F bus (one of the data-write data buses of
the CPU).

0

0 No error

1 Error

4 EBUS E bus error status bit. The EMIF sets EBUS when an error occurs
during an access requested by the E bus (one of the data-write data
buses of the CPU).

0

0 No error

1 Error

3 DBUS D bus error status bit. The EMIF sets DBUS when an error occurs
during an access requested by the D bus (one of the data-read data
buses of the CPU).

0

0 No error

1 Error

2 CBUS C bus error status bit. The EMIF sets CBUS when an error occurs
during an access requested by the C bus (one of the data-read data
buses of the CPU).

0

0 No error

1 Error

1 Rsvd This is a reserved bit (not available for your use). It is a read-only bit and
returns a 0 when read.

–

0 PBUS P bus error status bit. The EMIF sets PBUS when an error occurs
during an access requested by the P bus (the program-read data bus
of the CPU).

0

0 No error

1 Error
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5.12.4 CE Space Control Registers (CEn_1, CEn_2, CEn_3)

The external memory map is divided into CE spaces (see section 5.4.1 on
page 5-9). Each CE space has three CE space control registers of the form
shown in Figure 5–19. These are 16-bit I/O-mapped registers used primarily
for configuring accesses to asynchronous memory. With the MTYPE bit, select
the memory type for the given CE space.

If you choose an asynchronous memory type, use the other bits in the CE
space control registers to define the access parameters. For details about the
asynchronous access parameters, including setup periods, see Configuring
the EMIF for Asynchronous Accesses on page 5-28.

If you choose a synchronous memory type, the EMIF ignores all of the bits but
MTYPE.

Table 5–17 describes the bit fields of the CE space control registers.

Note:

The SETUP and STROBE fields have a minimum count of 1, and because
of this, a 0 in one of these fields is interpreted by the DSP as a 1. For the first
access (even if there is only one), the setup period will have a minimum of
2. Table 5–18 shows examples to illustrate the constraints on the setup
behavior.
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Figure 5–19. CE Space Control Registers (CEn_1, CEn_2, CEn_3) for Each CE Space
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 5–17. CEn_1, CEn_2, and CEn_3 Bit Descriptions 

Register Bit(s) Name Description
Reset
Value

CEn_1 15 Rsvd This is a reserved bit (not available for your use). It is a read-
only bit and returns a 0 when read.

–

CEn_1 14–12 MTYPE Memory type bits. Each of the CE spaces has MTYPE bits. For
each CE space, use MTYPE to select one of the following
memory types:

010b

000b 8-bit-wide asynchronous

001b 16-bit-wide asynchronous

010b 32-bit-wide asynchronous

011b 32-bit-wide synchronous DRAM (SDRAM)

100b 32-bit-wide synchronous burst SRAM
(SBSRAM)

other Reserved (do not use)
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Table 5–17. CEn_1, CEn_2, and CEn_3 Bit Descriptions (Continued)

Register
Reset
ValueDescriptionNameBit(s)

CEn_1 11–8 READ
SETUP

Read setup period bits. For each CE space that contains
asynchronous memory, load the associated READ SETUP
bits with a setup period for asynchronous read operations
performed in that CE space. Choose a value in this range:

1 ≤ READ SETUP ≤ 15 (CPU clock cycles)

If synchronous memory is chosen, the READ SETUP bits are
ignored.

1111b
(15)

CEn_1 7–2 READ
STROBE

Read strobe period bits. For each CE space that contains
asynchronous memory, load the associated READ STROBE
bits with a strobe period for asynchronous read operations
performed in that CE space. Choose a value in this range:

1 ≤ READ STROBE ≤ 63 (CPU clock cycles)

If synchronous memory is chosen, the READ STROBE bits are
ignored.

111111b
(63)

CEn_1 1–0 READ
HOLD

Read hold period bits. For each CE space that contains
asynchronous memory, load the associated READ HOLD bits
with a hold period for asynchronous read operations performed
in that CE space. The 2 bits allow you to choose a value from
0 to 3:

0 ≤ READ HOLD ≤ 3 (CPU clock cycles)

If synchronous memory is chosen, the READ HOLD bits are
ignored.

11b

CEn_2 15–14 READ
EXT HOLD

Read extended hold period bits. For each CE space that
contains asynchronous memory, load the associated
READ EXT HOLD bits with an extended hold period for
asynchronous read operations performed in that CE space.
The 2 bits allow you to choose a value from 0 to 3:

0 ≤ READ EXT HOLD ≤ 3 (CPU clock cycles)

Note: Whenever the EMIF must change to another CE space
between accesses, the EMIF automatically adds 1 cycle in
addition to any cycles you have programmed. For example, if
READ EXT HOLD = 0 and the EMIF must switch CE spaces,
the extended hold period is 1 cycle.

If synchronous memory is chosen, the READ EXT HOLD bits
are ignored.

01b
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Table 5–17. CEn_1, CEn_2, and CEn_3 Bit Descriptions (Continued)

Register
Reset
ValueDescriptionNameBit(s)

CEn_2 13–12 WRITE
EXT HOLD

Write extended hold period bits. For each CE space that
contains asynchronous memory, load the associated
WRITE EXT HOLD bits with an extended hold period for
asynchronous write operations performed in that CE space.
The 2 bits allow you to choose a value from 0 to 3:

0 ≤ WRITE EXT HOLD ≤ 3 (CPU clock cycles)

Note:  Whenever the EMIF must change to another CE space
between accesses, the EMIF automatically adds 1 cycle in
addition to any cycles you have programmed. For example, if
WRITE EXT HOLD = 0 and the EMIF must switch CE spaces,
the extended hold period is 1 cycle.

If synchronous memory is chosen, the WRITE EXT HOLD bits
are ignored.

01b

CEn_2 11–8 WRITE
SETUP

Write setup period bits. For each CE space that contains
asynchronous memory, load the associated WRITE SETUP
bits with a setup period for asynchronous write operations
performed in that CE space. Choose a value in this range:

1 ≤ WRITE SETUP ≤ 15 (CPU clock cycles)

If synchronous memory is chosen, the WRITE SETUP bits are
ignored.

1111b
(15)

CEn_2 7–2 WRITE
STROBE

Write strobe period bits. For each CE space that contains
asynchronous memory, load the associated WRITE STROBE
bits with a strobe period for asynchronous write operations
performed in that CE space. Choose a value in this range:

1 ≤ WRITE STROBE ≤ 63 (CPU clock cycles)

If synchronous memory is chosen, the WRITE STROBE bits
are ignored.

111111b
(63)

CEn_2 1–0 WRITE
HOLD

Write hold period bits. For each CE space that contains
asynchronous memory, load the associated WRITE HOLD bits
with a hold period for asynchronous read operations performed
in that CE space. The 2 bits allow you to choose a value from
0 to 3:

0 ≤ WRITE HOLD ≤ 3 (CPU clock cycles)

If synchronous memory is chosen, the WRITE HOLD bits are
ignored.

11b
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Table 5–17. CEn_1, CEn_2, and CEn_3 Bit Descriptions (Continued)

Register
Reset
ValueDescriptionNameBit(s)

CEn_3 15–8 Rsvd These are reserved bits (not available for your use). They are
read-only bits and return 0s when read.

–

CEn_3 7–0 TIMEOUT Time-out bits. For each CE space that contains asynchronous
memory, load the associated TIMEOUT bits with a time-out
value (N) for all asynchronous operations performed in that CE
space, or disable the time-out feature by clearing TIMEOUT:

00000000b
(disabled)

0 Time-out feature disabled

1 ≤ N ≤ 255 An internal counter counts the number of
cycles that the asynchronous ready signal
(ARDY) is sampled low (indicating that the
memory is not ready for an access). If ARDY
is sampled low for N CPU clock cycles, the
EMIF signals a time-out error.

If synchronous memory is chosen, the TIMEOUT bits are
ignored.

Table 5–18. Examples to Illustrate the Constraints on Setup Behavior

SETUP
Setup Period For First Access

(CPU Clock Cycles)
Setup Period For Following

Accesses (CPU Clock Cycles)

0 2 1

1 2 1

2 2 2

3 3 3

4 4 4
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General-Purpose I/O Port (GPIO)

The TMS320C55x  DSP has a general-purpose I/O port (GPIO) consisting
of eight individually programmable pins, IO0–IO7. By configuring the GPIO,
you can have input signals of your choice affect your program, and you can
have output signals of your choice affected by your program.

You control and monitor the GPIO with the bits in the I/O direction register
(IODIR) and in the I/O data register (IODATA). The bits are shown in
Figure 6–1 and described in Table 6–1. IODIR and IODATA are accessible to
the CPU and to the DMA controller at addresses in I/O space. For the I/O
addresses, see the data sheet for your TMS320C55x DSP.

The GPIO has eight pins, IO0–IO7. For a given pin (IOx), use its direction bit
(IOxDIR) to configure the pin as an input (IOxDIR = 0) or output (IOxDIR = 1).
Then you use its data bit (IOxD) to read from or write to the pin. For example,
to read input from pin IO4, clear IO4DIR and read IO4D. IIf a pin is configured
as an input, its data bit reflects the signal level on the pin. If a pin is configured
as an output, the value written to its data bit affects the signal level on the pin.

Figure 6–1. GPIO Registers (IODIR and IODATA)
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Legend:

R/W Read/write access
– X X is the value after a DSP reset. X = pin indicates that the reset value depends on the signal

level on the corresponding I/O pin.
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Table 6–1. IODIR and IODATA Bit Descriptions 

Register Bit(s) Name(s) Description
Reset
Value

IODIR 15–8 Reserved These bits are not available for your use. –

IODIR 7–0 IO7DIR–
IO0DIR

The functions of these bits can be summarized as
follows, where x is a number from 0 to 7:

0000 0000b

IOxDIR
IOx
Direction

0 Input

1 Output

On the falling edge of the DSP reset signal, the pins
are made inputs.

IODATA 15–8 Reserved These bits are not available for your use. –

IODATA 7–0 IO7D–IO0D The functions of these bits can be summarized as
follows, where x is a number from 0 to 7:

Reflects
the pins

IOx
Direction IOxD Description

Input 0 The signal on the IOx pin is
low.

Input 1 The signal on the IOx pin is
high.

Output 0 Drive the signal on the IOx pin
low.

Output 1 Drive the signal on the IOx pin
high.

On the falling edge of the DSP reset signal, the pins
are inputs and the values in IO7D–IO0D depend on the
levels on pins IO7–IO0.
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I2C Module

The inter-IC control (I2C) module provides an interface between a
TMS320C55x  (C55x ) DSP and I2C-compatible devices connected by way
of the I2C serial bus. External components attached to the I2C bus serially
transmit/receive up to 8-bit data to/from the C55x DSP through the 2-wire I2C
interface. To determine whether a particular C55x DSP has an I2C module, see
the data sheet for that DSP.
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7.1 Introduction to the I 2C Module

The I2C module supports any slave or master I2C-compatible device.
Figure 7–1 shows an example of multiple I2C serial ports connected for a two-
way transfer from one device to other devices.

Figure 7–1. Multiple I2C Modules Connection Diagram

C55x

I2C

I2C

EPROM

I2C

I2C

C55x

VDD

Pull-up
resistors

Serial Data (SDA)
Serial Clock (SCL)

Controller

7.1.1 Features

The I2C module has the following features:

� Compliance to the Philips Semiconductors I2C specification (v2.1)
� Bit/Byte format transfer
� 7-bit and 10-bit device addressing modes
� General call
� Start byte
� Free data format
� Multi-master transmitter/slave receiver mode
� Multi-master receiver/slave transmitter mode
� Combined master transmit/receive and receive/transmit mode
� I2C data transfer rate of from 10 kbps up to 400 kbps (Philips I2C rate)

� One read and one write DMA event that can be used by the DMA
� One read/write and one ‘illegal operation’ interrupt that can be used by the

CPU
� Operate with DSP core frequency from 12 Mhz up
� Operate with module frequency of 12 Mhz
� Module enable/disable capability
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7.1.2 Features Not Supported

The I2C module does not support:

� High-speed (HS) mode
� C-bus compatibility mode

7.1.3 Functional Overview

The I2C module is a serial bus that supports the multimaster mode in which
one or more devices, capable of controlling the bus, can be connected to the
same bus. Including the C55x DSP, each I2C device is recognized by a unique
address and can operate as either a transmitter or a receiver depending on the
function of the device. In addition to being a transmitter or receiver, a device
connected to the I2C bus can also be considered as the master or the slave
when performing data transfers. Note that a master device is the device that
initiates a data transfer on the bus and generates the clock signals to permit
that transfer. During this transfer, any device addressed by this master is con-
sidered a slave.

Data is communicated to devices interfacing to the I2C module using the serial
data pin (SDA) and the serial clock pin (SCL), shown in Figure 7–2. These two
wires carry information between the C55x device and other devices connected
to the I2C bus. Both SDA and SCL pins on the C55x device are bidirectional.
They must be connected to a positive supply voltage using a pull-up resistor.
When the bus is free, both pins are high. The driver of these two pins has an
open-drain configuration to perform the required wired-AND function.

The I2C module consists of the following primary blocks:

� Serial interface
� DSP register interface
� Prescaler
� Peripheral bus interface
� Control/Status
� Data/Address
� I2C clock generator
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Figure 7–2. I2C Module Internal Block Diagram

ICXSR ICDXR

ICRSR ICDRR

Clock
generator and
synchronizer

Prescaler

Noise filter

Arbitrator
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Interrupt
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to DMA

SDA
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Control MMRs
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7.2 I2C Module Operational Details

7.2.1 I2C Module Reset

The I2C module can be reset in the following two ways:

� The C55x device V-bus reset (VBUS_RESET_ = 0) places the I2C module
in reset. A device reset causes the V-bus reset.

� The I2C module can be reset by clearing the IRS bit in the I2C mode regis-
ter (ICMDR). When the V-bus reset is removed (VBUS_RESET_ = 1), the
IRS bit is cleared to 0 keeping the I2C module in reset.

During an I2C module reset, both the SDA and SCL pins are in a high-imped-
ance state.

7.2.2 I2C Module Bit Transfer

One clock pulse is generated by the master device for each data bit trans-
ferred. Due to a variety of different technology devices (CMOS, NMOC,
Bipolar) that can be connected to the I2C bus, the levels of logic 0 (low) and
logic 1 (high) are not fixed and depend on the associated level of VDD. Refer
to Table 7–1 for the electrical specification.

Table 7–1. Electrical Specification of the Input/Outputs for the I2C Module

Standard Mode
Devices

Fast Mode
Devices

Symbol Parameter Min Max Min Max Unit

VIL

Low-level input voltage:

  Fixed-input levels

  VDD-related input levels

– 0.5

– 0.5

1.5

0.3 VDD

– 0.5

– 0.5

1.5

0.3 VDD

V

VIH

High-level input voltage:

  Fixed-input levels

  VDD-related input levels

3.0

0.7 VDD

VDDmax + 0.5

VDDmax + 0.5

3.0

0.7 VDD

VDDmax + 0.5

VDDmax + 0.5

V

VOL1

VOL2

Low-level output voltage:

  At 3 mA sink current

  At 6 mA sink current

0

N/A

0.4

N/A

0

0

0.4

0.6

V
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7.2.3 I2C Module Data Validity

The data on SDA must be stable during the high period of the clock, see
Figure 7–3. The high and low state of the data line, SDA, can only change
when the clock signal on SCL is low.

Figure 7–3. Bit Transfer on the I2C Bus

Data line
stable data

Change of data
allowed

SDA

SCL

7.2.4 I2C Module START and STOP Conditions

START and STOP conditions are generated by a master I2C module. See
Figure 7–4.

� START condition is defined as a high-to-low transition on the SDA line
while SCL is high. The bus busy bit (BB) in ICSTR is set to 1 (the I2C bus
is considered to be busy).

� STOP condition is defined as a low-to-high transition on the SDA line while
SCL is high. The bus busy bit (BB) in ICSTR is cleared to 0 (the I2C bus
is considered to be free).

Figure 7–4. I2C Module START and STOP Conditions

SDA

SCL

START
condition (S) condition (P)

STOP
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7.2.5 I2C Module Operation

7.2.5.1 Serial Data Formats

The I2C module is operated in byte data format. Each byte put on the SDA line
equates to 8 pulses on the SCL. The number of bytes that can be transmitted
or received is unrestricted. The data is transferred with the most significant bit
(MSB) first (Figure 7–5). The I2C module does not support endianess.

Figure 7–5. I2C Module Data Transfer

SDA

SCL

MSB Acknowledgement
signal from receiver

Acknowledgement
signal from receiver

1 2 7 8 9 1 2 8 9
ACK ACK

START
condition (S)

STOP
condition (P)R/W

The first byte after a START condition (S) always consists of 8 bits that
comprises either a 7-bit slave address and the R/W bit or 8-bit data. The eighth
bit, the R/W, in the first byte determines the direction of the data. When the R/W
bit is 0, the master writes (transmits) data to a selected slave device; when the
R/W bit is 1, the master reads (receives) data from the slave device. In the
acknowledge mode, an extra bit dedicated for the acknowledgement (ACK) bit
is inserted after each byte.

The I2C module supports the following data formats:

� 7-bit addressing format (Figure 7–6)
� 10-bit addressing format (Figure 7–7)
� 7-bit/10-bit addressing format with repeated START condition

(Figure 7–8)
� Free-data format (Figure 7–9)

In the 7-bit addressing format (Figure 7–6), the first byte is the 7-bit slave
address bits (MSB) and the R/W bit (LSB). In the acknowledge mode, the ACK
bit is inserted after each byte, followed by the 8-bit data.

In the 10-bit addressing format (Figure 7–7), the first byte is 11110b, the two
MSBs of the 10-bit slave address, and the R/W bit. In the acknowledge mode,
the ACK bit is inserted after each byte. The next byte is the remaining 8 bits
of the 10-bit slave address, followed by the ACK bit and the 8-bit data.

In the free-data format (Figure 7–9), the direction of data (transmit or receive)
remains constant throughout the transfer. The first byte after a START condi-
tion (S) is the 8-bit data. In addition, the ACK bit is inserted after each byte,
followed by another 8-bit data.
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Figure 7–6. I2C Module 7-Bit Addressing Format

S Slave address R/W ACK Data ACK Data ACK P

7 8 81 1 1 1 1 1

Figure 7–7. I2C Module 10-Bit Addressing Format

S

1

Slave address 1st byte

7

Slave address 2nd byteACKR/W

11 8

ACK

1

Data

8

ACK

1

P

1

1 1 1 1 0 X X

Figure 7–8. I2C Module Addressing Format with Repeated START Conditions

1 7 7 7 71 1 1 1 1 1 1 1

S Slave address R/W ACK Data ACK S Slave address R/W ACK Data ACK P

1 Any
number

1 Any number

Figure 7–9. I2C Module Free-Data Format

DataSlave addressS

1

DataACK ACK ACK P

18 8 8 111

7.2.5.2 Master Transmitter Mode

In this mode, data assembled in any of the addressing formats (Figure 7–6,
Figure 7–7, or Figure 7–8) is shifted out on SDA, synchronized with the self-
generated clock pulses on SCL. The clock pulses are inhibited and SCL is held
low when the intervention of the DSP is required (XSMT) after a byte has been
transmitted.

7.2.5.3 Master Receiver Mode

This mode can only be entered from the master transmitter mode. In any of the
addressing formats (Figure 7–6, Figure 7–7, or Figure 7–8), the master
receiver is entered after the slave address byte and the R/W bit has been trans-
mitted (if the R/W bit is 1). Serial data bits received on SDA are shifted in with
the self-generated clock pulses on SCL. The clock pulses are inhibited and
SCL is held low when the intervention of the DSP is required (RSFULL) after
a byte has been received. At the end of a transfer, a STOP condition is gener-
ated.
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7.2.5.4 Slave Transmitter Mode

This mode can only be entered from the slave receiver mode. In any of the
addressing formats (Figure 7–6, Figure 7–7, or Figure 7–8), the slave trans-
mitter is entered if the slave address byte is the same as its own address and
the R/W bit has been transmitted (if the R/W bit is 1). The slave transmitter
shifts the serial data out on SDA with the clock pulses that are generated by
the master device. The slave device does not generate the clock, but it can
hold SCL low while intervention of the DSP is required (XSMT) after a byte has
been transmitted.

7.2.5.5 Slave Receiver Mode

In this mode, serial data bits received on SDA are shifted in with the clock
pulses that are generated by the master device. The slave device does not
generate the clock, but it can hold SCL low while intervention of the DSP is
required (RSFULL) after a byte has been received.

7.2.6 Arbitration

If two or more master transmitters simultaneously start a transmission on the
same bus, an arbitration procedure is invoked. Figure 7–10 illustrates the
arbitration procedure between two devices. The arbitration procedure uses
the data presented on the serial data bus (SDA) by the competing transmitters.
The first master transmitter that generates a high is overruled by the other
master transmitter that generates a low. The arbitration procedure gives
priority to the device that transmits the serial data stream with the lowest binary
value. The master transmitter that lost arbitration switches to the slave receiv-
er mode, sets the arbitration lost (AL) flag, and generates the arbitration-lost
interrupt. Should two or more devices send identical first bytes, arbitration
continues on the subsequent bytes.

If during a serial transfer and the arbitration procedure is still in progress when
a repeated START condition or STOP condition is transmitted to SDA, the
master transmitters involved must send the repeated START condition or
STOP condition at the same position in the format frame. Arbitration is not
allowed between:

� a repeated START condition and a data bit
� a STOP condition and a data bit
� a repeated START condition and a STOP condition
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Figure 7–10. Arbitration Procedure Between Two Master Transmitters

1

0 0 0

1
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7.2.7 I2C Clock Generation and I 2C Clock Synchronization

Under normal conditions, only one master device generates the clock signal,
SCL. During the arbitration procedure, however, there are two or more master
devices and the clock must be synchronized so that the data output can be
compared. Figure 7–11 illustrates the clock synchronization. The wired-AND
property of SCL means that a device that first generates a low period on SCL
overrules the other devices. At this high-to-low transition, the clock generators
of the other devices are forced to start their own low period. The SCL is held
low by the device with the longest low period. The other devices that finish their
low periods must wait for SCL to be released, before starting their high periods.
A synchronized signal on SCL is obtained, where the slowest device deter-
mines the length of the low period and the fastest device determines the length
of the high period.

If a device pulls down the clock line for a longer time, the result is that all clock
generators must enter the wait state. In this way, a slave slows down a fast
master and the slow device creates enough time to store a received byte or
to prepare a byte to be transmitted.
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Figure 7–11.Synchronization of Two I2C Clock Generators During Arbitration
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7.2.8 Prescaler (SYSCLK/MCLK)

The I2C module is operated with an approximately 12 MHz clock. This clock
is generated by way of the I2C prescaler block. The prescaler block consists
of a 16-bit register, ICPSC, used for dividing down the system clock (SYSCLK)
to obtain the approximately 12 MHz clock for the I2C module.

7.2.9 Noise Filter

The noise filter is used to suppress any noise that is 50 ns or less. It is designed
to suppress noise with one MCLK, assuming the lower and upper limits of
MCLK are 8 Mhz and 16 Mhz, respectively.
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7.3 I2C Module Interrupts

The I2C module generates five types of interrupts. These five interrupts are
accompanied with five interrupt mask bits in the interrupt mask register
(ICIMR) and with five interrupt flag bits in the interrupt status register (ICSTR).

� Arbitration-lost interrupt (AL) is generated when the I2C arbitration
procedure is lost.

� No-acknowledge interrupt (NACK) is generated when the master I2C does
not receive an acknowledge from the receiver.

� Register-access-ready interrupt (ARDY) is generated when the previous-
ly programmed address, data, and command have been performed and
the status bits have been updated. This interrupt is used to notify the DSP
that the I2C registers are ready to be accessed.

� Receive-data-ready interrupt (ICRRDY) is generated when the LSB of the
received data in the receive-shift register (ICRSR) has been copied into
the data receive register (ICDRR). The ICRRDY bit can also be polled by
the DSP to read the received data in ICDRR. The I2C module sends a
receive interrupt (ICRINT) to the CPU.

� Transmit-data-ready interrupt (ICXRDY) is generated when the LSB of the
transmitted data has been copied from the data transmit register (ICDXR)
into the transmit-shift register (ICXSR) and shifted out from the SDA pin.
The ICXRDY bit can also polled by the DSP to write the next transmitted
data into ICDXR. The I2C module sends a transmit interrupt (ICXINT) to
the CPU.

The interrupt vector register (ICIVR) contains the binary-coded-interrupt
vector that indicates which interrupt has occurred. Reading ICIVR clears the
interrupt flag in ICSTR; if other interrupts are pending, a new interrupt is gener-
ated. If there is more than one interrupt flag, reading ICIVR clears the highest
priority interrupt flag.

The I2C interrupt signal is a one-clock wide active-high signal.
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7.3.1 DMA Controller Events

The I2C module has two events that use the DMA controller to synchronously
read received data (ICREVNT) from ICDRR, and synchronously write trans-
mitted data (ICWEVNT) to ICDXR. The read and write events have the same
timing as ICRRDY (ICRINT) and ICXRDY (ICXINT), respectively.

The CPU or the DMA controller reads the received data from ICDRR and
writes the data to be transmitted to ICDXR. Data written to ICDXR is copied
to ICXSR and shifted out from the SDA pin when the I2C module is configured
as a transmitter. When the I2C module is configured as a receiver, receive data
is shifted into ICRSR and copied to ICDRR that can be read by the CPU or the
DMA controller.

The CPU or the DMA controller writes the address of the I2C slave device that
it wants to communicate with into ICSAR and its own address into ICOAR to
identify its own slave address when it is in slave mode.

7.3.2 I2C Enable/Disable

The I2C module can be enabled/disabled with the I2C reset enable bit (IRS)
in the  I2C mode register (ICMDR).
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7.4 I2C Module Registers

The I2C module registers are listed in Table 7–2.

Table 7–2. I2C Module Registers

Address (Hex) Name Description

3C00h ICOAR I2C Own Address Register

3C01h ICIMR I2C Interrupt Mask/Status Register

3C02h ICSTR I2C Interrupt Status Register

3C03h ICCLKL I2C Clock Divider Low Register

3C04h ICCLKH I2C Clock Divider High Register

3C05h ICCNT I2C Data Count Register

3C06h ICDRR I2C Data Receive Register

3C07h ICSAR I2C Slave Address Register

3C08h ICDXR I2C Data Transmit Register

3C09h ICMDR I2C Mode Register

3C0Ah ICIVR I2C Interrupt Vector Register

3C0Bh ICGPIO I2C GPIO Register

3C0Ch ICPSC I2C Prescaler Register

† ICRSR I2C Data Receive Shift Register

† ICXSR I2C Data Transmit Shift Register

† This register is not accessible by the DSP.
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7.4.1 I2C Own Address Register (ICOAR)

The I2C own address register (ICOAR) is a 16-bit memory-mapped register
used to specify its own address that distinguishes it from other peripherals
connected to the I2C bus.

Figure 7–12. I2C Own Address Register (ICOAR)

15 10 9 7 6 0

reserved A9–A7† A6–A0

R-0 R/W-0 R/W-0

† Only available when in expanded address mode; otherwise, reserved.

Note: R/W-x =  Read/Write-Reset value

Table 7–3. I2C Own Address Register (ICOAR) Field Values

Bit field symval Value Description

In normal address mode (XA = 0 in ICMDR):

15–7 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

6–0 A6–A0 0–7Fh This 7-bit value is used as the slave address.

In expanded address mode (XA = 1 in ICMDR):

15–10 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

9–0 A9–A0 0–3FFh This 10-bit value is used as the slave address.
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7.4.2 I2C Interrupt Mask Register (ICIMR)

The I2C interrupt mask register (ICIMR) is a 16-bit memory-mapped register
used by the DSP to enable/disable the interrupts.

Figure 7–13. I2C Interrupt Mask Register (ICIMR)

15 5 4 3 2 1 0

reserved ICXRDY ICRRDY ARDY NACK AL

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 7–4. I2C Interrupt Mask Register (ICIMR) Field Values

Bit field symval Value Description

15–5 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

4 ICXRDY Transmit-data-ready interrupt mask enable bit.

0 Transmit-data-ready interrupt is masked.

1 Transmit-data-ready interrupt is unmasked.

3 ICRRDY Receive-data-ready interrupt mask enable bit.

0 Receive-data-ready interrupt is masked.

1 Receive-data-ready interrupt is unmasked.

2 ARDY Register-access-ready interrupt mask enable bit.

0 Register-access-ready interrupt is masked.

1 Register-access-ready interrupt is unmasked.

1 NACK No-acknowledgement interrupt mask enable bit.

0 No-acknowledgement interrupt is masked.

1 No-acknowledgement interrupt is unmasked.

0 AL Arbitration-lost interrupt mask enable bit.

0 Arbitration-lost interrupt is masked.

1 Arbitration-lost interrupt is unmasked.
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7.4.3 I2C Interrupt Status Register (ICSTR)

The I2C interrupt status register (ICSTR) is a 16-bit memory-mapped register
used by the DSP to determine which interrupt has occurred and to provide I2C
status.

Figure 7–14. I2C Status Register (ICSTR)

15 13 12 11 10 9 8 7 5 4 3 2 1 0

reserved BB RSFULL XSMT AAS AD0 reserved ICXRDY ICRRDY ARDY NACK AL

R-0 R-0 R-0 R-1 R-0 R-0 R-0 R-1 R/W-0 R-0 R-0 R-0

Note: R/W-x =  Read/Write-Reset value

Table 7–5. I2C Status Register (ICSTR) Field Values  

Bit field symval Value Description

15–13 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

12 BB Bus busy bit indicates the state of the serial bus. On reception of a
START condition, the device sets the BB bit to 1. The BB bit is
cleared to 0 after reception of a STOP condition. In the master
mode, the BB bit is controlled by software. To start a transmission
with a START condition, the MST, TRX and STT bits in ICMDR
must be set to 1. To end a transmission with a STOP condition, the
STP bit must be set to 1. When the BB bit is set to 1 and the STT
bit is set to 1, a restart condition is generated.

0 Serial data bus is free.

1 Serial data bus is occupied.

11 RSFULL Receive-shift register full bit indicates that the receiver has experi-
enced overrun. Overrun occurs when the receive-shift register
(ICRSR) is full and the data receive register (ICDRR) has not been
read since the ICRSR-to-ICDRR transfer. The FSM is holding for
ICDRR read access. The RSFULL bit is cleared when reading the
ICDRR, resetting the I2C module (IRS = 0), or resetting the device.

0 ICRSR is not in overrun condition.

1 ICRSR has recognized an overrun. The contents of ICDRR are lost
in this case.
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Table 7–5. I2C Status Register (ICSTR) Field Values (Continued)

Bit DescriptionValuesymvalfield

10 XSMT Transmit-shift register empty bit indicates that the transmitter has
experienced underflow. Underflow occurs when the transmit-shift
register (ICXSR) is empty and the data transmit register (ICDXR)
has not been loaded since the last ICDXR-to-ICXSR transfer. The
FSM is holding for ICXDR write access. The XSMT bit is cleared
when underflow has occurred, resetting the I2C module (IRS = 0),
or resetting the device. The XSMT bit is set to 1 as a result of writ-
ing to ICDXR.

0 Transmitter-empty condition.

1 No transmitter-empty condition.

9 AAS Address as slave bit.

0 The AAS bit is cleared by restart or STOP condition. The device
remains selected until the STOP condition.

1 The device has recognized its own slave address or an address of
all zeros (general call). The AAS bit is also set if the first byte has
been received in the free data format (ALS = 1).

8 AD0 Address 0 status bit.

0 A START or STOP condition is detected.

1 An address of all zeros (general call) is detected.

7–5 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

4 ICXRDY Transmit-data-ready interrupt flag bit indicates that the LSB of the
transmitted data has been copied from the data transmit register
(ICDXR) into the transmit-shift register (ICXSR) and shifted out
from the SDA pin. The ICXRDY bit can also polled by the DSP to
write the next transmitted data into ICDXR.

0 ICDXR is written.

1 The transmitted data LSB has been shifted out of ICDXR.

3 ICRRDY Receive-data-ready interrupt flag bit indicates that the LSB of the
received data in the receive-shift register (ICRSR) has been copied
into the data receive register (ICDRR). The ICRRDY bit can also be
polled by the DSP to read the received data in ICDRR.

0 ICDRR is read.

1 The received data LSB has been shifted into ICDRR.
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Table 7–5. I2C Status Register (ICSTR) Field Values (Continued)

Bit DescriptionValuesymvalfield

2 ARDY Register-access-ready interrupt flag bit indicates that the previously
programmed address, data, and command have been performed
and the status bits have been updated. This interrupt is used to
notify the DSP that the I2C registers are ready to be accessed.

In nonrepeat mode (RM = 0 in ICMDR):

0 Registers are not ready to be accessed.

1 ICCNT passes 0 (if STP bit has not been set).

In repeat mode (RM = 1 in ICMDR):

0 Registers are not ready to be accessed.

1 End of each byte transmitted from ICDXR.

1 NACK No-acknowledgement interrupt flag bit indicates when the master
I2C does not receive an acknowledge from the receiver.

0 The hardware detects that an acknowledge (ACK) bit has been
received.

1 The hardware detects that no acknowledge (ACK) bit has been
received or the I2C is operating in the general call, even though an
acknowledgement is received.

0 AL Arbitration-lost interrupt flag bit indicates when an arbitration is lost.

0 The device in the master transmitter mode has not lost an arbitra-
tion.

1 The device in the master transmitter mode senses it has lost an
arbitration because two or more transmitters start a transmission
almost simultaneously or when the I2C attempts to start a transfer
while the BB bit is set to 1. The device becomes a slave receiver.
The MST and STP bits in ICSTR are cleared to 0.
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7.4.4 I2C Clock Divider Low Register (ICCLKL)

The I2C clock divider low register (ICCLKL) is a 16-bit memory-mapped regis-
ter used to divide the master clock down to obtain the I2C serial clock low time.

Figure 7–15. I2C Clock Divider Low Register (ICCLKL)

15 0

ICCL

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 7–6. I2C Clock Divider Low Register (ICCLKL) Field Values

Bit field symval Value Description

15–0 ICCL 0–FFFFh Low-time I2C SCL clock division factor is used to divide down the
master clock to create the SCL low-time transition frequency.

7.4.5 I2C Clock Divider High Register (ICCLKH)

The I2C clock divider high register (ICCLKH) is a 16-bit memory-mapped reg-
ister used to divide the master clock down to obtain the I2C serial clock high
time.

Figure 7–16. I2C Clock Divider High Register (ICCLKH)

15 0

ICCH

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 7–7. I2C Clock Divider High Register (ICCLKH) Field Values

Bit field symval Value Description

15–0 ICCH 0–FFFFh High-time I2C SCL clock division factor is used to divide down the
master clock to create the SCL high-time transition frequency.
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7.4.6 I2C Data Count Register (ICCNT)

The I2C data count register (ICCNT) is a 16-bit memory-mapped register used
to generate the STOP condition to terminate the transfer.

Figure 7–17. I2C Data Count Register (ICCNT)

15 0

ICDC

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 7–8. I2C Data Count Register (ICCNT) Field Values

Bit field symval Value Description

15–0 ICDC The countdown counter value is used to generate a STOP condition
if a STOP condition is specified (STP = 1 in ICMDR). If the data
counter is set to all 1s, the counter is ignored. In this mode, the I2C
continues sending or receiving data until the STP bit is set to 1 by
the DSP. Note that the value in ICCNT is a don’t care when the RM
bit in ICMDR is set to 1.

0000 Data counter is 65536

0001h–
FFFFh

Data counter is 1–65535

7.4.7 I2C Data Receive Register (ICDRR)

The I2C data receive register (ICDRR) is a 16-bit memory-mapped register
used by the DSP to read the receive data.

Figure 7–18. I2C Data Receive Register (ICDRR)

15 8 7 0

reserved DATA

R-0 R-0

Note: R/W-x =  Read/Write-Reset value

Table 7–9. I2C Data Receive Register (ICDRR) Field Values

Bit field symval Value Description

15–8 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

7–0 DATA Receive data.
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7.4.8 I2C Slave Address Register (ICSAR)

The I2C slave address register (ICSAR) is a 16-bit memory-mapped register
used to specify the address of the communicating slave device connected to
the I2C bus.

Figure 7–19. I2C Slave Address Register (ICSAR)

15 10 9 7 6 0

reserved A9–A7† A6–A0

R-0 R/W-111b R/W-111 1111b

† Only available when in expanded address mode; otherwise, reserved.

Note: R/W-x =  Read/Write-Reset value

Table 7–10. I2C Slave Address Register (ICSAR) Field Values  

Bit field symval Value Description

In normal address mode (XA = 0 in ICMDR):

15–7 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

6–0 A6–A0 0–7Fh This 7-bit value is used as the slave address.

In expanded address mode (XA = 1 in ICMDR):

15–10 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

9–0 A9–A0 0–3FFh This 10-bit value is used as the slave address.
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7.4.9 I2C Data Transmit Register (ICDXR)

The I2C data transmit register (ICDXR) is a 16-bit memory-mapped register
used by the DSP to write the transmit data.

Figure 7–20. I2C Data Transmit Register (ICDXR)

15 8 7 0

reserved DATA

R-0 R-0

Note: R/W-x =  Read/Write-Reset value

Table 7–11. I2C Data Transmit Register (ICDXR) Field Values

Bit field symval Value Description

15–8 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

7–0 DATA Transmit data.

7.4.10 I2C Mode Register (ICMDR)

The I2C mode register (ICMDR) is a 16-bit memory-mapped register that con-
tains the control bits of the I2C module.

In slave mode, the start condition bit (STT) is not required to be set; however,
it is recommended that the STT bit is set to 1 to transmit or receive data. The
I2C slave recognizes a START condition and slave address, and then the
transmit or receive data.

Figure 7–21. I2C Mode Register (ICMDR)

15 14 13 12 11 10 9 8

reserved FREE STT IDLEEN STP MST TRX XA

R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

7 6 5 4 3 2 0

RM DLB IRS STB FDF BC

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x =  Read/Write-Reset value
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Table 7–12. I2C Mode Register (ICMDR) Field Values  

Bit field symval Value Description

15 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

14 FREE Free running bit is used to determine the state of the I2C
when a breakpoint is encountered in the HLL debugger.

0 If SCL is low, the I2C stops immediately and keeps driving
SCL low whether the I2C is the master transmitter or receiver.
If SCL is high, the I2C waits until SCL becomes low and then
stops. If the I2C is a slave, it stops when the transmission/
receiving completes.

1 I2C runs free.

13 STT Start condition bit works in conjunction with the STP bit
(master only mode). The STT and STP bits are configured to
generate different transfer formats (see Table 7–13). Note that
the STT and STP bits can be used to terminate the repeat
mode.

0 STT is reset to 0 by the hardware after the START condition
has been generated.

1 STT is set to 1 by the DSP to generate a START condition. In
master mode, setting STT to 1 generates a START condition.
In slave mode, setting STT to 1 enables the I2C.

12 IDLEEN Idle enable bit.

0 The I2C does not go into an IDLE state when the DSP
executes the IDLE instruction.

1 The I2C does go into an IDLE state when the DSP executes
the IDLE instruction.

11 STP Stop condition bit works in conjunction with the STT bit (master
only mode). The STT and STP bits are configured to generate
different transfer formats (see Table 7–13). Note that the STT
and STP bits can be used to terminate the repeat mode.

0 STP is reset to 0 by the hardware after the STOP condition
has been generated. The STOP condition is generated when
ICCNT passes 0.

1 STP is set to 1 by the DSP to generate a STOP condition.
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Table 7–12. I2C Mode Register (ICMDR) Field Values (Continued)

Bit DescriptionValuesymvalfield

10 MST Master bit determines if the I2C is in the slave mode or master
mode. See Table 7–14. This bit  is cleared when the I2C master
detects a STOP condition.

0 The I2C is in the slave mode and the clock is received from
the master device.

1 The I2C is in the master mode and it generates the clock. The
MST bit works in conjunction with the TRX bit to determine
the direction of data transmission of the I2C.

9 TRX Transmitter bit determines the direction of data transmission of
the I2C. See Table 7–14.

0 I2C is in receiver mode and data on data line SDA is shifted
into ICDRR.

1 I2C is in the transmitter mode and the data in ICDXR is shifted
out on data line SDA.

8 XA Expanded address enable bit.

0 7-bit address mode (normal address mode)

1 10-bit address mode (expanded address mode)

7 RM Repeat mode enable bit. This bit is a don’t care if the I2C is
configured in slave mode (MST = 0). See Table 7–13.

0 I2C is not in the repeat mode.

1 I2C is in the repeat mode. Data is continuously transmitted out
of ICDXR until the STP bit is set to 1, regardless of the value
in ICCNT.

6 DLB Digital loop back mode enable bit disables or enables the digital
loopback mode of the I2C.

0 Digital loop back mode is disabled.

1 Digital loop back mode is enabled in master transmit mode
only. In this mode, data transmitted out of ICDXR is received
in ICDRR after ((DSP freq/I2C freq) � 8) DSP cycles by an
internal path. The address of ICOAR is output on SDA.
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Table 7–12. I2C Mode Register (ICMDR) Field Values (Continued)

Bit DescriptionValuesymvalfield

5 IRS I2C reset enable bit. When this bit is cleared to 0, all status bits
are set to default values.

0 I2C is in reset.

1 I2C is out of reset.

4 STB START byte mode enable bit (master only mode).

0 I2C is not in START byte mode.

1 I2C is in START byte mode (ICSAR = 0000 0001).

3 FDF Free data format enable bit (both master and slave modes). See
Table 7–14.

0 I2C is not in free data format mode.

1 I2C is in free data format mode.

2–0 BC 0–7 Bit count bits define the number of bits starting from the LSB
(excluding the acknowledge bit) of the next byte that is to be
received or transmitted.

Table 7–13. I2C Module Condition, Bus Activity, and Mode

ICMDR Bit

RM STT STP Condition Bus Activities † Mode

0 0 0 Idle None NA

0 0 1 Stop P NA

0 1 0 (Re)Start S-A-D..(n)..D Repeat n

0 1 1 (Re)Start-Stop S-A-D..(n)..D-P Repeat n

1 0 0 Idle none NA

1 0 1 Stop P NA

1 1 0 (Re)Start S-A-D-D-D….. Continuous

1 1 1 Reserved None NA

† P = STOP condition; S = START condition; A = Acknowledge bit; D = data
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Table 7–14. I2C Module Operating Modes

ICMDR Bit

FDF MST TRX Operating Mode

0 0 x Slave not in free data format mode

0 1 0 Master receive not in free data format mode

0 1 1 Master transmit not in free data format mode

1 0 0 Slave receiver in free data format mode

1 0 1 Slave transmitter in free data format mode

1 1 0 Master receiver in free data format mode

1 1 1 Master transmitter in free data format mode

7.4.11 I2C Interrupt Vector Register (ICIVR)

The I2C interrupt vector register (ICIVR) is a 16-bit memory-mapped register
used by the DSP to determine which interrupt has occurred.

Figure 7–22. I2C Interrupt Vector Register (ICIVR)

15 12 11 8 7 3 2 0

reserved TESTMD reserved INTCODE

R-0 R/W-0 R-0 R-0

Note: R/W-x =  Read/Write-Reset value

Table 7–15. I2C Interrupt Vector Register (ICIVR) Field Values  

Bit field symval Value Description

15–12 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

11–8 TESTMD Reserved for internal testing.

7–3 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.
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Table 7–15. I2C Interrupt Vector Register (ICIVR) Field Values (Continued)

Bit DescriptionValuesymvalfield

2–0 INTCODE Interrupt code bits. The binary-coded-interrupt vector indicates
which interrupt has occurred. Reading ICIVR clears the
interrupt flag; if other interrupts are pending, a new interrupt is
generated. If there is more than one interrupt flag, reading
ICIVR clears the highest priority interrupt flag.

000 None

001 Arbitration-lost interrupt

010 No-acknowledgement interrupt

011 Register-access-ready interrupt

100 Receive-data-ready interrupt

101 Transmit-data-ready interrupt

110–111 Reserved

7.4.12 I2C General-Purpose I/O Register (ICGPIO)

The I2C general-purpose I/O register (ICGPIO) is a 16-bit memory-mapped
register used by the I2C to control the SDA and SCL pins when the module is
not operating in I2C mode.

7.4.13 I2C Prescaler Register (ICPSC)

The I2C prescaler register (ICPSC) is a 16-bit memory-mapped register used
for dividing down the system clock (SYSCLK) to obtain an approximately
12 MHz clock for the I2C module.

Figure 7–23. I2C Prescaler Register (ICPSC)

15 8 7 0

reserved IPSC

R-0 R/W-0

Note: R/W-x =  Read/Write-Reset value



I2C Module Registers

7-29I2C Module

Table 7–16. I2C Prescaler Register (ICPSC) Field Values

Bit field symval Value Description

15–8 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

7–0 IPSC I2C prescaler counter bits.

7.4.14 I2C Data Receive Shift Register (ICRSR)

The I2C data receive shift register (ICRSR) is a 16-bit memory-mapped
register used by the I2C module to shift in the receive data. This register is not
accessible by the DSP.

Figure 7–24. I2C Data Receive Shift Register (ICRSR)

15 8 7 0

reserved RECEIVEDATA

R-0 R-x

Note: R/W-x =  Read/Write-Reset value

7.4.15 I2C Data Transmit Shift Register (ICXSR)

The I2C data transmit shift register (ICXSR) is a 16-bit memory-mapped
register used by the I2C module to shift out the transmit data. This register is
not accessible by the DSP.

Figure 7–25. I2C Data Transmit Shift Register (ICXSR)

15 8 7 0

reserved TRANSMITDATA

R-0 R/W-x

Note: R/W-x =  Read/Write-Reset value
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7.5 I2C Module Programming Examples

7.5.1 Main Program

7.5.1.1 State After Reset

1) Program the prescaler to obtain an approximately 12 Mhz I2C module
clock (ICPSC = x; this value is to be calculated and is dependent on the
CPU frequency).

2) Take the I2C module out of reset (IRS = 1).

a) If using interrupt for transmit/receive data, enable interrupt masks.

b) If using DMA for transmit/receive data, enable the DMA and program
the DMA controller.

7.5.1.2 Initialization Procedure

Configure the I2C mode register (ICMDR) bits.

7.5.1.3 Program Clock Control Registers (ICCLKL and ICCLKH)

Program the I2C clock to obtain 100 Kbps or 400 Kbps (ICCLKL = x and
ICCLKH = x; these values are to be calculated and are dependent on the CPU
frequency).

7.5.1.4 Configure Address Registers

1) Configure its own address (ICOAR = x)

2) Configure the slave address (ICSAR = x)

7.5.1.5 Program Transmit Data Register (ICDXR)

If in master transmitter mode, program the data transmit register (ICDXR = x).

7.5.1.6 Configure Status and Mode Register (ICSTR)

Poll the bus busy (BB) bit in the I2C status register (ICSTR), if it is cleared to
0 (bus not busy), configure START/STOP condition to initiate a transfer.

7.5.1.7 Poll Receive Data

Poll the receive data ready interrupt flag bit (ICRRDY) in the I2C status register
(ICSTR), use the ICRRDY interrupt, or use the DMA to read the receive data
in the data receive register (ICDRR).

7.5.1.8 Poll Transmit Data

Poll the transmit data ready interrupt flag bit (ICXRDY) in the I2C status register
(ICSTR), use the ICXRDY interrupt, or use the DMA to write data into the data
transmit register (ICDXR).
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7.5.2 Interrupt Subroutines

1) Test for arbitration lost and resolve accordingly.

2) Test for no-acknowledge and resolve accordingly.

3) Test for register access ready and resolve accordingly.

4) Test for receive data and resolve accordingly.

5) Test for transmit data and resolve accordingly.

7.5.3 Flow Diagrams

Figure 7–26. Setup Procedure

Start

Write ICOAR

Write ICIMR

Write ICCLKL

Write ICCLKH

Use
Repeat Mode

(RM=1)
?

Yes

No
Write ICCNT

Write ICSAR

End
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Figure 7–27. Master Transmitter Mode, RM = 1
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Figure 7–28. Master Receiver Mode, RM = 1, Polling 1 (Using Software Counter, Number
of the Receive Data is Fixed)
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Figure 7–29. Master Receiver Mode, RM = 1, Polling 2 (Number of the Receive Data is
Variable, Data Contents Dependent)
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Figure 7–30. Master Transmitter Mode, RM = 0, Polling
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Figure 7–31. Master Receiver Mode, RM = 0, Polling
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Figure 7–32. Master Transmitter Mode, RM = 0, Interrupt
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Figure 7–33. Master Receiver Mode, RM = 0, Interrupt
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Figure 7–34. Master Transmitter/Receiver Mode, RM = 1, Interrupt
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Figure 7–35. Master Transmitter Mode, RM = 0, DMA
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Figure 7–36. Master Receiver Mode, RM = 0, DMA
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Figure 7–37. Slave Transmitter/Receiver Mode, RM = 1, Polling
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Idle Configurations

The TMS320C55x  (C55x ) DSP is divided into the idle domains described
in section 8.1. To minimize power consumption, you can choose which do-
mains are active and which domains are idle at any given time. The current
state of all domains is collectively called the idle configuration.
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8.1 Idle Domains

The DSP is divided into the idle domains described in Table 8–1. You can con-
trol which of these idle domains are active and which are idle at any given time,
as described in section 8.2.

Notes:

1) The peripheral bus controller and the enhanced host port interface
(EHPI) on the DSP are not part of any idle domain. The only way to turn
these modules off is to put the clock generator into its idle mode (make
the CLKGEN domain idle).

2) The internal memory blocks (SARAM and DARAM) and the external
memory are shared by two domains (CPU and DMA). When both do-
mains are idle, memory accesses are disabled.

Table 8–1. Idle Domains in the DSP  

Domain Contents of the Domain Configurability

CPU CPU and CPU buses When the idle instruction is executed, the CPU remains
active or becomes idle, depending on the chosen idle
configuration.

Regardless of this domain’s state before a DSP reset, it is
active after a DSP reset.

DMA DMA controller and DMA buses When the idle instruction is executed, the DMA (direct
memory access) controller remains active or becomes
idle, depending on the chosen idle configuration.

Regardless of this domain’s state before a DSP reset, it is
active after a DSP reset.

CACHE Instruction cache When the idle instruction is executed, the instruction
cache remains active or becomes idle, depending on the
chosen idle configuration.

Regardless of this domain’s state before a DSP reset, it is
active after a DSP reset.

PERIPH Timers, serial ports, and other periph-
erals

Each of the peripherals in this domain has an idle enable
bit that determines whether the peripheral can be placed
in its idle mode when the idle instruction is executed. If the
PERIPH domain is configured to be idle and an idle enable
bit is 1, the corresponding peripheral is placed in its idle
mode.

Regardless of this domain’s state before a DSP reset, it is
active after a DSP reset.
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Table 8–1. Idle Domains in the DSP (Continued)

Domain ConfigurabilityContents of the Domain

CLKGEN Clock generator, including the
phase-lock loop (PLL) circuitry

When the idle instruction is executed, the clock generator
remains active or becomes idle, depending on the chosen
idle configuration. When the clock generator is in its idle
mode, no clocking is available for the CPU or the DMA
controller. If the clock generator is configured to be idle
and the CPU, the DMA controller, or the cache is
configured to be active, a bus error interrupt request is
sent to the CPU. If properly enabled, the interrupt will force
the CLKGEN domain to be reactivated.

Peripherals that do not depend on the DSP clock signal
are not affected by the state of the CLKGEN domain.

Regardless of this domain’s state before a DSP reset, it is
active after a DSP reset.

EMIF External memory interface (EMIF) When the idle instruction is executed, the EMIF is disabled
or enabled, depending on the chosen idle configuration.

Regardless of this domain’s state before a DSP reset, it is
active after a DSP reset.
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8.2 Idle Configuration Process

The idle configuration indicates which idle domains will be idle, and which idle
domains will be active, the next time the idle instruction is executed. The basic
steps to the idle configuration process are:

1) Define a new idle configuration by writing to the bits in the idle configura-
tion register (ICR). Make sure that you use a valid idle configuration (see
section 8.3).

2) Apply the new idle configuration by executing the idle instruction. The ef-
fects are shown in the following figure. The content of ICR is copied to the
idle status register (ISTR). The bits of ISTR are then propagated through
the system to enable or disable each of the chosen domains.

The idle instruction cannot be executed in parallel with another instruction.

Notes:

If you intend to switch among multiple idle configurations, make sure that
your system has the means to change from one idle configuration to the next.
For important considerations, see section 8.4.

Figure 8–1. Idle Configuration Process
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8.3 Valid Idle Configurations

Not all of the values that you can write to the idle configuration register (ICR)
provide valid idle configurations. The valid configurations are limited by depen-
dencies within the system. For example, when the CLKGEN domain is idle (the
DSP clock generator is disabled), the DMA controller, the CPU, and any pe-
ripherals that do not have their own external clocks cannot operate.
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8.4 To Change Idle Configurations (Key Conditions)

Before you use the idle instruction, make sure that there is a method for the
DSP to change the idle configuration afterward. Table 8–2 summarizes the
methods available under three key conditions. The table also describes the ef-
fects on the idle registers: the idle status register (ISTR) and the idle configura-
tion register (ICR). For more details about these idle registers, see section 8.7
on page 8-9.

Table 8–2. Changing Idle Configurations

Condition
Available Methods For
Changing Idle Configuration ISTR After Change ICR After Change

1. CLKGEN domain
is active

CPU domain
is active

A. Write a new configuration to the
idle configuration register (ICR),
and then execute the idle instruc-
tion.

A. Modified by the idle
instruction; contains a
copy of the new ICR
value

A. Contains the new
value that was
loaded by the
program

(See section 8.4.1) B. Initiate a DSP hardware reset. B. Cleared (all 0s) B. Cleared (all 0s)

2. CLKGEN domain
is active

CPU domain
is idle

A. Use an unmasked hardware in-
terrupt or the nonmaskable hard-
ware interrupt called NMI_.

A. CLKGENIS and
CPUIS bits are 0. No
other bits were modi-
fied.

A. Not modified

(See section 8.4.2) B. Initiate a DSP hardware reset. B. Cleared (all 0s) B. Cleared (all 0s)

3. CLKGEN domain
is idle

(See section 8.4.3)

A. Use an unmasked hardware in-
terrupt or the nonmaskable hard-
ware interrupt called NMI_.

A. CLKGENIS and
CPUIS bits are 0. No
other bits were modi-
fied.

A. Not modified

B. Initiate a DSP hardware reset. B. Cleared (all 0s) B. Cleared (all 0s)

8.4.1 Condition 1: CLKGEN and CPU Domains Active

When the CLKGEN domain is active (the DSP clock generator is enabled) and
the CPU domain is active (the DSP CPU is running), program flow continues.
In this case, there are two methods of changing idle configurations:

� Write a new idle configuration to the idle configuration register (ICR), and
then execute the idle instruction. The idle instruction copies the content of
the ICR to the idle status register (ISTR), and the ISTR bit values are prop-
agated to the idle domains. After the domains change states, the value in
ISTR matches the value in ICR.

� Initiate a DSP hardware reset at the DSP reset pin. When the DSP resets,
all domains are made active.



To Change Idle Configurations (Key Conditions)

8-7Idle Configurations

8.4.2 Condition 2: CLKGEN Domain Active, CPU Domain Idle

When the CPU domain is idle, program flow is halted. It is not possible to write
a new value to the idle configuration register (ICR) or to execute the idle in-
struction. Two other methods are available for changing the idle configuration:

� Use an unmasked interrupt or the nonmaskable interrupt called NMI_. The
interrupt clears the CLKGENIS and CPUIS bits of the idle status register
(ISTR). The change to CPUIS reactivates the CPU domain, and the
change to CLKGENIS ensures that the CLKGEN domain is also active.
The content of the idle configuration register (ICR) is not modified. To learn
how the CPU responds to the interrupt, see section 8.5.

� Initiate a DSP hardware reset at the DSP reset pin. When the DSP resets,
all domains are made active.

Once program flow has begun again, you can reactivate or deactivate other
domains by writing a new idle configuration to ICR and then executing the idle
instruction.

8.4.3 Condition 3: CLKGEN Domain Idle

When the CLKGEN domain is idle (the DSP clock generator is disabled), no
internal clocks are active, including the CPU clock. With the CPU halted, it is
not possible to write a new value to the idle configuration register (ICR) or to
execute the idle instruction. Two other methods are available for waking the
DSP:

� Use an unmasked interrupt or the nonmaskable interrupt called NMI_. The
interrupt clears the CLKGENIS and CPUIS bits of the idle status register
(ISTR). The change to CPUIS reactivates the CPU domain, and the
change to CLKGENIS ensures that the CLKGEN domain is also active.
The content of the idle configuration register (ICR) is not modified. To learn
how the CPU responds to the interrupt, see section 8.5.

� Initiate a DSP hardware reset at the DSP reset pin. When the DSP resets,
all domains are made active.

Once program flow has begun again, you can reactivate or deactivate other
domains by writing a new idle configuration to ICR and then executing the idle
instruction.
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8.5 Interrupt Handling When the CPU Is Reactivated

If the CPU has been halted by an idle configuration, it can be reactivated by
a nonmaskable interrupt (NMI_ or RESET_) or by a maskable interrupt that is
enabled in an interrupt enable register (IER0 or IER1). A maskable interrupt
request will also set the corresponding interrupt flag bit in an interrupt flag reg-
ister (IFR0 or IFR1). Table 8–3 summarizes how the CPU responds after being
reactivated by maskable and nonmaskable interrupts. INTM is the global inter-
rupt mask bit in status register ST1_55.

Table 8–3. CPU Response After Reactivation

Interrupt CPU Response After Reactivation ...

A maskable interrupt If INTM = 0:
The CPU executes the interrupt service routine, executes the instruction that
follows the idle instruction, and continues from there.

If INTM =  1:
The CPU executes the instruction that follows the idle instruction and then
continues from there. The interrupt service routine cannot be executed until the
interrupt has been enabled by INTM.

NMI_ (nonmaskable) The CPU executes the interrupt service routine, executes the instruction that
follows the idle instruction, and continues from there.

RESET_ (nonmaskable) The DSP is reset. (During a DSP reset, all idle domains are made active.)

8.6 Effect of a DSP Reset on the Idle Domains

Driving the DSP reset signal low starts a DSP reset. During a DSP reset, all
idle domains are made active.

Interrupt Handling When the CPU Is Reactivated / Effect of a DSP Reset on the Idle Domains
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8.7 Idle Registers

Two registers provide the means for you to individually configure and monitor
each of the idle domains: the idle configuration register (ICR) and the idle sta-
tus register (ISTR). These registers (see Figure 8–2) are part of the peripheral
bus controller and are accessible to the CPU. Table 8–4 describes the read/
write bits of ICR, and Table 8–5 describes the read-only bits of ISTR. For infor-
mation about controlling the idle domains, see Chapter 8, Idle Configurations.

ICR lets you configure how each idle domain will respond the next time the idle
instruction is executed. When you execute the idle instruction, the content of
ICR is copied to ISTR. Then the ISTR values are propagated to the idle do-
mains. Making the clock generator idle (CLKGENI  = 1) provides the lowest
level of power consumption in the DSP by stopping all the system clocks.

Figure 8–2. Idle Configuration Register (ICR) and Idle Status Register (ISTR)
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R Read access
W Write access

– 0 This bit is cleared by a DSP reset.

Reserved A write to this bit field has no effect, and the bit or bits in this field always appear as 0s
during read operations.
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Table 8–4. ICR Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–6 Reserved These bits are not available for your use. They are read-only bits and return
0s when read.

–

5 EMIFI EMIF-domain idle configuration bit. EMIFI determines whether the
external memory interface (EMIF) will be idle after the next execution of
the idle instruction:

0

0 EMIF will be active

1 EMIF will be idle

4 CLKGENI CLKGEN-domain idle configuration bit. CLKGENI determines whether the
DSP clock generator will be idle after the next execution of the idle instruc-
tion:

0

0 Clock generator will be active

1 Clock generator will be idle

Important: For a proper power-down, when you set CLKGEN = 1, make
sure you also set CPUI = 1, DMAI = 1, and CACHEI = 1. If you do not, a
bus error interrupt (BERRINT) request is sent to the CPU.

3 PERI PERIPH-domain idle configuration bit. Peripherals that are in the PERIPH
domain each have an idle enable bit. PERI, in conjunction with the idle
enable bits, determines which of the peripherals in the domain will be idle
after the next execution of the idle instruction:

0

0 All peripherals in the domain will be active.

1 For each peripheral in the domain: If the idle enable bit is 1, the
peripheral will be in its idle mode. If the idle enable bit is 0, the
peripheral will be active.

2 CACHEI CACHE-domain idle configuration bit. CACHEI determines whether the
cache will be idle after the next execution of the idle instruction:

0

0 Cache will be active

1 Cache will be idle

1 DMAI DMA-domain idle configuration bit. DMAI determines whether the DMA
controller will be idle after the next execution of the idle instruction:

0

0 DMA controller will be active

1 DMA controller will be idle
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Table 8–4. ICR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

0 CPUI CPU-domain idle configuration bit. CPUI determines whether the DSP
CPU will be idle after the next execution of the idle instruction:

0

0 CPU will be active

1 CPU will be idle

Table 8–5. ISTR Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–6 Reserved These bits are not available for your use. They are read-only bits and return
0s when read.

–

5 EMIFIS EMIF-domain idle status bit. EMIFIS is a copy of EMIFI made during the
execution of the idle instruction. EMIFIS reflects the current idle status of
the external memory interface (EMIF):

0

0 EMIF is active

1 EMIF is idle

4 CLKGENIS CLKGEN-domain idle status bit. CLKGENIS is a copy of CLKGENI made
during the execution of the idle instruction. CLKGENIS reflects the current
idle status of the DSP clock generator:

0

0 Clock generator is active

1 Clock generator is idle

3 PERIS PERIPH-domain idle status bit. PERIS is a copy of PERI made during the
execution of the idle instruction. PERIS reflects the current idle status of
the peripherals in the PERIPH domain:

0

0 All peripherals in the domain are active

1 For each peripheral in the domain: If the idle enable bit is 1, the
peripheral is idle. If the idle enable bit is 0, the peripheral is active.

2 CACHEIS CACHE-domain idle status bit. CACHEIS is a copy of CACHEI made
during the execution of the idle instruction. CACHEIS reflects the current
idle status of the cache:

0

0 Cache is active

1 Cache is idle
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Table 8–5. ISTR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

1 DMAIS DMA-domain idle status bit. DMAIS is a copy of DMAI made during the
execution of the idle instruction. DMAIS reflects the current idle status of
the DMA controller:

0

0 DMA controller is active

1 DMA controller is idle

0 CPUIS CPU-domain idle status bit. CPUIS is a copy of CPUI made during the
execution of the idle instruction. CPUIS reflects the current idle status of
the DSP CPU:

0

0 CPU is active

1 CPU is idle
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Multichannel Buffered Serial Port (McBSP)

This chapter describes the type of multichannel buffered serial port (McBSP)
available on the TMS320C55x  DSPs. The McBSPs provide a direct serial
interface between a C55x  DSP and other devices in a system. For the num-
ber of McBSPs available, see the data sheet for your C55x DSP.
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9.1 Introduction to the McBSP

The TMS320C55x DSPs provide multiple high-speed, multichannel buffered
serial ports (McBSPs) that allow direct interface to other C55x DSPs, codecs,
and other devices in a system. For the number of McBSPs available, see the
data sheet for your C55x DSP.

9.1.1 Key Features of the McBSP

The McBSP provides:

� Full-duplex communication

� Double-buffered transmission and triple-buffered reception, which allow
a continuous data stream

� Independent clocking and framing for reception and for transmission

� The capability to send interrupts to the CPU and to send DMA events to
the DMA controller

� 128 channels for transmission and for reception

� Multichannel selection modes that enable you to allow or block transfers
in each of the channels

� Direct interface to industry-standard codecs, analog interface chips
(AICs), and other serially connected A/D and D/A devices

� Support for external generation of clock signals and frame-synchroniza-
tion (frame-sync) signals

� A programmable sample rate generator for internal generation and control
of clock signals and frame-sync signals

� Programmable polarity for frame-sync pulses and for clock signals
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� Direct interface to:

� T1/E1 framers

� MVIP switching compatible and ST-BUS compliant devices including:

� MVIP framers
� H.100 framers
� SCSA framers

� IOM-2 compliant devices

� AC97 compliant devices (The necessary multiphase frame capability
is provided.)

� IIS compliant devices

� SPI devices

� A wide selection of data sizes: 8, 12, 16, 20, 24, and 32 bits
Note:  A value of the chosen data size is referred to as a serial word or word
throughout the McBSP documentation. Elsewhere, word is used to
describe a 16-bit value.

� µ-law and A-law companding

� The option of transmitting/receiving 8-bit data with the LSB first

� Status bits for flagging exception/error conditions

� The capability to use the McBSP pins as general-purpose I/O pins
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9.1.2 Block Diagram of the McBSP

The McBSP consists of a data-flow path and a control path connected to exter-
nal devices by seven pins as shown in Figure 9–1.

Figure 9–1. Conceptual Block Diagram of the McBSP
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Data is communicated to devices interfaced with the McBSP via the data trans-
mit (DX) pin for transmission and the data receive (DR) pin for reception.
Control information in the form of clocking and frame synchronization is com-
municated via the following pins: CLKX (transmit clock), CLKR (receive clock),
FSX (transmit frame sync), and FSR (receive frame sync).

The CPU and the DMA controller communicate with the McBSP through
16-bit-wide registers accessible via the internal peripheral bus. The CPU or
the DMA controller writes the data to be transmitted to the data transmit regis-
ters (DXR1, DXR2). Data written to the DXRs is shifted out to DX via the trans-
mit shift registers (XSR1, XSR2). Similarly, receive data on the DR pin is
shifted into the receive shift registers (RSR1, RSR2) and copied into the
receive buffer registers (RBR1, RBR2). The contents of the RBRs is then
copied to the DRRs, which can be read by the CPU or the DMA controller. This
allows simultaneous movement of internal and external data communications.

DRR2, RBR2, RSR2, DXR2, and XSR2 are not used (written, read, or shifted)
if the serial word length is 8 bits, 12 bits, or 16 bits. For larger word lengths,
these registers are needed to hold the most significant bits.

The remaining registers in Figure 9–1 are registers for controlling McBSP
operation. Details about these registers are available in section 9.13 (page
9-155).



Introduction to the McBSP

 9-6

9.1.3 McBSP Pins

The following table describes the McBSP interface pins. In the Type column,
I = Input, O = Output, Z = High impedance. Information on using these pins for
general purpose input/output is in section 9.10 on page 9-144.

Pin Possible States Possible Uses

CLKR I/O/Z Supplying or reflecting the receive clock;
supplying the input clock of the sample rate
generator; general-purpose I/O

CLKX I/O/Z Supplying or reflecting the transmit clock;
supplying the input clock of the sample rate
generator; general-purpose I/O

CLKS I Supplying the input clock of the sample rate
generator; general-purpose input

DR I Receiving serial data; general-purpose
input

DX O/Z Transmitting serial data; general-purpose
output

FSR I/O/Z Supplying or reflecting the receive frame-
sync signal; controlling sample rate genera-
tor synchronization for the case when
GSYNC = 1 (see section 9.3.3 on page
9-29); general-purpose I/O

FSX I/O/Z Supplying or reflecting the transmit frame-
sync signal; general-purpose I/O
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9.2 McBSP Operation

This section contains the following topics:

Topic See ...

Data transfer process of a McBSP Section 9.2.1

Companding (compressing and expanding) data Section 9.2.2, page 9-8

Clocking and framing data Section 9.2.3, page 9-11

Frame phases Section 9.2.4, page 9-15

McBSP Reception Section 9.2.5, page 9-18

McBSP Transmission Section 9.2.6, page 9-19

Interrupts and DMA events generated by a McBSP Section 9.2.7, page 9-22

9.2.1 Data Transfer Process of a McBSP

Figure 9–2 shows a diagram of the McBSP data transfer paths. McBSP
receive operation is triple buffered, and transmit operation is double buffered.
The use of registers varies depending on whether the defined length of each
serial word fits in 16 bits.

Figure 9–2. McBSP Data Transfer Paths
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9.2.1.1 Data Transfer Process for Word Length of 8, 12, or 16 Bits

If the word length is 16 bits or smaller, only one 16-bit register is needed at each
stage of the data transfer paths. The registers DRR2, RBR2, RSR2, DXR2,
and XSR2 are not used (written, read, or shifted).

Receive data arrives on the DR pin and is shifted into receive shift register 1
(RSR1). Once a full word is received, the content of RSR1 is copied to receive
buffer register 1 (RBR1), only if RBR1 is not full with previous data. RBR1 is
then copied to data receive register 1 (DRR1), unless the previous content of
DRR1 has not been read by the CPU or the DMA controller. If the companding
feature of the McBSP is implemented, the required word length is 8 bits and
receive data is expanded into the appropriate format before being passed from
RBR1 to DRR1. For more details about reception, see section 9.2.5 on page
9-18.
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Transmit data is written by the CPU or the DMA controller to data transmit reg-
ister 1 (DXR1). If there is no previous data in transmit shift register (XSR1), the
value in DXR1 is copied to XSR1; otherwise, DXR1 is copied to XSR1 when
the last bit of the previous data is shifted out on the DX pin. If selected, the com-
panding module compresses 16-bit data into the appropriate 8-bit format
before passing it to XSR1. After transmit frame synchronization, the transmit-
ter begins shifting bits from XSR1 to the DX pin. For more details about trans-
mission, see section 9.2.6 on page 9-19.

9.2.1.2 Data Transfer Process for Word Length of 20, 24, or 32 Bits

If the word length is larger than 16 bits, two 16-bit registers are needed at each
stage of the data transfer paths. The registers DRR2, RBR2, RSR2, DXR2,
and XSR2 are needed to hold the most significant bits.

Receive data arrives on the DR pin and is shifted into RSR2 first and then into
RSR1. Once the full word is received, the contents of RSR2 and RSR1 are
copied to RBR2 and RBR1, respectively, only if RBR1 is not full. Then the con-
tents of RBR2 and RBR1 are copied to DRR2 and DRR1, respectively, unless
the previous content of DRR1 has not been read by the CPU or the DMA con-
troller. The CPU or the DMA controller must read data from DRR2 first and then
from DRR1. When DRR1 is read, the next RBR-to-DRR copy occurs. For more
details about reception, see section 9.2.5 on page 9-18.

For transmission, the CPU or the DMA controller must write data to DXR2 first
and then to DXR1. When new data arrives in DXR1, if there is no previous data
in XSR1, the contents of DXR2 and DXR1 are copied to XSR2 and XSR1,
respectively; otherwise, the contents of the DXRs are copied to the XSRs
when the last bit of the previous data is shifted out on the DX pin. After transmit
frame synchronization, the transmitter begins shifting bits from the XSRs to the
DX pin. For more details about transmission, see section 9.2.6 on page 9-19.

9.2.2 Companding (Compressing and Expanding) Data

Companding (COMpressing and exPANDing) hardware allows compression
and expansion of data in either µ-law or A-law format. The companding
standard employed in the United States and Japan is µ-law. The European
companding standard is referred to as A-law. The specifications for µ-law and
A-law log PCM are part of the CCITT G.711 recommendation.

A-law and µ-law allow 13 bits and 14 bits of dynamic range, respectively. Any
values outside this range are set to the most positive or most negative value.
Thus, for companding to work best, the data transferred to and from the
McBSP via the CPU or DMA controller must be at least 16 bits wide.

The µ-law and A-law formats both encode data into 8-bit code words. Compan-
ded data is always 8 bits wide; the appropriate word length bits (RWDLEN1,
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RWDLEN2, XWDLEN1, XWDLEN2) must therefore be set to 0, indicating an
8-bit wide serial data stream. If companding is enabled and either of the frame
phases does not have an 8-bit word length, companding continues as if the
word length is 8 bits.

Figure 9–3 illustrates the companding processes. When companding is
chosen for the transmitter, compression occurs during the process of copying
data from DXR1 to XSR1. The transmit data is encoded according to the speci-
fied companding law (A-law or µ-law). When companding is chosen for the
receiver, expansion occurs during the process of copying data from RBR1 to
DRR1. The receive data is decoded to 2s-complement format.

Figure 9–3. Companding Processes
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9.2.2.1 Companding Formats

For reception, the 8-bit compressed data in RBR1 is expanded to left-justified
16-bit data in DRR1. The receive sign-extension and justification mode speci-
fied in RJUST is ignored when companding is used.

For transmission using µ-law compression, make sure the 14 data bits are left-
justified in DXR1, with the remaining two low-order bits filled with 0s as shown
in Figure 9–4.

Figure 9–4. µ-Law Transmit Data Companding Format
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1–015–2

For transmission using A-law compression, make sure the 13 data bits are left-
justified in DXR1, with the remaining three low-order bits filled with 0s as
shown in Figure 9–5.

Figure 9–5. A-Law Transmit Data Companding Format
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9.2.2.2 Capability to Compand Internal Data

If the McBSP is otherwise unused (the serial port transmit and receive sections
are reset), the companding hardware can compand internal data. This can be
used to:

� Convert linear to the appropriate µ-law or A-law format.

� Convert µ-law or A-law to the linear format.

� Observe the quantization effects in companding by transmitting linear
data, and compressing and re-expanding this data. This is useful only if
both XCOMPAND and RCOMPAND enable the same companding format.

Figure 9–6 shows two methods by which the McBSP can compand internal
data. Data paths for these two methods are used to indicate:

� When both the transmit and receive sections of the serial port are reset,
DRR1 and DXR1 are connected internally through the companding logic.
Values from DXR1 are compressed, as selected by XCOMPAND, and
then expanded, as selected by RCOMPAND. Note that RRDY and XRDY
bits are not set. However, data is available in DRR1 within four CPU clocks
after being written to DXR1.

The advantage of this method is its speed. The disadvantage is that there
is no synchronization available to the CPU and DMA to control the flow.
Note that DRR1 and DXR1 are internally connected if the (X/R)COMPAND
bits are set to 10b or 11b (compand using µ-law or A-law).

� The McBSP is enabled in digital loopback mode with companding appro-
priately enabled by RCOMPAND and XCOMPAND. Receive and transmit
interrupts (RINT when RINTM = 0 and XINT when XINTM = 0) or synchro-
nization events (REVT and XEVT) allow synchronization of the CPU or
DMA to these conversions, respectively. Here, the time for this compand-
ing depends on the serial bit rate selected.

Figure 9–6. Two Methods by Which the McBSP Can Compand Internal Data
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DX XSR1 Compress

ExpandDR RBR1RSR1
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9.2.2.3 Reversing Bit Order: Option to Transfer LSB First

Normally, the McBSP transmit or receives all data with the most significant bit
(MSB) first. However, certain 8-bit data protocols (that do not use companded
data) require the least significant bit (LSB) to be transferred first. If you set
XCOMPAND = 01b in XCR2, the bit ordering of 8-bit words is reversed (LSB
first) before being sent from the serial port. If you set RCOMPAND = 01b in
RCR2, the bit ordering of 8-bit words is reversed during reception. Similar to
companding, this feature is enabled only if the appropriate word length bits are
set to 0, indicating that 8-bit words are to be transferred serially. If either phase
of the frame does not have an 8-bit word length, the McBSP assumes the word
length is eight bits, and LSB-first ordering is done.

9.2.3 Clocking and Framing Data

This section explains basic concepts and terminology important for under-
standing how McBSP data transfers are timed and delimited.

9.2.3.1 Clocking

Data is shifted one bit at a time from the DR pin to the RSR(s) or from the
XSR(s) to the DX pin. The time for each bit transfer is controlled by the rising
or falling edge of a clock signal.

The receive clock signal (CLKR) controls bit transfers from the DR pin to the
RSR(s). The transmit clock signal (CLKX) controls bit transfers from the
XSR(s) to the DX pin. CLKR or CLKX can be derived from a pin at the boundary
of the McBSP or derived from inside the McBSP. The polarities of CLKR and
CLKX are programmable.

In the following example, the clock signal controls the timing of each bit transfer
on the pin.

D(R/X)

FS(R/X)

CLK(R/X)

B0B1B2B3B4B5B6B7A0A1 ÁÁ
ÁÁ

Á
Á

ÁÁ
ÁÁ

Internal

Internal

Note:

The McBSP cannot operate at a frequency faster than 1/2 the CPU clock fre-
quency. When driving CLKX or CLKR at the pin, choose an appropriate input
clock frequency. When using the internal sample rate generator for CLKX
and/or CLKR, choose an appropriate input clock frequency and divide down
value (CLKDV).
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9.2.3.2 Serial Words

Bits traveling between a shift register (RSR or XSR) and a data pin (DR or DX)
are transferred in a group called a serial word . You define how many bits are
in a word.

Bits coming in on the DR pin are held in RSR until RSR holds a full serial word.
Only then is the word passed to RBR (and ultimately to the DRR).

During transmission, XSR does not accept new data from DXR until a full serial
word has been passed from XSR to the DX pin.

In the following example, an 8-bit word size was defined (see bits 7 through
0 of word B being transferred).
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9.2.3.3 Frames and Frame Synchronization

One or more words are transferred in a group called a frame . You define how
many words are in a frame.

All of the words in a frame are sent in a continuous stream. However, there can
be pauses between frame transfers. The McBSP uses frame-synchronization
(frame-sync) signals to determine when each frame is received/transmitted.
When a pulse occurs on a frame-sync signal, the McBSP begins receiving/
transmitting a frame of data. When the next pulse occurs, the McBSP receives/
transmits the next frame, and so on.

Pulses on the receive frame-sync signal (FSR) initiate frame transfers on DR.
Pulses on the transmit frame-sync signal (FSX) initiate frame transfers on DX.
FSR or FSX can be derived from a pin at the boundary of the McBSP or derived
from inside the McBSP.

In the following example, a 1-word frame is transferred when a frame-sync
pulse occurs.
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In McBSP operation, the inactive-to-active transition of the frame-synchro-
nization signal indicates the start of the next frame. For this reason, the frame-
sync signal may be high for an arbitrary number of clock cycles. Only after the
signal is recognized to have gone inactive, and then active again, does the
next frame synchronization occur.

9.2.3.4 Detecting Frame-Sync Pulses, Even in the Reset State

The McBSP can send receive and transmit interrupts to the CPU to indicate
specific events in the McBSP. To facilitate detection of frame synchronization,
these interrupts can be sent in response to frame-sync pulses. Set the
appropriate interrupt mode bits to 10b (for reception, RINTM = 10b; for trans-
mission, XINTM = 10b).

Unlike other serial port interrupt modes, this mode can operate while the asso-
ciated portion of the serial port is in reset (such as activating RINT when the
receiver is in reset). In this case, FSRM/FSXM and FSRP/FSXP still select the
appropriate source and polarity of frame synchronization. Thus, even when
the serial port is in the reset state, these signals are synchronized to the CPU
clock and then sent to the CPU in the form of RINT and XINT at the point at
which they feed the receiver and transmitter of the serial port. Consequently,
a new frame-synchronization pulse can be detected, and after this occurs the
CPU can take the serial port out of reset safely.

9.2.3.5 Ignoring Frame-Sync Pulses

The McBSP can be configured to ignore transmit and/or receive frame-
synchronization pulses. To have the receiver or transmitter recognize frame-
sync pulses, clear the appropriate frame-sync ignore bit (RFIG = 0 for the
receiver, XFIG = 0 for the transmitter). To have the receiver or transmitter
ignore frame-sync pulses until the desired frame length or number of words
is reached, set the appropriate frame-sync ignore bit (RFIG = 1 for the receiv-
er, XFIG = 1 for the transmitter). For more details on unexpected frame-sync
pulses, see one of the following topics:

� Unexpected Receive Frame-Sync Pulse (page 9-38)
� Unexpected Transmit Frame-Sync Pulse (page 9-44)

You can also use the frame-sync ignore function for data packing (for more
details, see section 9.12.2 on page 9-153).
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9.2.3.6 Frame Frequency

The frame frequency is determined by the period between frame-synchroniza-
tion pulses and is defined as shown by Equation 9–1.

Equation 9–1. Frame Frequency of a McBSP

Frame Frequency �
Clock Frequency

Number of Clock Cycles Between Frame–Sync Pulses

The frame frequency may be increased by decreasing the time between
frame-synchronization pulses (limited only by the number of bits per frame).
As the frame transmit frequency increases, the inactivity period between the
data packets for adjacent transfers decreases to zero.

9.2.3.7 Maximum Frame Frequency

The minimum number of clock cycles between frame synchronization pulses
is equal to the number of bits transferred per frame. The maximum frame
frequency is defined as shown by Equation 9–2.

Equation 9–2. Maximum Frame Frequency of a McBSP

Maximum Frame Frequency �
Clock Frequency

Number of Bits Per Frame

Figure 9–7 shows the McBSP operating at maximum packet frequency. At
maximum packet frequency, the data bits in consecutive packets are trans-
mitted contiguously with no inactivity between bits.

Figure 9–7. McBSP Operating at Maximum Packet Frequency
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If there is a 1-bit data delay as shown in this figure, the frame-synchronization
pulse overlaps the last bit transmitted in the previous frame. Effectively, this
permits a continuous stream of data, making frame-synchronization pulses
redundant. Theoretically, only an initial frame-synchronization pulse is
required to initiate a multipacket transfer.

The McBSP supports operation of the serial port in this fashion by ignoring the
successive frame-sync pulses. Data is clocked in to the receiver, or clocked
out of the transmitter, during every clock cycle.
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Note:

For XDATDLY = 0 (0-bit data delay), the first bit of data is transmitted asyn-
chronously to the internal transmit clock signal (CLKX). For more details, see
Set the Transmit Data Delay on page 9-126.

9.2.4 Frame Phases

The McBSP allows you to configure each frame to contain one or two phases.
The number of words per frame, and the number of bits per word, can be speci-
fied differently for each of the two phases of a frame, allowing greater flexibility
in structuring data transfers. For example, a user might define a frame as con-
sisting of one phase containing two words of 16 bits each, followed by a second
phase consisting of 10 words of 8 bits each. This configuration permits the user
to compose frames for custom applications, or in general, to maximize the effi-
ciency of data transfers.

9.2.4.1 Number of Phases, Words, and Bits Per Frame

Table 2–7 shows which bit fields in the receive control registers (RCR1 and
RCR2) and in the transmit control registers (XCR1 and XCR2) determine the
number of phases per frame, the number of words per frame, and number of
bits per word for each phase, for the receiver and transmitter. The maximum
number of words per frame is 128 for a single-phase frame and 256 for a dual-
phase frame. The number of bits per word can be 8, 12, 16, 20, 24, or 32 bits.

Table 9–1. McBSP Register Bits That Determine the Number of Phases, Words, and
Bits Per Frame 

Operation Number of Phases Words Per Frame
Set With ...

Bits Per Word
Set With ...

Reception 1 (RPHASE = 0) RFRLEN1 RWDLEN1

Reception 2 (RPHASE = 1) RFRLEN1 and RFRLEN2 RWDLEN1 for phase 1
RWDLEN2 for phase 2

Transmission 1 (XPHASE = 0) XFRLEN1 XWDLEN1

Transmission 2 (XPHASE = 1) XFRLEN1 and XFRLEN2 XWDLEN1 for phase 1
XWDLEN2 for phase 2
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9.2.4.2 Single-Phase Frame Example

Figure 9–8 shows an example of a single-phase data frame comprising one
8-bit word. Since the transfer is configured for one data bit delay, the data on
the DX and DR pins are available one clock cycle after FS(R/X) goes active.
The figure makes the following assumptions:

� (R/X)PHASE = 0: Single-phase frame

� (R/X)FRLEN1 = 0b: 1 word per frame

� (R/X)WDLEN1 = 000b: 8-bit word length

� (R/X)FRLEN2 and (R/X)WDLEN2 are ignored

� CLK(X/R)P = 0: Receive data clocked on falling edge; transmit data
clocked on rising edge

� FS(R/X)P = 0: Active-high frame-sync signals

� (R/X)DATDLY = 01b: 1-bit data delay

Figure 9–8. Single-Phase Frame for a McBSP Data Transfer
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9.2.4.3 Dual-Phase Frame Example

Figure 9–9 shows an example of a frame where the first phase consists of 2
words of 12 bits each followed by a second phase of three words of 8 bits each.
Note that the entire bit stream in the frame is contiguous. There are no gaps
either between words or between phases.

Figure 9–9. Dual-Phase Frame for a McBSP Data Transfer
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9.2.4.4 Implementing the AC97 Standard with a Dual-Phase Frame

Figure 9–10 shows an example of the Audio Codec ‘97 (AC97) standard,
which uses the dual-phase frame feature. Notice that words, not individual
bits, are shown on the D(R/X) signal. The first phase (P1) consists of a single
16-bit word. The second phase (P2) consists of twelve 20-bit words. The
phase configurations are listed after the figure.
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Figure 9–10. Implementing the AC97 Standard with a Dual-Phase Frame

PxWy = Phase x Word y
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20 bits
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� (R/X)PHASE = 1: Dual-phase frame

� (R/X)FRLEN1 = 0000000b: 1 word in phase 1

� (R/X)WDLEN1 = 010b: 16 bits per word in phase 1

� (R/X)FRLEN2 = 0001011b: 12 words in phase 2

� (R/X)WDLEN2 = 011b: 20 bits per word in phase 2

� CLKRP/CLKXP= 0: Receive data sampled on falling edge of internal
CLKR / transmit data clocked on rising edge of internal CLKX

� FSRP/FSXP = 0: Active-high frame-sync signal

� (R/X)DATDLY = 01b: Data delay of 1 clock cycle (1-bit data delay)

Figure 9–11 shows the timing of an AC97-standard data transfer near frame
synchronization. In this figure, individual bits are shown on D(R/X). Specifical-
ly, the figure shows the last two bits of phase 2 of one frame and the first four
bits of phase 1 of the next frame. Regardless of the data delay, data transfers
can occur without gaps. The first bit of the second frame (P1W1B15) immedi-
ately follows the last bit of the first frame (P2W12B0). Because a 1-bit data
delay has been chosen, the transition on the frame-sync signal can occur
when P2W12B0 is transferred.

Figure 9–11.Timing of an AC97-Standard Data Transfer Near Frame Synchronization

PxWyBz = Phase x Word y Bit z
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9.2.5 McBSP Reception

This section explains the fundamental process of reception in the McBSP. For
details about how to program the McBSP receiver, see Receiver Configuration
on page 9-73.

Figure 9–12 and Figure 9–13 show how reception occurs in the McBSP.
Figure 9–12 shows the physical path for the data. Figure 9–13 is a timing dia-
gram showing signal activity for one possible reception scenario. A description
of the process follows the figures.

Figure 9–12. McBSP Reception Physical Data Path
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DRR[1,2]: Data receive registers 1 and 2

Figure 9–13. McBSP Reception Signal Activity
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CLKR: Internal receive clock
FSR: Internal receive frame-sync signal

DR: Data on DR pin
RRDY: Status of receiver ready bit (high is 1)

The following process describes how data travels from the DR pin to the CPU
or to the DMA controller:

1) The McBSP waits for a receive frame-sync pulse on internal FSR.

2) When the pulse arrives, the McBSP inserts the appropriate data delay that
is selected with the RDATDLY bits of RCR2.

In the preceding timing diagram (Figure 9–13), a 1-bit data delay is
selected.

3) The McBSP accepts data bits on the DR pin and shifts them into the
receive shift register(s).

If the word length is 16 bits or smaller, only RSR1 is used. If the word length
is larger than 16 bits, RSR2 and RSR1 are used, and RSR2 contains the
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most significant bits. For details on choosing a word length, see Set the
Receive Word Length(s) on page 9-82.

4) When a full word is received, the McBSP copies the contents of the receive
shift register(s) to the receive buffer register(s), provided that RBR1 is not
full with previous data.

If the word length is 16 bits or smaller, only RBR1 is used. If the word length
is larger than 16 bits, RBR2 and RBR1 are used, and RBR2 contains the
most significant bits.

5) The McBSP copies the contents of the receive buffer register(s) into the
data receive register(s), provided that DRR1 is not full with previous data.
When DRR1 receives new data, the receiver ready bit (RRDY) is set in
SPCR1. This indicates that receive data is ready to be read by the CPU
or the DMA controller.

If the word length is 16 bits or smaller, only DRR1 is used. If the word length
is larger than 16 bits, DRR2 and DRR1 are used, and DRR2 contains the
most significant bits.

If companding is used during the copy (RCOMPAND = 10b or 11b in
RCR2), the 8-bit compressed data in RBR1 is expanded to a left-justified
16-bit value in DRR1. If companding is disabled, the data copied from
RBR[1,2] to DRR[1,2] is justified and bit filled according to the RJUST bits.

6) The CPU or the DMA controller reads the data from the data receive regis-
ter(s). When DRR1 is read, RRDY is cleared and the next RBR-to-DRR
copy is initiated.

Note:

If both DRRs are need (word length larger than 16 bits), the CPU or the DMA
controller must read from DRR2 first and then from DRR1. As soon as DRR1
is read, the next RBR-to-DRR copy is initiated. If DRR2 is not read first, the
data in DRR2 is lost.

When activity is not properly timed, errors can occur. See the following topics
for more details:

� Overrun in the Receiver (page 9-37)
� Unexpected Receive Frame-Sync Pulse (page 9-38)

9.2.6 McBSP Transmission

This section explains the fundamental process of transmission in the McBSP.
For details about how to program the McBSP transmitter, see Transmitter Con-
figuration on page 9-110.
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Figure 9–14 and Figure 9–15 show how transmission occurs in the McBSP.
Figure 9–14 shows the physical path for the data. Figure 9–15 is a timing
diagram showing signal activity for one possible transmission scenario. A
description of the process follows the figures.

Figure 9–14. McBSP Transmission Physical Data Path

ÁÁÁÁ
ÁÁÁÁ

DX XSR[1,2] ÁÁÁÁ
ÁÁÁÁ

DXR[1,2] From CPU or
DMA controller

Compress

Do not modify
or

XSR[1,2]: Transmit shift registers 1 and 2 DXR[1,2]: Data transmit registers 1 and 2

Figure 9–15. McBSP Transmission Signal Activity
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CLKX: Internal transmit clock
FSX: Internal transmit frame-sync signal

DX: Data on DX pin
XRDY: Status of transmitter ready bit (high is 1)

1) The CPU or the DMA controller writes data to the data transmit register(s).
When DXR1 is loaded, the transmitter ready bit (XRDY) is cleared in
SPCR2 to indicate that the transmitter is not ready for new data.

If the word length is 16 bits or smaller, only DXR1 is used. If the word length
is larger than 16 bits, DXR2 and DXR1 are used, and DXR2 contains the
most significant bits. For details on choosing a word length, see Set the
Transmit Word Length(s) on page 9-119.

Note:

If both DXRs are needed (word length larger than 16 bits), the CPU or the
DMA controller must load DXR2 first and then load DXR1. As soon as DXR1
is loaded, the contents of both DXRs are copied to the transmit shift registers
(XSRs), as described in the next step. If DXR2 is not loaded first, the previous
content of DXR2 is passed to the XSR2.

2) When new data arrives in DXR1, the McBSP copies the content of the data
transmit register(s) to the transmit shift register(s). In addition, the transmit
ready bit (XRDY) is set. This indicates that the transmitter is ready to
accept new data from the CPU or the DMA controller.
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If the word length is 16 bits or smaller, only XSR1 is used. If the word length
is larger than 16 bits, XSR2 and XSR1 are used, and XSR2 contains the
most significant bits.

If companding is used during the transfer (XCOMPAND = 10b or 11b in
XCR2), the McBSP compresses the 16-bit data in DXR1 to 8-bit data in the
µ-law or A-law format in XSR1. If companding is disabled, the McBSP
passes data from the DXR(s) to the XSR(s) without modification.

3) The McBSP waits for a transmit frame-sync pulse on internal FSX.

4) When the pulse arrives, the McBSP inserts the appropriate data delay that
is selected with the XDATDLY bits of XCR2.

In the preceding timing diagram (Figure 9–15), a 1-bit data delay is
selected.

5) The McBSP shifts data bits from the transmit shift register(s) to the DX pin.

When activity is not properly timed, errors can occur. See the following topics
for more details:

� Overwrite in the Transmitter (page 9-41)
� Underflow in the Transmitter (page 9-42)
� Unexpected Transmit Frame-Sync Pulse (page 9-44)
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9.2.7 Interrupts and DMA Events Generated by a McBSP

The McBSP sends notification of important events to the CPU and DMA
controller via the internal signals shown in Table 9–2.

Table 9–2. Interrupts and DMA Events Generated by a McBSP

Internal Signal Description

RINT Receive interrupt

The McBSP can send a receive interrupt request to CPU
based upon a selected condition in the receiver of the McBSP
(a condition selected by the RINTM bits of SPCR1).

XINT Transmit interrupt

The McBSP can send a transmit interrupt request to CPU
based upon a selected condition in the transmitter of the
McBSP (a condition selected by the XINTM bits of SPCR2).

REVT Receive synchronization event

An REVT signal is sent to the DMA controller when data has
been received in the data receive registers (DRRs).

XEVT Transmit synchronization event

An XEVT signal is sent to the DMA controller when the data
transmit registers (DXRs) are ready to accept the next serial
word for transmission.

REVTA A-bis mode receive synchronization event

If ABIS = 1 (A-bis mode is enabled) an REVTA signal is sent
to the DMA controller every 16 cycles.

XEVTA A-bis mode transmit synchronization event

If ABIS = 1 (A-bis mode is enabled) an XEVTA signal is sent
to the DMA controller every 16 cycles.
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9.3 Sample Rate Generator of the McBSP

Each McBSP contains a sample rate generator that can be used to generate
an internal data clock (CLKG) and an internal frame-synchronization signal
(FSG). CLKG can be used for bit shifting on the data receive (DR) pin and/or
the data transmit (DX) pin. FSG can be used to initiate frame transfers on DR
and/or DX. Figure 9–16 is a conceptual block diagram of the sample rate
generator.

Figure 9–16. Conceptual Block Diagram of the Sample Rate Generator
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The source clock for the sample rate generator (labeled CLKSRG in the dia-
gram) can be supplied by the CPU clock or by an external pin (CLKS, CLKX,
or CLKR). The source is selected with the SCLKME bit of PCR and the CLKSM
bit of SRGR2. If a pin is used, the polarity of the incoming signal can be inverted
with the appropriate polarity bit (CLKSP of SRGR2, CLKXP of PCR, or CLKRP
of PCR).
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The sample rate generator has a 3-stage clock divider that gives CLKG and
FSG programmability. The three stages provide:

� Clock divide down. The source clock is divided according to the CLKGDV
bits of SRGR1 to produce CLKG.

� Frame period divide down. CLKG is divided according to the FPER bits of
SRGR2 to control the period from the start of a frame-sync pulse to the
start of the next pulse.

� Frame-sync pulse width countdown. CLKG cycles are counted according
to the FWID bits of SRGR1 to control the width of each frame-sync pulse.

Note:

The McBSP cannot operate at a frequency faster than 1/2 the CPU clock fre-
quency. Choose an input clock frequency and a CLKDV value such that
CLKG is less than or equal to 1/2 the CPU clock frequency.

In addition to the 3-stage clock divider, the sample rate generator has a frame-
sync pulse detection and clock synchronization module that allows synchro-
nization of the clock divide down with an incoming frame-sync pulse on the
FSR pin. This feature is enabled or disabled with the GSYNC bit of SRGR2.

For details on getting the sample rate generator ready for operation, see the
reset and initialization procedure on page 9-31.

9.3.1 Clock Generation in the Sample Rate Generator

The sample rate generator can produce a clock signal (CLKG) for use by the
receiver, the transmitter, or both. Use of the sample rate generator to drive
clocking is controlled by the clock mode bits (CLKRM and CLKXM) in the pin
control register (PCR). When a clock mode bit is set to 1 (CLKRM = 1 for
reception, CLKXM = 1 for transmission), the corresponding data clock (CLKR
for reception, CLKX for transmission) is driven by the internal sample rate
generator output clock (CLKG).

Note that the effects of CLKRM = 1 and CLKXM = 1 on the McBSP are
partially affected by the use of the digital loopback mode and the clock stop
(SPI) mode, respectively, as described in Table 2–7. The digital loopback
mode (described in section 9.8.4 on page 9-77) is selected with the DLB bit
of SPCR1. The clock stop mode (described in section 9.7, page 9-62) is
selected with the CLKSTP bits of SPCR1.

When using the sample rate generator as a clock source, make sure the sam-
ple rate generator is enabled (GRST_ = 1).
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Table 9–3. Effects of DLB and CLKSTP on Clock Modes 

                    Mode Bit Settings Effect

CLKRM = 1 DLB = 0
(Digital loopback mode disabled)

CLKR is an output pin driven by the sample rate
generator output clock (CLKG).

DLB = 1
(Digital loopback mode enabled)

CLKR is an output pin driven by internal CLKX.
The source for CLKX depends on the CLKXM bit.

CLKXM = 1 CLKSTP = 00b or 01b
(Clock stop (SPI) mode disabled)

CLKX is an output pin driven by the sample rate
generator output clock (CLKG).

CLKSTP = 10b or 11b
(Clock stop (SPI) mode enabled)

The McBSP is a master in an SPI system. Internal
CLKX drives internal CLKR and the shift clocks of
any SPI-compliant slave devices in the system.
CLKX is driven by the internal sample rate gener-
ator.

9.3.1.1 Choosing an Input Clock

The sample rate generator must be driven by an input clock signal from one
of the four sources selectable with the SCLKME bit of PCR and the CLKSM
bit of SRGR2 (see Table 9–4). When CLKSM = 1, the minimum divide down
value in CLKGDV bits should be 1. CLKGDV is described in section 9.3.1.3.

Note:

The McBSP cannot operate at a frequency faster than 1/2 the CPU clock fre-
quency. Choose an input clock frequency and a CLKDV value such that
CLKG is less than or equal to 1/2 the CPU clock frequency.

Table 9–4. Choosing an Input Clock for the Sample Rate Generator
with the SCLKME and CLKSM Bits

SCLKME CLKSM
Input Clock For
Sample Rate Generator

0 0 Signal on CLKS pin

0 1 CPU clock

1 0 Signal on CLKR pin

1 1 Signal on CLKX pin
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9.3.1.2 Choosing a Polarity for the Input Clock

As shown in Figure 9–17, when the input clock is received from a pin, you can
choose the polarity of the input clock. The rising edge of CLKSRG generates
CLKG and FSG, but you can determine which edge of the input clock causes
a rising edge on CLKSRG. The polarity options and their effects are described
in Table 9–5.

Figure 9–17. Possible Inputs to the Sample Rate Generator and The Polarity Bits
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Table 9–5. Polarity Options for the Input to the Sample Rate Generator 

Input Clock Polarity Option Effect

Signal on CLKS pin CLKSP = 0 in SRGR2 Rising edge on CLKS pin generates transitions on
CLKG and FSG.

CLKSP = 1 in SRGR2 Falling edge on CLKS pin generates transitions on
CLKG and FSG.

CPU clock Always positive polarity Rising edge of CPU clock generates transitions on
CLKG and FSG.

Signal on CLKR pin CLKRP = 0 in PCR Falling edge on CLKR pin generates transitions on
CLKG and FSG.

CLKRP = 1 in PCR Rising edge on CLKR pin generates transitions on
CLKG and FSG.

Signal on CLKX pin CLKXP = 0 in PCR Rising edge on CLKX pin generates transitions on
CLKG and FSG.

CLKXP = 1 in PCR Falling edge on CLKX pin generates transitions on
CLKG and FSG.
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9.3.1.3 Choosing a Frequency for the Output Clock (CLKG)

The input clock (CPU clock or external clock) can be divided down by a pro-
grammable value to drive CLKG. Regardless of the source to the sample rate
generator, the rising edge of CLKSRG (see the sample rate generator diagram
on page 9-23) generates CLKG and FSG.

The first divider stage of the sample rate generator creates the output clock
from the input clock. This divider stage uses a counter that is preloaded with
the divide down value in the CLKGDV bits of SRGR1. The output of this stage
is the data clock (CLKG). CLKG has the frequency represented by the follow-
ing equation.

CLKG frequency �
Input clock frequency

(CLKGDV � 1)

Thus, the input clock frequency is divided by a value between 1 and 256. When
CLKGDV is odd or equal to 0, the CLKG duty cycle is 50%. When CLKGDV
is an even value, 2p, representing an odd divide down, the high-state duration
is p+1 cycles and the low-state duration is p cycles.

Note:

The McBSP cannot operate at a frequency faster than 1/2 the CPU clock fre-
quency. Choose an input clock frequency and a CLKDV value such that
CLKG is less than or equal to 1/2 the CPU clock frequency.

9.3.1.4 Keeping CLKG Synchronized to an External Input Clock

When an external signal is selected to drive the sample rate generator (see
section 9.3.1.1), the GSYNC bit in SRGR2 and the FSR pin can be used to con-
figure the timing of the output clock (CLKG) relative to the input clock.

GSYNC = 1 ensures that the McBSP and an external device are dividing down
the input clock with the same phase relationship. If GSYNC = 1, an inactive-to-
active transition on the FSR pin triggers a resynchronization of CLKG and
generation of FSG.

For more details about the synchronization, see section 9.3.3 on page 9-29.
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9.3.2 Frame Sync Generation in the Sample Rate Generator

The sample rate generator can produce a frame-sync signal (FSG) for use by
the receiver, the transmitter, or both.

If you want the receiver  to use FSG for frame synchronization, make sure
FSRM = 1. (When FSRM = 0, receive frame synchronization is supplied via
the FSR pin.)

If you want the transmitter  to use FSG for frame synchronization, you must
set:

� FSXM = 1 in PCR: This indicates that transmit frame synchronization is
supplied by the McBSP itself rather than from the FSX pin.

� FSGM = 1 in SRGR2: This indicates that when FSXM = 1, transmit frame
synchronization is supplied by the sample rate generator. (When
FSGM = 0 and FSXM = 1, the transmitter uses frame-sync pulses gener-
ated every time data is transferred from DXR[1,2] to XSR[1,2].)

In either case, the sample rate generator must be enabled (GRST_ = 1) and
the frame-sync logic in the sample rate generator must be enabled
(FRST_ = 0).

9.3.2.1 Choosing the Width of the Frame-Sync Pulse on FSG

Each pulse on FSG has a programmable width. You program the FWID bits
of SRGR1, and the resulting pulse width is (FWID + 1) CLKG cycles, where
CLKG is the output clock of the sample rate generator.

9.3.2.2 Controlling the Period Between the Starting Edges of Frame-Sync Pulses on FSG

You can control the amount of time from the starting edge of one FSG pulse
to the starting edge of the next FSG pulse. This period is controlled in one of
two ways, depending on the configuration of the sample rate generator:

� If the sample rate generator is using an external input clock and
GSYNC = 1 in SRGR2, FSG pulses in response to an inactive-to-active
transition on the FSR pin. Thus, the frame-sync period is controlled by an
external device.

� Otherwise, you program the FPER bits of SRGR2, and the resulting
frame-sync period is (FPER + 1) CLKG cycles, where CLKG is the output
clock of the sample rate generator.
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9.3.2.3 Keeping FSG Synchronized to an External Clock

When an external signal is selected to drive the sample rate generator (see
section 9.3.1.1 on page 9-25), the GSYNC bit of SRGR2 and the FSR pin can
be used to configure the timing of FSG pulses.

GSYNC = 1 ensures that the McBSP and an external device are dividing down
the input clock with the same phase relationship. If GSYNC = 1, an inactive-to-
active transition on the FSR pin triggers a resynchronization of CLKG and
generation of FSG.

Section 9.3.3 has more details about the synchronization.

9.3.3 Synchronizing Sample Rate Generator Outputs to an External Clock

The sample rate generator can produce a clock signal (CLKG) and a frame-
sync signal (FSG) based on an input clock signal that is either the CPU clock
signal or a signal at the CLKS, CLKR, or CLKX pin. When an external clock
is selected to drive the sample rate generator, the GSYNC bit of SRGR2 and
the FSR pin can be used to control the timing of CLKG and the pulsing of FSG
relative to the chosen input clock.

Make GSYNC = 1 when you want the McBSP and an external device to divide
down the input clock with the same phase relationship. If GSYNC = 1:

� An inactive-to-active transition on the FSR pin triggers a resynchroniza-
tion of CLKG and a pulsing of FSG.

� CLKG always begins with a high state after synchronization.

� FSR is always detected at the same edge of the input clock signal that
generates CLKG, no matter how long the FSR pulse is.

� The FPER bits of SRGR2 are ignored because the frame-sync period on
FSG is determined by the arrival of the next frame-sync pulse on the FSR
pin.

If GSYNC = 0, CLKG runs freely and is not resynchronized, and the frame-
sync period on FSG is determined by FPER.
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9.3.3.1 Operating the Transmitter Synchronously with the Receiver

When GSYNC = 1, the transmitter can operate synchronously with the receiv-
er, provided that:

� FSX is programmed to be driven by FSG (FSGM = 1 in SRGR2 and
FSXM = 1 in PCR). If the input FSR has appropriate timing so that it can
be sampled by the falling edge of CLKG, it can be used, instead, by setting
FSXM = 0 and connecting FSR to FSX externally.

� The sample rate generator clock drives the transmit and receive clocking
(CLKRM = CLKXM = 1 in PCR). Therefore, the CLK(R/X) pin should not
be driven by any other driving source.

9.3.3.2 Synchronization Examples

Figure 9–18 and Figure 9–19 show the clock and frame-synchronization
operation with various polarities of CLKS (the chosen input clock) and FSR.
These figures assume FWID = 0 in SRGR1, for an FSG pulse that is
1 CLKG cycle wide. The FPER bits of SRGR2 are not programmed; the period
from the start of a frame-sync pulse to the start of the next pulse is determined
by the arrival of the next inactive-to-active transition on the FSR pin. Each of
the figures shows what happens to CLKG when it is initially synchronized and
GSYNC = 1, and when it is not initially synchronized and GSYNC = 1. The
second figure has a slower CLKG frequency (it has a larger divide-down value
in the CLKGDV bits of SRGR1).

Figure 9–18. CLKG Synchronization and FSG Generation When
GSYNC = 1 and CLKGDV = 1
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Figure 9–19. CLKG Synchronization and FSG Generation When
GSYNC = 1 and  CLKGDV = 3
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9.3.4 Reset and Initialization Procedure for the Sample Rate Generator

To reset and initialize the sample rate generator:

1) Place the McBSP/sample rate generator in reset.

During a DSP reset, the sample rate generator, the receiver, and the trans-
mitter reset bits (GRST_, RRST_, and XRST_) are automatically forced to
0. Otherwise, during normal operation, the sample rate generator can be
reset by making GRST_ = 0 in SPCR2, provided that CLKG and/or FSG is
not used by any portion of the McBSP. Depending on your system you may
also want to reset the receiver (RRST_ = 0 in SPCR1) and reset the trans-
mitter (XRST_ = 0 in SPCR2).

If GRST_ = 0 due to a DSP reset, CLKG is driven by the CPU clock divided
by 2, and FSG is driven inactive-low. If GRST_ = 0 due to program code,
CLKG and FSG are driven low (inactive).

2) Program registers that affect the sample rate generator.

Program the sample rate generator registers (SRGR1 and SRGR2) as
required for your application. If necessary, other control registers can be
loaded with desired values, provided the respective portion of the McBSP
(the receiver or transmitter) is in reset.

After the sample rate generator registers are programmed, wait 2
CLKSRG cycles. This ensures proper synchronization internally.
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3) Enable the sample rate generator (take it out of reset).

In SPCR2, make GRST_ = 1 to enable the sample rate generator.

After the sample rate generator is enabled, wait 2 CLKG cycles for the
sample rate generator logic to stabilize.

On the next rising edge of CLKSRG, CLKG transitions to 1 and starts
clocking with a frequency equal to

CLKG frequency �
Input clock frequency

(CLKGDV � 1)

where the input clock is selected with the SCLKME bit of PCR and the
CLKSM bit of SRGR2:

SCLKME CLKSM
Input Clock For
Sample Rate Generator

0 0 Signal on CLKS pin

0 1 CPU clock

1 0 Signal on CLKR pin

1 1 Signal on CLKX pin

4) If necessary, enable the receiver and/or the transmitter.

If necessary, remove the receiver and/or transmitter from reset by setting
RRST_ and/or XRST_ = 1.

5) If necessary, enable the frame-sync logic of the sample rate genera-
tor.

After the required data acquisition setup is done (DXR[1/2] is loaded with
data), set FRST_ = 1 in SPCR2 if an internally generated frame-sync
pulse is required. FSG is generated with an active-high edge after the
programmed number of CLKG clocks (FPER + 1) have elapsed.

9.3.5 Sample Rate Generator Clocking Examples

This section shows three examples of using the sample rate generator to clock
data during transmission and reception.

9.3.5.1 Double-Rate ST-Bus Clock

Figure 9–20 shows McBSP configuration to be compatible with the Mitel
ST-Bus. Note that this operation is running at maximum frame frequency
(described on page 9-14).
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Figure 9–20. ST-BUS and MVIP Clocking Example

WxBy = Word x Bit y

(first FSR)

(subsequent FSR)
DR, DX

(subsequent FSR)
Internal CLKG, CLKR,

DR, DX (first FSR)

internal CLKS
internal CLKR,

2.048 MHz CLKG,
internal FSX

Internal FSG, FSR,

FSR external

4.096 MHz CLKS

W2B7W1B1W1B3 W1B2W1B4W1B5W1B6 W1B0W1B7W32B0

W2B7W1B0W1B1W1B2W1B3W1B4W1B5W1B6W1B7ÁÁ
ÁÁ

For this McBSP configuration:

� DLB = 0: Digital loopback mode off, CLKSTP = 00b: Clock stop mode off,
and CLKRM/CLKXM = 1: Internal CLKR/CLKX generated internally by
sample rate generator

� GSYNC = 1: Synchronize CLKG with external frame-sync signal input on
FSR pin. CLKG is not synchronized until the frame-sync signal is active.
FSR is regenerated internally to form a minimum pulse width.

� SCLKME = 0 and CLKSM = 1: External clock signal at CLKS pin drives
the sample rate generator

� CLKSP = 1: Falling edge of CLKS generates CLKG and thus internal
CLK(R/X)

� CLKGDV = 1: Frequency of receive clock (shown as CLKR) is half CLKS
frequency

� FSRP/FSXP = 1: Active-low frame-sync pulse

� RFRLEN1/XFRLEN1 = 11111b: 32 words per frame

� RWDLEN1/XWDLEN1 = 0: 8 bits per word

� RPHASE/XPHASE = 0: Single-phase frame and thus (R/X)FRLEN2 and
(R/X)WDLEN2 are ignored

� RDATDLY/XDATDLY = 0: No data delay
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9.3.5.2 Single-Rate ST-Bus Clock

The example in Figure 9–21 is the same as the double-rate ST-bus clock ex-
ample in section 9.3.5.1 except that:

� CLKGDV = 0: CLKS drives internal CLK(R/X) without any divide down
(single-rate clock).

� CLKSP = 0: Rising edge of CLKS generates CLKG and internal CLK(R/X)

Figure 9–21. Single-Rate Clock Example
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The rising edge of CLKS is used to detect the external FSR pulse, which is
used to resynchronize internal McBSP clocks and generate a frame-sync
pulse for internal use. The internal frame-sync pulse is generated so that it is
wide enough to be detected on the falling edge of internal clocks.

9.3.5.3 Other Double-Rate Clock

The example in Figure 9–22 is the same as the double-rate ST-bus clock
example in section 9.3.5.1 except that:

� CLKSP = 0: Rising edge of CLKS generates CLKG and thus CLK(R/X)

� CLKGDV = 1: Frequency of CLKG (and thus internal CLKR and internal
CLKX) is half CLKS frequency

� FSRM/FSXM = 0: Frame synchronization is externally generated. The
frame-sync pulse is wide enough to be detected.

� GSYNC = 0: CLKS drives CLKG. CLKG runs freely; it is not resynchro-
nized by a pulse on the FSR pin.
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� FSRP/FSXP = 0: Active-high input frame-sync signal

� RDATDLY/XDATDLY = 1: Data delay of one bit

Figure 9–22. Double-Rate Clock Example
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9.4 McBSP Exception/Error Conditions

There are five serial port events that may constitute a system error:

� Receiver Overrun (RFULL = 1) . This occurs when DRR1 has not been
read since the last RBR-to-DRR copy. Consequently, the receiver does
not copy a new word from the RBR(s) to the DRR(s), and the RSR(s) are
now full with another new word shifted in from DR. Therefore, RFULL = 1
indicates an error condition wherein any new data that may arrive at this
time on DR will replace the contents of the RSR(s), and thus, the previous
word is lost. The RSR(s) continue to be overwritten as long as new data
arrives on DR and DRR1 is not read. For more details about overrun in the
receiver, see page 9-37.

� Unexpected Receive Frame-Sync Pulse (RSYNCERR = 1) . This
occurs during reception when RFIG = 0 and an unexpected frame-sync
pulse occurs. An unexpected frame-sync pulse is one that begins the next
frame transfer before all the bits of the current frame have been received.
Such a pulse causes data reception to abort and restart. If new data has
been copied into the RBR(s) from the RSR(s) since the last RBR-to-DRR
copy, this new data in the RBR(s) is lost. This is because no RBR-to-DRR
copy occurs; the reception has been restarted. For more details about
receive frame-sync errors, see page 9-38.

� Transmitter Data Overwrite . This occurs when the CPU or DMA control-
ler overwrites data in the DXR(s) before the data is copied to the XSR(s).
The overwritten data never reaches the DX pin. For more details about
overwrite in the transmitter, see page 9-41.

� Transmitter Underflow (XEMPTY_ = 0) . If a new frame-sync signal ar-
rives before new data is loaded into DXR1, the previous data in the DXR(s)
is sent again. This will continue for every new frame-sync pulse that ar-
rives until DXR1 is loaded with new data. For more details about underflow
in the transmitter, see page 9-42.

� Unexpected Transmit Frame-Synch Pulse (XSYNCERR = 1) . This
occurs during transmission when XFIG = 0 and an unexpected frame-
sync pulse occurs. An unexpected frame-sync pulse is one that begins the
next frame transfer before all the bits of the current frame have been trans-
ferred. Such a pulse causes the current data transmission to abort and
restart. If new data has been written to the DXR(s) since the last DXR-to-
XSR copy, the current value in the XSR(s) is lost. For more details about
transmit frame-sync errors, see page 9-44.
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9.4.1 Overrun in the Receiver

RFULL = 1 in SPCR1 indicates that the receiver has experienced overrun and
is in an error condition. RFULL is set when all of the following conditions are
met:

1) DRR1 has not been read since the last RBR-to-DRR copy (RRDY = 1).

2) RBR1 is full and an RBR-to-DRR copy has not occurred.

3) RSR1 is full and an RSR1-to-RBR copy has not occurred.

As described in the section on McBSP reception (page 9-18), data arriving on
DR is continuously shifted into RSR1 (for word length of 16 bits or smaller) or
RSR2 and RSR1 (for word length larger than 16 bits). Once a complete word
is shifted into the RSR(s), an RSR-to-RBR copy can occur only if the previous
data in RBR1 has been copied to DRR1. The RRDY bit is set when new data
arrives in DRR1 and is cleared when that data is read from DRR1. Until
RRDY = 0, the next RBR-to-DRR copy will not take place, and the data is held
in the RSR(s). New data arriving on the DR pin is shifted into RSR(s), and the
previous content of the RSR(s) is lost.

You can prevent the loss of data if DRR1 is read no later than 2.5 cycles before
the end of the third word is shifted into the RSR1.

Important: If both DRRs are needed (word length larger than 16 bits), the CPU
or the DMA controller must read from DRR2 first and then from DRR1. As soon
as DRR1 is read, the next RBR-to-DRR copy is initiated. If DRR2 is not read
first, the data in DRR2 is lost.

Note that after the receiver starts running from reset, a minimum of three words
must be received before RFULL is set. Either of the following events clears the
RFULL bit and allows subsequent transfers to be read properly:

� The CPU or DMA controller reads DRR1.

� The receiver is reset individually (RRST_ = 0) or as part of a DSP reset.

Another frame-sync pulse is required to restart the receiver.

9.4.1.1 Example of the Overrun Condition

Figure 9–23 shows the receive overrun condition. Because serial word A is not
read from DRR1 before serial word B arrives in RBR1, B is not transferred to
DRR1 yet. Another new word (C) arrives and RSR1 is full with this data. DRR1
is finally read, but not earlier than 2.5 cycles before the end of word C. There-
fore, new data (D) overwrites word C in RSR1. If DRR1 is not read in time, the
next word can overwrite D.
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Figure 9–23. Overrun in the McBSP Receiver
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9.4.1.2 Example of Preventing the Overrun Condition

Figure 9–24 shows the case where RFULL is set, but the overrun condition is
prevented by a read from DRR1 at least 2.5 cycles before the next serial word
(C) is completely shifted into RSR1. This ensures that an RBR1-to-DRR1 copy
of word B occurs before receiver attempts to transfer word C from RSR1 to
RBR1.

Figure 9–24. Overrun Prevented in the McBSP Receiver
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9.4.2 Unexpected Receive Frame-Sync Pulse

Section 9.4.2.1 shows how the McBSP responds to any receive frame-sync
pulses, including an unexpected pulse. Sections 9.4.2.2 and 9.4.2.3 show an
examples of a frame-sync error and an example of how to prevent such an
error, respectively.

9.4.2.1 Possible Responses to Receive Frame-Sync Pulses

Figure 9–25 shows the decision tree that the receiver uses to handle all incom-
ing frame-sync pulses. The figure assumes that the receiver has been started
(RRST_ = 1 in SPCR1). Case 3 in the figure is the case in which an error
occurs.
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Figure 9–25. Possible Responses to Receive Frame-Sync Pulses
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Any one of three cases can occur:

� Case 1: Unexpected internal FSR pulses with RFIG = 1 in RCR2. Receive
frame-sync pulses are ignored, and the reception continues.

� Case 2:  Normal serial port reception. Reception continues normally
because the frame-sync pulse is not unexpected. There are three possible
reasons why a receive operation might not be in progress when the pulse
occurs:

� The FSR pulse is the first after the receiver is enabled (RRST_ = 1 in
SPCR1).

� The FSR pulse is the first after DRR[1,2] is read, clearing a receiver full
(RFULL = 1 in SPCR1) condition.
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� The serial port is in the interpacket intervals. The programmed data
delay for reception (programmed with the RDATDLY bits in RCR2)
may start during these interpacket intervals for the first bit of the next
word to be received. Thus, at maximum frame frequency, frame syn-
chronization can still be received 0 to 2 clock cycles before the first bit
of the synchronized frame.

� Case 3: Unexpected receive frame synchronization with RFIG = 0 (frame-
sync pulses not ignored). Unexpected frame-sync pulses can originate
from an external source or from the internal sample rate generator.

If a frame-sync pulse starts the transfer of a new frame before the current
frame is fully received, this pulse is treated as an unexpected frame-sync
pulse, and the receiver sets the receive frame-sync error bit (RSYNCERR)
in SPCR1. RSYNCERR can be cleared only by a receiver reset or by a
write of 0 to this bit.

If you want the McBSP to notify the CPU of receive frame-sync errors, you
can set a special receive interrupt mode with the RINTM bits of SPCR1.
When RINTM = 11b, the McBSP sends a receive interrupt (RINT) request
to the CPU each time that RSYNCERR is set.

9.4.2.2 Example of an Unexpected Receive Frame-Sync Pulse

Figure 9–26 shows an unexpected receive frame-sync pulse during normal
operation of the serial port, with time intervals between data packets. When
the unexpected frame-sync pulse occurs, the RSYNCERR bit is set, the recep-
tion of data B is aborted, and the reception of data C begins. In addition, if
RINTM = 11b, the McBSP sends a receive interrupt (RINT) request to the
CPU.

Figure 9–26. An Unexpected Frame-Sync Pulse During a McBSP Reception
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9.4.2.3 Preventing Unexpected Receive Frame-Sync Pulses

Each frame transfer can be delayed by 0, 1, or 2 CLKR cycles, depending on
the value in the RDATDLY bits of RCR2. For each possible data delay,
Figure 9–27 shows when a new frame-sync pulse on FSR can safely occur
relative to the last bit of the current frame.
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Figure 9–27. Proper Positioning of Frame-Sync Pulses
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9.4.3 Overwrite in the Transmitter

As described in the section on McBSP transmission (page 9-19), after the CPU
or DMA controller writes data to the DXR(s), the transmitter must then copy
that data to the XSR(s) and then shift each bit from the XSR(s) to the DX pin.
If new data is written to the DXR(s) before the previous data is copied to the
XSR(s), the previous data in the DXR(s) is overwritten and thus lost.

9.4.3.1 Example of the Overwrite Condition

Figure 9–28 shows what happens if the data in DXR1 is overwritten before be-
ing transmitted. Initially, DXR1 is loaded with data C. A subsequent write to
DXR1 overwrites C with D before C is copied to XSR1. Thus, C is never trans-
mitted on DX.
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Figure 9–28. Data in the McBSP Transmitter Overwritten and Thus Not Transmitted
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9.4.3.2 Preventing Overwrites

You can prevent CPU overwrites by making the CPU:

� Poll for XRDY = 1 in SPCR2 before writing to the DXR(s). XRDY is set
when data is copied from DXR1 to XSR1 and is cleared when new data
is written to DXR1.

� Wait for a transmit interrupt (XINT) before writing to the DXR(s). When
XINTM = 00b in SPCR2, the transmitter sends XINT to the CPU each time
XRDY is set.

You can prevent DMA overwrites by synchronizing DMA transfers to the trans-
mit synchronization event XEVT. The transmitter sends an XEVT signal each
time XRDY is set.

9.4.4 Underflow in the Transmitter

The McBSP indicates a transmitter empty (or underflow) condition by clearing
the XEMPTY_ bit in SPCR2. Either of the following events activates XEMPTY_
(XEMPTY_ = 0):

� DXR1 has not been loaded since the last DXR-to-XSR copy, and all bits
of the data word in the XSR(s) have been shifted out on the DX pin.

� The transmitter is reset (by forcing XRST_ = 0 in SPCR2, or by a DSP
reset) and is then restarted.

In the underflow condition, the transmitter continues to transmit the old data
that is in the DXR(s) for every new transmit frame-sync signal until a new value
is loaded into DXR1 by the CPU or the DMA controller.

Note:

If both DXRs are needed (word length larger than 16 bits), the CPU or the
DMA controller must load DXR2 first and then load DXR1. As soon as DXR1
is loaded, the contents of both DXRs are copied to the transmit shift registers
(XSRs). If DXR2 is not loaded first, the previous content of DXR2 is passed
to the XSR2.
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XEMPTY_ is deactivated (XEMPTY_ = 1) when a new word in DXR1 is trans-
ferred to XSR1. If FSXM = 1 in PCR and FSGM = 0 in SRGR2, the transmitter
generates a single internal FSX pulse in response to a DXR-to-XSR copy.
Otherwise, the transmitter waits for the next frame-sync pulse before sending
out the next frame on DX.

When the transmitter is taken out of reset (XRST_ = 1), it is in a transmitter
ready (XRDY = 1 in SPCR2) and transmitter empty (XEMPTY_ = 0) state. If
DXR1 is loaded by the CPU or the DMA controller before internal FSX goes
active high, a valid DXR-to-XSR transfer occurs. This allows for the first word
of the first frame to be valid even before the transmit frame-sync pulse is gener-
ated or detected. Alternatively, if a transmit frame-sync pulse is detected
before DXR1 is loaded, zeros will be output on DX.

9.4.4.1 Example of the Underflow Condition

Figure 9–29 shows an underflow condition. After B is transmitted, DXR1 is not
reloaded before the subsequent frame-sync pulse. Thus, B is again trans-
mitted on DX.

Figure 9–29. Underflow During McBSP Transmission
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9.4.4.2 Example of Preventing the Underflow Condition

Figure 9–30 shows the case of writing to DXR1 just before an underflow condi-
tion would otherwise occur. After B is transmitted, C is written to DXR1 before
the next frame-sync pulse. As a result, there is no underflow; B is not trans-
mitted twice.
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Figure 9–30. Underflow Prevented in the McBSP Transmitter
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9.4.5 Unexpected Transmit Frame-Sync Pulse

Section 9.4.5.1 shows how the McBSP responds to any transmit frame-sync
pulses, including an unexpected pulse. Sections 9.4.5.2 and 9.4.5.3 show an
examples of a frame-sync error and an example of how to prevent such an
error, respectively.

9.4.5.1 Possible Responses to Transmit Frame-Sync Pulses

Figure 9–31 shows the decision tree that the transmitter uses to handle all
incoming frame-sync pulses. The figure assumes that the transmitter has
been started (XRST_ = 1 in SPCR2). Case 3 in the figure is the case in which
an error occurs.
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Figure 9–31. Possible Responses to Transmit Frame-Sync Pulses
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Any one of three cases can occur:

� Case 1: Unexpected internal FSX pulses with XFIG = 1 in XCR2. Transmit
frame-sync pulses are ignored, and the transmission continues.

� Case 2:  Normal serial port transmission. Transmission continues normal-
ly because the frame-sync pulse is not unexpected. There are two pos-
sible reasons why a transmit operations might not be in progress when the
pulse occurs:

This FSX pulse is the first after the transmitter is enabled (XRST_ = 1).

The serial port is in the interpacket intervals. The programmed data delay
for transmission (programmed with the XDATDLY bits of XCR2) may start
during these interpacket intervals before the first bit of the previous word is
transmitted. Thus, at maximum packet frequency, frame synchronization
can still be received 0 to 2 clock cycles before the first bit of the synchro-
nized frame.
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� Case 3:  Unexpected transmit frame synchronization with XFIG = 0
(frame-sync pulses not ignored). Unexpected frame-sync pulses can orig-
inate from an external source or from the internal sample rate generator.

If a frame-sync pulse starts the transfer of a new frame before the current
frame is fully transmitted, this pulse is treated as an unexpected frame-
sync pulse, and the transmitter sets the transmit frame-sync error bit
(XSYNCERR) in SPCR2. XSYNCERR can be cleared only by a transmit-
ter reset or by a write of 0 to this bit.

If you want the McBSP to notify the CPU of frame-sync errors, you can set
a special transmit interrupt mode with the XINTM bits of SPCR2. When
XINTM = 11b, the McBSP sends a transmit interrupt (XINT) request to the
CPU each time that XSYNCERR is set.

9.4.5.2 Example of an Unexpected Transmit Frame-Sync Pulse

Figure 9–32 shows an unexpected transmit frame-sync pulse during normal
operation of the serial port, with intervals between the data packets. When the
unexpected frame-sync pulse occurs, the XSYNCERR bit is set and because
no new data has been passed to XSR1 yet, the transmission of data B is re-
started. In addition, if XINTM = 11b, the McBSP sends a transmit interrupt
(XINT) request to the CPU.

Figure 9–32. An Unexpected Frame-Sync Pulse During a McBSP Transmission

ÁB0B1B2B3B4B5B6B7B4B5B6B7A0A1

XSYNCERR

XRDY

DX

FSX

CLKX

ÁÁÁ

Write to DXR1(D)DXR1 to XSR1 (C)Write to DXR1(C)DXR1 to XSR1 copy(B)

Unexpected frame synchronization

9.4.5.3 Preventing Unexpected Transmit Frame-Sync Pulses

Each frame transfer can be delayed by 0, 1, or 2 CLKX cycles, depending on
the value in the XDATDLY bits of XCR2. For each possible data delay,
Figure 9–33 shows when a new frame-sync pulse on FSX can safely occur
relative to the last bit of the current frame.
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Figure 9–33. Proper Positioning of Frame-Sync Pulses
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9.5 Multichannel Selection Modes

9.5.1 Channels, Blocks, and Partitions

A McBSP channel  is a time slot for shifting in/out the bits of one serial word.
Each McBSP supports up to 128 channels for reception and 128 channels for
transmission.

In the receiver and in the transmitter, the 128 available channels are divided
into eight blocks that each contain 16 contiguous channels:

Block 0: Channels 0–15
Block 1: Channels 16–31
Block 2: Channels 32–47
Block 3: Channels 48–63

Block 4: Channels 64–79
Block 5: Channels 80–95
Block 6: Channels 96–111
Block 7: Channels 112–127

The blocks are assigned to partitions  according to the selected partition
mode. In the 2-partition mode (described in section 9.5.4), you assign one
even-numbered block (0, 2, 4, or 6) to partition A and one odd-numbered block
(1, 3, 5, or 7) to partition B. In the 8-partition mode (described in section 9.5.5),
blocks 0 through 7 are automatically assigned to partitions, A through H,
respectively.

The number of partitions for reception and the number of partitions for trans-
mission are independent. For example, it is possible to use 2 receive partitions
(A and B) and 8 transmit partitions (A–H).

9.5.2 Multichannel Selection

When a McBSP uses a time-division multiplexed (TDM) data stream while
communicating with other McBSPs or serial devices, the McBSP may need to
receive and/or transmit on only a few channels. To save memory and bus
bandwidth, you can use a multichannel selection mode to prevent data flow
in some of the channels.

Each channel partition has a dedicated channel enable register. If the
appropriate multichannel selection mode is on, each bit in the register controls
whether data flow is allowed or prevented in one of the channels that is
assigned to that partition.

The McBSP has one receive multichannel selection mode (described in sec-
tion 9.5.6) and three transmit multichannel selection modes (described in sec-
tion 9.5.7).
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9.5.3 Configuring a Frame for Multichannel Selection

Before you enable a multichannel selection mode, make sure you properly
configure the data frame:

� Select a single-phase frame (RPHASE/XPHASE = 0). Each frame repre-
sents a TDM data stream.

� Set a frame length (in RFRLEN1/XFRLEN1) that includes the highest-
numbered channel that will be used. For example, if you plan to use chan-
nels 0, 15, and 39 for reception, the receive frame length must be at least
40 (RFRLEN1 = 39). If XFRLEN1 = 39 in this case, the receiver creates
40 time slots per frame but only receives data during time slots 0, 15, and
39 of each frame.

9.5.4 Using Two Partitions

For multichannel selection operation in the receiver and/or the transmitter, you
can use two partitions or eight partitions (described in section 9.5.5). If you
choose the 2-partition mode (RMCME = 0 for reception, XMCME = 0 for trans-
mission), McBSP channels are activated using an alternating scheme. In
response to a frame-sync pulse, the receiver or transmitter begins with the
channels in partition A and then alternates between partitions B and A until the
complete frame has been transferred. When the next frame-sync pulse
occurs, the next frame is transferred, beginning with the channels in partition
A.

9.5.4.1 Assigning Blocks to Partitions A and B

For reception, any two of the eight receive-channel blocks can be assigned to
receive partitions A and B, which means up to 32 receive channels can be
enabled at any given point in time. Similarly, any two of the eight transmit-chan-
nel blocks (up 32 enabled transmit channels) can be assigned to transmit parti-
tions A and B.

For reception:

� Assign an even-numbered channel block (0, 2, 4, or 6) to receive partition
A by writing to the RPABLK bits. In the receive multichannel selection
mode (described in section 9.5.6), the channels in this partition are con-
trolled by receive channel enable register A (RCERA).

� Assign an odd-numbered block (1, 3, 5, or 7) to receive partition B with the
RPBBLK bits. In the receive multichannel selection mode, the channels
in this partition are controlled by receive channel enable register B
(RCERB).
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For transmission:

� Assign an even-numbered channel block (0, 2, 4, or 6) to transmit partition
A by writing to the XPABLK bits. In one of the transmit multichannel selec-
tion modes (described in section 9.5.7), the channels in this partition are
controlled by transmit channel enable register A (XCERA).

� Assign an odd-numbered block (1, 3, 5, or 7) to transmit partition B with
the XPBBLK bits. In one of the transmit multichannel selection modes, the
channels in this partition are controlled by transmit channel enable register
B (XCERB).

Figure 9–34 shows an example of alternating between the channels of parti-
tion A and the channels of partition B. Channels 0–15 have been assigned to
partition A, and channels 16–31 have been assigned to partition B. In response
to a frame-sync pulse, the McBSP begins a frame transfer with partition A and
then alternates between partitions B and A until the complete frame is trans-
ferred.

Figure 9–34. Alternating Between the Channels of Partition A and
the Channels of Partition B

0–1516–310–1516–310–1516–310–1516–310–15
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ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

0 1 0 1 0 1 0 1 0

Partition A B A B A B A B A

2-partition mode. Example with fixed block assignments

As explained next, you can dynamically change which blocks of channels are
assigned to the partitions.

9.5.4.2 Reassigning Blocks During Reception/Transmission

If you want to use more than 32 channels, you can change which channel
blocks are assigned to partitions A and B during the course of a data transfer.
However, these changes must be carefully timed. While a partition is being
transferred, its the associated block assignment bits cannot be modified, and
its associated channel enable register cannot be modified. For example, if
block 3 is being transferred and block 3 is assigned to partition A, you cannot
modify (R/X)PABLK to assign different channels to partition A, and you cannot
modify (R/X)CERA to change the channel configuration for partition A. Several
features of the McBSP help you time the reassignment:

� The block of channels currently involved in reception/transmission (the
current block) is reflected in the RCBLK/XCBLK bits. Your program can
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poll these bits to determine which partition is active. When a partition is not
active, it is safe to change its block assignment and channel configuration.

� At the end of every block (at the boundary of two partitions), an interrupt
can be sent to the CPU. In response to the interrupt, the CPU can then
check the RCBLK/XCBLK bits and update the inactive partition. See Using
Interrupts Between Block Transfers on page 9-58.

Figure 9–35 shows an example of reassigning channels throughout a data
transfer. In response to a frame-sync pulse, the McBSP alternates between
partitions A and B. Whenever partition B is active, the CPU changes the block
assignment for partition A. Whenever, partition A is active, the CPU changes
the block assignment for partition B.

Figure 9–35. Reassigning Channel Blocks Throughout a McBSP Data Transfer
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2-partition mode. Example with changing block assignments

9.5.5 Using Eight Partitions

For multichannel selection operation in the receiver and/or the transmitter, you
can use eight partitions or two partitions (described in section 9.5.4). If you
choose the 8-partition mode (RMCME = 1 for reception, XMCME = 1 for trans-
mission), McBSP channels are activated in the following order: A, B, C, D, E,
F, G, H. In response to a frame-sync pulse, the receiver or transmitter begins
with the channels in partition A and then continues with the other partitions in
order until the complete frame has been transferred. When the next frame-
sync pulse occurs, the next frame is transferred, beginning with the channels
in partition A.

In the 8-partition mode, the (R/X)PABLK and (R/X)PBBLK bits are ignored and
the 16-channel blocks are assigned to the partitions as shown in Table 9–6 and
Table 9–7. These assignments cannot be changed. The tables also show the
registers used to control the channels in the partitions.
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Table 9–6. Receive Channel Assignment and Control
When Eight Receive Partitions Are Used

Receive
Partition

Assigned Block of
Receive Channels

Register Used For
Channel Control

A Block 0: channels 0 through 15 RCERA

B Block 1: channels 16 through 31 RCERB

C Block 2: channels 32 through 47 RCERC

D Block 3: channels 48 through 63 RCERD

E Block 4: channels 64 through 79 RCERE

F Block 5: channels 80 through 95 RCERF

G Block 6: channels 96 through 111 RCERG

H Block 7: channels 112 through 127 RCERH

Table 9–7. Transmit Channel Assignment and Control
When Eight Transmit Partitions Are Used

Transmit
Partition

Assigned Block of
Transmit Channels

Register Used For
Channel Control

A Block 0: channels 0 through 15 XCERA

B Block 1: channels 16 through 31 XCERB

C Block 2: channels 32 through 47 XCERC

D Block 3: channels 48 through 63 XCERD

E Block 4: channels 64 through 79 XCERE

F Block 5: channels 80 through 95 XCERF

G Block 6: channels 96 through 111 XCERG

H Block 7: channels 112 through 127 XCERH
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Figure 9–36 shows an example of the McBSP using the 8-partition mode. In
response to a frame-sync pulse, the McBSP begins a frame transfer with parti-
tion A and then activates B, C, D, E, F, G, and H to complete a 128-word frame.

Figure 9–36. McBSP Data Transfer in the 8-Partition Mode
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9.5.6 Receive Multichannel Selection Mode

The RMCM bit of MCR1 determines whether all channels or only selected
channels are enabled for reception. When RMCM = 0, all 128 receive chan-
nels are enabled and cannot be disabled. When RMCM = 1, the receive multi-
channel selection mode is enabled. In this mode:

� Channels can be individually enabled or disabled. The only channels
enabled are those selected in the appropriate receive channel enable
registers (RCERs, described in section 9.13.9 on page 9-202). The way
channels are assigned to the RCERs depends on the number of receive
channel partitions (2 or 8), as defined by the RMCME bit of MCR1.

� If a receive channel is disabled, any bits received in that channel are
passed only as far as the receive buffer register(s) (RBR(s)). The receiver
does not copy the content of the RBR(s) to the DRR(s), and as a result,
does not set the receiver ready bit (RRDY). Therefore, no DMA synchro-
nization event (REVT) is generated, and if the receiver interrupt mode
depends on RRDY (RINTM = 00b), no interrupt is generated.

As an example of how the McBSP behaves in the receive multichannel selec-
tion mode, suppose you enable only channels 0, 15, and 39 and that the frame
length is 40. The McBSP:

1) Accepts bits shifted in from the DR pin in channel 0
2) Ignores bits received in channels 1–14
3) Accepts bits shifted in from the DR pin in channel 15
4) Ignores bits received in channels 16–38
5) Accepts bits shifted in from the DR pin in channel 39
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9.5.7 Transmit Multichannel Selection Modes

The XMCM bits of XCR2 determine whether all channels or only selected
channels are enabled and unmasked for transmission. More details on enab-
ling and masking are in section 9.5.7.1. The McBSP has three transmit multi-
channel selection modes (XMCM = 01b, XMCM = 10b, and XMCM = 11b),
which are described in the following table:

Table 9–8. Selecting a Transmit Multichannel Selection Mode with the XMCM Bits

XMCM Transmit Multichannel Selection Mode

00b No transmit multichannel selection mode is on. All channels are
enabled and unmasked. No channels can be disabled or
masked.

01b All channels are disabled unless they are selected in the appro-
priate transmit channel enable registers (XCERs, described in
section 9.13.10 on page 9-207). If enabled, a channel in this
mode is also unmasked.

The XMCME bit of MCR2 determines whether 32 channels or
128 channels are selectable in XCERs.

10b All channels are enabled, but they are masked unless they are
selected in the appropriate transmit channel enable registers
(XCERs).

The XMCME bit of MCR2 determines whether 32 channels or
128 channels are selectable in XCERs.

11b This mode is used for symmetric transmission and reception.

All channels are disabled for transmission unless they are en-
abled for reception in the appropriate receive channel enable
registers (RCERs, described in section 9.13.9 on page 9-202).
Once enabled, they are masked unless they are also selected in
the appropriate transmit channel enable registers (XCERs).

The XMCME bit of MCR2 determines whether 32 channels or
128 channels are selectable in RCERs and XCERs.
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As an example of how the McBSP behaves in a transmit multichannel selec-
tion mode, suppose that XMCM = 01b (all channels disabled unless individu-
ally enabled) and that you have enabled only channels 0, 15, and 39. Suppose
also that the frame length is 40. The McBSP …

1) Shifts data to the DX pin in channel 0
2) Places the DX pin in the high impedance state in channels 1–14
3) Shifts data to the DX pin in channel 15
4) Places the DX pin in the high impedance state in channels 16–38
5) Shifts data to the DX pin in channel 39

9.5.7.1 Disabling/Enabling Versus Masking/Unmasking

For transmission, a channel can be:

� Enabled and unmasked (transmission can begin and can be completed)

� Enabled but masked (transmission can begin but cannot be completed)

� Disabled (transmission cannot occur)

The following definitions explain the channel control options:

Enabled channel A channel that can begin transmission by passing
data from the data transmit register(s) (DXR(s)) to
the transmit shift registers (XSR(s)).

Masked channel A channel that cannot complete transmission. The
DX pin is held in the high impedance state; data can-
not be shifted out on the DX pin.

In systems where symmetric transmit and receive
provides software benefits, this feature allows trans-
mit channels to be disabled on a shared serial bus.
A similar feature is not needed for reception because
multiple receptions cannot cause serial bus conten-
tion.

Disabled channel A channel that is not enabled. A disabled channel is
also masked.

Because no DXR-to-XSR copy occurs, the XRDY bit
of SPCR2 is not set. Therefore, no DMA synchro-
nization event (XEVT) is generated, and if the trans-
mit interrupt mode depends on XRDY (XINTM = 00b
in SPCR2), no interrupt is generated.

The XEMPTY_ bit of SPCR2 is not affected.

Unmasked channel A channel that is not masked. Data in the XSR(s) is
shifted out on the DX pin.
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9.5.7.2 Activity on McBSP Pins for Different Values of XMCM

Figure 9–37 shows the activity on the McBSP pins for the various XMCM
values. In all cases, the transmit frame is configured as follows:

� XPHASE = 0: Single-phase frame (required for multichannel selection
modes)

� XFRLEN1 = 0000011b: 4 words per frame

� XWDLEN1 = 000b: 8 bits per word

� XMCME = 0: 2-partition mode (only partitions A and B used)

In the case where XMCM = 11b, transmission and reception are symmetric,
which means the corresponding bits for the receiver (RPHASE, RFRLEN1,
RWDLEN1, and RMCME) must have the same values as XPHASE,
XFRLEN1, and XWDLEN1, respectively.

In the figure, the arrows showing where the various events occur are only sam-
ple indications. Wherever possible, there is a time window in which these
events can occur.
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Figure 9–37. Activity on McBSP Pins for the Possible Values of XMCM

DXR1 to XSR1 copy (W1)

XRDY

DXR1 to XSR1 copy (W3)Write to DXR1(W3)

ÁÁ W3ÁDX

RBR1 to DRR1 (W3)

Read from DRR1(W1)
RBR1 to DRR1 copy (W1)RBR1 to DRR1 copy (W3)

Read from DRR1(W3)

Á
Á

Á
Á

W3Á
Á

(d) XMCM = 11b, RPABLK = 00b, XPABLK = X, RCERA = 1010b, XCERA = 1000b:
       Receive channels: 1 and 3 enabled; transmit channels: 1 and 3 enabled, but only 3 unmasked

Á
Á

W1Á
Á

Á
Á

Internal FS(R/X)

DR

RRDY

Write to DXR1(W3)

DXR1 to XSR1 copy(W0)

Write to DXR1(W1)

DXR1 to XSR1 copy(W1) Write to DXR1(W2)

XRDY

DXR1 to XSR1 copy(W3)
DXR1 to XSR1 copy(W2)

W3

(c) XMCM = 10b, XPABLK = 00b, XCERA = 1010b: All channels enabled, only 1 and 3 unmasked

Internal FSX

Á
Á

Á
Á

W1
Á
Á

ÁÁ
ÁÁ

DX

(b) XMCM = 01b, XPABLK = 00b, XCERA = 1010b: Only channels 1 and 3 enabled and unmasked

DXR1 to XSR1 copy(W3)Write to DXR1(W3)

XRDY

DXR1 to XSR1 copy(W1)

W3
Á
Á

Á
Á

Á
Á

DX
ÁÁ
ÁÁ W1

Internal FSX

(a) XMCM = 00b: All channels enabled and unmasked

W3W2W1W0

XRDY

DX

Internal FSX

DXR1 to XSR1 copy(W0)

Write to DXR1(W1)

DXR1 to XSR1 copy(W1) Write to DXR1(W2)
DXR1 to XSR1 copy(W3)

DXR1 to XSR1 copy(W2)
Write to DXR1(W3)

ÁÁ
ÁÁ

Á
Á



Multichannel Selection Modes

 9-58

9.5.8 Using Interrupts Between Block Transfers

When a multichannel selection mode is used, an interrupt request can be sent
to the CPU at the end of every 16-channel block (at the boundary between
partitions and at the end of the frame). In the receive multichannel selection
mode, a receive interrupt (RINT) request is generated at the end of each block
transfer if RINTM = 01b. In any of the transmit multichannel selection modes,
a transmit interrupt (XINT) request is generated at the end of each block trans-
fer if XINTM = 01b. When RINTM/XINTM = 01b, no interrupt is generated
unless a multichannel selection mode is on.

These interrupt pulses are active high and last for 2 CPU clock cycles.

This type of interrupt is especially helpful if you are using the 2-partition mode
(described in section 9.5.4) and you want to know when you can assign a
different block of channels to partition A or B.
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9.6 A-bis Mode

In the A-bis mode (ABIS = 1 in SPCR1), the McBSP can receive and transmit
up to 1024 bits on a PCM link. The receive section can extract all 1024 bits from
a 1024-bit PCM frame according to a given bit-enable pattern, and generate
an interrupt to the CPU when 16 enabled bits have been compacted into a
word in DRR1, or when a receive frame is complete. In addition, the transmit
section can expand up to 1024 bits into a 1024-bit PCM frame at a specific
position, according to a given bit-enable pattern, and generate an interrupt
when 16 enabled bits have been transmitted or a transmit frame is complete.

The bit-enable patterns are specified with channel enable registers A and B
(RCERA and RCERB for reception, XCERA and XCERB for transmission).
These registers have a different function than in the multichannel selection
modes (described in section 9.5). Instead of indicating which channels will be
enabled, these registers indicate which bits in the data stream will be enabled.
A 1 in a given position in the (R/X)CER(A/B) register enables a corresponding
bit in the receive/transmit data stream.

The A-bis mode requires a word length of 16 bits (for reception:
RWDLEN1 = 010b in RCR1, for transmission: XWDLEN1 = 010b in XCR1).
Otherwise, operation in the A-bis mode is undetermined.

9.6.1 A-bis Mode Receive Operation

In the A-bis mode, bits that are not enabled in the RCERA and RCERB regis-
ters are ignored and are not compacted in the receiver. Bits that are enabled
are received and compacted. When 16 enabled bits have been received, the
received word is copied from RSR1 to DRR1 and the McBSP generates an
interrupt to the CPU. RCERA and RCERB alternate specifying the receive
masking pattern for each of the 16 receive clocks. Figure 9–38 shows an
example bit sequence for the receiver (in the figure, – indicates that the bit on
the DR pin is ignored and thus is not passed to DRR1).

Figure 9–38. A-bis Mode Receive Operation

RCERA 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

RCERB 0 0 1 0 0 1 1 1 0 0 1 0 0 1 1 1

DR pin 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1

DRR1 – 0 – 1 – 1 – 1 – 0 – 1 0 – – 1 – – 1 – – 1 1 0 – – 0 – – 0 1 1 75E3h

Note: – indicates that the bit on the DR pin is ignored and thus is not passed to DRR1.
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9.6.2 A-bis Mode Transmit Operation

In the A-bis mode, only bits that are enabled in the XCERA and XCERB regis-
ters are transmitted out from the DX pin. Bits that are not enabled are not trans-
mitted, and the DX pin is in the high-impedance state during that clock cycle.
XCERA and XCERB alternate specifying the bit-enable pattern for each 16
clock cycles. When 16 enabled have been shifted out, the McBSP generates
an interrupt to the CPU. Figure 9–39 shows an example bit sequence for the
transmitter (in the figure, z indicates the high-impedance state).

Figure 9–39. A-bis Mode Transmit Operation

XCERA 0 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1

XCERB 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0

DXR1 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0

DX pin z 0 1 1 0 1 z z z 0 0 z z 1 1 1 z z 1 1 z z z 0 1 z z z 0 0 z z

Note: z indicates the high-impedance state.

9.6.3 DMA Synchronization Events REVTA and XEVTA

In the A-bis mode (ABIS = 1), two DMA synchronization events, XEVTA (for
A-bits mode transmission) and REVTA (for A-bis mode reception), can be
used by the DMA controller to load patterns into the following channel enable
registers: RCERA, RCERB, XCERA, and XCERB. This capability is used for
bit sequences that are longer than the 32 bits covered by the two receive/trans-
mit channel enable registers. An REVTA/XEVTA event is generated every 16
CLKR/CLKX cycles.

As an example, the following gives a description of A-bis mode operation on
a 256-bit PCM link:

� ABIS = 1: A-bis mode enabled

� The initial pattern of bits that must be enabled is loaded into the channel
enable registers.

� RPHASE = XPHASE = 0: Single-phase frame

� RFRLEN1 = XFRLEN1 = 1111b: 16 words in the frame

� RWDLEN1 = XWDLEN1 = 010b: 16 bits per word (required for the A-bis
mode)

Two DMA channels (one for transmit, one for receive) are used to update the
bit pattern selections in the channel enable registers as the operation
proceeds. One 16-word block in memory contains the bit pattern selections for
the receiver. Sixteen words of 16 bits each contain the entire receive selection
pattern for the 256-bit PCM link.
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On each REVTA event, the DMA controller copies new receive selection pat-
tern data from memory to RCERA or RCERB and automatically toggles its
destination pointer from RCERA to RCERB, or vice versa, as necessary.

The DMA channel is initially set to RCERA as a destination. After the first
access to RCERA, the destination automatically toggles to RCERB. After the
next RCERB access, the destination automatically toggles back to RCERA.
Since the toggling between RCERA and RCERB is handled automatically, you
do not need to configure the DMA controller to modify the destination address
by other means. As the A-bis-mode transfer proceeds, the receiver alternates
using RCERA and RCERB to specify the enable pattern for each group of 16
serial port clock cycles.

Transmitter operation is similar. Sixteen words of 16 bits each contain the en-
tire transmit selection pattern for the 256-bit PCM link. On each XEVTA event,
the DMA controller copies the new transmit selection pattern data from
memory to XCERA or XCERB and automatically toggles its destination pointer
from XCERA to XCERB, or vice versa, as necessary. As the A-bis-mode trans-
fer proceeds, the transmitter alternates using XCERA and XCERB to specify
the enable pattern for each group of 16 serial port clock cycles.
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9.7 SPI Operation Using the Clock Stop Mode

9.7.1 SPI Protocol

The SPI protocol is a master-slave configuration with one master device and
one or more slave devices. The interface consists of the following four signals:

� Serial data input (also referred to as Master In – Slave Out, or MISO)

� Serial data output (also referred to as Master Out – Slave In, or MOSI)

� Shift-clock (also referred to as SCK)

� Slave-enable signal (also referred to as SS)

A typical SPI interface with a single slave device is shown in Figure 9–40.

Figure 9–40. Typical SPI Interface
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The master device controls the flow of communication by providing shift-clock
and slave-enable signals. The slave-enable signal is an optional active-low
signal that enables the serial data input and output of the slave device (device
not sending out the clock).

In the absence of a dedicated slave-enable signal, communication between
the master and slave is determined by the presence or absence of an active
shift-clock. In such a configuration, the slave device must remain enabled at
all times, and multiple slaves cannot be used.
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9.7.2 Clock Stop Mode

The clock stop mode of the McBSP provides compatibility with the SPI proto-
col. When the McBSP is configured in clock stop mode, the transmitter and
receiver are internally synchronized, so that the McBSP functions as an SPI
master or slave device. The transmit clock signal (CLKX) corresponds to the
serial clock signal (SCK) of the SPI protocol, while the transmit frame-synchro-
nization signal (FSX) is used as the slave-enable signal (SS_).

The receive clock signal (CLKR) and receive frame-synchronization signal
(FSR) are not used in the clock stop mode because these signals are internally
connected to their transmit counterparts, CLKX and FSX.

9.7.3 Bits Used to Enable and Configure the Clock Stop Mode

The bits required to configure the McBSP as an SPI device are introduced in
Table 9–9. Table 9–10 shows how the various combinations of the CLKSTP
bit and the polarity bits CLKXP and CLKRP create four possible clock stop
mode configurations. The timing diagrams in section 9.7.4 show the effects of
CLKSTP, CLKXP, and CLKRP.
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Table 9–9. Bits Used to Enable and Configure the Clock Stop Mode

Bit Field Description

CLKSTP bits of SPCR1 Use these bits to enable the clock stop mode and to se-
lect one of two timing variations. (See also Table 9–10.)

CLKXP bit of PCR This bit determines the polarity of the CLKX signal. (See
also Table 9–10.)

CLKRP bit of PCR This bit determines the polarity of the CLKR signal. (See
also Table 9–10.)

CLKXM bit of PCR This bit determines whether CLKX is an input signal
(McBSP as slave) or an output signal (McBSP as mas-
ter).

XPHASE bit of XCR2 You must use a single-phase transmit frame
(XPHASE = 0).

RPHASE bit of RCR2 You must use a single-phase receive frame
(RPHASE = 0).

XFRLEN1 bits of XCR1 You must use a transmit frame length of 1 serial word
(XFRLEN1 = 0).

RFRLEN1 bits of RCR1 You must use a receive frame length of 1 serial word
(RFRLEN1 = 0).

XWDLEN1 bits of XCR1 The XWDLEN1 bits determine the transmit packet
length. XWDLEN1 must be equal to RWDLEN1 be-
cause in the clock stop mode, the McBSP transmit and
receive circuits are synchronized to a single clock.

RWDLEN1 bits of RCR1 The RWDLEN1 bits determine the receive packet
length. RWDLEN1 must be equal to XWDLEN1 be-
cause in the clock stop mode, the McBSP transmit and
receive circuits are synchronized to a single clock.
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Table 9–10. Effects of CLKSTP, CLKXP, and CLKRP on the Clock Scheme

Bit Settings Clock Scheme

CLKSTP = 00b or 01b
CLKXP = 0 or 1
CLKRP = 0 or 1

Clock stop mode disabled. Clock enabled for non-SPI
mode.

CLKSTP = 10b
CLKXP = 0
CLKRP = 0

Low inactive state without delay: The McBSP transmits
data on the rising edge of CLKX and receives data on
the falling edge of CLKR.

CLKSTP = 11b
CLKXP = 0
CLKRP = 1

Low inactive state with delay: The McBSP transmits
data one-half cycle ahead of the rising edge of CLKX
and receives data on the rising edge of CLKR.

CLKSTP = 10b
CLKXP = 1
CLKRP = 0

High inactive state without delay: The McBSP transmits
data on the falling edge of CLKX and receives data on
the rising edge of CLKR.

CLKSTP = 11b
CLKXP = 1
CLKRP = 1

High inactive state with delay: The McBSP transmits
data one-half cycle ahead of the falling edge of CLKX
and receives data on the falling edge of CLKR.

9.7.4 Clock Stop Mode Timing Diagrams

The timing diagrams for the four possible clock stop mode configurations are
shown here. Notice that the frame-synchronization signal used in clock stop
mode is active throughout the entire transmission as a slave-enable signal. Al-
though the timing diagrams show 8-bit transfers, the packet length can be set
to 8, 12, 16, 20, 24, or 32 bits per packet. The receive packet length is selected
with the RWDLEN1 bits of RCR1, and the transmit packet length is selected
with the XWDLEN1 bits of XCR1. For clock stop mode, the values of
RWDLEN1 and XWDLEN1 must be the same because the McBSP transmit
and receive circuits are synchronized to a single clock.

Note:

Even if multiple words are consecutively transferred, the CLKX signal is al-
ways stopped and the FSX signal returns to the inactive state after a packet
transfer. When consecutive packet transfers are performed, this leads to a
minimum idle time of two bit-periods between each packet transfer.
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Figure 9–41. SPI Transfer With CLKSTP = 10b (no clock delay), CLKXP = 0, CLKRP = 0
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Notes: 1) If the McBSP is the SPI master (CLKXM = 1), MOSI = DX. If the McBSP is the SPI
slave (CLKXM = 0), MOSI = DR.

2) If the McBSP is the SPI master (CLKXM = 1), MISO = DR. If the McBSP is the SPI
slave (CLKXM = 0), MISO = DX.

Figure 9–42. SPI Transfer With CLKSTP = 11b (clock delay), CLKXP = 0, CLKRP = 1
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Notes: 1) If the McBSP is the SPI master (CLKXM = 1), MOSI = DX. If the McBSP is the SPI
slave (CLKXM = 0), MOSI = DR.

2) If the McBSP is the SPI master (CLKXM = 1), MISO = DR. If the McBSP is the SPI
slave (CLKXM = 0), MISO = DX.

Figure 9–43. SPI Transfer With CLKSTP = 10b (no clock delay), CLKXP = 1, CLKRP = 0
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Notes: 1) If the McBSP is the SPI master (CLKXM = 1), MOSI = DX. If the McBSP is the SPI
slave (CLKXM = 0), MOSI = DR.

2) If the McBSP is the SPI master (CLKXM = 1), MISO = DR. If the McBSP is the SPI
slave (CLKXM = 0), MISO = DX.
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Figure 9–44. SPI Transfer With CLKSTP = 11b (clock delay), CLKXP = 1, CLKRP = 1
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Notes: 1) If the McBSP is the SPI master (CLKXM = 1), MOSI=DX. If the McBSP is the SPI
slave (CLKXM = 0), MOSI = DR.

2) If the McBSP is the SPI master (CLKXM = 1), MISO=DR. If the McBSP is the SPI
slave (CLKXM = 0), MISO = DX.

9.7.5 Procedure for Configuring a McBSP for SPI Operation

To configure the McBSP for SPI master or slave operation:

1) Place the transmitter and receiver in reset.

Clear the transmitter reset bit (XRST_ = 0) in SPCR2, to reset the trans-
mitter. Clear the receiver reset bit (RRST_ = 0) in SPCR1, to reset the
receiver.

2) Place the sample rate generator in reset.

Clear the sample rate generator reset bit (GRST_ = 0) in SPCR2, to reset
the sample rate generator.

3) Program registers that affect SPI operation.

Program the appropriate McBSP registers to configure the McBSP for
proper operation as an SPI master or an SPI slave. For a list of important
bits settings, see one of the following topics:

� McBSP as the SPI Master (page 9-68)
� McBSP as an SPI Slave (page 9-70)

4) Enable the sample rate generator.

To release the sample rate generator from reset, set the sample rate gen-
erator reset bit (GRST_ = 1) in SPCR2.

Make sure that during the write to SPCR2, you only modify GRST_. Other-
wise, you will modify the McBSP configuration you selected in the previous
step.
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5) Enable the transmitter and receiver.

After the sample rate generator is released from reset, wait two sample
rate generator clock periods for the McBSP logic to stabilize.

If the CPU services the McBSP transmit and receive buffers, then you can
immediately enable the transmitter (XRST_ = 1 in SPCR2) and enable the
receiver (RRST_ = 1 in SPCR1).

If the DMA controller services the McBSP transmit and receive buffers,
then you must first configure the DMA controller (this includes enabling the
channels that service the McBSP buffers). When the DMA controller is
ready, make XRST_ = 1 and RRST_ = 1.

Note: In either case, make sure you only change XRST_ and RRST_ when
you write to SPCR2 and SPCR1. Otherwise, you will modify the bit settings
you selected earlier in this procedure.

After the transmitter and receiver are released from reset, wait two sample
rate generator clock periods for the McBSP logic to stabilize.

6) If necessary, enable the frame-sync logic of the sample rate genera-
tor.

After the required data acquisition setup is done (DXR[1/2] is loaded with
data), set FRST_ = 1 if an internally generated frame-sync pulse is
required (that is, if the McBSP is the SPI master).

9.7.6 McBSP as the SPI Master

An SPI interface with the McBSP used as the master is shown in the following
figure. When the McBSP is configured as a master, the transmit output signal
(DX) is used as the MOSI signal of the SPI protocol, and the receive input
signal (DR) is used as the MISO signal.
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SPI-compliant
slave

SCK
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The register bit values required to configure the McBSP as a master are listed
in the following table. After the table are more details about the configuration
requirements.

Table 9–11. Bit Values Required to Configure the McBSP as an SPI Master

Required Bit Setting Description

CLKSTP = 10b or 11b The clock stop mode (without or with a clock delay) is
selected.

CLKXP = 0 or 1 The polarity of CLKX as seen on the CLKX pin is positive
(CLKXP = 0) or negative (CLKXP = 1).

CLKRP = 0 or 1 The polarity of CLKR as seen on the CLKR pin is posi-
tive (CLKRP = 0) or negative (CLKRP = 1).

CLKXM = 1 The CLKX pin is an output pin driven by the internal
sample rate generator. Because CLKSTP is equal
to 10b or 11b, CLKR is driven internally by CLKX.

SCLKME = 0
CLKSM = 1

The clock generated by the sample rate generator
(CLKG) is derived from the CPU clock.

CLKGDV is a value
from 0 to 255

CLKGDV defines the divide down value for CLKG.

FSXM = 1 The FSX pin is an output pin driven according to the
FSGM bit.

FSGM = 0 The transmitter drives a frame-sync pulse on the FSX
pin every time data is transferred from DXR1 to XSR1.

FSXP = 1 The FSX pin is active low.

XDATDLY = 01b
RDATDLY = 01b

This setting provides the correct setup time on the FSX
signal.

When the McBSP functions as the SPI master, it controls the transmission of
data by producing the serial clock signal. The clock signal on the CLKX pin is
enabled only during packet transfers. When packets are not being transferred,
the CLKX pin remains high or low depending on the polarity used.

For SPI master operation, the CLKX pin must be configured as an output. The
sample rate generator is then used to derive the CLKX signal from the CPU
clock. The clock stop mode internally connects the CLKX pin to the CLKR sig-
nal so that no external signal connection is required on the CLKR pin, and both
the transmit and receive circuits are clocked by the master clock (CLKX).
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The data delay parameters of the McBSP (XDATDLY and RDATDLY) must be
set to 1 for proper SPI master operation. A data delay value of 0 or 2 is unde-
fined in the clock stop mode.

The McBSP can also provide a slave-enable signal (SS_) on the FSX pin. If
a slave-enable signal is required, the FSX pin must be configured as an output,
and the transmitter must be configured so that a frame-sync pulse is generated
automatically each time a packet is transmitted (FSGM = 0). The polarity of the
FSX pin is programmable high or low; however, in most cases the pin should
be configured active-low.

When the McBSP is configured as described for SPI-master operation, the bit
fields for frame-sync pulse width (FWID) and frame-sync period (FPER) are
overridden, and custom frame-sync waveforms are not allowed. To see the
resulting waveform produced on the FSX pin, see the timing diagrams in sec-
tion 9.7.4. The signal becomes active before the first bit of a packet transfer,
and remains active until the last bit of the packet is transferred. After the packet
transfer is complete, the FSX signal returns to the inactive state.

9.7.7 McBSP as an SPI Slave

An SPI interface with the McBSP used as a slave is shown in the following fig-
ure. When the McBSP is configured as a slave, DX is used as the MISO signal,
and DR is used as the MOSI signal.
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The register bit values required to configure the McBSP as a slave are listed
in the following table. After the table are more details about the configuration
requirements.
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Table 9–12. Bit Values Required to Configure the McBSP as an SPI Slave

Required Bit Setting Description

CLKSTP = 10b or 11b The clock stop mode (without or with a clock delay) is
selected.

CLKXP = 0 or 1 The polarity of CLKX as seen on the CLKX pin is positive
(CLKXP = 0) or negative (CLKXP = 1).

CLKRP = 0 or 1 The polarity of CLKR as seen on the CLKR pin is posi-
tive (CLKRP = 0) or negative (CLKRP = 1).

CLKXM = 0 The CLKX pin is an input pin, so that it can be driven by
the SPI master. Because CLKSTP = 10b or 11b, CLKR
is driven internally by CLKX.

SCLKME = 0
CLKSM = 1

The clock generated by the sample rate generator
(CLKG) is derived from the CPU clock. (The sample rate
generator is used to synchronize the McBSP logic with
the externally-generated master clock.)

CLKGDV = 1 The sample rate generator divides the CPU clock by 2
before generating CLKG.

FSXM = 0 The FSX pin is an input pin, so that it can be driven by
the SPI master.

FSXP = 1 The FSX pin is active low.

XDATDLY = 00b
RDATDLY = 00b

These bits must be 0s for SPI slave operation.

When the McBSP is used as an SPI slave, the master clock and slave-enable
signals are generated externally by a master device. Accordingly, the CLKX
and FSX pins must be configured as inputs. The CLKX pin is internally con-
nected to the CLKR signal, so that both the transmit and receive circuits of the
McBSP are clocked by the external master clock. The FSX pin is also internally
connected to the FSR signal, and no external signal connections are required
on the CLKR and FSR pins.

Although the CLKX signal is generated externally by the master and is asyn-
chronous to the McBSP, the sample rate generator of the McBSP must be
enabled for proper SPI slave operation. The sample rate generator should be
programmed to its maximum rate of half the CPU clock rate. The internal
sample rate clock is then used to synchronize the McBSP logic to the external
master clock and slave-enable signals.

The McBSP requires an active edge of the slave-enable signal on the FSX
input for each transfer. This means that the master device must assert the
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slave-enable signal at the beginning of each transfer, and deassert the signal
after the completion of each packet transfer; the slave-enable signal cannot
remain active between transfers.

The data delay parameters of the McBSP must be set to 0 for proper SPI slave
operation. A value of 1 or 2 is undefined in the clock stop mode.
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9.8 Receiver Configuration

To configure the McBSP receiver, perform the following procedure:

1) Place the McBSP/receiver in reset (see section 9.8.2).

2) Program the McBSP registers for the desired receiver operation (see
section 9.8.1).

3) Take the receiver out of reset (see section 9.8.2).

9.8.1 Programming the McBSP Registers for the Desired Receiver Operation

The following is a list of important tasks to be performed when you are configur-
ing the McBSP receiver. Each task corresponds to one or more McBSP regis-
ter bit fields. Note that in the list, SRG is an abbreviation for sample rate gener-
ator.

It may be helpful to first photocopy the McBSP Register Worksheet
(page 9-211) and to fill in the photocopy of the worksheet as you read the
tasks.

� Global behavior:

� Set the receiver pins to operate as McBSP pins

� Enable/disable the digital loopback mode

� Enable/disable the clock stop mode

� Enable/disable the receive multichannel selection mode

� Enable/disable the A-bis mode

� Data behavior:

� Choose 1 or 2 phases for the receive frame

� Set the receive word length(s)

� Set the receive frame length

� Enable/disable the receive frame-sync ignore function

� Set the receive companding mode

� Set the receive data delay

� Set the receive sign-extension and justification mode

� Set the receive interrupt mode

� Frame-sync behavior:

� Set the receive frame-sync mode

� Set the receive frame-sync polarity

� Set the SRG frame-sync period and pulse width
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� Clock behavior:

� Set the receive clock mode

� Set the receive clock polarity

� Set the SRG clock divide-down value

� Set the SRG clock synchronization mode

� Set the SRG clock mode (choose an input clock)

� Set the SRG input clock polarity

9.8.2 Resetting and Enabling the Receiver

The first step of the receiver configuration procedure is to reset the receiver,
and the last step is to enable the receiver (to take it out of reset). Figure 9–45
and Table 9–13 describe the bits used for both of these steps.

Figure 9–45. Register Bits Used to Reset or Enable the McBSP Receiver
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– X X is the value after a DSP reset.
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Table 9–13. Register Bits Used to Reset or Enable the McBSP Receiver  

Register Bit Name Function

SPCR1 0 RRST_ Receiver Reset

RRST_ = 0 The serial port receiver is disabled and in the reset state.

RRST_ = 1 The serial port receiver is enabled.

SPCR2 6 GRST_ Sample Rate Generator Reset

GRST_ = 0 Sample rate generator is reset.

If GRST_ = 0 due to a DSP reset, CLKG is driven by the
CPU clock divided by 2, and FSG is driven low (inactive).
If GRST_ = 0 due to program code, CLKG and FSG are
both driven low (inactive).

GRST_ = 1 Sample rate generator is enabled. CLKG is driven accord-
ing to the configuration programmed in the sample rate
generator registers (SRGR[1,2]). If FRST_ = 1, the gener-
ator also generates the frame-sync signal FSG as pro-
grammed in the sample rate generator registers.

SPCR2 7 FRST_ Frame-Sync Logic Reset

FRST_ = 0 Frame-synchronization logic is reset. The sample rate
generator does not generate frame-sync signal FSG, even
if GRST_ = 1.

FRST_ = 1 If GRST_ = 1, frame-sync signal FSG is generated after
(FPER + 1) number of CLKG clock cycles; all frame count-
ers are loaded with their programmed values.

9.8.2.1 Reset Considerations

The serial port can be reset in the following two ways:

1) A DSP reset (RESET_ signal driven low) places the receiver, transmitter,
and sample rate generator in reset. When the device reset is removed
(RESET_ signal released), GRST_ = FRST_ = RRST_ = XRST_ = 0,
keeping the entire serial port in the reset state.

2) The serial port transmitter and receiver can be reset directly using the
RRST_ and XRST_ bits in the serial port control registers. The sample rate
generator can be reset directly using the GRST_ bit in SPCR2.

Table 9–14 shows the state of McBSP pins when the serial port is reset due
to a DSP reset and a direct receiver/transmitter reset.
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Table 9–14. Reset State of Each McBSP Pin  

Pin
Possible
State(s)

State Forced By
DSP Reset

State Forced By
Receiver/Transmitter Reset

Receiver Reset (RRST_ = 0 and GRST_ = 1)

DR I Input Input

CLKR I/O/Z Input Known state if Input; CLKR running if output

FSR I/O/Z Input Known state if Input; FSRP inactive state if output

CLKS I/O/Z Input Input

Transmitter Reset (XRST_ = 0 and GRST_ = 1)

DX O/Z High impedance High impedance

CLKX I/O/Z Input Known state if Input; CLKX running if output

FSX I/O/Z Input Known state if Input; FSXP inactive state if output

CLKS I Input Input

Note: In Possible State(s) column, I = Input, O = Output, Z = High impedance

For more details about McBSP reset conditions and effects, see Resetting and
Initializing a McBSP on page 9-147.

9.8.3 Set the Receiver Pins to Operate as McBSP Pins

The RIOEN bit, shown in Figure 9–46 and described in Table 9–15, deter-
mines whether the receiver pins are McBSP pins or general-purpose I/O pins.

Figure 9–46. Register Bit Used to Set Receiver Pins to Operate as McBSP Pins
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–15. Register Bit Used to Set Receiver Pins to Operate as McBSP Pins

Register Bit Name Function

PCR 12 RIOEN Receive I/O enable

This bit is only applicable when the receiver is in the reset state (RRST_ = 0
in SPCR1).

RIOEN = 0 The DR, FSR, CLKR, and CLKS pins are configured as
serial port pins and do not function as general-purpose I/O
pins.

RIOEN = 1 The DR pin is a general-purpose input pin. The FSR and
CLKR pins are general purpose I/O pins. These serial port
pins do not perform serial port operation. The CLKS pin is
a general-purpose input pin if RIOEN = XIOEN = 1 and
RRST_ = XRST_ = 0. For more information on using these
pins as general-purpose I/O pins, see page 9-144.

9.8.4 Enable/Disable the Digital Loopback Mode

The DLB bit determines whether the digital loopback mode is on. DLB is shown
in Figure 9–47 and described in Table 9–16.

Figure 9–47. Register Bit Used to Enable/Disable the Digital Loopback Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–16. Register Bit Used to Enable/Disable the Digital Loopback Mode

Register Bit Name Function

SPCR1 15 DLB Digital Loopback Mode

DLB = 0 Digital loopback mode is disabled.

DLB = 1 Digital loopback mode is enabled.

9.8.4.1 About the Digital Loopback Mode

In the digital loopback mode, the receive signals are connected internally
through multiplexers to the corresponding transmit signals, as shown in
Table 9–17. This mode allows testing of serial port code with a single DSP de-
vice; the McBSP receives the data it transmits.
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Table 9–17. Receive Signals Connected to Transmit Signals in Digital Loopback Mode

This Receive Signal …
Is Fed Internally By
This Transmit Signal …

DR (receive data) DX (transmit data)

FSR (receive frame synchronization) FSX (transmit frame synchronization)

CLKR (receive clock) CLKX (transmit clock)

9.8.5 Enable/Disable the Clock Stop Mode

The CLKSTP bits determine whether the clock stop mode is on. CLKSTP is
shown in Figure 9–48 and described in Table 9–18.

Figure 9–48. Register Bits Used to Enable/Disable the Clock Stop Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–18. Register Bits Used to Enable/Disable the Clock Stop Mode

Register Bit Name Function

SPCR1 12–11 CLKSTP Clock Stop Mode

CLKSTP = 0Xb Clock stop mode disabled; normal clocking for non-SPI
mode.

CLKSTP = 10b Clock stop mode enabled, without clock delay

CLKSTP = 11b Clock stop mode enabled, with clock delay

9.8.5.1 About the Clock Stop Mode

The clock stop mode supports the SPI master-slave protocol. If you will not be
using the SPI protocol, you can clear CLKSTP to disable the clock stop mode.

In the clock stop mode, the clock stops at the end of each data transfer. At the
beginning of each data transfer, the clock starts immediately (CLKSTP = 10b)
or after a half-cycle delay (CLKSTP = 11b). The CLKXP bit determines wheth-
er the starting edge of the clock on the CLKX pin is rising or falling. The CLKRP
bit determines whether receive data is sampled on the rising or falling edge of
the clock shown on the CLKR pin.
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Table 9–19 summarizes the impact of CLKSTP, CLKXP, and CLKRP on serial
port operation. Note that in the clock stop mode, the receive clock is tied inter-
nally to the transmit clock, and the receive frame-sync signal is tied internally
to the transmit frame-sync signal.

Table 9–19. Effects of CLKSTP, CLKXP, and CLKRP on the Clock Scheme

Bit Settings Clock Scheme

CLKSTP = 00b or 01b
CLKXP = 0 or 1
CLKRP = 0 or 1

Clock stop mode disabled. Clock enabled for non-SPI
mode.

CLKSTP = 10b
CLKXP = 0
CLKRP = 0

Low inactive state without delay: The McBSP transmits
data on the rising edge of CLKX and receives data on
the falling edge of CLKR.

CLKSTP = 11b
CLKXP = 0
CLKRP = 1

Low inactive state with delay: The McBSP transmits
data one-half cycle ahead of the rising edge of CLKX
and receives data on the rising edge of CLKR.

CLKSTP = 10b
CLKXP = 1
CLKRP = 0

High inactive state without delay: The McBSP transmits
data on the falling edge of CLKX and receives data on
the rising edge of CLKR.

CLKSTP = 11b
CLKXP = 1
CLKRP = 1

High inactive state with delay: The McBSP transmits
data one-half cycle ahead of the falling edge of CLKX
and receives data on the falling edge of CLKR.

9.8.6 Enable/Disable the Receive Multichannel Selection Mode

The RMCM bit determines whether the receive multichannel selection mode
is on. RMCM is shown in Figure 9–49 and described in Table 9–20.

Figure 9–49. Register Bit Used to Enable/Disable the
Receive Multichannel Selection Mode
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–20. Register Bit Used to Enable/Disable the
Receive Multichannel Selection Mode

Register Bit Name Function

MCR1 0 RMCM Receive Multichannel Selection Mode

RMCM = 0 The mode is disabled.

All 128 channels are enabled.

RMCM = 1 The mode is enabled.

Channels can be individually enabled or disabled.

The only channels enabled are those selected in the
appropriate receive channel enable registers (RCERs).
The way channels are assigned to the RCERs depends
on the number of receive channel partitions (2 or 8), as
defined by the RMCME bit.

For more details, see Receive Multichannel Selection Mode on page 9-53.

9.8.7 Enable/Disable the A-bis Mode

The ABIS bit determines whether the A-bis mode is on. ABIS is shown in
Figure 9–50 and described in Table 9–21.

Figure 9–50. Register Bit Used to Enable/Disable the A-bis Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–21. Register Bit Used to Enable/Disable the A-bis Mode

Register Bit Name Function

SPCR1 6 ABIS A-bis Mode

ABIS = 0 The mode is disabled.

ABIS = 1 The mode is enabled.

Individual bits can be enabled or disabled during recep-
tion and transmission. For transmission, the bits are con-
trolled by transmit channel enable registers A and B
(XCERA and XCERB). For reception, the bits are con-
trolled by receive channel enable registers A and B
(RCERA and RCERB).

For more details, see A-bis Mode on page 9-59.

9.8.8 Choose 1 or 2 Phases for the Receive Frame

The RPHASE bit (see Figure 9–51 and Table 9–22) determines whether the
receive data frame has one or two phases.

Figure 9–51. Register Bit Used to Choose 1 or 2 Phases for the Receive Frame
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–22. Register Bit Used to Choose 1 or 2 Phases for the Receive Frame

Register Bit Name Function

RCR2 15 RPHASE Receive phase number

Specifies whether the receive frame has 1 or 2 phases.

RPHASE = 0 Single-phase frame

RPHASE = 1 Dual-phase frame
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9.8.9 Set the Receive Word Length(s)

The RWDLEN1 and RWDLEN2 bit fields (see Figure 9–52 and Table 9–23)
determine how many bits are in each serial word in phase 1 and in phase 2,
respectively, of the receive data frame.

Figure 9–52. Register Bits Used to Set the Receive Word Length(s)
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–23. Register Bits Used to Set the Receive Word Length(s)

Register Bit Name Function

RCR1 7–5 RWDLEN1 Receive word length 1

Specifies the length of every serial word in phase 1 of the receive frame.

RWDLEN1 = 000 8 bits

RWDLEN1 = 001 12 bits

RWDLEN1 = 010 16 bits

RWDLEN1 = 011 20 bits

RWDLEN1 = 100 24 bits

RWDLEN1 = 101 32 bits

RWDLEN1 = 11X Reserved

RCR2 7–5 RWDLEN2 Receive word length 2

If a dual-phase frame is selected, RWDLEN2 specifies the length of every
serial word in phase 2 of the frame.

RWDLEN2 = 000 8 bits

RWDLEN2 = 001 12 bits

RWDLEN2 = 010 16 bits

RWDLEN2 = 011 20 bits

RWDLEN2 = 100 24 bits

RWDLEN2 = 101 32 bits

RWDLEN2 = 11X Reserved

9.8.9.1 About the Word Length Bits

Each frame can have one or two phases, depending on the value that you load
into the RPHASE bit. If a single-phase frame is selected, RWDLEN1 selects
the length for every serial word received in the frame. If a dual-phase frame
is selected, RWDLEN1 determines the length of the serial words in phase 1
of the frame, and RWDLEN2 determines the word length in phase 2 of the
frame.
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9.8.10 Set the Receive Frame Length

The RFRLEN1 and RFRLEN2 bit fields (see Figure 9–53 and Table 9–24)
determine how many serial words are in phase 1 and in phase 2, respectively,
of the receive data frame.

Figure 9–53. Register Bits Used to Set the Receive Frame LengthÁÁ
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–24. Register Bits Used to Set the Receive Frame Length  

Register Bit Name Function

RCR1 14–8 RFRLEN1 Receive frame length 1

(RFRLEN1 + 1) is the number of serial words in phase 1 of the receive frame.

RFRLEN1 = 000 0000 1 word in phase 1

RFRLEN1 = 000 0001 2 words in phase 1

| |

| |

RFRLEN1 = 111 1111 128 words in phase 1

RCR2 14–8 RFRLEN2 Receive frame length 2

If a dual-phase frame is selected, (RFRLEN2 + 1) is the number of serial
words in phase 2 of the receive frame.

RFRLEN2 = 000 0000 1 word in phase 2

RFRLEN2 = 000 0001 2 words in phase 2

| |

| |

RFRLEN2 = 111 1111 128 words in phase 2
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9.8.10.1 About the Selected Frame Length

The receive frame length is the number of serial words in the receive frame.
Each frame can have one or two phases, depending on value that you load into
the RPHASE bit.

If a single-phase frame is selected (RPHASE = 0), the frame length is equal
to the length of phase 1. If a dual-phase frame is selected (RPHASE = 1), the
frame length is the length of phase 1 plus the length of phase 2:

The 7-bit RFRLEN fields allow up to 128 words per phase. See Table 9–25 for
a summary of how to calculate the frame length. This length corresponds to
the number of words or logical time slots or channels per frame-synchroniza-
tion pulse.

Note : Program the RFRLEN fields with [w minus 1], where w represents the
number of words per phase. For the example, if you want a phase length of
128 words in phase 1, load 127 into RFRLEN1.

Table 9–25. How to Calculate the Length of the Receive Frame

RPHASE RFRLEN1 RFRLEN2 Frame Length

0 0 ≤ RFRLEN1 ≤ 127 Don’t care (RFRLEN1 + 1) words

1 0 ≤ RFRLEN1 ≤ 127 0 ≤ RFRLEN2 ≤ 127 (RFRLEN1 + 1) + (RFRLEN2 + 1) words

9.8.11 Enable/Disable the Receive Frame-Sync Ignore Function

The RFIG bit (see Figure 9–54 and Table 9–26) controls the receive frame-
sync ignore function.

Figure 9–54. Register Bit Used to Enable/Disable the
Receive Frame-Sync Ignore Function

Á
Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

RCR2 ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15–3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1–0 ÁÁ
ÁÁÁ

Á
RFIG ÎÎÎÎ

ÎÎÎÎ
ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

R/W – 0 ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁLegend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–26. Register Bit Used to Enable/Disable the
Receive Frame-Sync Ignore Function

Register Bit Name Function

RCR2 2 RFIG Receive Frame-Sync Ignore

RFIG = 0 An unexpected receive frame-sync pulse causes the
McBSP to restart the frame transfer.

RFIG = 1 The McBSP ignores unexpected receive frame-sync
pulses.

9.8.11.1 About Unexpected Frame-Sync Pulses and the Frame-Sync Ignore Function

If a frame-synchronization (frame-sync) pulse starts the transfer of a new
frame before the current frame is fully received, this pulse is treated as an
unexpected frame-sync pulse.

When RFIG = 1, reception continues, ignoring the unexpected frame-sync
pulses.

When RFIG = 0, an unexpected FSR pulse causes the McBSP to discard the
contents of RSR[1,2] in favor of the new incoming data. Therefore, if RFIG = 0
and an unexpected frame-sync pulse occurs, the serial port:

1) Aborts the current data transfer

2) Sets RSYNCERR in SPCR1 to 1

3) Begins the transfer of a new data word

For more details about the frame-sync error condition, see Unexpected
Receive Frame-Sync Pulse on page 9-38.

9.8.11.2 Examples Showing the Effects of RFIG

Figure 9–55 shows an example in which word B is interrupted by an unex-
pected frame-sync pulse when (R/X)FIG = 0. In the case of reception, the
reception of B is aborted (B is lost), and a new data word (C in this example)
is received after the appropriate data delay. This condition is a receive
synchronization error, and thus sets the RSYNCERR bit.
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Figure 9–55. Unexpected Frame-Sync Pulse With (R/X)FIG = 0

Current data re-transmitted

New data received

(R/X)SYNCERR

DX

DR

FS(R/X)

CLK(R/X)

C6C7B0 ÁÁ
ÁÁ

B2B3B4B5B7 B6B6B7A0 B1

D6D7C0C1C2C3C4C5C6C7B6B7A0 ÁÁ

Frame sync aborts current transfer

In contrast with Figure 9–55, Figure 9–56 shows McBSP operation when
unexpected frame-sync signals are ignored (when (R/X)FIG = 1). Here, the
transfer of word B is not affected by an unexpected pulse.

Figure 9–56. Unexpected Frame-Sync Pulse With (R/X)FIG = 1

(R/X)SYNCERR

D(R/X)

FS(R/X)

CLK(R/X)

C4C5C6C7B0B1B2B3B4B5B6B7A0 ÁÁ

Frame synchronization ignored

9.8.12 Set the Receive Companding Mode

The RCOMPAND bits (see Figure 9–57 and Table 9–27) determine whether
companding or another data transfer option is chosen for McBSP reception.

Figure 9–57. Register Bits Used to Set the Receive Companding Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–27. Register Bits Used to Set the Receive Companding Mode

Register Bit Name Function

RCR2 4–3 RCOMPAND Receive companding mode

Modes other than 00b are enabled only when the appropriate RWDLEN
is 000b, indicating 8-bit data.

RCOMPAND = 00 No companding, any size data, MSB received first

RCOMPAND = 01 No companding, 8-bit data, LSB received first (for
details, scroll down to Option to Receive LSB First)

RCOMPAND = 10 µ-law companding, 8-bit data, MSB received first

RCOMPAND = 11 A-law companding, 8-bit data, MSB received first

9.8.12.1 About Companding

Companding (COMpressing and exPANDing) hardware allows compression
and expansion of data in either µ-law or A-law format. The companding
standard employed in the United States and Japan is µ-law. The European
companding standard is referred to as A-law. The specifications for µ-law and
A-law log PCM are part of the CCITT G.711 recommendation.

A-law and µ-law allow 13 bits and 14 bits of dynamic range, respectively. Any
values outside this range are set to the most positive or most negative value.
Thus, for companding to work best, the data transferred to and from the
McBSP via the CPU or DMA controller must be at least 16 bits wide.

The µ-law and A-law formats both encode data into 8-bit code words. Compan-
ded data is always 8 bits wide; the appropriate word length bits (RWDLEN1,
RWDLEN2, XWDLEN1, XWDLEN2) must therefore be set to 0, indicating an
8-bit wide serial data stream. If companding is enabled and either of the frame
phases does not have an 8-bit word length, companding continues as if the
word length is 8 bits.

Figure 9–58 illustrates the companding processes. When companding is
chosen for the transmitter, compression occurs during the process of copying
data from DXR1 to XSR1. The transmit data is encoded according to the speci-
fied companding law (A-law or µ-law). When companding is chosen for the
receiver, expansion occurs during the process of copying data from RBR1 to
DRR1. The receive data is decoded to 2s-complement format.

Figure 9–58. Companding Processes for Reception and for Transmission

From CPU or DMA controllerDXR1

To CPU or DMA controllerDRR1

16

16

DX
8

8

XSR1 Compress

ExpandDR RBR1RSR1
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9.8.12.2 Format of Expanded Data

For reception, the 8-bit compressed data in RBR1 is expanded to left-justified
16-bit data in DRR1. Note that the RJUST bit of SPCR1 is ignored when com-
panding is used.

9.8.12.3 Companding Internal Data

If the McBSP is otherwise unused (the serial port transmit and receive sections
are reset), the companding hardware can compand internal data. See Capa-
bility to Compand Internal Data on page 9-10.

9.8.12.4 Option to Receive LSB First

Normally, the McBSP transmit or receives all data with the most significant bit
(MSB) first. However, certain 8-bit data protocols (that do not use companded
data) require the least significant bit (LSB) to be transferred first. If you set
RCOMPAND = 01b in RCR2, the bit ordering of 8-bit words is reversed during
reception. Similar to companding, this feature is enabled only if the appropriate
word length bits are set to 0, indicating that 8-bit words are to be transferred
serially. If either phase of the frame does not have an 8-bit word length, the
McBSP assumes the word length is eight bits, and LSB-first ordering is done.

9.8.13 Set the Receive Data Delay

The RDATDLY bits (see Figure 9–59 and Table 9–28) determine the length of
the data delay for the receive frame.

Figure 9–59. Register Bits Used to Set the Receive Data DelayÁ
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–28. Register Bits Used to Set the Receive Data Delay

Register Bit Name Function

RCR2 1–0 RDATDLY Receive data delay

RDATDLY = 00 0-bit data delay

RDATDLY = 01 1-bit data delay

RDATDLY = 10 2-bit data delay

RDATDLY = 11 Reserved
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9.8.13.1 About the Data Delay

The start of a frame is defined by the first clock cycle in which frame synchro-
nization is found to be active. The beginning of actual data reception or trans-
mission with respect to the start of the frame can be delayed if required. This
delay is called data delay.

RDATDLY specifies the data delay for reception. The range of programmable
data delay is zero to two bit-clocks (RDATDLY = 00b–10b), as described in
Table 9–28 and shown in Figure 9–60. In this figure, the data transferred is an
8-bit value with bits labeled B7, B6, B5, and so on. Typically a 1-bit delay is
selected, because data often follows a 1-cycle active frame-sync pulse.

Figure 9–60. Range of Programmable Data Delay

B5B6B7

B4B5B6B7

B3B4B5B6B7

Data delay 2
D(R/X)

Data delay 1
D(R/X)

Data delay 0
D(R/X)

FS(R/X)

CLK(R/X)

1-bit delay

Á
Á

Á
Á

ÁÁ
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0-bit delay

2-bit delay

9.8.13.2 0-Bit Data Delay

Normally, a frame-sync pulse is detected or sampled with respect to an edge
of internal serial clock CLK(R/X). Thus, on the following cycle or later (depend-
ing on the data delay value), data may be received or transmitted. However,
in the case of 0-bit data delay, the data must be ready for reception and/or
transmission on the same serial clock cycle.

For reception this problem is solved because receive data is sampled on the
first falling edge of CLKR where an active-high internal FSR is detected. How-
ever, data transmission must begin on the rising edge of the internal CLKX
clock that generated the frame synchronization. Therefore, the first data bit is
assumed to be present in XSR1, and thus on DX. The transmitter then asyn-
chronously detects the frame-sync signal (FSX) going active high and immedi-
ately starts driving the first bit to be transmitted on the DX pin.
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9.8.13.3 2-Bit Data Delay

A data delay of two bit periods allows the serial port to interface to different
types of T1 framing devices where the data stream is preceded by a framing
bit. During reception of such a stream with data delay of two bits (framing bit
appears after a 1-bit delay and data appears after a 2-bit delay), the serial port
essentially discards the framing bit from the data stream, as shown in
Figure 9–61. In this figure, the data transferred is an 8-bit value with bits
labeled B7, B6, B5, and so on.

Figure 9–61. 2-Bit Data Delay Used to Skip a Framing Bit

DR Framing bit B5B6B7

FSR

CLKR

Á
Á

2-bit delay

9.8.14 Set the Receive Sign-Extension and Justification Mode

The RJUST bits (see Figure 9–62 and Table 9–29) determine whether data
received by the McBSP is sign extended and how it is justified.

Figure 9–62. Register Bits Used to Set the Receive Sign-Extension and
Justification Mode
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–29. Register Bits Used to Set the Receive Sign-Extension and
Justification Mode

Register Bit Name Function

SPCR1 14–13 RJUST Receive Sign-Extension and Justification Mode

RJUST = 00 Right justify data and zero fill MSBs in DRR[1,2]

RJUST = 01 Right justify data and sign extend it into the MSBs in
DRR[1,2]

RJUST = 10 Left justify data and zero fill LSBs in DRR[1,2]

RJUST = 11 Reserved
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9.8.14.1 About the Sign Extension and the Justification

RJUST in SPCR1 selects whether data in RBR[1,2] is right- or left-justified
(with respect to the MSB) in DRR[1,2] and how unused bits in DRR[1,2] are
filled—with zeros or with sign bits.

Table 9–30 and Table 9–31 show the effects of various RJUST values. The
first table shows the effect on an example 12-bit receive-data value 0xABC.
The second table shows the effect on an example 20-bit receive-data value
0xABCDE.

Table 9–30. Example: Use of RJUST Field With 12-Bit Data Value 0xABC

RJUST Justification Extension
Value in
DRR2

Value in
DRR1

00b Right Zero fill MSBs 0x0000 0x0ABC

01b Right Sign extend data into
MSBs

0xFFFF 0xFABC

10b Left Zero fill LSBs 0x0000 0xABC0

11b Reserved Reserved Reserved Reserved

Table 9–31. Example: Use of RJUST Field With 20-Bit Data Value 0xABCDE

RJUST Justification Extension
Value in
DRR2

Value in
DRR1

00b Right Zero fill MSBs 0x000A 0xBCDE

01b Right Sign extend data into
MSBs

0xFFFA 0xBCDE

10b Left Zero fill LSBs 0xABCD 0xE000

11b Reserved Reserved Reserved Reserved
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9.8.15 Set the Receive Interrupt Mode

The RINTM bits (see Figure 9–63 and Table 9–32) determine which event
generates a receive interrupt request to the CPU.

Figure 9–63. Register Bits Used to Set the Receive Interrupt Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–32. Register Bits Used to Set the Receive Interrupt Mode

Register Bit Name Function

SPCR1 5–4 RINTM Receive Interrupt Mode

RINTM = 00 RINT generated when RRDY changes from 0 to 1

RINTM = 01 RINT generated by an end-of-block or end-of-frame con-
dition in the receive multichannel selection mode

RINTM = 10 RINT generated by a new receive frame-sync pulse

RINTM = 11 RINT generated when RSYNCERR is set

9.8.15.1 About the Receive Interrupt and the Associated Modes

The receive interrupt (RINT) signals the CPU of changes to the serial port sta-
tus. Four options exist for configuring this interrupt. The options are set by the
receive interrupt mode bits, RINTM, in SPCR1.

� RINTM = 00b. Interrupt on every serial word by tracking the RRDY bit in
SPCR1. Note that regardless of the value of RINTM, RRDY can be read
to detect the RRDY = 1 condition.

� RINTM = 01b. In the multichannel selection mode, interrupt after every
16-channel block boundary has been crossed within a frame and at the
end of the frame. For details, see Using Interrupts Between Block Trans-
fers on page 9-58. In any other serial transfer case, this setting is not appli-
cable and, therefore, no interrupts are generated.
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� RINTM = 10b. Interrupt on detection of receive frame-sync pulses. This
generates an interrupt even when the receiver is in its reset state. This is
done by synchronizing the incoming frame-sync pulse to the CPU clock
and sending it to the CPU via RINT.

� RINTM = 11b. Interrupt on frame-synchronization error. Note that regard-
less of the value of RINTM, RSYNCERR can be read to detect this condi-
tion. For information on using RSYNCERR, see Unexpected Receive
Frame-Sync Pulse on page 9-38.

9.8.16 Set the Receive Frame-Sync Mode

The bits shown in Figure 9–64 and described in Table 9–33 determine the
source for receive frame synchronization and the function of the FSR pin.

Figure 9–64. Register Bits Used to Set the Receive Frame Sync Mode
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–33. Register Bits Used to Set the Receive Frame Sync Mode  

Register Bit Name Function

PCR 10 FSRM Receive Frame-Synchronization Mode

FSRM = 0 Receive frame synchronization is supplied by an exter-
nal source via the FSR pin.

FSRM = 1 Receive frame synchronization is supplied by the sam-
ple rate generator. FSR is an output pin reflecting inter-
nal FSR, except when GSYNC = 1 in SRGR2.
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Table 9–33. Register Bits Used to Set the Receive Frame Sync Mode (Continued)

Register FunctionNameBit

SRGR2 15 GSYNC Sample Rate Generator Clock Synchronization Mode

If the sample rate generator creates a frame-sync signal (FSG) that is
derived from an external input clock, the GSYNC bit determines whether
FSG is kept synchronized with pulses on the FSR pin.

GSYNC = 0 No clock synchronization is used: CLKG oscillates with-
out adjustment, and FSG pulses every (FPER + 1)
CLKG cycles.

GSYNC = 1 Clock synchronization is used. When a pulse is detected
on the FSR pin:

� CLKG is adjusted as necessary so that it is synchro-
nized with the input clock on the CLKS, CLKR, or
CLKX pin.

� FSG pulses.
FSG only pulses in response to a pulse on the FSR
pin. The frame-sync period defined in FPER is
ignored.

For more details, see Synchronizing Sample Rate Gen-
erator Outputs to an External Clock on page 9-29.

SPCR1 15 DLB Digital Loopback Mode

DLB = 0 Digital loopback mode is disabled.

DLB = 1 Digital loopback mode is enabled. The receive signals,
including the receive frame-sync signal, are connected
internally through multiplexers to the corresponding
transmit signals.

SPCR1 12–11 CLKSTP Clock Stop Mode

CLKSTP = 0Xb Clock stop mode disabled; normal clocking for non-SPI
mode.

CLKSTP = 10b Clock stop mode enabled, without clock delay. The in-
ternal receive clock signal (CLKR) and the internal re-
ceive frame-synchronization signal (FSR) are internally
connected to their transmit counterparts, CLKX and
FSX.

CLKSTP = 11b Clock stop mode enabled, with clock delay. The internal
receive clock signal (CLKR) and the internal receive
frame-synchronization signal (FSR) are internally con-
nected to their transmit counterparts, CLKX and FSX.
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9.8.16.1 About the Receive Frame-Sync Modes

Table 9–34 shows how you may select various sources to provide the receive
frame-synchronization signal and the effect on the FSR pin. The polarity of the
signal on the FSR pin is determined by the FSRP bit.

Note that in the digital loop back mode (DLB = 1), the transmit frame-sync
signal is used as the receive frame-sync signal.

Also, in the clock stop mode, the internal receive clock signal (CLKR) and the
internal receive frame-synchronization signal (FSR) are internally connected
to their transmit counterparts, CLKX and FSX.

Table 9–34. Select Sources to Provide the Receive Frame-Synchronization Signal and
the Effect on the FSR Pin

DLB FSRM GSYNC
Source of Receive Frame
Synchronization FSR Pin Status

0 0 0 or 1 An external frame-sync signal en-
ters the McBSP through the FSR
pin. The signal is then inverted as
determined by FSRP before being
used as internal FSR.

Input

0 1 0 Internal FSR is driven by the sam-
ple rate generator frame-sync sig-
nal (FSG).

Output. FSG is inverted as deter-
mined by FSRP before being driv-
en out on the FSR pin.

0 1 1 Internal FSR is driven by the sam-
ple rate generator frame-sync sig-
nal (FSG).

Input. The external frame-sync in-
put on the FSR pin is used to syn-
chronize CLKG and generate
FSG pulses.

1 0 0 Internal FSX drives internal FSR. High impedance

1 0 or 1 1 Internal FSX drives internal FSR. Input. If the sample rate generator
is running, external FSR is used
to synchronize CLKG and gener-
ate FSG pulses.

1 1 0 Internal FSX drives internal FSR. Output. Receive (same as trans-
mit) frame synchronization is in-
verted as determined by FSRP
before being driven out on the
FSR pin.
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9.8.17 Set the Receive Frame-Sync Polarity

The FSRP bit (see Figure 9–65 and Table 9–35) determines whether frame-
synchronization (frame-sync) pulses are active high or active low on the FSR
pin.

Figure 9–65. Register Bit Used to Set Receive Frame-Sync Polarity
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–35. Register Bit Used to Set Receive Frame-Sync Polarity

Register Bit Name Function

PCR 2 FSRP Receive Frame-Synchronization Polarity

FSRP = 0 Frame-synchronization pulse FSR is active high.

FSRP = 1 Frame-synchronization pulse FSR is active low.

9.8.17.1 About Frame Sync Pulses, Clock Signals, and Their Polarities

Receive frame-sync pulses can be either generated internally by the sample
rate generator (see section 9.3.2 on page 9-28) or driven by an external
source. The source of frame sync is selected by programming the mode bit,
FSRM, in PCR. FSR is also affected by the GSYNC bit in SRGR2. For informa-
tion about the effects of FSRM and GSYNC, see Set the Receive Frame-Sync
Mode on page 9-94. Similarly, receive clocks can be selected to be inputs or
outputs by programming the mode bit, CLKRM, in the PCR (see Set the
Receive Clock Mode on page 9-101).

When FSR and FSX are inputs (FSXM = FSRM= 0, external frame-sync
pulses), the McBSP detects them on the internal falling edge of clock, internal
CLKR, and internal CLKX, respectively. The receive data arriving at the DR pin
is also sampled on the falling edge of internal CLKR. Note that these internal
clock signals are either derived from external source via CLK(R/X) pins or driv-
en by the sample rate generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs, implying that they are driven by the sample
rate generator, they are generated (transition to their active state) on the rising
edge of internal clock, CLK(R/X). Similarly, data on the DX pin is output on the
rising edge of internal CLKX.
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FSRP, FSXP, CLKRP, and CLKXP in the pin control register (PCR) configure
the polarities of the FSR, FSX, CLKR, and CLKX signals, respectively. All
frame-sync signals (internal FSR, internal FSX) that are internal to the serial
port are active high. If the serial port is configured for external frame synchro-
nization (FSR/FSX are inputs to McBSP), and FSRP = FSXP = 1, the external
active-low frame-sync signals are inverted before being sent to the receiver
(internal FSR) and transmitter (internal FSX). Similarly, if internal synchroniza-
tion (FSR/FSX are output pins and GSYNC = 0) is selected, the internal
active-high frame-sync signals are inverted, if the polarity bit FS(R/X)P = 1,
before being sent to the FS(R/X) pin. The figure in the topic Clock and Frame
Generation shows this inversion using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Note that data is always transmitted on the
rising edge of internal CLKX. If CLKXP = 1, and external clocking is selected
(CLKXM = 0 and CLKX is an input), the external falling-edge triggered input
clock on CLKX is inverted to a rising-edge triggered clock before being sent
to the transmitter. If CLKXP = 1, and internal clocking selected (CLKXM = 1
and CLKX is an output pin), the internal (rising-edge triggered) clock, internal
CLKX, is inverted before being sent out on the CLKX pin.

Similarly, the receiver can reliably sample data that is clocked with a rising
edge clock (by the transmitter). The receive clock polarity bit, CLKRP, sets the
edge used to sample received data. Note that the receive data is always
sampled on the falling edge of internal CLKR. Therefore, if CLKRP = 1 and ex-
ternal clocking is selected (CLKRM = 0 and CLKR is an input pin), the external
rising-edge triggered input clock on CLKR is inverted to a falling-edge trig-
gered clock before being sent to the receiver. If CLKRP = 1, and internal clock-
ing is selected (CLKRM = 1), the internal falling-edge triggered clock is
inverted to a rising-edge triggered clock before being sent out on the CLKR pin.

Note that CLKRP = CLKXP in a system where the same clock (internal or
external) is used to clock the receiver and transmitter. The receiver uses the
opposite edge as the transmitter to ensure valid setup and hold of data around
this edge. Figure 9–66 shows how data clocked by an external serial device
using a rising edge, may be sampled by the McBSP receiver on the falling edge
of the same clock.
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Figure 9–66. Data Clocked Externally Using a Rising Edge and
Sampled by the McBSP Receiver on a Falling Edge
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9.8.18 Set the SRG Frame-Sync Period and Pulse Width

Figure 9–67. Register Bits Used to Set the SRG Frame-Sync Period and Pulse Width
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–36. Register Bits Used to Set the SRG Frame-Sync Period and Pulse Width

Register Bit Name Function

SRGR2 11–0 FPER Sample Rate Generator Frame-Sync Period

For the frame-sync signal FSG, (FPER + 1) determines the period from the
start of a frame-sync pulse to the start of the next frame-sync pulse.

Range for (FPER + 1): 1 to 4096 CLKG cycles.

SRGR1 15–8 FWID Sample Rate Generator Frame-Sync Pulse Width

This field plus 1 determines the width of each frame-sync pulse on FSG.

Range for (FWID + 1): 1 to 256 CLKG cycles.

9.8.18.1 About the Frame-Sync Period and the Frame-Sync Pulse Width

The sample rate generator can produce a clock signal, CLKG, and a frame-
sync signal, FSG. If the sample rate generator is supplying receive or transmit
frame synchronization, you must program the bit fields FPER and FWID.
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On FSG, the period from the start of a frame-sync pulse to the start of the next
pulse is (FPER + 1) CLKG cycles. The 12 bits of FPER allow a frame-sync
period of 1 to 4096 CLKG cycles, which allows up to 4096 data bits per frame.
When GSYNC = 1, FPER is a don’t care value.

Each pulse on FSG has a width of (FWID + 1) CLKG cycles. The eight bits of
FWID allow a pulse width of 1 to 256 CLKG cycles. It is recommended that
FWID be programmed to a value less than the programmed word length.

The values in FPER and FWID are loaded into separate down-counters. The
12-bit FPER counter counts down the generated clock cycles from the
programmed value (4095 maximum) to 0. The 8-bit FWID counter counts
down from the programmed value (255 maximum) to 0.

Figure 9–68 shows a frame-sync period of 16 CLKG periods
(FPER = 15 or 00001111b) and a frame-sync pulse with an active width of 2
CLKG periods (FWID = 1).

Figure 9–68. Frame of Period 16 CLKG Periods and Active Width of 2 CLKG Periods

FSG

CLKG

19181716151413121110987654321

Frame-sync period: (FPER+1) x CLKG

Frame-sync pulse width: (FWID + 1) x CLKG

When the sample rate generator comes out of reset, FSG is in its inactive state.
Then, when FRST_ = 1 and FSGM = 1, a frame-sync pulse is generated. The
frame width value (FWID + 1) is counted down on every CLKG cycle until it
reaches 0, at which time FSG goes low. At the same time, the frame period
value (FPER + 1) is also counting down. When this value reaches 0, FSG goes
high, indicating a new frame.
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9.8.19 Set the Receive Clock Mode

Figure 9–69. Register Bits Used to Set the Receive Clock ModeÁ
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–37. Register Bits Used to Set the Receive Clock Mode  

Register Bit Name Function

PCR 8 CLKRM Receive Clock Mode

Case 1: Digital loopback mode not set (DLB = 0) in SPCR1.

CLKRM = 0 The CLKR pin is an input pin that supplies the internal
receive clock (CLKR).

CLKRM = 1 Internal CLKR is driven by the sample rate generator of
the McBSP. The CLKR pin is an output pin that reflects
internal CLKR.

Case 2: Digital loopback mode set (DLB = 1) in SPCR1.

CLKRM = 0 The CLKR pin is in the high impedance state. The inter-
nal receive clock (CLKR) is driven by the internal trans-
mit clock (CLKX). Internal CLKX is derived according to
the CLKXM bit of PCR.

CLKRM = 1 Internal CLKR is driven by internal CLKX. The CLKR pin
is an output pin that reflects internal CLKR. Internal
CLKX is derived according to the CLKXM bit of PCR.

SPCR1 15 DLB Digital Loopback Mode

DLB = 0 Digital loopback mode is disabled.

DLB = 1 Digital loopback mode is enabled. The receive signals,
including the receive frame-sync signal, are connected
internally through multiplexers to the corresponding
transmit signals.
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Table 9–37. Register Bits Used to Set the Receive Clock Mode (Continued)

Register FunctionNameBit

SPCR1 12–11 CLKSTP Clock Stop Mode

CLKSTP = 0Xb Clock stop mode disabled; normal clocking for non-SPI
mode.

CLKSTP = 10b Clock stop mode enabled, without clock delay. The in-
ternal receive clock signal (CLKR) and the internal re-
ceive frame-synchronization signal (FSR) are internally
connected to their transmit counterparts, CLKX and
FSX.

CLKSTP = 11b Clock stop mode enabled, with clock delay. The internal
receive clock signal (CLKR) and the internal receive
frame-synchronization signal (FSR) are internally con-
nected to their transmit counterparts, CLKX and FSX.

9.8.19.1 Selecting a Source for the Receive Clock and a Data Direction for the CLKR Pin

Table 9–38 shows how you may select various sources to provide the receive
clock signal and the effect on the CLKR pin. The polarity of the signal on the
CLKR pin is determined by the CLKRP bit.

Note that in the digital loop back mode (DLB = 1), the transmit clock signal is
used as the receive clock signal.

Also, in the clock stop mode, the internal receive clock signal (CLKR) and the
internal receive frame-synchronization signal (FSR) are internally connected
to their transmit counterparts, CLKX and FSX.

Table 9–38. Select Sources to Provide the Receive Clock Signal and the Effect on the
CLKR Pin  

DLB in
SPCR1

CLKRM in
PCR Source of Receive Clock CLKR Pin Status

0 0 The CLKR pin is an input driven by
an external clock. The external clock
signal is inverted as determined by
CLKRP before being used.

Input

0 1 The sample rate generator clock
(CLKG) drives internal CLKR.

Output. CLKG, inverted as determined by
CLKRP, is driven out on the CLKR pin.
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Table 9–38. Select Sources to Provide the Receive Clock Signal and the Effect on the
CLKR Pin (Continued)

DLB in
SPCR1 CLKR Pin StatusSource of Receive Clock

CLKRM in
PCR

1 0 Internal CLKX drives internal CLKR.
To configure CLKX, see Set the
Transmit Clock Mode on page 9-136.

High impedance

1 1 Internal CLKX drives internal CLKR.
To configure CLKX, see Set the
Transmit Clock Mode on page 9-136.

Output. Internal CLKR (same as internal
CLKX) is inverted as determined by
CLKRP before being driven out on the
CLKR pin.

9.8.20 Set the Receive Clock Polarity

Figure 9–70. Register Bit Used to Set Receive Clock Polarity
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–39. Register Bit Used to Set Receive Clock Polarity

Register Bit Name Function

PCR 0 CLKRP Receive Clock Polarity

CLKRP = 0 Receive data sampled on falling edge of CLKR.

CLKRP = 1 Receive data sampled on rising edge of CLKR.

9.8.20.1 About Frame Sync Pulses, Clock Signals, and Their Polarities

Receive frame-sync pulses can be either generated internally by the sample
rate generator (see section 9.3.2 on page 9-28) or driven by an external
source. The source of frame sync is selected by programming the mode bit,
FSRM, in PCR. FSR is also affected by the GSYNC bit in SRGR2. For informa-
tion about the effects of FSRM and GSYNC, see Set the Receive Frame-Sync
Mode on page 9-94. Similarly, receive clocks can be selected to be inputs or
outputs by programming the mode bit, CLKRM, in the PCR (see Set the
Receive Clock Mode on page 9-101).
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When FSR and FSX are inputs (FSXM = FSRM= 0, external frame-sync
pulses), the McBSP detects them on the internal falling edge of clock, internal
CLKR, and internal CLKX, respectively. The receive data arriving at the DR pin
is also sampled on the falling edge of internal CLKR. Note that these internal
clock signals are either derived from external source via CLK(R/X) pins or driv-
en by the sample rate generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs, implying that they are driven by the sample
rate generator, they are generated (transition to their active state) on the rising
edge of internal clock, CLK(R/X). Similarly, data on the DX pin is output on the
rising edge of internal CLKX.

FSRP, FSXP, CLKRP, and CLKXP in the pin control register (PCR) configure
the polarities of the FSR, FSX, CLKR, and CLKX signals, respectively. All
frame-sync signals (internal FSR, internal FSX) that are internal to the serial
port are active high. If the serial port is configured for external frame synchro-
nization (FSR/FSX are inputs to McBSP), and FSRP = FSXP = 1, the external
active-low frame-sync signals are inverted before being sent to the receiver
(internal FSR) and transmitter (internal FSX). Similarly, if internal synchroniza-
tion (FSR/FSX are output pins and GSYNC = 0) is selected, the internal
active-high frame-sync signals are inverted, if the polarity bit FS(R/X)P = 1,
before being sent to the FS(R/X) pin. The figure in the topic Clock and Frame
Generation shows this inversion using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Note that data is always transmitted on the
rising edge of internal CLKX. If CLKXP = 1, and external clocking is selected
(CLKXM = 0 and CLKX is an input), the external falling-edge triggered input
clock on CLKX is inverted to a rising-edge triggered clock before being sent
to the transmitter. If CLKXP = 1, and internal clocking selected (CLKXM = 1
and CLKX is an output pin), the internal (rising-edge triggered) clock, internal
CLKX, is inverted before being sent out on the CLKX pin.

Similarly, the receiver can reliably sample data that is clocked with a rising
edge clock (by the transmitter). The receive clock polarity bit, CLKRP, sets the
edge used to sample received data. Note that the receive data is always
sampled on the falling edge of internal CLKR. Therefore, if CLKRP = 1 and ex-
ternal clocking is selected (CLKRM = 0 and CLKR is an input pin), the external
rising-edge triggered input clock on CLKR is inverted to a falling-edge trig-
gered clock before being sent to the receiver. If CLKRP = 1, and internal clock-
ing is selected (CLKRM = 1), the internal falling-edge triggered clock is
inverted to a rising-edge triggered clock before being sent out on the CLKR pin.

Note that CLKRP = CLKXP in a system where the same clock (internal or
external) is used to clock the receiver and transmitter. The receiver uses the
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opposite edge as the transmitter to ensure valid setup and hold of data around
this edge. Figure 9–71 shows how data clocked by an external serial device
using a rising edge, may be sampled by the McBSP receiver on the falling edge
of the same clock.

Figure 9–71. Data Clocked Externally Using a Rising Edge and
Sampled by the McBSP Receiver on a Falling Edge

B6B7DR

CLKR

Data hold
Á
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Data setup
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9.8.21 Set the SRG Clock Divide-Down Value

Figure 9–72. Register Bits Used to Set the Sample Rate Generator (SRG)
Clock Divide-Down Value
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–40. Register Bits Used to Set the Sample Rate Generator (SRG)
Clock Divide-Down Value

Register Bit Name Function

SRGR1 7–0 CLKGDV Sample Rate Generator Clock Divide-Down Value

The input clock of the sample rate generator is divided by (CLKGDV + 1) to
generate the required sample rate generator clock frequency. The default
value of CLKGDV is 1 (divide input clock by 2).

9.8.21.1 About the Sample Rate Generator Clock Divider

The first divider stage generates the serial data bit clock from the input clock.
This divider stage utilizes a counter, preloaded by CLKGDV, that contains the
divide ratio value.

The output of the first divider stage is the data bit clock, which is output as
CLKG and which serves as the input for the second and third stages of the
divider.
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CLKG has a frequency equal to 1/(CLKGDV + 1) of sample rate generator in-
put clock. Thus, the sample generator input clock frequency is divided by a val-
ue between 1 and 256. When CLKGDV is odd or equal to 0, the CLKG duty
cycle is 50%. When CLKGDV is an even value, 2p, representing an odd divide-
down, the high-state duration is p+1 cycles and the low-state duration is p
cycles.

9.8.22 Set the SRG Clock Synchronization Mode

Figure 9–73. Register Bit Used to Set the SRG Clock Synchronization Mode

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

SRGR2 ÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁÁÁÁÁÁÁ15 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ14–0 ÁÁÁ

ÁÁGSYNC
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ

Á
ÁÁÁ

ÁÁ
ÁÁÁÁ
ÁÁÁÁR/W – 0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Á
Á

Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–41. Register Bit Used to Set the SRG Clock Synchronization Mode

Register Bit Name Function

SRGR2 15 GSYNC Sample Rate Generator Clock Synchronization

GSYNC is used only when the input clock source for the sample rate gen-
erator is external—on the CLKS, CLKR, or CLKX pin.

GSYNC = 0 The sample rate generator clock (CLKG) is free running.
CLKG oscillates without adjustment, and FSG pulses
every (FPER + 1) CLKG cycles.

GSYNC = 1 Clock synchronization is performed. When a pulse is
detected on the FSR pin:

� CLKG is adjusted as necessary so that it is synchro-
nized with the input clock on the CLKS, CLKR, or
CLKX pin.

� FSG pulses.
FSG only pulses in response to a pulse on the FSR
pin. The frame-sync period defined in FPER is ig-
nored.

For more details on using the clock synchronization feature, see Synchroniz-
ing Sample Rate Generator Outputs to an External Clock on page 9-29.
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9.8.23 Set the SRG Clock Mode (Choose an Input Clock)

Figure 9–74. Register Bits Used to Set the SRG Clock Mode (Choose an Input Clock)
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–42. Register Bits Used to Set the SRG Clock Mode (Choose an Input Clock)

Register Bit Name Function

PCR
SRGR2

7
13

SCLKME
CLKSM

Sample Rate Generator Clock Mode

SCLKME = 0
CLKSM = 0

Sample rate generator clock derived from CLKS pin

SCLKME = 0
CLKSM = 1

Sample rate generator clock derived from CPU clock
(This is the condition forced by a DSP reset.)

SCLKME = 1
CLKSM = 0

Sample rate generator clock derived from CLKR pin

SCLKME = 1
CLKSM = 1

Sample rate generator clock derived from CLKX pin

9.8.23.1 About the SRG Clock Mode

The sample rate generator can produce a clock signal (CLKG) for use by the
receiver, the transmitter, or both, but CLKG is derived from an input clock. The
preceding table shows the four possible sources of the input clock. For more
details on generating CLKG, see Clock Generation in the Sample Rate Gener-
ator on page 9-24.
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9.8.24 Set the SRG Input Clock Polarity

Figure 9–75. Register Bits Used to Set the SRG Input Clock Polarity
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–43. Register Bits Used to Set the SRG Input Clock Polarity

Register Bit Name Function

SRGR2 14 CLKSP CLKS Pin Polarity

CLKSP determines the input clock polarity when the CLKS pin supplies the
input clock (SCLKME = 0 and CLKSM = 0).

CLKSP = 0 Rising edge on CLKS pin generates CLKG and FSG.

CLKSP = 1 Falling edge on CLKS pin generates CLKG and FSG.

PCR 1 CLKXP CLKX Pin Polarity

CLKXP determines the input clock polarity when the CLKX pin supplies the
input clock (SCLKME = 1 and CLKSM = 1).

CLKXP = 0 Rising edge on CLKX pin generates transitions on CLKG
and FSG.

CLKXP = 1 Falling edge on CLKX pin generates transitions on CLKG
and FSG.

PCR 0 CLKRP CLKR Pin Polarity

CLKRP determines the input clock polarity when the CLKR pin supplies the
input clock (SCLKME = 1 and CLKSM = 0).

CLKRP = 0 Falling edge on CLKR pin generates transitions on
CLKG and FSG.

CLKRP = 1 Rising edge on CLKR pin generates transitions on CLKG
and FSG.
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9.8.24.1 Using CLKSP/CLKXP/CLKRP to Choose an Input Clock Polarity

The sample rate generator can produce a clock signal (CLKG) and a frame-
sync signal (FSG) for use by the receiver, the transmitter, or both. To produce
CLKG and FSG, the sample rate generator must be driven by an input clock
signal derived from the CPU clock or from an external clock on the CLKS,
CLKX, or CLKR pin. If you use a pin, choose a polarity for that pin by using the
appropriate polarity bit (CLKSP for the CLKS pin, CLKXP for the CLKX pin,
CLKRP for the CLKR pin). The polarity determines whether the rising or falling
edge of the input clock generates transitions on CLKG and FSG.
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9.9 Transmitter Configuration

To configure the McBSP transmitter, perform the following procedure:

1) Place the McBSP/transmitter in reset (see section 9.9.2).

2) Program the McBSP registers for the desired transmitter operation (see
9.9.1).

3) Take the transmitter out of reset (see section 9.9.2).

9.9.1 Programming the McBSP Registers for the Desired Transmitter Operation

The following is a list of important tasks to be performed when you are configur-
ing the McBSP transmitter. Each task corresponds to one or more McBSP
register bit fields. Note that in the list, SRG is an abbreviation for sample rate
generator.

It may be helpful to print the McBSP Register Worksheet first and to fill in the
worksheet as you read the tasks.

� Global behavior:

� Set the transmitter pins to operate as McBSP pins

� Enable/disable the digital loopback mode

� Enable/disable the clock stop mode

� Enable/disable transmit multichannel selection

� Enable/disable the A-bis mode

� Data behavior:

� Choose 1 or 2 phases for the transmit frame

� Set the transmit word length(s)

� Set the transmit frame length

� Enable/disable the transmit frame-sync ignore function

� Set the transmit companding mode

� Set the transmit data delay

� Set the transmit DXENA mode

� Set the transmit interrupt mode

� Frame-sync behavior:

� Set the transmit frame-sync mode

� Set the transmit frame-sync polarity

� Set the SRG frame-sync period and pulse width
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� Clock behavior:

� Set the transmit clock mode

� Set the transmit clock polarity

� Set the SRG clock divide-down value

� Set the SRG clock synchronization mode

� Set the SRG clock mode (choose an input clock)

� Set the SRG input clock polarity

9.9.2 Resetting and Enabling the Transmitter

The first step of the transmitter configuration procedure is to reset the transmit-
ter, and the last step is to enable the transmitter (to take it out of reset).
Figure 9–76 and Table 9–44 describe the bits used for both of these steps.

Figure 9–76. Register Bits Used to Place Transmitter in Reset
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–44. Register Bits Used to Place Transmitter in Reset

Register Bit Name Function

SPCR2 0 XRST_ Transmitter Reset

XRST_ = 0 The serial port transmitter is disabled and in the reset
state.

XRST_ = 1 The serial port transmitter is enabled.

SPCR2 6 GRST_ Sample Rate Generator Reset

GRST_ = 0 Sample rate generator is reset.

If GRST_ = 0 due to a DSP reset, CLKG is driven by the
CPU clock divided by 2, and FSG is driven low (inactive).
If GRST_ = 0 due to program code, CLKG and FSG are
both driven low (inactive).

GRST_ = 1 Sample rate generator is enabled. CLKG is driven ac-
cording to the configuration programmed in the sample
rate generator registers (SRGR[1,2]). If FRST_ = 1, the
generator also generates the frame-sync signal FSG as
programmed in the sample rate generator registers.

SPCR2 7 FRST_ Frame-Sync Logic Reset

FRST_ = 0 Frame-synchronization logic is reset. The sample rate
generator does not generate frame-sync signal FSG,
even if GRST_ = 1.

FRST_ = 1 If GRST_ = 1, frame-sync signal FSG is generated after
(FPER + 1) number of CLKG clock cycles; all frame
counters are loaded with their programmed values.

9.9.2.1 Reset Considerations

The serial port can be reset in the following two ways:

1) A DSP reset (RESET_ signal driven low) places the receiver, transmitter,
and sample rate generator in reset. When the device reset is removed
(RESET_ signal released), GRST_ = FRST_ = RRST_ = XRST_ = 0,
keeping the entire serial port in the reset state.

2) The serial port transmitter and receiver can be reset directly using the
RRST_ and XRST_ bits in the serial port control registers. The sample rate
generator can be reset directly using the GRST_ bit in SPCR2.

Table 9–45 shows the state of McBSP pins when the serial port is reset due
to a DSP reset and a direct receiver/transmitter reset.
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Table 9–45. Reset State of Each McBSP Pin

Pin
Possible
State(s)

State Forced By
DSP Reset

State Forced By
Receiver/Transmitter Reset

Receiver Reset (RRST_ = 0 and GRST_ = 1)

DR I Input Input

CLKR I/O/Z Input Known state if Input; CLKR running if output

FSR I/O/Z Input Known state if Input; FSRP inactive state if output

CLKS I/O/Z Input Input

Transmitter Reset (XRST_ = 0 and GRST_ = 1)

DX O/Z High impedance High impedance

CLKX I/O/Z Input Known state if Input; CLKX running if output

FSX I/O/Z Input Known state if Input; FSXP inactive state if output

CLKS I Input Input

For more details about McBSP reset conditions and effects, see Resetting and
Initializing a McBSP on page 9-147.

9.9.3 Set the Transmitter Pins to Operate as McBSP Pins

Figure 9–77. Register Bit Used to Set Transmitter Pins to Operate as McBSP Pins
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Table 9–46. Register Bit Used to Set Transmitter Pins to Operate as McBSP Pins

Register Bit Name Function

PCR 13 XIOEN Transmit I/O enable

This bit is only applicable when the transmitter is in the reset state
(XRST_ = 0 in SPCR2).

XIOEN = 0 The DX, FSX, CLKX, and CLKS pins are configured as
serial port pins and do not function as general-purpose
I/Os.

XIOEN = 1 The DX pin is a general-purpose output pin. The FSX
and CLKX pins are general-purpose I/O pins. These seri-
al port pins do not perform serial port operation. The
CLKS pin is a general-purpose input pin if
RIOEN = XIOEN = 1 and RRST_ = XRST_ = 0. For
more information on using these pins as general-purpose
I/O pins, see page 9-144.

9.9.4 Enable/Disable the Digital Loopback Mode

The DLB bit determines whether the digital loopback mode is on. DLB is shown
in Figure 9–78 and described in Table 9–47.

Figure 9–78. Register Bit Used to Enable/Disable the Digital Loopback Mode
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–47. Register Bit Used to Enable/Disable the Digital Loopback Mode

Register Bit Name Function

SPCR1 15 DLB Digital Loopback Mode

DLB = 0 Digital loopback mode is disabled.

DLB = 1 Digital loopback mode is enabled.

9.9.4.1 About the Digital Loopback Mode

In the digital loopback mode, the receive signals are connected internally
through multiplexers to the corresponding transmit signals, as shown in
Table 9–48. This mode allows testing of serial port code with a single DSP
device; the McBSP receives the data it transmits.
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Table 9–48. Receive Signals Connected to Transmit Signals in Digital Loopback Mode

This Receive Signal …
Is Fed Internally By
This Transmit Signal …

DR (receive data) DX (transmit data)

FSR (receive frame synchronization) FSX (transmit frame synchronization)

CLKR (receive clock) CLKX (transmit clock)

9.9.5 Enable/Disable the Clock Stop Mode

The CLKSTP bits determine whether the clock stop mode is on. CLKSTP is
shown in Figure 9–79 and described in Table 9–49.

Figure 9–79. Register Bits Used to Enable/Disable the Clock Stop Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–49. Register Bits Used to Enable/Disable the Clock Stop Mode

Register Bit Name Function

SPCR1 12–11 CLKSTP Clock Stop Mode

CLKSTP = 0Xb Clock stop mode disabled; normal clocking for non-SPI
mode.

CLKSTP = 10b Clock stop mode enabled, without clock delay

CLKSTP = 11b Clock stop mode enabled, with clock delay

9.9.5.1 About the Clock Stop Mode

The clock stop mode supports the SPI master-slave protocol. If you will not be
using the SPI protocol, you can clear CLKSTP to disable the clock stop mode.

In the clock stop mode, the clock stops at the end of each data transfer. At the
beginning of each data transfer, the clock starts immediately (CLKSTP = 10b)
or after a half-cycle delay (CLKSTP = 11b). The CLKXP bit determines wheth-
er the starting edge of the clock on the CLKX pin is rising or falling. The CLKRP
bit determines whether receive data is sampled on the rising or falling edge of
the clock shown on the CLKR pin.
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Table 9–50 summarizes the impact of CLKSTP, CLKXP, and CLKRP on serial
port operation. Note that in the clock stop mode, the receive clock is tied inter-
nally to the transmit clock, and the receive frame-sync signal is tied internally
to the transmit frame-sync signal.

Table 9–50. Effects of CLKSTP, CLKXP, and CLKRP on the Clock Scheme

Bit Settings Clock Scheme

CLKSTP = 00b or 01b
CLKXP = 0 or 1
CLKRP = 0 or 1

Clock stop mode disabled. Clock enabled for non-SPI
mode.

CLKSTP = 10b
CLKXP = 0
CLKRP = 0

Low inactive state without delay: The McBSP transmits
data on the rising edge of CLKX and receives data on
the falling edge of CLKR.

CLKSTP = 11b
CLKXP = 0
CLKRP = 1

Low inactive state with delay: The McBSP transmits
data one-half cycle ahead of the rising edge of CLKX
and receives data on the rising edge of CLKR.

CLKSTP = 10b
CLKXP = 1
CLKRP = 0

High inactive state without delay: The McBSP transmits
data on the falling edge of CLKX and receives data on
the rising edge of CLKR.

CLKSTP = 11b
CLKXP = 1
CLKRP = 1

High inactive state with delay: The McBSP transmits
data one-half cycle ahead of the falling edge of CLKX
and receives data on the falling edge of CLKR.

9.9.6 Enable/Disable Transmit Multichannel Selection

Figure 9–80. Register Bits Used to Enable/Disable Transmit Multichannel Selection
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–51. Register Bits Used to Enable/Disable Transmit Multichannel Selection

Register Bit Name Function

MCR2 1–0 XMCM Transmit Multichannel Selection

XMCM = 00b No transmit multichannel selection mode is on. All chan-
nels are enabled and unmasked. No channels can be
disabled or masked.

XMCM = 01b All channels are disabled unless they are selected in the
appropriate transmit channel enable registers (XCERs).
If enabled, a channel in this mode is also unmasked.

The XMCME bit determines whether 32 channels or 128
channels are selectable in XCERs.

XMCM = 10b All channels are enabled, but they are masked unless
they are selected in the appropriate transmit channel
enable registers (XCERs).

The XMCME bit determines whether 32 channels or 128
channels are selectable in XCERs.

XMCM = 11b This mode is used for symmetric transmission and re-
ception.

All channels are disabled for transmission unless they
are enabled for reception in the appropriate receive
channel enable registers (RCERs). Once enabled, they
are masked unless they are also selected in the ap-
propriate transmit channel enable registers (XCERs).

The XMCME bit determines whether 32 channels or 128
channels are selectable in RCERs and XCERs.

For more details, see Transmit Multichannel Selection Modes on page 9-54.

9.9.7 Enable/Disable the A-bis Mode

The ABIS bit determines whether the A-bis mode is on. ABIS is shown in
Figure 9–81 and described in Table 9–52.

Figure 9–81. Register Bit Used to Enable/Disable the A-bis Mode
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R/W Read/write access
– X X is the value after a DSP reset.



Transmitter Configuration

 9-118

Table 9–52. Register Bit Used to Enable/Disable the A-bis Mode

Register Bit Name Function

SPCR1 6 ABIS A-bis Mode

ABIS = 0 The mode is disabled.

ABIS = 1 The mode is enabled. Individual bits can be enabled or
disabled during reception and transmission. For trans-
mission, the bits are controlled by transmit channel en-
able registers A and B (XCERA and XCERB). For recep-
tion, the bits are controlled by receive channel enable
registers A and B (RCERA and RCERB).

For more details, see A-bis Mode on page 9-59.

9.9.8 Choose 1 or 2 Phases for the Transmit Frame

Figure 9–82. Register Bit Used to Choose 1 or 2 Phases for the Transmit Frame
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–53. Register Bit Used to Choose 1 or 2 Phases for the Transmit Frame

Register Bit Name Function

XCR2 15 XPHASE Transmit phase number

Specifies whether the transmit frame has 1 or 2 phases.

XPHASE = 0 Single-phase frame

XPHASE = 1 Dual-phase frame
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9.9.9 Set the Transmit Word Length(s)

Figure 9–83. Register Bits Used to Set the Transmit Word Length(s)
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–54. Register Bits Used to Set the Transmit Word Length(s)

Register Bit Name Function

XCR1 7–5 XWDLEN1 Transmit Word Length of Frame Phase 1

XWDLEN1 = 000b 8 bits

XWDLEN1 = 001b 12 bits

XWDLEN1 = 010b 16 bits

XWDLEN1 = 011b 20 bits

XWDLEN1 = 100b 24 bits

XWDLEN1 = 101b 32 bits

XWDLEN1 = 11Xb Reserved

XCR2 7–5 XWDLEN2 Transmit Word Length of Frame Phase 2

XWDLEN2 = 000b 8 bits

XWDLEN2 = 001b 12 bits

XWDLEN2 = 010b 16 bits

XWDLEN2 = 011b 20 bits

XWDLEN2 = 100b 24 bits

XWDLEN2 = 101b 32 bits

XWDLEN2 = 11Xb Reserved
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9.9.9.1 About the Word Length Bits

Each frame can have one or two phases, depending on the value that you load
into the RPHASE bit. If a single-phase frame is selected, XWDLEN1 selects
the length for every serial word transmitted in the frame. If a dual-phase frame
is selected, XWDLEN1 determines the length of the serial words in phase 1
of the frame, and XWDLEN2 determines the word length in phase 2 of the
frame.

9.9.10 Set the Transmit Frame Length

Figure 9–84. Register Bits Used to Set the Transmit Frame Length
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–55. Register Bits Used to Set the Transmit Frame Length

Register Bit Name Function

XCR1 14–8 XFRLEN1 Transmit frame length 1

(XFRLEN1 + 1) is the number of serial words in phase 1 of the transmit
frame.

XFRLEN1 = 000 0000 1 word in phase 1

XFRLEN1 = 000 0001 2 words in phase 1

| |

| |

XFRLEN1 = 111 1111 128 words in phase 1

XCR2 14–8 XFRLEN2 Transmit frame length 2

If a dual-phase frame is selected, (XFRLEN2 + 1) is the number of serial
words in phase 2 of the transmit frame.

XFRLEN2 = 000 0000 1 word in phase 2

XFRLEN2 = 000 0001 2 words in phase 2

| |

| |

XFRLEN2 = 111 1111 128 words in phase 2

9.9.10.1 About the Selected Frame Length

The transmit frame length is the number of serial words in the transmit frame.
Each frame can have one or two phases, depending on value that you load into
the XPHASE bit.

If a single-phase frame is selected (XPHASE = 0), the frame length is equal
to the length of phase 1. If a dual-phase frame is selected (XPHASE = 1), the
frame length is the length of phase 1 plus the length of phase 2.

The 7-bit XFRLEN fields allow up to 128 words per phase. See Table 9–56 for
a summary of how to calculate the frame length. This length corresponds to
the number of words or logical time slots or channels per frame-synchroniza-
tion pulse.

Note : Program the XFRLEN fields with [w minus 1], where w represents the
number of words per phase. For the example, if you want a phase length of
128 words in phase 1, load 127 into XFRLEN1.

Table 9–56. How to Calculate Frame Length

XPHASE XFRLEN1 XFRLEN2 Frame Length

0 0 ≤ XFRLEN1 ≤ 127 Don’t care (XFRLEN1 + 1) words

1 0 ≤ XFRLEN1 ≤ 127 0 ≤ XFRLEN2 ≤ 127 (XFRLEN1 + 1) + (XFRLEN2 + 1) words
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9.9.11 Enable/Disable the Transmit Frame-Sync Ignore Function

Figure 9–85. Register Bit Used to Enable/Disable the
Transmit Frame-Sync Ignore Function

ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

XCR2 ÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15–3 ÁÁÁÁ
ÁÁÁÁ

2 ÁÁÁÁÁ
ÁÁÁÁÁ

1–0 Á
ÁÁÁ

ÁÁ
XFIGÎÎÎÎÎ
ÎÎÎÎÎ

Á
ÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

R/W – 0ÁÁÁÁÁ
ÁÁÁÁÁ

Á
ÁLegend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–57. Register Bit Used to Enable/Disable the
Transmit Frame-Sync Ignore Function

Register Bit Name Function

XCR2 2 XFIG Transmit Frame-Sync Ignore

XFIG = 0 An unexpected transmit frame-sync pulse causes the
McBSP to restart the frame transfer.

XFIG = 1 The McBSP ignores unexpected transmit frame-sync
pulses.

9.9.11.1 About Unexpected Frame-Sync Pulses and the Frame-Sync Ignore Function

If a frame-synchronization (frame-sync) pulse starts the transfer of a new
frame before the current frame is fully transmitted, this pulse is treated as an
unexpected frame-sync pulse.

When XFIG = 1, normal transmission continues with unexpected frame-sync
signals ignored.

When XFIG = 0 and an unexpected frame-sync pulse occurs, the serial port:

1) Aborts the present transmission

2) Sets XSYNCERR to 1 in SPCR2

3) Re-initiates transmission of the current word that was aborted

For more details about the frame-sync error condition, see Unexpected Trans-
mit Frame-Sync Pulse on page 9-44.

9.9.11.2 Examples Showing the Effects of XFIG

Figure 9–86 shows an example in which word B is interrupted by an unex-
pected frame-sync pulse when (R/X)FIG = 0. In the case of transmission, the
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transmission of B is aborted (B is lost). This condition is a transmit synchro-
nization error, and thus sets the XSYNCERR bit. No new data has been written
to DXR[1,2], and therefore, the McBSP transmits B again.

Figure 9–86. Unexpected Frame-Sync Pulse With (R/X)FIG = 0

Current data re-transmitted

New data received

(R/X)SYNCERR

DX

DR

FS(R/X)

CLK(R/X)

C6C7B0
ÁÁ
ÁÁ

B2B3B4B5B7 B6B6B7A0 B1

D6D7C0C1C2C3C4C5C6C7B6B7A0 ÁÁ
ÁÁ

Frame sync aborts current transfer

In contrast with Figure 9–86, Figure 9–87 shows McBSP operation when
unexpected frame-sync signals are ignored (when (R/X)FIG = 1). Here, the
transfer of word B is not affected by an unexpected frame-sync pulse.

Figure 9–87. Unexpected Frame-Sync Pulse With (R/X)FIG = 1

(R/X)SYNCERR

D(R/X)

FS(R/X)

CLK(R/X)

C4C5C6C7B0B1B2B3B4B5B6B7A0 ÁÁ
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Frame synchronization ignored

9.9.12 Set the Transmit Companding Mode

Figure 9–88. Register Bits Used to Set the Transmit Companding Mode
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–58. Register Bits Used to Set the Transmit Companding Mode

Register Bit Name Function

XCR2 4–3 XCOMPAND Transmit Companding Mode

Modes other than 00b are enabled only when the appropriate XWDLEN
is 000b, indicating 8-bit data.

XCOMPAND = 00b No companding, any size data, MSB trans-
mitted first

XCOMPAND = 01b No companding, 8-bit data, LSB transmitted first
(for details, scroll down to Option to Transmit
LSB First)

XCOMPAND = 10b µ-law companding, 8-bit data, MSB transmitted
first

XCOMPAND = 11b A-law companding, 8-bit data, MSB transmitted
first

9.9.12.1 About Companding

Companding (COMpressing and exPANDing) hardware allows compression
and expansion of data in either µ-law or A-law format. The companding
standard employed in the United States and Japan is µ-law. The European
companding standard is referred to as A-law. The specifications for µ-law and
A-law log PCM are part of the CCITT G.711 recommendation.

A-law and µ-law allow 13 bits and 14 bits of dynamic range, respectively. Any
values outside this range are set to the most positive or most negative value.
Thus, for companding to work best, the data transferred to and from the
McBSP via the CPU or DMA controller must be at least 16 bits wide.

The µ-law and A-law formats both encode data into 8-bit code words. Compan-
ded data is always 8 bits wide; the appropriate word length bits (RWDLEN1,
RWDLEN2, XWDLEN1, XWDLEN2) must therefore be set to 0, indicating an
8-bit wide serial data stream. If companding is enabled and either of the frame
phases does not have an 8-bit word length, companding continues as if the
word length is 8 bits.

Figure 9–89 illustrates the companding processes. When companding is cho-
sen for the transmitter, compression occurs during the process of copying data
from DXR1 to XSR1. The transmit data is encoded according to the specified
companding law (A-law or µ-law). When companding is chosen for the receiv-
er, expansion occurs during the process of copying data from RBR1 to DRR1.
The receive data is decoded to 2s-complement format.
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Figure 9–89. Companding Processes for Reception and for Transmission

From CPU or DMA controllerDXR1

To CPU or DMA controllerDRR1

16

16

DX
8

8

XSR1 Compress

ExpandDR RBR1RSR1

9.9.12.2 Format for Data To Be Compressed

For transmission using µ-law compression, make sure the 14 data bits are left-
justified in DXR1, with the remaining two low-order bits filled with 0s as shown
in Figure 9–90.

Figure 9–90. µ-Law Transmit Data Companding Format

µ-law format in DXR1 00Value

1–015–2

For transmission using A-law compression, make sure the 13 data bits are left-
justified in DXR1, with the remaining three low-order bits filled with 0s as
shown in Figure 9–91.

Figure 9–91. A-Law Transmit Data Companding Format

000

2–0

Value

15–3

A-law format in DXR1

9.9.12.3 Capability to Compand Internal Data

If the McBSP is otherwise unused (the serial port transmit and receive sections
are reset), the companding hardware can compand internal data. See section
9.2.2.2 on page 9-10.

9.9.12.4 Option to Transmit LSB First

Normally, the McBSP transmit or receives all data with the most significant bit
(MSB) first. However, certain 8-bit data protocols (that do not use companded
data) require the least significant bit (LSB) to be transferred first. If you set
XCOMPAND = 01b in XCR2, the bit ordering of 8-bit words is reversed (LSB
first) before being sent from the serial port. Similar to companding, this feature
is enabled only if the appropriate word length bits are set to 0, indicating that
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8-bit words are to be transferred serially. If either phase of the frame does not
have an 8-bit word length, the McBSP assumes the word length is eight bits,
and LSB-first ordering is done.

9.9.13 Set the Transmit Data Delay

Figure 9–92. Register Bits Used to Set the Transmit Data Delay
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–59. Register Bits Used to Set the Transmit Data Delay

Register Bit Name Function

XCR2 1–0 XDATDLY Transmitter data delay

XDATDLY = 00 0-bit data delay

XDATDLY = 01 1-bit data delay

XDATDLY = 10 2-bit data delay

XDATDLY = 11 Reserved

9.9.13.1 About the Data Delay

The start of a frame is defined by the first clock cycle in which frame synchro-
nization is found to be active. The beginning of actual data reception or trans-
mission with respect to the start of the frame can be delayed if required. This
delay is called data delay.

XDATDLY specifies the data delay for transmission. The range of program-
mable data delay is zero to two bit-clocks (XDATDLY = 00b–10b), as
described in Table 9–59 and Figure 9–93. In this figure, the data transferred
is an 8-bit value with bits labeled B7, B6, B5, and so on. Typically a 1-bit delay
is selected, because data often follows a 1-cycle active frame-sync pulse.



Transmitter Configuration

9-127Multichannel Buffered Serial Port (McBSP)

Figure 9–93. Range of Programmable Data Delay
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2-bit delay

9.9.13.2 0-Bit Data Delay

Normally, a frame-sync pulse is detected or sampled with respect to an edge
of serial clock internal CLK(R/X). Thus, on the following cycle or later (depend-
ing on the data delay value), data may be received or transmitted. However,
in the case of 0-bit data delay, the data must be ready for reception and/or
transmission on the same serial clock cycle.

For reception this problem is solved because receive data is sampled on the
first falling edge of CLKR where an active-high internal FSR is detected. How-
ever, data transmission must begin on the rising edge of the internal CLKX
clock that generated the frame synchronization. Therefore, the first data bit is
assumed to be present in XSR1, and thus DX. The transmitter then asynchro-
nously detects the frame synchronization, FSX, going active high, and imme-
diately starts driving the first bit to be transmitted on the DX pin.

9.9.13.3 2-Bit Data Delay

A data delay of two bit periods allows the serial port to interface to different
types of T1 framing devices where the data stream is preceded by a framing
bit. During reception of such a stream with data delay of two bits (framing bit
appears after a 1-bit delay and data appears after a 2-bit delay), the serial port
essentially discards the framing bit from the data stream, as shown in the
following figure. In this figure, the data transferred is an 8-bit value with bits
labeled B7, B6, B5, and so on.
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Figure 9–94. 2-Bit Data Delay Used to Skip a Framing Bit

DR Framing bit B5B6B7
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CLKR

Á
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2-bit delay

9.9.14 Set the Transmit DXENA Mode

Figure 9–95. Register Bit Used to Set the Transmit DXENA (DX Delay Enabler) Mode
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–60. Register Bit Used to Set the Transmit DXENA (DX Delay Enabler) Mode

Register Bit Name Function

SPCR1 7 DXENA DX Delay Enabler Mode

DXENA = 0 DX delay enabler is off.

DXENA = 1 DX delay enabler is on.

9.9.14.1 About the DXENA Mode

The DXENA bit controls the delay enabler on the DX pin. Set DXENA to enable
an extra delay for turn-on time (for the length of the delay, see the data sheet
for your TMS320C55x DSP). Note that this bit does not control the data itself,
so only the first bit is delayed, unless the A-bis mode is on. In the A-bis mode,
any bit can be delayed because any bit can go from the high-impedance state
to the valid state.

If you tie together the DX pins of multiple McBSPs, make sure DXENA = 1 to
avoid having more than one McBSP transmit on the data line at one time.

The following two figures show the timing of the DX pin for DXENA = 1. The
first figure shows the effect of the DX delay enabler when the A-bis mode is
off. The second figure shows the effect of the DX delay enabler when the A-bis
mode is on.
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Figure 9–96. DX Delay When A-bis Mode is Off

te
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FSX

DX

Note: te = extra delay for turn on time with DXENA = 1

Figure 9–97. DX Delays When A-bis Mode is On

tetete

FSX

DX

CLKX

Note: te = extra delay for turn on time with DXENA = 1

9.9.15 Set the Transmit Interrupt Mode

Figure 9–98. Register Bits Used to Set the Transmit Interrupt Mode
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–61. Register Bits Used to Set the Transmit Interrupt Mode

Register Bit Name Function

SPCR2 5–4 XINTM Transmit Interrupt Mode

XINTM = 00 XINT generated when XRDY changes from 0 to 1

XINTM = 01 XINT generated by an end-of-block or end-of-frame con-
dition in a transmit multichannel selection mode

XINTM = 10 XINT generated by a new transmit frame-sync pulse

XINTM = 11 XINT generated when XSYNCERR is set
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9.9.15.1 About the Transmitter Interrupt and the Associated Modes

The transmitter interrupt (XINT) signals the CPU of changes to the serial port
status. Four options exist for configuring this interrupt. The options are set by
the transmit interrupt mode bits, XINTM, in SPCR2.

� XINTM = 00b. Interrupt on every serial word by tracking the XRDY bit in
SPCR2. Note that regardless of the value of XINTM, XRDY can be read
to detect the XRDY = 1 condition.

� XINTM = 01b. In any of the transmit multichannel selection modes, inter-
rupt after every 16-channel block boundary has been crossed within a
frame and at the end of the frame. For details, see Using Interrupts
Between Block Transfers on page 9-58. In any other serial transfer case,
this setting is not applicable and, therefore, no interrupts are generated.

� XINTM = 10b. Interrupt on detection of each transmit frame-sync pulse.
This generates an interrupt even when the transmitter is in its reset state.
This is done by synchronizing the incoming frame-sync pulse to the CPU
clock and sending it to the CPU via XINT.

� XINTM = 11b. Interrupt on frame-synchronization error. Note that
regardless of the value of XINTM, XSYNCERR can be read to detect this
condition. For more information on using XSYNCERR, see Unexpected
Transmit Frame-Sync Pulse on page 9-44.

9.9.16 Set the Transmit Frame-Sync Mode

Figure 9–99. Register Bits Used to Set the Transmit Frame-Sync Mode
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–62. Register Bits Used to Set the Transmit Frame-Sync Mode

Register Bit Name Function

PCR 11 FSXM Transmit Frame-Synchronization Mode

FSXM = 0 Transmit frame synchronization is supplied by an exter-
nal source via the FSX pin.

FSXM = 1 Transmit frame synchronization is supplied by the
McBSP, as determined by the FSGM bit of SRGR2.

SRGR2 12 FSGM Sample Rate Generator Transmit Frame-Synchronization Mode

Used when FSXM = 1 in PCR.

FSGM = 0 The McBSP generates a transmit frame-sync pulse when
the content of DXR[1,2] is copied to XSR[1,2].

FSGM = 1 The transmitter uses frame-sync pulses generated by the
sample rate generator. Program the FWID bits to set the
width of each pulse. Program the FPER bits to set the
frame-sync period.

9.9.16.1 About the Transmit Frame-Sync Modes

Table 9–63 shows how FSXM and FSGM select the source of transmit frame-
sync pulses. The three choices are:

� External frame-sync input

� Sample rate generator frame-sync signal (FSG).

� Internal signal that indicates a DXR-to-XSR copy has been made

Table 9–63 also shows the effect of each bit setting on the FSX pin. The polar-
ity of the signal on the FSX pin is determined by the FSXP bit.

Table 9–63. How FSXM and FSGM Select the Source of Transmit Frame-Sync Pulses

FSXM FSGM
Source of Transmit Frame
Synchronization FSX Pin Status

0 0 or 1 An external frame-sync signal enters the
McBSP through the FSX pin. The signal is
then inverted by FSXP before being used
as internal FSX.

Input

1 1 Internal FSX is driven by the sample rate
generator frame-sync signal (FSG).

Output. FSG is inverted by FSXP before
being driven out on FSX pin.

1 0 A DXR-to-XSR copy causes the McBSP to
generate a transmit frame-sync pulse that
is 1 cycle wide.

Output. The generated frame-sync pulse is
inverted as determined by FSXP before
being driven out on FSX pin.
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9.9.16.2 Other Considerations

If the sample rate generator creates a frame-sync signal (FSG) that is derived
from an external input clock, the GSYNC bit determines whether FSG is kept
synchronized with pulses on the FSR pin. For more details, see Synchronizing
Sample Rate Generator Outputs to an External Clock on page 9-29.

In the clock stop mode (CLKSTP = 10b or 11b), the McBSP can act as a mas-
ter or as a slave in the SPI protocol. If the McBSP is a master and must provide
a slave-enable signal (SS_) on the FSX pin, make sure that FSXM = 1 and
FSGM = 0, so that FSX is an output and is driven active for the duration of each
transmission. If the McBSP is a slave, make sure that FSXM = 0, so that the
McBSP can receive the slave-enable signal on the FSX pin.

9.9.17 Set the Transmit Frame-Sync Polarity

Figure 9–100. Register Bit Used to Set Transmit Frame-Sync Polarity
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–64. Register Bit Used to Set Transmit Frame-Sync Polarity

Register Bit Name Function

PCR 3 FSXP Transmit Frame-Synchronization Polarity

FSXP = 0 Frame-synchronization pulse FSX is active high.

FSXP = 1 Frame-synchronization pulse FSX is active low.

9.9.17.1 About Frame Sync Pulses, Clock Signals, and Their Polarities

Transmit frame-sync pulses can be either generated internally by the sample
rate generator (see section 9.3.2 on page 9-28) or driven by an external
source. The source of frame sync is selected by programming the mode bit,
FSXM, in PCR. FSX is also affected by the FSGM bit in SRGR2. For informa-
tion about the effects of FSXM and FSGM, see Set the Transmit Frame-Sync
Mode on page 9-130). Similarly, transmit clocks can be selected to be inputs or
outputs by programming the mode bit, CLKXM, in the PCR (see Set the Trans-
mit Clock Mode on page 9-136).
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When FSR and FSX are inputs (FSXM = FSRM= 0, external frame-sync
pulses), the McBSP detects them on the internal falling edge of clock, internal
CLKR, and internal CLKX, respectively. The receive data arriving at the DR pin
is also sampled on the falling edge of internal CLKR. Note that these internal
clock signals are either derived from external source via CLK(R/X) pins or driv-
en by the sample rate generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs, implying that they are driven by the sample
rate generator, they are generated (transition to their active state) on the rising
edge of internal clock, CLK(R/X). Similarly, data on the DX pin is output on the
rising edge of internal CLKX.

FSRP, FSXP, CLKRP, and CLKXP in the pin control register (PCR) configure
the polarities of the FSR, FSX, CLKR, and CLKX signals, respectively. All
frame-sync signals (internal FSR, internal FSX) that are internal to the serial
port are active high. If the serial port is configured for external frame synchro-
nization (FSR/FSX are inputs to McBSP), and FSRP = FSXP = 1, the external
active-low frame-sync signals are inverted before being sent to the receiver
(internal FSR) and transmitter (internal FSX). Similarly, if internal synchroniza-
tion (FSR/FSX are output pins and GSYNC = 0) is selected, the internal
active-high frame-sync signals are inverted, if the polarity bit FS(R/X)P = 1,
before being sent to the FS(R/X) pin. The figure in the topic Clock and Frame
Generation shows this inversion using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Note that data is always transmitted on the
rising edge of internal CLKX. If CLKXP = 1, and external clocking is selected
(CLKXM = 0 and CLKX is an input), the external falling-edge triggered input
clock on CLKX is inverted to a rising-edge triggered clock before being sent
to the transmitter. If CLKXP = 1, and internal clocking selected (CLKXM = 1
and CLKX is an output pin), the internal (rising-edge triggered) clock, internal
CLKX, is inverted before being sent out on the CLKX pin.

Similarly, the receiver can reliably sample data that is clocked with a rising
edge clock (by the transmitter). The receive clock polarity bit, CLKRP, sets the
edge used to sample received data. Note that the receive data is always
sampled on the falling edge of internal CLKR. Therefore, if CLKRP = 1 and
external clocking is selected (CLKRM = 0 and CLKR is an input pin), the exter-
nal rising-edge triggered input clock on CLKR is inverted to a falling-edge trig-
gered clock before being sent to the receiver. If CLKRP = 1, and internal clock-
ing is selected (CLKRM = 1), the internal falling-edge triggered clock is
inverted to a rising-edge triggered clock before being sent out on the CLKR pin.
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Note that CLKRP = CLKXP in a system where the same clock (internal or
external) is used to clock the receiver and transmitter. The receiver uses the
opposite edge as the transmitter to ensure valid setup and hold of data around
this edge. Figure 9–101 shows how data clocked by an external serial device
using a rising edge, may be sampled by the McBSP receiver on the falling edge
of the same clock.

Figure 9–101. Data Clocked Externally Using a Rising Edge and
Sampled by the McBSP Receiver on a Falling Edge
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9.9.18 Set the SRG Frame-Sync Period and Pulse Width

Figure 9–102. Register Bits Used to Set the SRG Frame-Sync Period and Pulse Width
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–65. Register Bits Used to Set the SRG Frame-Sync Period and Pulse Width

Register Bit Name Function

SRGR2 11–0 FPER Sample Rate Generator Frame-Sync Period

For the frame-sync signal FSG, (FPER + 1) determines the period from the
start of a frame-sync pulse to the start of the next frame-sync pulse.

Range for (FPER + 1): 1 to 4096 CLKG cycles.

SRGR1 15–8 FWID Sample Rate Generator Frame-Sync Pulse Width

This field plus 1 determines the width of each frame-sync pulse on FSG.

Range for (FWID + 1): 1 to 256 CLKG cycles.

9.9.18.1 About the Frame-Sync Period and the Frame-Sync Pulse Width

The sample rate generator can produce a clock signal, CLKG, and a frame-
sync signal, FSG. If the sample rate generator is supplying receive or transmit
frame synchronization, you must program the bit fields FPER and FWID.

On FSG, the period from the start of a frame-sync pulse to the start of the next
pulse is (FPER + 1) CLKG cycles. The 12 bits of FPER allow a frame-sync
period of 1 to 4096 CLKG cycles, which allows up to 4096 data bits per frame.
When GSYNC = 1, FPER is a don’t care value.

Each pulse on FSG has a width of (FWID + 1) CLKG cycles. The eight bits of
FWID allow a pulse width of 1 to 256 CLKG cycles. It is recommended that
FWID be programmed to a value less than the programmed word length.

The values in FPER and FWID are loaded into separate down-counters. The
12-bit FPER counter counts down the generated clock cycles from the
programmed value (4095 maximum) to 0. The 8-bit FWID counter counts
down from the programmed value (255 maximum) to 0.

Figure 9–103 shows a frame-sync period of 16 CLKG periods
(FPER = 15 or 00001111b) and a frame-sync pulse with an active width of 2
CLKG periods (FWID = 1).

Figure 9–103. Frame of Period 16 CLKG Periods and Active Width of 2 CLKG Periods
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Frame-sync period: (FPER+1) x CLKG

Frame-sync pulse width: (FWID + 1) x CLKG
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When the sample rate generator comes out of reset, FSG is in its inactive state.
Then, when FRST_ = 1 and FSGM = 1, a frame-sync pulse is generated. The
frame width value (FWID + 1) is counted down on every CLKG cycle until it
reaches 0, at which time FSG goes low. At the same time, the frame period
value (FPER + 1) is also counting down. When this value reaches 0, FSG goes
high, indicating a new frame.

9.9.19 Set the Transmit Clock Mode

Figure 9–104. Register Bit Used to Set the Transmit Clock ModeÁÁ
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–66. Register Bit Used to Set the Transmit Clock Mode

Register Bit Name Function

PCR 9 CLKXM Transmit Clock Mode

CLKXM = 0 The transmitter gets its clock signal from an external
source via the CLKX pin.

CLKXM = 1 The CLKX pin is an output pin driven by the sample rate
generator of the McBSP.

9.9.19.1 Selecting a Source for the Transmit Clock and a Data Direction for the CLKX Pin

Table 9–67 shows how the CLKXM bit selects the transmit clock and the corre-
sponding status of the CLKX pin. The polarity of the signal on the CLKX pin
is determined by the CLKXP bit.
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Table 9–67. How the CLKXM Bit Selects the Transmit Clock and the Corresponding
Status of the CLKX Pin

CLKXM
in PCR Source of Transmit Clock CLKX Pin Status

0 Internal CLKX is driven by an exter-
nal clock on the CLKX pin. CLKX is
inverted as determined by CLKXP
before being used.

Input

1 Internal CLKX is driven by the sam-
ple rate generator clock, CLKG.

Output. CLKG, inverted as
determined by CLKXP, is
driven out on CLKX.

9.9.19.2 Other Considerations

If the sample rate generator creates a clock signal (CLKG) that is derived from
an external input clock, the GSYNC bit determines whether CLKG is kept syn-
chronized with pulses on the FSR pin. For more details, see Synchronizing
Sample Rate Generator Outputs to an External Clock on page 9-29.

In the clock stop mode (CLKSTP = 10b or 11b), the McBSP can act as a mas-
ter or as a slave in the SPI protocol. If the McBSP is a master, make sure that
CLKXM = 1, so that CLKX is an output to supply the master clock to any slave
devices. If the McBSP is a slave, make sure that CLKXM = 0, so that CLKX
is an input to accept the master clock signal.

9.9.20 Set the Transmit Clock Polarity

Figure 9–105. Register Bit Used to Set Transmit Clock Polarity
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.

Table 9–68. Register Bit Used to Set Transmit Clock Polarity

Register Bit Name Function

PCR 1 CLKXP Transmit Clock Polarity

CLKXP = 0 Transmit data sampled on rising edge of CLKX.

CLKXP = 1 Transmit data sampled on falling edge of CLKX.
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9.9.20.1 About Frame Sync Pulses, Clock Signals, and Their Polarities

Transmit frame-sync pulses can be either generated internally by the sample
rate generator (see section 9.3.2 on page 9-28) or driven by an external
source. The source of frame sync is selected by programming the mode bit,
FSXM, in PCR. FSX is also affected by the FSGM bit in SRGR2. For informa-
tion about the effects of FSXM and FSGM, see Set the Transmit Frame-Sync
Mode on page 9-130). Similarly, transmit clocks can be selected to be inputs or
outputs by programming the mode bit, CLKXM, in the PCR (see Set the Trans-
mit Clock Mode on page 9-136).

When FSR and FSX are inputs (FSXM = FSRM= 0, external frame-sync
pulses), the McBSP detects them on the internal falling edge of clock, internal
CLKR, and internal CLKX, respectively. The receive data arriving at the DR pin
is also sampled on the falling edge of internal CLKR. Note that these internal
clock signals are either derived from external source via CLK(R/X) pins or driv-
en by the sample rate generator clock (CLKG) internal to the McBSP.

When FSR and FSX are outputs, implying that they are driven by the sample
rate generator, they are generated (transition to their active state) on the rising
edge of internal clock, CLK(R/X). Similarly, data on the DX pin is output on the
rising edge of internal CLKX.

FSRP, FSXP, CLKRP, and CLKXP in the pin control register (PCR) configure
the polarities of the FSR, FSX, CLKR, and CLKX signals, respectively. All
frame-sync signals (internal FSR, internal FSX) that are internal to the serial
port are active high. If the serial port is configured for external frame synchro-
nization (FSR/FSX are inputs to McBSP), and FSRP = FSXP = 1, the external
active-low frame-sync signals are inverted before being sent to the receiver
(internal FSR) and transmitter (internal FSX). Similarly, if internal synchroniza-
tion (FSR/FSX are output pins and GSYNC = 0) is selected, the internal
active-high frame-sync signals are inverted, if the polarity bit FS(R/X)P = 1,
before being sent to the FS(R/X) pin. The figure in the topic Clock and Frame
Generation shows this inversion using XOR gates.

On the transmit side, the transmit clock polarity bit, CLKXP, sets the edge used
to shift and clock out transmit data. Note that data is always transmitted on the
rising edge of internal CLKX. If CLKXP = 1, and external clocking is selected
(CLKXM = 0 and CLKX is an input), the external falling-edge triggered input
clock on CLKX is inverted to a rising-edge triggered clock before being sent
to the transmitter. If CLKXP = 1, and internal clocking selected (CLKXM = 1
and CLKX is an output pin), the internal (rising-edge triggered) clock, internal
CLKX, is inverted before being sent out on the CLKX pin.
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Similarly, the receiver can reliably sample data that is clocked with a rising
edge clock (by the transmitter). The receive clock polarity bit, CLKRP, sets the
edge used to sample received data. Note that the receive data is always
sampled on the falling edge of internal CLKR. Therefore, if CLKRP = 1 and
external clocking is selected (CLKRM = 0 and CLKR is an input pin), the exter-
nal rising-edge triggered input clock on CLKR is inverted to a falling-edge trig-
gered clock before being sent to the receiver. If CLKRP = 1, and internal clock-
ing is selected (CLKRM = 1), the internal falling-edge triggered clock is
inverted to a rising-edge triggered clock before being sent out on the CLKR pin.

Note that CLKRP = CLKXP in a system where the same clock (internal or
external) is used to clock the receiver and transmitter. The receiver uses the
opposite edge as the transmitter to ensure valid setup and hold of data around
this edge. Figure 9–106 shows how data clocked by an external serial device
using a rising edge, may be sampled by the McBSP receiver on the falling edge
of the same clock.

Figure 9–106. Data Clocked Externally Using a Rising Edge and
Sampled by the McBSP Receiver on a Falling Edge
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9.9.21 Set the SRG Clock Divide-Down Value

Figure 9–107. Register Bits Used to Set the Sample Rate Generator (SRG)
Clock Divide-Down Value
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–69. Register Bits Used to Set the Sample Rate Generator (SRG)
Clock Divide-Down Value

Register Bit Name Function

SRGR1 7–0 CLKGDV Sample Rate Generator Clock Divide-Down Value

The input clock of the sample rate generator is divided by (CLKGDV + 1) to
generate the required sample rate generator clock frequency. The default
value of CLKGDV is 1 (divide input clock by 2).

9.9.21.1 About the Sample Rate Generator Clock Divider

The first divider stage generates the serial data bit clock from the input clock.
This divider stage utilizes a counter, preloaded by CLKGDV, that contains the
divide ratio value.

The output of the first divider stage is the data bit clock, which is output as
CLKG and which serves as the input for the second and third stages of the
divider.

CLKG has a frequency equal to 1/(CLKGDV + 1) of sample rate generator in-
put clock. Thus, the sample generator input clock frequency is divided by a val-
ue between 1 and 256. When CLKGDV is odd or equal to 0, the CLKG duty
cycle is 50%. When CLKGDV is an even value, 2p, representing an odd divide-
down, the high-state duration is p+1 cycles and the low-state duration is p
cycles.

9.9.22 Set the SRG Clock Synchronization Mode

Figure 9–108. Register Bit Used to Set the SRG Clock Synchronization Mode
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–70. Register Bit Used to Set the SRG Clock Synchronization Mode

Register Bit Name Function

SRGR2 15 GSYNC Sample Rate Generator Clock Synchronization

GSYNC is used only when the input clock source for the sample rate gen-
erator is external—on the CLKS, CLKR, or CLKX pin.

GSYNC = 0 The sample rate generator clock (CLKG) is free running.
CLKG oscillates without adjustment, and FSG pulses
every (FPER + 1) CLKG cycles.

GSYNC = 1 Clock synchronization is performed. When a pulse is
detected on the FSR pin:

� CLKG is adjusted as necessary so that it is synchro-
nized with the input clock on the CLKS, CLKR, or
CLKX pin.

� FSG pulses.
FSG only pulses in response to a pulse on the FSR
pin. The frame-sync period defined in FPER is ig-
nored.

For more details on using the clock synchronization feature, see Synchroniz-
ing Sample Rate Generator Outputs to an External Clock on page 9-29.

9.9.23 Set the SRG Clock Mode (Choose an Input Clock)

Figure 9–109. Register Bits Used to Set the SRG Clock Mode (Choose an Input Clock)
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–71. Register Bits Used to Set the SRG Clock Mode (Choose an Input Clock)

Register Bit Name Function

PCR
SRGR2

7
13

SCLKME
CLKSM

Sample Rate Generator Clock Mode

SCLKME = 0
CLKSM = 0

Sample rate generator clock derived from CLKS pin

SCLKME = 0
CLKSM = 1

Sample rate generator clock derived from CPU clock
(This is the condition forced by a DSP reset.)

SCLKME = 1
CLKSM = 0

Sample rate generator clock derived from CLKR pin

SCLKME = 1
CLKSM = 1

Sample rate generator clock derived from CLKX pin

9.9.23.1 About the SRG Clock Mode

The sample rate generator can produce a clock signal (CLKG) for use by the
receiver, the transmitter, or both, but CLKG is derived from an input clock. The
preceding table shows the four possible sources of the input clock. For more
details on generating CLKG, see Clock Generation in the Sample Rate Gener-
ator on page 9-24.

9.9.24 Set the SRG Input Clock Polarity

Figure 9–110. Register Bits Used to Set the SRG Input Clock Polarity
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Table 9–72. Register Bits Used to Set the SRG Input Clock Polarity

Register Bit Name Function

SRGR2 14 CLKSP CLKS Pin Polarity

CLKSP determines the input clock polarity when the CLKS pin supplies the
input clock (SCLKME = 0 and CLKSM = 0).

CLKSP = 0 Rising edge on CLKS pin generates CLKG and FSG.

CLKSP = 1 Falling edge on CLKS pin generates CLKG and FSG.

PCR 1 CLKXP CLKX Pin Polarity

CLKXP determines the input clock polarity when the CLKX pin supplies the
input clock (SCLKME = 1 and CLKSM = 1).

CLKXP = 0 Rising edge on CLKX pin generates transitions on CLKG
and FSG.

CLKXP = 1 Falling edge on CLKX pin generates transitions on CLKG
and FSG.

PCR 0 CLKRP CLKR Pin Polarity

CLKRP determines the input clock polarity when the CLKR pin supplies the
input clock (SCLKME = 1 and CLKSM = 0).

CLKRP = 0 Falling edge on CLKR pin generates transitions on
CLKG and FSG.

CLKRP = 1 Rising edge on CLKR pin generates transitions on CLKG
and FSG.

9.9.24.1 Using CLKSP/CLKXP/CLKRP to Choose an Input Clock Polarity

The sample rate generator can produce a clock signal (CLKG) and a frame-
sync signal (FSG) for use by the receiver, the transmitter, or both. To produce
CLKG and FSG, the sample rate generator must be driven by an input clock
signal derived from the CPU clock or from an external clock on the CLKS,
CLKX, or CLKR pin. If you use a pin, choose a polarity for that pin by using the
appropriate polarity bit (CLKSP for the CLKS pin, CLKXP for the CLKX pin,
CLKRP for the CLKR pin). The polarity determines whether the rising or falling
edge of the input clock generates transitions on CLKG and FSG.
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9.10 General-Purpose I/O on the McBSP Pins

Table 9–73 summarizes how to use the McBSP pins as general-purpose I/O
pins. All of the bits mentioned in the table except XRST_ and RRST_ are in the
pin control register (PCR, described in section 9.13.8 on page 9-195). XRST_
and RRST_ are in the serial port control registers (SPCRs, described in
section 9.13.3 on page 9-158).

To use receiver pins CLKR, FSR, and DR  as general purpose I/O pins rather
than as serial port pins, you must set two conditions:

� The receiver of the serial port is in reset (RRST_ = 0 in SPCR1).

� General-purpose I/O is enabled for the serial port receiver (RIOEN = 1 in
PCR).

The CLKR and FSR pins can be individually configured as either input or out-
put pins with the CLKRM and FSRM bits, respectively. The DR pin can only
be an input pin. The following table shows which bits in PCR are used to read
from/write to these pins.

For the transmitter pins CLKX, FSX, and DX , you must meet two similar
conditions:

� The transmitter of the serial port is in reset (XRST_ = 0 in SPCR2).

� General-purpose I/O is enabled for the serial port transmitter (XIOEN = 1
in PCR).

The CLKX and FSX pins can be individually configured as input or output pins
with the CLKXM and FSXM bits, respectively. The DX pin can only be an output
pin. The following table shows which bits in PCR are used to read from/write
to these pins.

For the CLKS pin , all of the reset and I/O enable conditions must be met:

� Both the receiver and transmitter of the serial port are in reset (RRST_ = 0
and XRST_ = 0).

� General-purpose I/O is enabled for both the receiver and the transmitter
(RIOEN = 1 and XIOEN = 1).

The CLKS pin can only be an input pin. To read the status of the signal on the
CLKS pin, read the CLKS_STAT bit in PCR.
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Table 9–73. How Use McBSP Pins for General-Purpose Input/Output 

Pin

General Purpose Use
Enabled by This
Bit Combination

Selected as 
Output When …

Output Value 
Driven From
This Bit

Selected As
Input When …

Input Value 
Read From
This Bit

CLKX XRST_ = 0
XIOEN = 1

CLKXM = 1 CLKXP CLKXM = 0 CLKXP

FSX XRST_ = 0
XIOEN = 1

FSXM = 1 FSXP FSXM = 0 FSXP

DX XRST_ = 0
XIOEN = 1

Always DX_STAT Never Does not apply

CLKR RRST_ = 0
RIOEN = 1

CLKRM = 1 CLKRP CLKRM = 0 CLKRP

FSR RRST_ = 0
RIOEN = 1

FSRM = 1 FSRP FSRM = 0 FSRP

DR RRST_ = 0
RIOEN = 1

Never Does not apply Always DR_STAT

CLKS RRST_ = XRST_ = 0
RIOEN = XIOEN = 1

Never Does not apply Always CLKS_STAT
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9.11 Emulation, Power, and Reset Considerations

This section covers the following topics:

� How to program the McBSP’s response to a breakpoint in the high-level
language debugger (section 9.11.1)

� How to conserve power in the DSP by placing the McBSP into its idle mode
(section 9.11.2)

� How to reset and initialize the various parts of the McBSP (section 9.11.3)

9.11.1 McBSP Emulation Mode

FREE and SOFT are special emulation bits in SPCR2 that determine the state
of the McBSP when a breakpoint is encountered in the high-level language
debugger. If FREE = 1, upon a software breakpoint the clock continues to run
and data is still shifted out. When FREE = 1, the SOFT bit is a don’t care.

If FREE = 0, the SOFT bit takes effect: If SOFT = 0 when breakpoint occurs,
the clock stops immediately, thus aborting a transmission. If SOFT = 1 and a
breakpoint occurs while transmission is in progress, the transmission contin-
ues until completion of the transfer, and then the clock halts. These options are
listed in the following table.

The McBSP receiver functions in a similar fashion. Note that if a mode other
than the immediate stop mode (SOFT = FREE = 0) is chosen, the receiver
continues running and an overrun error is possible.

Table 9–74. McBSP Emulation Modes Selectable with
the FREE and SOFT Bits of SPCR2

FREE SOFT McBSP Emulation Mode

0 0 Immediate stop mode (reset condition)

The transmitter or receiver stops immediately in response to a
breakpoint.

0 1 Soft stop mode

When a breakpoint occurs, the transmitter stops after completion
of the current word. The receiver is not affected.

1 0 or 1 Free run mode

The transmitter and receiver continue to run when a breakpoint
occurs.
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9.11.2 Reducing Power Consumed by a McBSP

The McBSP is placed into its idle mode with reduced power consumption when
the PERIPH idle domain is idle (PERIS = 1 in ISTR) and the McBSP idle
enable bit is set (IDLE_EN = 1 in PCR). PERIPH and the other idle domains
are described in section 8.1 on page 8-2.

In the McBSP idle mode:

� If the McBSP is configured to operate with internally generated clocking
and frame synchronization, it will be completely stopped.

� If the McBSP is configured to operate with externally generated clocking
and frame synchronization (either directly or through the sample rate gen-
erator), the external interface portion of the McBSP continues to function
during external clock activity periods. The McBSP sends a request to acti-
vate the PERIPH and DMA idle domains when it needs to be serviced. If
the domains were idle, they are made idle again after the McBSP has been
serviced.

When IDLE_EN = 0 in PCR, the McBSP keeps running, regardless of whether
the PERIPH domain is idle.

9.11.3 Resetting and Initializing a McBSP

9.11.3.1 McBSP Pin States: DSP Reset Versus Receiver/Transmitter Reset

Table 9–75 shows the state of McBSP pins when the serial port is reset due
to a DSP reset and due to a direct receiver or transmitter reset.
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Table 9–75. Reset State of Each McBSP Pin 

Pin
Possible
State(s)

State Forced By
DSP Reset

State Forced By
Receiver/Transmitter Reset

Receiver Reset (RRST_ = 0 and GRST_ = 1)

DR I Input Input

CLKR I/O/Z Input Known state if Input; CLKR running if output

FSR I/O/Z Input Known state if Input; FSRP inactive state if output

CLKS I/O/Z Input Input

Transmitter Reset (XRST_ = 0 and GRST_ = 1)

DX O/Z High impedance High impedance

CLKX I/O/Z Input Known state if Input; CLKX running if output

FSX I/O/Z Input Known state if Input; FSXP inactive state if output

CLKS I Input Input

Note: In Possible State(s) column, I = Input, O = Output, Z = High impedance

9.11.3.2 DSP Reset, McBSP Reset, and Sample Rate Generator Reset

When the McBSP is reset in either of the above two ways, the machine is reset
to its initial state, including reset of all counters and status bits. The receive
status bits include RFULL, RRDY, and RSYNCERR. The transmit status bits
include XEMPTY_, XRDY, and XSYNCERR.

� DSP reset.  When the whole DSP is reset (RESET_ signal is driven low),
the entire serial port, including the transmitter, receiver, and the sample
rate generator, is reset. All input-only pins and three-state pins should be
in a known state. The output-only pin DX is in the high-impedance state.

The DSP reset forces the sample rate generator clock, CLKG, to have half
the frequency of the CPU clock. No pulses are generated on the sample
rate generator’s frame-sync signal, FSG.

When the device is pulled out of reset, the serial port remains in the reset
state. In this state the DR and DX pins may be used as general-purpose
I/O pins as described in section 9.10 on page 9-144.
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� McBSP reset.  When the receiver and transmitter reset bits, RRST_ and
XRST_, are loaded with 0s, the respective portions of the McBSP are
reset, and activity in the corresponding section of the serial port stops. All
input-only pins, such as DR and CLKS, and all other pins that are config-
ured as inputs, are in a known state. The FSR and FSX pins are driven to
their inactive state if they are not outputs. If the CLKR and CLKX pins are
programmed as outputs, they will be driven by CLKG, provided that
GRST_ = 1. Lastly, the DX pin will be in the high-impedance state when
the transmitter and/or the device is reset.

During normal operation, the sample rate generator is reset if the GRST_
bit is cleared. GRST_ should be 0 only when neither the transmitter nor the
receiver is using the sample rate generator. In this case, the internal
sample rate generator clock (CLKG) and its frame-sync signal (FSG) are
driven inactive low.

When the sample rate generator is not in the reset state (GRST_ = 1), pins
FSR and FSX are in an inactive state when RRST_ = 0 and XRST_ = 0,
respectively, even if they are outputs driven by FSG. This ensures that
when only one portion of the McBSP is in reset, the other portion can con-
tinue operation when FRST_ = 1 and its frame synchronization is driven
by FSG.

� Sample rate generator reset.  The sample rate generator is reset when
the DSP is reset or when GRST_ is loaded with 0. In the case of a DSP
reset, the sample rate generator clock, CLKG, is driven by the CPU clock
divided by 2, and the frame-sync signal, FSG, is driven inactive low.

When neither the transmitter nor the receiver is fed by CLKG and FSG,
you can reset the sample rate generator by clearing GRST_. In this case,
CLKG and FSG are driven inactive low. If you then set GRST_, CLKG
starts and runs as programmed. Later, if FRST_ = 1, FSG pulses active
high after the programmed number of CLKG cycles has elapsed.

9.11.3.3 McBSP Initialization Procedure

The serial port initialization procedure is as follows:

1) Make XRST_ = RRST_ = FRST_ = 0 in SPCR[1,2]. If coming out of a
DSP reset, this step is not required.

2) While the serial port is in the reset state, program only the McBSP configu-
ration registers (not the data registers) as required.

3) Wait for two clock cycles. This ensures proper internal synchronization.

4) Set up data acquisition as required (such as writing to DXR[1,2]).
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5) Make XRST_ = RRST_ = 1 to enable the serial port. Make sure that as
you set these reset bits, you do not modify any of the other bits in SPCR1
and SPCR2. Otherwise, you will change the configuration you selected in
step 2.

6) Set FRST_ = 1, if internally generated frame synchronization is required.

7) Wait two clock cycles for the receiver and transmitter to become active.

Alternatively, on either write (step 1 or 5), the transmitter and receiver may be
placed in or taken out of reset individually by modifying the desired bit.

The above procedure for reset/initialization can be applied in general when the
receiver or transmitter has to be reset during its normal operation, and also
when the sample rate generator is not used for either operation.

Notes:

1) The necessary duration of the active-low period of XRST_ or RRST_ is
at least two CLKR/CLKX cycles.

2) The appropriate bits in serial port configuration registers SPCR[1,2],
PCR, RCR[1,2], XCR[1,2], and SRGR[1,2] should only be modified
when the affected portion of the serial port is in its reset state.

3) In most cases, the data transmit registers (DXR[1,2]) should be loaded
by the CPU or by the DMA controller only when the transmitter is enabled
(XRST_ = 1). An exception to this rule is when these registers are used
for companding internal data (see section 9.2.2.2 on page 9-10).

4) The bits of the channel control registers—MCR[1,2], RCER[A–H],
XCER[A–H]—can be modified at any time as long as they are not being
used by the current reception/transmission in a multichannel selection
mode.
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9.11.3.4 Example: Resetting the Transmitter While the Receiver is Running

The following example shows values in the control registers that reset and con-
figure the transmitter while the receiver is running.

Example 9–1. Resetting and Configuring the McBSP Transmitter While
the McBSP Receiver is Running

SPCR1 = 0001h
SPCR2 = 0030h

; The receiver is running with the receive
; interrupt (RINT) triggered by the
; receiver ready bit (RRDY). The
; transmitter is in its reset state. The
; transmit interrupt (XINT) will be
; triggered by the transmit frame–sync
; error bit (XSYNCERR).

PCR = 0900h ; Transmit frame synchronization is
; generated internally according to the
; FSGM bit of SRGR2. The transmit clock
; is driven by an external source. The
; receive clock continues to be driven by
; sample rate generator. The input clock
; of the sample rate generator is supplied
; by the CLKS pin or by the CPU clock
; depending on the CLKSM bit of SRGR2.

SRGR1 = 0001h
SRGR2 = 2000h

; The CPU clock is the input clock for
; the sample rate generator. The sample
; rate generator divides the CPU clock by
; 2 to generate its output clock (CLKG).
; Transmit frame synchronization is tied
; to the automatic copying of data from
; the DXR(s) to the XSR(s).

XCR1 = 0740h
XCR2 = 8321h

; The transmit frame has two phases.
; Phase 1 has eight 16–bit words. Phase 2
; has four 12–bit words. There is 1–bit
; data delay between the start of a
; frame–sync pulse and the first data bit
; transmitted.

SPCR2 = 0x0031 ; The transmitter is taken out of reset.
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9.12 Data Packing Examples

This section shows two ways you can implement data packing in the McBSP.

9.12.1 Data Packing Using Frame Length and Word Length

The frame length and word length can be manipulated to effectively pack data.
For example, consider a situation where four 8-bit words are transferred in a
single-phase frame as shown in Figure 9–111. In this case:

� (R/X)PHASE = 0: Single-phase frame

� (R/X)FRLEN1 = 0000011b: 4-word frame

� (R/X)WDLEN1 = 000b: 8-bit words

Four 8-bit data words are transferred to and from the McBSP by the CPU or
by the DMA controller. Thus, four reads from DRR1 and four writes to DXR1
are necessary for each frame.

Figure 9–111.Four 8-Bit Data Words Transferred To/From the McBSP
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This data can also be treated as a single-phase frame consisting of one 32-bit
data word, as shown in Figure 9–112. In this case:

� (R/X)PHASE = 0: Single-phase frame

� (R/X)FRLEN1 = 0000000b: 1-word frame

� (R/X)WDLEN1 = 101b: 32-bit word
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Two 16-bit data words are transferred to and from the McBSP by the CPU or
DMA controller. Thus, two reads, from DRR2 and DRR1, and two writes, to
DXR2 and DXR1, are necessary for each frame. This results in only half the
number of transfers compared to the previous case. This manipulation
reduces the percentage of bus time required for serial port data movement.

Note:

When the word length is larger than 16 bits, make sure you access
DRR2/DXR2 before you access DRR1/DXR1. McBSP activity is tied to ac-
cesses of DRR1/DXR1. During the reception of 24-bit or 32-bit words, read
DRR2 and then read DRR1. Otherwise, the next RBR[1,2]-to-DRR[1,2] copy
occurs before DRR2 is read. Similarly, during the transmission of 24-bit or
32-bit words, write to DXR2 and then write to DXR1. Otherwise, the next
DXR[1,2]-to-XSR[1,2] copy occurs before DXR2 is loaded with new data.

Figure 9–112. One 32-Bit Data Word Transferred To/From the McBSP

DXR1 to XSR1 copyDXR2 to XSR2 copy

RBR1 to DRR1 copyRBR2 to DRR2 copy

DX

FSX

CLKX

DR

FSR

CLKR

ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ

Á
Á

Á
Á

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

Word 1

9.12.2 Data Packing Using Word Length and the Frame-Sync Ignore Function

When there are multiple words per frame, you can implement data packing by
increasing the word length (defining a serial word with more bits) and by ignor-
ing frame-sync pulses. First, consider Figure 9–113, which shows the McBSP
operating at the maximum packet frequency. Here, each frame only has a
single 8-bit word. Note the frame-sync pulse that initiates each frame transfer
for reception and for transmission. For reception, this configuration requires
one read operation for each word. For transmission, this configuration requires
one write operation for each word.
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Figure 9–113. 8-Bit Data Words Transferred at Maximum Packet Frequency
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Figure 9–114 shows the McBSP configured to treat this data stream as a con-
tinuous 32-bit word. In this example, the McBSP responds to an initial frame-
sync pulse. However, (R/X)FIG = 1 so that the McBSP ignores subsequent
pulses. Only two read transfers or two write transfers are needed every 32 bits.
This configuration effectively reduces the required bus bandwidth to half the
bandwidth needed to transfer four 8-bit words.

Figure 9–114. Configuring the Data Stream of Figure 9–113 as a
Continuous 32-Bit Word

Word 1

DXR2 to XSR2 copy

ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
Á
Á
Á
Á

ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ

Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

Á
Á

ÁÁ
ÁÁCLKX
ÁÁ
ÁÁ

Á
Á

Á
Á

Frame ignored Frame ignored

Á
Á

FSX

DX

Frame ignored

DXR1 to XSR1 copy

DR

FSR

CLKR

RBR1 to DRR1 copy RBR2 to DRR2 copy

Frame ignoredFrame ignoredFrame ignored

Á
Á

Á
Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á

ÁÁ
ÁÁ

ÁÁ
ÁÁ
Á
Á
ÁÁ
ÁÁ

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
Á
Á

Á
Á
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ



9-155Multichannel Buffered Serial Port (McBSP)

9.13 McBSP Registers

For each McBSP, the DSP contains the following registers. For the I/O address
of each register, see the data sheet for your TMS320C55x DSP.

Table 9–76. McBSP Registers

Register Description For Details, See ...

DRR1
DRR2

Data receive register 1
Data receive register 2
(one pair for each McBSP)

Page 9-156

DXR1
DXR2

Data transmit register 1
Data transmit register 2
(one pair for each McBSP)

Page 9-157

SPCR1
SPCR2

Serial port control register 1
Serial port control register 2
(one pair for each McBSP)

Page 9-158

RCR1
RCR2

Receive control register 1
Receive control register 2
(one pair for each McBSP)

Page 9-169

XCR1
XCR2

Transmit control register 1
Transmit control register 2
(one pair for each McBSP)

Page 9-175

SRGR1
SRGR2

Sample rate generator register 1
Sample rate generator register 2
(one pair for each McBSP)

Page 9-181

MCR1
MCR2

Multichannel control register 1
Multichannel control register 2
(one pair for each McBSP)

Page 9-185

PCR Pin control register
(one PCR for each McBSP)

Page 9-195
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Table 9–76. McBSP Registers (Continued)

Register For Details, See ...Description

RCERA
RCERB
RCERC
RCERD
RCERE
RCERF
RCERG
RCERH

Receive channel enable register for
partition A
Receive channel enable register for
partition B
Receive channel enable register for
partition C
Receive channel enable register for
partition D
Receive channel enable register for
partition E
Receive channel enable register for
partition F
Receive channel enable register for
partition G
Receive channel enable register for
partition H
(one set for each McBSP)

Page 9-202

XCERA
XCERB
XCERC
XCERD
XCERE
XCERF
XCERG
XCERH

Transmit channel enable register for
partition A
Transmit channel enable register for
partition B
Transmit channel enable register for
partition C
Transmit channel enable register for
partition D
Transmit channel enable register for
partition E
Transmit channel enable register for
partition F
Transmit channel enable register for
partition G
Transmit channel enable register for
partition H
(one set for each McBSP)

Page 9-207

9.13.1 Data Receive Registers (DRR2 and DRR1)

The CPU or the DMA controller reads received data from one or both of the
data receive registers. If the serial word length is 16 bits or smaller only DRR1
is used. If the serial length is larger than 16 bits, both DRR1 and DRR2 are
used, and DRR2 holds the most significant bits. Each frame of receive data
in the McBSP can have one phase or two phases, each with its own serial word
length.
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DRR1 and DRR2 are I/O mapped registers; they are accessible at addresses
in I/O space.

Figure 9–115. Data Receive Registers (DRR2 and DRR1)
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9.13.1.1 How Data Travels From the Data Receive (DR) Pin to the DRRs

If the serial word length is 16 bits or smaller, receive data on the DR pin is
shifted into receive shift register 1 (RSR1) and then copied into receive buffer
register 1 (RBR1). The content of RBR1 is then copied to DRR1, which can be
read by the CPU or by the DMA controller.

If the serial word length is larger than 16 bits, receive data on the DR pin is
shifted into both of the receive shift registers (RSR2, RSR1) and then copied
into both of the receive buffer registers (RBR2, RBR1). The content of the
RBRs is then copied into both of the DRRs, which can be read by the CPU or
by the DMA controller.

If companding is used during the copy from RBR1 to DRR1
(RCOMPAND = 10b or 11b), the 8-bit compressed data in RBR1 is expanded
to a left-justified 16-bit value in DRR1. If companding is disabled, the data cop-
ied from RBR[1,2] to DRR[1,2] is justified and bit filled according to the RJUST
bits.

The RSRs and RBRs are not accessible. They are not mapped to I/O space
like the DRRs.

9.13.2 Data Transmit Registers (DXR2 and DXR1)

For transmission, the CPU or the DMA controller writes data to one or both of
the data transmit registers. If the serial word length is 16 bits or smaller, only
DXR1 is used. If the word length is larger than 16 bits, both DXR1 and DXR2
are used, and DXR2 holds the most significant bits. Each frame of transmit
data in the McBSP can have one phase or two phases, each with its own serial
word length.

DXR1 and DXR2 are I/O mapped registers; they are accessible at addresses
in I/O space.



McBSP Registers

 9-158

Figure 9–116. Data Transmit Registers (DXR2 and DXR1)
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9.13.2.1 How Data Travels From the DXRs to the Data Transmit (DX) Pin

If the serial word length is 16 bits or fewer, data written to DXR1 is copied to
transmit shift register 1 (XSR1). From XSR1, the data is shifted onto the DX
pin one bit at a time.

If the serial word length is more than 16 bits, data written to DXR1 and DXR2
is copied to both transmit shift registers (XSR2, XSR1). From the XSRs, the
data is shifted onto the DX pin one bit at a time.

If companding is used during the transfer from DXR1 to XSR1
(XCOMPAND = 10b or 11b), the McBSP compresses the 16-bit data in DXR1
to 8-bit data in the µ-law or A-law format in XSR1. If companding is disabled,
the McBSP passes data from the DXR(s) to the XSR(s) without modification.

The XSRs are not accessible. They are not mapped to I/O space like the
DXRs.

9.13.3 Serial Port Control Registers (SPCR2 and SPCR1)

Each McBSP has two serial port control registers of the form shown in
Figure 9–117. and  describe the bits in SPCR1 and SPCR2, respectively.
These I/O-mapped registers enable you to:

� Control various McBSP modes: digital loopback mode (DLB), sign-exten-
sion and justification mode for reception (RJUST), clock stop mode
(CLKSTP), A-bis mode (ABIS), interrupt modes (RINTM and XINTM),
emulation mode (FREE and SOFT)

� Turn on and off the DX-pin delay enabler (DXENA)

� Check the status of receive and transmit operations (RSYNCERR, XSYN-
CERR, RFULL, XEMPTY_, RRDY, XRDY)

� Reset portions of the McBSP (RRST_, XRST_, FRST_, GRST_)
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Figure 9–117. Serial Port Control Registers (SPCR2 and SPCR1)

Á
Á
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SPCR1 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁÁÁÁÁ15 ÁÁÁÁÁÁÁÁ14–13 ÁÁÁÁÁÁÁÁ12–11 ÁÁÁÁÁÁÁÁÁÁÁ10–8 ÁÁÁÁÁ

Á
Á

DLB
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

RJUST
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ

CLKSTP
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ

Rsvd
ÁÁ
ÁÁ
ÁÁ

ÁÁ
ÁÁ
ÁÁÁ

Á
ÁÁÁÁ
ÁÁÁÁ

R/W – 0ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

R/W – 00 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

R/W – 00 ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁ
ÁÁ
ÁÁ
ÁÁÁÁÁÁÁÁÁÁ7 ÁÁÁÁ6 ÁÁÁÁÁÁÁ5–4 ÁÁÁÁÁ3 ÁÁÁÁÁ2 ÁÁÁÁ1 ÁÁÁÁ0 ÁÁÁ

Á
Á

ÁÁ
ÁÁ
ÁÁ

DXENA ABIS
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ
ÉÉÉÉÉÉÉ

RINTM
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

RSYNCERR
ÉÉÉÉÉ
ÉÉÉÉÉ
ÉÉÉÉÉ

RFULL
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ

RRDY
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

RRST_
ÁÁ
ÁÁ
ÁÁÁ

Á
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W – 0 ÁÁÁÁ
ÁÁÁÁ

R/W – 0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

R/W – 00 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W – 0ÁÁÁÁÁ
ÁÁÁÁÁ

R – 0 ÁÁÁÁ
ÁÁÁÁ

R – 0 ÁÁÁÁ
ÁÁÁÁ

R/W – 0ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

SPCR2 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

15–10 ÁÁÁÁÁ
ÁÁÁÁÁ

9 ÁÁÁÁ
ÁÁÁÁ

8 ÁÁ
ÁÁ
ÁÁ
ÁÁÁ

Á
Rsvd ÎÎÎÎÎ

ÎÎÎÎÎ
FREE ÎÎÎÎ

ÎÎÎÎ
SOFT ÁÁ

ÁÁ
ÁÁ
ÁÁÁ

Á
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

R/W – 0 ÁÁÁÁ
ÁÁÁÁ

R/W – 0 ÁÁ
ÁÁ
ÁÁ
ÁÁÁ

Á
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7 ÁÁÁÁÁ
ÁÁÁÁÁ

6 ÁÁÁÁ
ÁÁÁÁ

5–4 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

3 ÁÁÁÁÁ
ÁÁÁÁÁ

2 ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0 ÁÁ
ÁÁÁ

Á
ÁÁ
ÁÁ

FRST_ GRST_ ÉÉÉÉ
ÉÉÉÉ

XINTMÁÁÁÁÁÁ
ÁÁÁÁÁÁ

XSYNCERRÉÉÉÉÉ
ÉÉÉÉÉ

XEMPTY_ÉÉÉÉ
ÉÉÉÉ

XRDYÁÁÁÁÁ
ÁÁÁÁÁ

XRST_ ÁÁ
ÁÁÁ

Á
ÁÁ
ÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

R/W – 0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W – 0 ÁÁÁÁ
ÁÁÁÁ

R/W – 00ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

R/W – 0 ÁÁÁÁÁ
ÁÁÁÁÁ

R – 0 ÁÁÁÁ
ÁÁÁÁ

R – 0 ÁÁÁÁÁ
ÁÁÁÁÁ

R/W – 0 ÁÁ
ÁÁLegend:

R Read-only access
R/W Read/write access
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Table 9–77. SPCR1 Bit Descriptions  

Bits Name Description
Reset
Value

15 DLB Digital loopback mode bit 0

DLB disables or enables the digital loopback mode of the McBSP:

0 Disabled

Internal DR is supplied by the DR pin. Internal FSR and internal
CLKR can be supplied by their respective pins or by the sample rate
generator, depending on the mode bits FSRM and CLKRM.

1 Enabled

Internal receive signals are supplied by internal transmit signals:
DR connected to DX
FSR connected to FSX
CLKR connected to CLKX

Internal DX is supplied by the DX pin. Internal FSX and internal
CLKX are supplied by their respective pins or are generated inter-
nally, depending on the mode bits FSXM and CLKXM.

This mode allows you to test serial port code with a single DSP. The
McBSP transmitter directly supplies data, frame synchronization,
and clocking to the McBSP receiver.

14–13 RJUST Receive sign-extension and justification mode bits 00b

During reception, RJUST determines how data is justified and bit filled before
being passed to the data receive registers (DRR1, DRR2):

00b Right justify the data and zero fill the MSBs.

01b Right justify the data and sign-extend the data into the MSBs.

10b Left justify the data and zero fill the LSBs.

11b Reserved (do not use)

Note:  RJUST is ignored if you enable a companding mode with the RCOM-
PAND bits. In a companding mode, the 8-bit compressed data in RBR1 is ex-
panded to left-justified 16-bit data in DRR1.

For more details about the effects of RJUST, see Set the Receive Sign-Exten-
sion and Justification Mode on page 9-91.
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Table 9–77. SPCR1 Bit Descriptions (Continued)

Bits Name Description
Reset
Value

12–11 CLKSTP Clock stop mode bits 00b

CLKSTP allows you to use the clock stop mode to support the SPI master-
slave protocol. If you will not be using the SPI protocol, you can clear CLKSTP
to disable the clock stop mode.

00b/01b Clock stop mode is disabled.

10b Clock stop mode, without clock delay

11b Clock stop mode, with half-cycle clock delay

In the clock stop mode, the clock stops at the end of each data transfer. At the
beginning of each data transfer, the clock starts immediately (CLKSTP = 10b)
or after a half-cycle delay (CLKSTP = 11b).

For more details, see Enable/Disable the Clock Stop Mode on page 9-78.

10–8 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.

7 DXENA DX delay enabler mode bit 0

DXENA controls the delay enabler for the DX pin. The enabler creates an extra
delay for turn-on time (for the length of the delay, see the data sheet for your
TMS320C55x DSP). For more details about the effects of DXENA, see Set the
Transmit DXENA Mode on page 9-128.

0 DX delay enabler off

1 DX delay enabler on

6 ABIS A-bis mode bit 0

ABIS enables or disables the A-bis mode of the McBSP:

0 Disabled

1 Enabled
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Table 9–77. SPCR1 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

5–4 RINTM Receive interrupt mode bits 00b

RINTM determines which event in the McBSP receiver generates a receive
interrupt (RINT) request. If RINT is properly enabled inside the CPU, the CPU
will service the interrupt request; otherwise, the CPU will ignore the request.

00b If ABIS = 0 (A-bis mode disabled):
The McBSP sends a receive interrupt (RINT) request to the CPU
when the RRDY bit changes from 0 to 1, indicating that receive
data is ready to be read (the content of RBR[1,2] has been copied
to DRR[1,2]):

Note : Regardless of the value of RINTM, you can check RRDY to
determine whether a word transfer is complete.

If ABIS = 1 (A-bis mode enabled):
The McBSP sends a RINT request to the CPU when 16 enabled
bits have been received on the DR pin.

01b In the multichannel selection mode, the McBSP sends a RINT re-
quest to the CPU after every 16-channel block is received in a
frame.

Outside of the multichannel selection mode, no interrupt request
is sent.

10b The McBSP sends a RINT request to the CPU when each receive
frame-sync pulse is detected. The interrupt request is sent even
if the receiver is in its reset state.

11b The McBSP sends a RINT request to the CPU when the RSYN-
CERR bit is set, indicating a receive frame-sync error.

Note: Regardless of the value of RINTM, you can check RSYN-
CERR to determine whether a receive frame-sync error occurred.
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Table 9–77. SPCR1 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

3 RSYNCERR Receive frame-sync error bit 0

RSYNCERR is set when a receive frame-sync error is detected by the McBSP.
If RINTM = 11b, the McBSP sends a receive interrupt (RINT) request to the
CPU when RSYNCERR is set. The flag remains set until you write a 0 to it or
reset the receiver.

Caution: If RINTM = 11b, writing a 1 to RSYNCERR triggers a receive inter-
rupt just as if a receive frame-sync error occurred.

0 No error

1 Receive frame-sync error

For more details about this error, see Unexpected Receive Frame-
Sync Pulse on page 9-38.

2 RFULL Receiver full bit 0

RFULL is set when the receiver is full with new data and the previously re-
ceived data has not been read (receiver-full condition). For more details about
this condition, see Overrun in the Receiver on page 9-37.

0 No receiver-full condition

1 Receiver-full condition: RSR[1,2] and RBR[1,2] are full with new
data, but the previous data in DRR[1,2] has not been read.

1 RRDY Receiver ready bit 0

RRDY is set when data is ready to be read from DRR[1,2]. Specifically, RRDY
is set in response to a copy from RBR1 to DRR1.

0 Receiver not ready

When the content of DRR1 is read, RRDY is automatically cleared.

1 Receiver ready: New data can be read from DRR[1,2].

Important: If both DRRs are need (word length larger than 16 bits),
the CPU or the DMA controller must read from DRR2 first and then
from DRR1. As soon as DRR1 is read, the next RBR-to-DRR copy
is initiated. If DRR2 is not read first, the data in DRR2 is lost.

If the receive interrupt mode is RINTM = 00b, the McBSP sends a receive in-
terrupt request to the CPU when RRDY changes from 0 to 1.

Also, when RRDY changes from 0 to 1, the McBSP sends a receive synchro-
nization event (REVT) signal to the DMA controller.
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Table 9–77. SPCR1 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

0 RRST_ Receiver reset bit 0

You can use RRST_ to take the McBSP receiver into and out of its reset state.
The underscore ( _ ) at the end of the bit name is a reminder of the negative
polarity of the bit; RRST_ = 0 indicates the reset state.

0 If you read a 0, the receiver is in its reset state.

If you write a 0, you reset the receiver.

1 If you read a 1, the receiver is enabled.

If you write a 1, you enable the receiver by taking it out of its reset
state.

To read about the effects of a receiver reset, see Resetting and Initializing a
McBSP on page 9-147.

Table 9–78. SPCR2 Bit Descriptions  

Bits Name Description
Reset
Value

15–10 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.

–

9 FREE McBSP emulation mode bit 0

8 SOFT McBSP emulation mode bit 0

FREE and SOFT determine the response (if any) of the McBSP transmit and
receive clocks when a breakpoint is encountered in the high-level language
debugger. If FREE = 1, neither the transmit nor receive clock stops in re-
sponse to a software breakpoint, regardless of the value of SOFT. If FREE = 0,
SOFT determines how the clocks respond. When one of the clocks stops, the
corresponding data transfer (transmission or reception) stops.

FREE SOFT When A Breakpoint Is Encountered …

0 0 The McBSP transmit and receive clocks are stopped im-
mediately.
(Reset condition)

0 1 The McBSP transmit clock stops after completion of the
current serial word transfer. The McBSP receive clock is
not affected.

1 0 or 1 The McBSP transmit and receive clocks continue to run
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Table 9–78. SPCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

7 FRST_ Frame-sync logic reset bit 0

The sample rate generator of the McBSP includes frame-sync logic to gener-
ate an internal frame-sync signal. You can use FRST_ to take the frame-sync
logic into and out of its reset state. The underscore ( _ ) at the end of the bit
name is a reminder of the negative polarity of the bit; FRST_ = 0 indicates the
reset state.

0 If you read a 0, the frame-sync logic is in its reset state.

If you write a 0, you reset the frame-sync logic.

In the reset state, the frame-sync logic does not generate a frame-
sync signal (FSG).

1 If you read a 1, the frame-sync logic is enabled.

If you write a 1, you enable the frame-sync logic by taking it out of
its reset state.

When the frame-sync logic is enabled (FRST_ = 1) and the sample
rate generator as a whole is enabled (GRST_ = 1), the frame-sync
logic generates the frame-sync signal FSG as programmed.

6 GRST_ Sample rate generator reset bit 0

You can use GRST_ to take the McBSP sample rate generator into and out
of its reset state. The underscore ( _ ) at the end of the bit name is a reminder
of the negative polarity of the bit; GRST_ = 0 indicates the reset state.

0 If you read a 0, the sample rate generator is in its reset state.

If you write a 0, you reset the sample rate generator.

If GRST_ = 0 due to a DSP reset, CLKG is driven by the CPU clock
divided by 2, and FSG is driven low (inactive). If GRST_ = 0 due to
program code, CLKG and FSG are both driven low (inactive).

1 If you read a 1, the sample rate generator is enabled.

If you write a 1, you enable the sample rate generator by taking it
out of its reset state.

When enabled, the sample rate generator generates the clock sig-
nal CLKG as programmed in the sample rate generator registers.
If FRST_ = 1, the generator also generates the frame-sync signal
FSG as programmed in the sample rate generator registers.

To read about the effects of a sample rate generator reset, see Resetting and
Initializing a McBSP on page 9-147.
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Table 9–78. SPCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

5–4 XINTM Transmit interrupt mode bits 00b

XINTM determines which event in the McBSP transmitter generates a transmit
interrupt (XINT) request. If XINT is properly enabled, the CPU will service the
interrupt request; otherwise, the CPU will ignore the request.

00b If ABIS = 0 (A-bis mode disabled):
The McBSP sends a transmit interrupt (XINT) request to the CPU
when the XRDY bit changes from 0 to 1, indicating that transmitter
is ready to accept new data (the content of DXR[1,2] has been cop-
ied to XSR[1,2]):

Note:  Regardless of the value of XINTM, you can check XRDY to
determine whether a word transfer is complete.

If ABIS = 1 (A-bis mode enabled):
The McBSP sends an XINT request to the CPU when 16 enabled
bits have been transmitted on the DX pin.

01b In the multichannel selection mode, the McBSP sends an XINT re-
quest to the CPU after every 16-channel block is transmitted in a
frame.

Outside of the multichannel selection mode, no interrupt request is
sent.

10b The McBSP sends an XINT request to the CPU when each transmit
frame-sync pulse is detected. The interrupt request is sent even if
the transmitter is in its reset state.

11b The McBSP sends an XINT request to the CPU when the XSYN-
CERR bit is set, indicating a transmit frame-sync error.

Note: Regardless of the value of XINTM, you can check XSYN-
CERR to determine whether a transmit frame-sync error occurred.
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Table 9–78. SPCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

3 XSYNCERR Transmit frame-sync error bit 0

XSYNCERR is set when a transmit frame-sync error is detected by the
McBSP. If XINTM = 11b, the McBSP sends a transmit interrupt (XINT) request
to the CPU when XSYNCERR is set. The flag remains set until you write a 0
to it or reset the transmitter.

Caution: if XINTM = 11b, writing a 1 to XSYNCERR triggers a transmit inter-
rupt just as if a transmit frame-sync error occurred.

0 No error

1 Transmit frame-sync error

For details about this error see Unexpected Transmit Frame-Sync
Pulse on page 9-44.

2 XEMPTY_ Transmitter empty bit 0

XEMPTY_ is cleared when the transmitter is ready to send new data but no
new data is available (transmitter-empty condition). The underscore ( _ ) at
the end of the bit name is a reminder of the negative polarity of the bit. A trans-
mitter-empty condition is indicated by XEMPTY_ = 0.

0 Transmitter-empty condition

Typically this indicates that all the bits of the current word have been
transmitted but there is no new data in DXR1. XEMPTY_ is also
cleared if the transmitter is reset and then restarted.

For more details about this error condition, see Underflow in the
Transmitter on page 9.4.4.

1 No transmitter-empty condition
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Table 9–78. SPCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

1 XRDY Transmitter ready bit 0

XRDY is set when the transmitter is ready to accept new data in DXR[1,2].
Specifically, XRDY is set in response to a copy from DXR1 to XSR1.

0 Transmitter not ready

When DXR1 is loaded, XRDY is automatically cleared.

1 Transmitter ready: DXR[1,2] is ready to accept new data.

Important:  If both DXRs are needed (word length larger than 16
bits), the CPU or the DMA controller must load DXR2 first and then
load DXR1. As soon as DXR1 is loaded, the contents of both DXRs
are copied to the transmit shift registers (XSRs), as described in the
next step. If DXR2 is not loaded first, the previous content of DXR2
is passed to the XSR2.

If the transmit interrupt mode is XINTM = 00b, the McBSP sends a transmit
interrupt (XINT) request to the CPU when XRDY changes from 0 to 1.

Also, when XRDY changes from 0 to 1, the McBSP sends a transmit synchro-
nization event (XEVT) signal to the DMA controller.

0 XRST_ Transmitter reset bit 0

You can use XRST_ to take the McBSP transmitter into and out of its reset
state. The underscore ( _ ) at the end of the bit name is a reminder of the nega-
tive polarity of the bit; XRST_ = 0 indicates the reset state.

0 If you read a 0, the transmitter is in its reset state.

If you write a 0, you reset the transmitter.

1 If you read a 1, the transmitter is enabled.

If you write a 1, you enable the transmitter by taking it out of its reset
state.

To read about the effects of a transmitter reset, see Resetting and Initializing
a McBSP on page 9-147.
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9.13.4 Receive Control Registers (RCR2 and RCR1)

Each McBSP has two receive control registers of the form shown in
Figure 9–118. Table 9–79 and Table 9–80 describe the bis of RCR1 and
RCR2, respectively. These I/O-mapped registers enable you to:

� Specify one or two phases for each frame of receive data (RPHASE)

� Define two parameters for phase 1 and (if necessary) phase 2: the serial
word length (RWDLEN1, RWDLEN2) and the number of words
(RFRLEN1, RFRLEN2)

� Choose a receive companding mode, if any (RCOMPAND)

� Enable or disable the receive frame-sync ignore function (RFIG)

� Choose a receive data delay (RDATDLY)

Figure 9–118. Receive Control Registers (RCR2 and RCR1)
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–79. RCR1 BIt Descriptions  

Bits Name Description
Reset
Value

15 Reserved Reserved bits (not available for your use). They are read-only bits and
return 0s when read.

14–8 RFRLEN1 Receive frame length 1 000 0000b

Each frame of receive data can have one or two phases, depending on
value that you load into the RPHASE bit. If a single-phase frame is se-
lected, RFRLEN1 in RCR1 selects the number of serial words (8, 12, 16,
20, 24, or 32 bits per word) in the frame. If a dual-phase frame is selected,
RFRLEN1 determines the number of serial words in phase 1 of the
frame, and RFRLEN2 in RCR2 determines the number of words in
phase 2 of the frame. The 7-bit RFRLEN fields allow up to 128 words per
phase. See the following table for a summary of how you determine the
frame length. This length corresponds to the number of words or logical
time slots or channels per frame-synchronization period.

Note:  Program the RFRLEN fields with [w minus 1], where w represents
the number of words per phase. For example, if you want a phase length
of 128 words in phase 1, load 127 into RFRLEN1.

RPHASE RFRLEN1 RFRLEN2 Frame Length

0 0 ≤ RFRLEN1 ≤ 127 Not used (RFRLEN1 + 1) words

1 0 ≤ RFRLEN1 ≤ 127 0 ≤ RFRLEN2 ≤ 127 (RFRLEN1 + 1) + (RFRLEN2 + 1)  words
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Table 9–79. RCR1 BIt Descriptions (Continued)

Bits Name Description
Reset
Value

7–5 RWDLEN1 Receive word length 1 000b

Each frame of receive data can have one or two phases, depending on the val-
ue that you load into the RPHASE bit. If a single-phase frame is selected,
RWDLEN1 in RCR1 selects the length for every serial word received in the
frame. If a dual-phase frame is selected, RWDLEN1 determines the length of
the serial words in phase 1 of the frame, and RWDLEN2 in RCR2 determines
the word length in phase 2 of the frame.

000b 8 bits

001b 12 bits

010b 16 bits

011b 20 bits

100b 24 bits

101b 32 bits

110b Reserved (do not use)

111b Reserved (do not use)

4–0 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.
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Table 9–80. RCR2 Bit Descriptions  

Bits Name Description
Reset
Value

15 RPHASE Receive phase number bit 0

RPHASE determines whether the receive frame has one phase or two
phases. For each phase you can define the serial word length and the
number of serial words in the phase. To set up phase 1, program
RWDLEN1 (word length) and RFRLEN1 (number of words). To set up
phase 2 (if there are two phases), program RWDLEN2 and RFRLEN2.

0 Single-phase frame

The receive frame has only one phase, phase 1.

1 Dual-phase frame

The receive frame has two phases, phase 1 and phase
2.

14–8 RFRLEN2 Receive frame length 2 000 0000b

Each frame of receive data can have one or two phases, depending on
value that you load into the RPHASE bit. If a single-phase frame is se-
lected, RFRLEN1 in RCR1 selects the number of serial words (8, 12, 16,
20, 24, or 32 bits per word) in the frame. If a dual-phase frame is selected,
RFRLEN1 determines the number of serial words in phase 1 of the
frame, and RFRLEN2 in RCR2 determines the number of words in phase
2 of the frame. The 7-bit RFRLEN fields allow up to 128 words per phase.
See the following table for a summary of how to determine the frame
length. This length corresponds to the number of words or logical time
slots or channels per frame-synchronization period.

Note:  Program the RFRLEN fields with [w minus 1], where w represents
the number of words per phase. For example, if you want a phase length
of 128 words in phase 2, load 127 into RFRLEN2.

RPHASE RFRLEN1 RFRLEN2 Frame Length

0 0 ≤ RFRLEN1 ≤ 127 Not used (RFRLEN1 + 1) words

1 0 ≤ RFRLEN1 ≤ 127 0 ≤ RFRLEN2 ≤ 127 (RFRLEN1 + 1) + (RFRLEN2 + 1) words
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Table 9–80. RCR2 BIt Descriptions (Continued)

Bits Name Description
Reset
Value

7–5 RWDLEN2 Receive word length 2 000b

Each frame of receive data can have one or two phases, depending on the
value that you load into the RPHASE bit. If a single-phase frame is selected,
RWDLEN1 in RCR1 selects the length for every serial word received in the
frame. If a dual-phase frame is selected, RWDLEN1 determines the length
of the serial words in phase 1 of the frame, and RWDLEN2 in RCR2 deter-
mines the word length in phase 2 of the frame.

000b 8 bits

001b 12 bits

010b 16 bits

011b 20 bits

100b 24 bits

101b 32 bits

110b Reserved (do not use)

111b Reserved (do not use)

4–3 RCOMPAND Receive companding mode bits 00b

Companding (COMpress and exPAND) hardware allows compression and
expansion of data in either µ-law or A-law format.

RCOMPAND allows you to choose one of the following companding modes
for the McBSP receiver:

00b No companding, any size data, MSB received first

01b No companding, 8-bit data, LSB received first

10b µ-law companding, 8-bit data, MSB received first

11b A-law companding, 8-bit data, MSB received first

For more details about these companding modes, see Companding (Com-
pressing and Expanding) Data on page 9-8.
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Table 9–80. RCR2 BIt Descriptions (Continued)

Bits
Reset
ValueDescriptionName

2 RFIG Receive frame-sync ignore bit 0

If a frame-sync pulse starts the transfer of a new frame before the current
frame is fully received, this pulse is treated as an unexpected frame-sync
pulse. For more details about the frame-sync error condition, see Unex-
pected Receive Frame-Sync Pulse on page 9-38.

Setting RFIG causes the serial port to ignore unexpected frame-sync signals
during reception. For more details on the effects of RFIG, see Enable/Disable
the Receive Frame-Sync Ignore Function on page 9-85.

0 Disabled

An unexpected FSR pulse causes the receiver to discard the
contents of RSR[1,2] in favor of the new incoming data. The
receiver:

1) Aborts the current data transfer

2) Sets RSYNCERR in SPCR1

3) Begins the transfer of a new data word

1 Enabled

An unexpected FSR pulse is ignored. Reception continues
uninterrupted.

1–0 RDATDLY Receive data delay bits 00b

RDATDLY specifies a data delay of 0, 1, or 2 receive clock cycles after frame-
synchronization and before the reception of the first bit of the frame. For more
details, see Set the Receive Data Delay on page 9.8.13.

00b 0-bit data delay

01b 1-bit data delay

10b 2-bit data delay

11b Reserved (do not use)
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9.13.5 Transmit Control Registers (XCR2 and XCR1)

Each McBSP has two transmit control registers of the form shown in
Figure 9–119. Table 9–81 and Table 9–82 describe the bits of XCR1 and
XCR2, respectively. These I/O-mapped registers enable you to:

� Specify one or two phases for each frame of transmit data (XPHASE)

� Define two parameters for phase 1 and (if necessary) phase 2: the serial
word length (XWDLEN1, XWDLEN2) and the number of words
(XFRLEN1, XFRLEN2)

� Choose a transmit companding mode, if any (XCOMPAND)

� Enable or disable the transmit frame-sync ignore function (XFIG)

� Choose a transmit data delay (XDATDLY)

Figure 9–119. Transmit Control Registers (XCR2 and XCR1)
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Legend:

R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–81. XCR1 Bit Descriptions  

Bits Name Description
Reset
 Value

15 Reserved Reserved bits (not available for your use). They are read-only bits and
return 0s when read.

14–8 XFRLEN1 Transmit frame length 1 000 0000b

Each frame of transmit data can have one or two phases, depending on
value that you load into the XPHASE bit. If a single-phase frame is se-
lected, XFRLEN1 in XCR1 selects the number of serial words (8, 12, 16,
20, 24, or 32 bits per word) in the frame. If a dual-phase frame is selected,
XFRLEN1 determines the number of serial words in phase 1 of the
frame, and XFRLEN2 in XCR2 determines the number of words in phase
2 of the frame. The 7-bit XFRLEN fields allow up to 128 words per phase.
See the following table for a summary of how you determine the frame
length. This length corresponds to the number of words or logical time
slots or channels per frame-synchronization period.

Note:  Program the XFRLEN fields with [w minus 1], where w represents
the number of words per phase. For example, if you want a phase length
of 128 words in phase 1, load 127 into XFRLEN1.

XPHASE XFRLEN1 XFRLEN2 Frame Length

0 0 ≤ XFRLEN1 ≤ 127 Not used (XFRLEN1 + 1) words

1 0 ≤ XFRLEN1 ≤ 127 0 ≤ XFRLEN2 ≤ 127 (XFRLEN1 + 1) + (XFRLEN2 + 1) words
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Table 9–81. XCR1 Bit Descriptions (Continued)

Bits Name Description
Reset
Value

7–5 XWDLEN1 Transmit word length 1 000b

Each frame of transmit data can have one or two phases, depending on the
value that you load into the XPHASE bit. If a single-phase frame is selected,
XWDLEN1 in XCR1 selects the length for every serial word transmitted in the
frame. If a dual-phase frame is selected, XWDLEN1 determines the length
of the serial words in phase 1 of the frame, and XWDLEN2 in XCR2 deter-
mines the word length in phase 2 of the frame.

000b 8 bits

001b 12 bits

010b 16 bits

011b 20 bits

100b 24 bits

101b 32 bits

110b Reserved (do not use)

111b Reserved (do not use)

4–0 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.
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Table 9–82. XCR2 Bit Descriptions  

Bits Name Description
Reset
Value

15 XPHASE Transmit phase number bit 0

XPHASE determines whether the transmit frame has one phase or two
phases. For each phase you can define the serial word length and the
number of serial words in the phase. To set up phase 1, program
XWDLEN1 (word length) and XFRLEN1 (number of words). To set up
phase 2 (if there are two phases), program XWDLEN2 and XFRLEN2.

0 Single-phase frame

The transmit frame has only one phase, phase 1.

1 Dual-phase frame

The transmit frame has two phases, phase 1 and phase 2.

14–8 XFRLEN2 Transmit frame length 2 000 0000b

Each frame of transmit data can have one or two phases, depending
on value that you load into the XPHASE bit. If a single-phase frame is
selected, XFRLEN1 in XCR1 selects the number of serial words (8, 12,
16, 20, 24, or 32 bits per word) in the frame. If a dual-phase frame is
selected, XFRLEN1 determines the number of serial words in phase 1
of the frame, and XFRLEN2 in XCR2 determines the number of words
in phase 2 of the frame. The 7-bit XFRLEN fields allow up to 128 words
per phase. See the following table for a summary of how to determine
the frame length. This length corresponds to the number of words or
logical time slots or channels per frame-synchronization period.

Note:  Program the XFRLEN fields with [w minus 1], where w repre-
sents the number of words per phase. For example, if you want a phase
length of 128 words in phase 1, load 127 into XFRLEN1.

XPHASE XFRLEN1 XFRLEN2 Frame Length

0 0 ≤ XFRLEN1 ≤ 127 Not used (XFRLEN1 + 1) words

1 0 ≤ XFRLEN1 ≤ 127 0 ≤ XFRLEN2 ≤ 127 (XFRLEN1 + 1) + (XFRLEN2 + 1) words
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Table 9–82. XCR2 Bit Descriptions (Continued)

Bits Name Description
Reset
Value

7–5 XWDLEN2 Transmit word length 2 000b

Each frame of transmit data can have one or two phases, depending on the
value that you load into the XPHASE bit. If a single-phase frame is selected,
XWDLEN1 in XCR1 selects the length for every serial word transmitted in the
frame. If a dual-phase frame is selected, XWDLEN1 determines the length
of the serial words in phase 1 of the frame, and XWDLEN2 in XCR2 deter-
mines the word length in phase 2 of the frame.

000b 8 bits

001b 12 bits

010b 16 bits

011b 20 bits

100b 24 bits

101b 32 bits

110b Reserved (do not use)

111b Reserved (do not use)

4–3 XCOMPAND Transmit companding mode bits 00b

Companding (COMpress and exPAND) hardware allows compression and
expansion of data in either µ-law or A-law format. For more details, see Com-
panding Data on page 9-8.

XCOMPAND allows you to choose one of the following companding modes
for the McBSP transmitter:

00b No companding, any size data, MSB transmitted first

01b No companding, 8-bit data, LSB transmitted first

10b µ-law companding, 8-bit data, MSB transmitted first

11b A-law companding, 8-bit data, MSB transmitted first

For more details about these companding modes, see Companding (Com-
pressing and Expanding) Data on page 9-8.
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Table 9–82. XCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

2 XFIG Transmit frame-sync ignore bit 0

If a frame-sync pulse starts the transfer of a new frame before the current
frame is fully transmitted, this pulse is treated as an unexpected frame-sync
pulse. For more details about the frame-sync error condition, see Unex-
pected Transmit Frame-Sync Pulse on page 9-44.

Setting XFIG causes the serial port to ignore unexpected frame-sync pulses
during transmission. For more details on the effects of XFIG, see Enable/Dis-
able the Transmit Frame-Sync Ignore Function on page 9-122.

0 Disabled

An unexpected FSX pulse causes the transmitter to discard the con-
tent of XSR[1,2]. The transmitter:

1) Aborts the present transmission

2) Sets XSYNCERR in SPCR2

3) Begins a new transmission from DXR[1,2]. If new data was writ-
ten to DXR[1,2] since the last DXR[1,2]-to-XSR[1,2] copy, the
current value in XSR[1,2] is lost. Otherwise, the same data is
transmitted.

1 Enabled

An unexpected FSX pulse is ignored. Transmission continues unin-
terrupted.

1–0 XDATDLY Transmit data delay bits 00b

XDATDLY specifies a data delay of 0, 1, or 2 transmit clock cycles after frame
synchronization and before the transmission of the first bit of the frame. For
more details, see Set the Transmit Data Delay on page 9-126.

00b 0-bit data delay

01b 1-bit data delay

10b 2-bit data delay

11b Reserved (do not use)
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9.13.6 Sample Rate Generator Registers (SRGR2 and SRGR1)

Each McBSP has two sample rate generator registers of the form shown in
Figure 9–120. Table 9–83 and Table 9–84 describe the bits of SRGR1 and
SRGR2, respectively. The sample rate generator can generate a clock signal
(CLKG) and a frame-sync signal (FSG). The I/O-mapped registers SRGR1
and SRGR2 enable you to:

� Select the input clock source for the sample rate generator (CLKSM, in
conjunction with the SCLKME bit of PCR)

� Divide down the frequency of CLKG (CLKGDV)

� Select whether internally-generated transmit frame-sync pulse are driven
by FSG or by activity in the transmitter (FSGM).

� Specify the width of frame-sync pulses on FSG (FWID) and specify the pe-
riod between those pulses (FPER)

When an external source (via the CLKS, CLKR, or CLKX pin) provides the in-
put clock source for the sample rate generator:

� If the CLKS pin provides the input clock, the CLKSP bit in SRGR2 allows
you to select whether the rising edge or the falling edge of CLKS triggers
CLKG and FSG. If the CLKX/CLKR pin is used instead of the CLKS pin,
the polarity of the input clock is selected with CLKXP/CLKRP of PCR.

� The GSYNC bit of SRGR2 allows you to make CLKG synchronized to an
external frame-sync signal on the FSR pin, so that CLKG is kept in phase
with the input clock.

Figure 9–120. Sample Rate Generator Registers (SRGR2 and SRGR1)
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R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–83. SRGR1 Bit Descriptions  

Bits Name Description Reset Value

15–8 FWID Frame-sync pulse width bits for FSG 0000 0000b

The sample rate generator can produce a clock signal, CLKG, and a
frame-sync signal, FSG. For frame-sync pulses on FSG, (FWID + 1) is
the pulse width in CLKG cycles. The eight bits of FWID allow a pulse
width of 1 to 256 CLKG cycles:

0 ≤ FWID ≤ 255
1 ≤ (FWID + 1) ≤ 256 CLKG cycles

The period between the frame-sync pulses on FSG is defined by the
FPER bits.

7–0 CLKGDV Divide-down value for CLKG 0000 0001b

The sample rate generator can accept an input clock signal and divide
it down according to CLKGDV to produce an output clock signal, CLKG.
The frequency of CLKG is:

CLKG frequency = (Input clock frequency) / (CLKGDV + 1)

The input clock is selected by the SCLKME and CLKSM bits:

SCLKME CLKSM Input Clock For Sample Rate Generator

0 0 Signal on CLKS pin

0 1 CPU clock

1 0 Signal on CLKR pin

1 1 Signal on CLKX pin

A DSP reset forces the CLKG frequency to 1/2 the input clock frequency
(CLKGDV = 1), and the reset selects the CPU clock as the input clock.
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Table 9–84. SRGR2 Bit Descriptions  

Bits Name Description
Reset
Value

15 GSYNC Clock synchronization mode bit for CLKG 0

GSYNC is used only when the input clock source for the sample
rate generator is external—on the CLKS, CLKR, or CLKX pin.

When GSYNC = 1, the clock signal (CLKG) and the frame-sync
signal (FSG) generated by the sample rate generator are made de-
pendent on pulses on the FSR pin.

0 No clock synchronization

CLKG oscillates without adjustment, and FSG pulses
every (FPER + 1) CLKG cycles.

1 Clock synchronization

� CLKG is adjusted as necessary so that it is syn-
chronized with the input clock on the CLKS,
CLKR, or CLKX pin.

� FSG pulses.

FSG only  pulses in response to a pulse on the FSR
pin. The frame-sync period defined in FPER is ig-
nored.

For more details, see Synchronizing Sample Rate
Generator Outputs to an External Clock on page 9-29.

14 CLKSP CLKS pin polarity bit 0

CLKSP is used only when the CLKS pin is the input clock source
for the sample rate generator. The bit determines which edge of
CLKS drives the clock signal (CLKG) and the frame-sync signal
(FSG) that are generated by the sample rate generator:

0 A rising edge on the CLKS pin

1 A falling edge on the CLKS pin
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Table 9–84. SRGR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

13 CLKSM Sample rate generator input clock mode bit 1

The sample rate generator can accept an input clock signal and di-
vide it down according to CLKGDV to produce an output clock sig-
nal, CLKG. The frequency of CLKG is:

CLKG frequency = (Input clock frequency) / (CLKGDV + 1)

CLKSM is used in conjunction with the SCLKME bit to determine
the source for the input clock:

SCLKME CLKSM Input Clock For Sample Rate Generator

0 0 Signal on CLKS pin

0 1 CPU clock

1 0 Signal on CLKR pin

1 1 Signal on CLKX pin

A DSP reset selects the CPU clock as the input clock and forces
the CLKG frequency to 1/2 the CPU clock frequency.

12 FSGM Sample rate generator transmit frame-sync mode bit 0

The transmitter can get frame synchronization from the FSX pin
(FSXM = 0) or from inside the McBSP (FSXM = 1). When
FXSM = 1, the FSGM bit determines how the McBSP supplies
frame-sync pulses:

FSXM FSGM Transmit Frame-Sync Mode

1 0 The McBSP generates a transmit frame-
sync pulse when the content of DXR[1,2] is
copied to XSR[1,2].

1 1 The transmitter uses frame-sync pulses
generated by the sample rate generator.
Program the FWID bits to set the width of
each pulse. Program the FPER bits to set
the period between pulses.
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Table 9–84. SRGR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

11–0 FPER Frame-sync period bits for FSG 0000 0000 0000b

The sample rate generator can produce a clock signal, CLKG, and
a frame-sync signal, FSG. The period between frame-sync pulses
on FSG is (FPER + 1) CLKG cycles. The 12 bits of FPER allow a
frame-sync period of 1 to 4096 CLKG cycles:

0 ≤ FPER ≤ 4095
1 ≤ (FPER + 1) ≤ 4096 CLKG cycles

The width of each frame-sync pulse on FSG is defined by the FWID
bits.

9.13.7 Multichannel Control Registers (MCR2 and MCR1)

Each McBSP has two multichannel control registers of the form shown in
Figure 9–121. MCR1 has control and status bits (with an R prefix) for multi-
channel selection operation in the receiver. MCR2 contains the same type of
bits (bit with an X prefix) for the transmitter. The bits of MCR1 and MCR2 are
described in Table 9–85 and Table 9–86, respectively. These I/O-mapped reg-
isters enable you to:

� Enable all channels or only selected channels for reception (RMCM)

� Choose which channels are enabled/disabled and masked/unmasked for
transmission (XMCM)

� Specify whether two partitions (32 channels at a time) or eight partitions
(128 channels at a time) can be used (RMCME for reception, XMCME for
transmission)

� Assign blocks of 16 channels to partitions A and B when the 2-partition
mode is selected (RPABLK and RPBBLK for reception, XPABLK and
XPBBLK for transmission)

� Determine which block of 16 channels is currently involved in a data trans-
fer (RCBLK for reception, XCBLK for transmission)
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Figure 9–121. Multichannel Control Registers (MCR2 and MCR1)
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R Read-only access
R/W Read/write access
– X X is the value after a DSP reset.
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Table 9–85. MCR1 Bit Descriptions  

Bits Name Description
Reset
Value

15–10 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.

9 RMCME Receive multichannel partition mode bit 0

RMCME is only applicable if channels can be individually enabled or disabled
for reception (RMCM   =  1).

RMCME determines whether only 32 channels or all 128 channels are to be in-
dividually selectable.

0 2-partition mode

Only partitions A and B are used. You can control up to 32 channels
in the receive multichannel selection mode (RMCM   =  1).

Assign 16 channels to partition A with the RPABLK bits. Assign 16
channels to partition B with the RPBBLK bits.

You control the channels with the appropriate receive channel en-
able registers:
RCERA: Channels in partition A
RCERB: Channels in partition B

1 8-partition mode

All partitions (A through H) are used. You can control up to 128
channels in the receive multichannel selection mode.

You control the channels with the appropriate receive channel en-
able registers:
RCERA: Channels 0 through 15
RCERB: Channels 16 through 31
RCERC: Channels 32 through 47
RCERD: Channels 48 through 63
RCERE: Channels 64 through 79
RCERF: Channels 80 through 95
RCERG: Channels 96 through 111
RCERH: Channels 112 through 127
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Table 9–85. MCR1 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

8–7 RPBBLK Receive partition B block bits 00b

RPBBLK is only applicable if channels can be individually enabled or disabled
(RMCM   =  1) and the 2-partition mode is selected (RMCME   =  0). Under these
conditions, the McBSP receiver can accept or ignore data in any of the 32 chan-
nels that are assigned to partitions A and B of the receiver.

The 128 receive channels of the McBSP are divided equally among 8 blocks
(0 through 7). When RPBBLK is applicable, use RPBBLK to assign one of the
odd-numbered blocks (1, 3, 5, or 7) to partition B, as shown in the following
table. Use the RPABLK bit to assign one of the even-numbered blocks (0, 2, 4,
or 6) to partition A.

If you want to use more than 32 channels, you can change block assignments
dynamically. You can assign a new block to one partition while the receiver is
handling activity in the other partition. For example, while the block in partition
A is active, you can change which block is assigned to partition B. The RCBLK
bits are regularly updated to indicate which block is active.

Note: When XMCM   =  11b (for symmetric transmission and reception), the
transmitter uses the receive block bits (RPABLK and RPBBLK) rather than the
transmit block bits (XPABLK and XPBBLK).

If RMCM  =  1 and RMCME  =  0:

00b Block 1: channels 16 through 31

01b Block 3: channels 48 through 63

10b Block 5: channels 80 through 95

11b Block 7: channels 112 through 127
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Table 9–85. MCR1 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

6–5 RPABLK Receive partition A block bits 00b

RPABLK is only applicable if channels can be individually enabled or disabled
(RMCM   =  1) and the 2-partition mode is selected (RMCME   =  0). Under these
conditions, the McBSP receiver can accept or ignore data in any of the 32 chan-
nels that are assigned to partitions A and B of the receiver.

The 128 receive channels of the McBSP are divided equally among 8 blocks
(0 through 7). When RPABLK is applicable, use RPABLK to assign one of the
even-numbered blocks (0, 2, 4, or 6) to partition A, as shown in the following
table. Use the RPBBLK bit to assign one of the odd-numbered blocks (1, 3, 5,
or 7) to partition B.

If you want to use more than 32 channels, you can change block assignments
dynamically. You can assign a new block to one partition while the receiver is
handling activity in the other partition. For example, while the block in partition
B is active, you can change which block is assigned to partition A. The RCBLK
bits are regularly updated to indicate which block is active.

Note: When XMCM   =  11b (for symmetric transmission and reception), the
transmitter uses the receive block bits (RPABLK and RPBBLK) rather than the
transmit block bits (XPABLK and XPBBLK).

If RMCM  =  1 and RMCME  =  0:

00b Block 0: channels 0 through 15

01b Block 2: channels 32 through 47

10b Block 4: channels 64 through 79

11b Block 6: channels 96 through 111
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Table 9–85. MCR1 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

4–2 RCBLK Receive current block indicator 000b

RCBLK indicates which block of 16 channels is involved in the current McBSP
reception:

000b Block 0: channels 0 through 15

001b Block 1: channels 16 through 31

010b Block 2: channels 32 through 47

011b Block 3: channels 48 through 63

100b Block 4: channels 64 through 79

101b Block 5: channels 80 through 95

110b Block 6: channels 96 through 111

111b Block 7: channels 112 through 127

1 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.

0 RMCM Receive multichannel selection mode bit 0

RMCM determines whether all channels or only selected channels are enabled
for reception:

0 Disabled

All 128 channels are enabled.

1 Enabled

Channels can be individually enabled or disabled.

The only channels enabled are those selected in the appropriate re-
ceive channel enable registers (RCERs). The way channels are as-
signed to the RCERs depends on the number of receive channel
partitions (2 or 8), as defined by the RMCME bit.
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Table 9–86. MCR2 Bit Descriptions  

Bits Name Description
Reset
Value

15–10 Reserved Reserved bits (not available for your use). They are read-only bits and return
0s when read.

–

9 XMCME Transmit multichannel partition mode bit 0

XMCME is only applicable if channels can be individually disabled/enabled or
masked/unmasked for transmission (XMCM is nonzero).

XMCME determines whether only 32 channels or all 128 channels are to be in-
dividually selectable.

0 2-partition mode

Only partitions A and B are used. You can control up to 32 channels
in the transmit multichannel selection mode selected with the
XMCM bits.

If XMCM  =  01b  or  10b , assign 16 channels to partition A with the
XPABLK bits. Assign 16 channels to partition B with the XPBBLK
bits.

If XMCM  =  11b (for symmetric transmission and reception), assign
16 channels to receive partition A with the RPABLK bits. Assign 16
channels to receive partition B with the RPBBLK bits.

You control the channels with the appropriate transmit channel en-
able registers:
XCERA: Channels in partition A
XCERB: Channels in partition B

1 8-partition mode

All partitions (A through H) are used. You can control up to 128
channels in the transmit multichannel selection mode selected with
the XMCM bits.

You control the channels with the appropriate transmit channel en-
able registers:
XCERA: Channels 0 through 15
XCERB: Channels 16 through 31
XCERC: Channels 32 through 47
XCERD: Channels 48 through 63
XCERE: Channels 64 through 79
XCERF: Channels 80 through 95
XCERG: Channels 96 through 111
XCERH: Channels 112 through 127
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Table 9–86. MCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

8–7 XPBBLK Transmit partition B block bits 00b

XPBBLK is only applicable if channels can be individually disabled/enabled and
masked/unmasked (XMCM is nonzero) and the 2-partition mode is selected
(XMCME   =  0). Under these conditions, the McBSP transmitter can transmit
or withhold data in any of the 32 channels that are assigned to partitions A and
B of the transmitter.

The 128 transmit channels of the McBSP are divided equally among 8 blocks
(0 through 7). When XPBBLK is applicable, use XPBBLK to assign one of the
odd-numbered blocks (1, 3, 5, or 7) to partition B, as shown in the following
table. Use the XPABLK bit to assign one of the even-numbered blocks (0, 2, 4,
or 6) to partition A.

If you want to use more than 32 channels, you can change block assignments
dynamically. You can assign a new block to one partition while the transmitter
is handling activity in the other partition. For example, while the block in partition
A is active, you can change which block is assigned to partition B. The XCBLK
bits are regularly updated to indicate which block is active.

Note: When XMCM  =  11b (for symmetric transmission and reception), the
transmitter uses the receive block bits (RPABLK and RPBBLK) rather than the
transmit block bits (XPABLK and XPBBLK).

If XMCM  =  01b  or  10b, and XMCME   =  0:

00b Block 1: channels 16 through 31

01b Block 3: channels 48 through 63

10b Block 5: channels 80 through 95

11b Block 7: channels 112 through 127
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Table 9–86. MCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

6–5 XPABLK Transmit partition A block bits 00b

XPABLK is only applicable if channels can be individually disabled/enabled and
masked/unmasked (XMCM is nonzero) and the 2-partition mode is selected
(XMCME   =  0). Under these conditions, the McBSP transmitter can transmit
or withhold data in any of the 32 channels that are assigned to partitions A and
B of the transmitter.

The 128 transmit channels of the McBSP are divided equally among 8 blocks
(0 through 7). When XPABLK is applicable, use XPABLK to assign one of the
even-numbered blocks (0, 2, 4, or 6) to partition A, as shown in the following
table. Use the XPBBLK bit to assign one of the odd-numbered blocks (1, 3, 5,
or 7) to partition B.

If you want to use more than 32 channels, you can change block assignments
dynamically. You can assign a new block to one partition while the transmitter
is handling activity in the other partition. For example, while the block in partition
B is active, you can change which block is assigned to partition A. The XCBLK
bits are regularly updated to indicate which block is active.

Note: When XMCM  =  11b (for symmetric transmission and reception), the
transmitter uses the receive block bits (RPABLK and RPBBLK) rather than the
transmit block bits (XPABLK and XPBBLK).

If XMCM  =  01b  or  10b, and XMCME   =  0:

00b Block 0: channels 0 through 15

01b Block 2: channels 32 through 47

10b Block 4: channels 64 through 79

11b Block 6: channels 96 through 111
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Table 9–86. MCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

4–2 XCBLK Transmit current block indicator 000b

XCBLK indicates which block of 16 channels is involved in the current McBSP
transmission:

000b Block 0: channels 0 through 15

001b Block 1: channels 16 through 31

010b Block 2: channels 32 through 47

011b Block 3: channels 48 through 63

100b Block 4: channels 64 through 79

101b Block 5: channels 80 through 95

110b Block 6: channels 96 through 111

111b Block 7: channels 112 through 127
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Table 9–86. MCR2 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

1–0 XMCM Transmit multichannel selection mode bits 00b

XMCM determines whether all channels or only selected channels are enabled
and unmasked for transmission. For more details on how the channels are
affected, see Transmit Multichannel Selection Modes on page 9-54.

00b No transmit multichannel selection mode is on. All channels are en-
abled and unmasked. No channels can be disabled or masked.

01b All channels are disabled unless they are selected in the appropri-
ate transmit channel enable registers (XCERs). If enabled, a chan-
nel in this mode is also unmasked.

The XMCME bit determines whether 32 channels or 128 channels
are selectable in XCERs.

10b All channels are enabled, but they are masked unless they are se-
lected in the appropriate transmit channel enable registers
(XCERs).

The XMCME bit determines whether 32 channels or 128 channels
are selectable in XCERs.

11b This mode is used for symmetric transmission and reception.

All channels are disabled for transmission unless they are enabled
for reception in the appropriate receive channel enable registers
(RCERs). Once enabled, they are masked unless they are also se-
lected in the appropriate transmit channel enable registers
(XCERs).

The XMCME bit determines whether 32 channels or 128 channels
are selectable in RCERs and XCERs.

9.13.8 Pin Control Register (PCR)

Each McBSP has one pin control register of the form shown in Figure 9–122.
Table 9–87 describes the bits of PCR. This I/O-mapped register enables you
to:

� Allow the McBSP to enter a low-power mode when the idle instruction is
executed (IDLE_EN, in conjunction with the PERI bit of ICR)

� Specify whether McBSP pins can be used as general-purpose I/O pins
when the transmitter and/or receiver is in its reset state (XIOEN and
RIOEN)
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� Choose a frame-sync mode for the transmitter (FSXM) and for the receiver
(FSRM)

� Choose a clock mode for transmitter (CLKXM) and for the receiver
(CLKRM)

� Select the input clock source for the sample rate generator (SCLKME, in
conjunction with the CLKSM bit of SRGR2)

� Read or write data when the CLKS, DX, and DR pins are configured as
general-purpose I/O pins (CLKS_STAT, DX_STAT, and DX_STAT)

� Choose whether frame-sync signals are active low or active high (FSXP
for transmission, FSRP for reception)

� Specify whether data is sampled on the falling edge or the rising edge of
the clock signals (CLKXP for transmission, CLKRP for reception)

Figure 9–122. Pin Control Register (PCR)
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– X X is the value after a DSP reset.

Table 9–87. PCR Bit Descriptions  

Bits Name Description
Reset
Value

15 Reserved Reserved bit (not available for your use). It is a read-only bit and returns a 0
when read.

14 IDLE_EN Idle enable bit for the McBSP 0

If the PERIPH idle domain is configured to be idle and IDLE_EN  =  1, the
McBSP stops and enters a low-power state.

0 The McBSP is running.

1 If the PERIPH domain is idle (PERIS  =  1 in the idle status register),
the McBSP is stopped in a low-power state.
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Table 9–87. PCR Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

13 XIOEN Transmit I/O enable bit 0

12 RIOEN Receive I/O enable bit 0

XIOEN is only applicable when the transmitter is in reset (XRST_  =  0).

RIOEN is only applicable when the receiver is in reset (RRST_  =  0).

As shown in the following table, these bits enable or disable the use of McBSP
pins as general-purpose I/O pins. The transmit pins CLKX, FSX, and DX can
only be general-purpose pins when the transmitter is in reset and XIOEN =  1.
The receive pins CLKR, FSR, and DR can only be general-purpose pins when
the receiver is in reset and RIOEN  =  1. The sample rate generator pin CLKS
can only be a general-purpose pin when both the transmitter and the receiver
are in reset and both I/O enable bits are set.

XRST_ and RRST_ are in the serial port control registers. All of the other bits
mentioned in the table are in the pin control register.

Pin

General Purpose Use
Enabled by This Bit
Combination

Selected as
Output When …

Output Value
Driven From
This Bit

Selected As
Input When …

Input Value
Read From
This Bit

CLKX XRST_ = 0
XIOEN = 1

CLKXM = 1 CLKXP CLKXM = 0 CLKXP

FSX XRST_ = 0
XIOEN = 1

FSXM = 1 FSXP FSXM = 0 FSXP

DX XRST_ = 0
XIOEN = 1

Always DX_STAT Never Does not apply

CLKR RRST_ = 0
RIOEN = 1

CLKRM = 1 CLKRP CLKRM = 0 CLKRP

FSR RRST_ = 0
RIOEN = 1

FSRM = 1 FSRP FSRM = 0 FSRP

DR RRST_ = 0
RIOEN = 1

Never Does not apply Always DR_STAT

CLKS RRST_ = XRST_ = 0
RIOEN = XIOEN = 1

Never Does not apply Always CLKS_STAT
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Table 9–87. PCR Bit Descriptions (Continued)

Bits Name Description
Reset
Value

11 FSXM Transmit frame-sync mode bit 0

As shown in the following table, FSXM determines whether transmit frame-
sync pulses are supplied externally or internally.

Note: The polarity of the signal on the FSX pin is determined by the FSXP bit.

0 Transmit frame synchronization is supplied by an external source
via the FSX pin.

1 Transmit frame synchronization is supplied by the McBSP, as de-
termined by the FSGM bit of SRGR2.

10 FSRM Receive frame-sync mode bit 0

As shown in the following table, FSRM determines whether receive frame-sync
pulses are supplied externally or internally.

Note: The polarity of the signal on the FSR pin is determined by the FSRP bit.

0 Receive frame synchronization is supplied by an external source
via the FSR pin.

1 Receive frame synchronization is supplied by the sample rate gen-
erator. FSR is an output pin reflecting internal FSR, except when
GSYNC   =  1 in SRGR2.

9 CLKXM Transmit clock mode bit 0

CLKXM determines whether the source for the transmit clock is external or in-
ternal. The polarity of the signal on the CLKX pin is determined by the CLKXP
bit.

0 The transmitter gets its clock signal from an external source via the
CLKX pin.

1 Internal CLKX is driven by the sample rate generator of the McBSP.
The CLKX pin is an output pin that reflects internal CLKX.
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Table 9–87. PCR Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

9 CLKXM
(continued)

In the clock stop mode (CLKSTP  =  10b  or  11b), the McBSP can act as a mas-
ter or as a slave in the SPI protocol. If the McBSP is a master, make sure that
CLKXM  =  1, so that CLKX is an output to supply the master clock to any slave
devices. If the McBSP is a slave, make sure that CLKXM  =  0, so that CLKX
is an input to accept the master clock signal. The following table summarizes
the transmit clocking options available in the clock stop mode:

CLKSTP CLKXM Transmit Clocking Option

10b/11b

Clock
stop
mode

0 The McBSP is a slave in the SPI protocol. The internal
transmit clock (CLKX) is driven by the SPI master via
the CLKX pin. The internal receive clock (CLKR) is driv-
en internally by CLKX, so that both the transmitter and
the receiver are controlled by the external master clock.

1 The McBSP is a master in the SPI protocol. The sample
rate generator drives the internal transmit clock
(CLKX). Internal CLKX is reflected on the CLKX pin to
drive the shift clock of the SPI-compliant slaves in the
system. Internal CLKX also drives the internal receive
clock (CLKR), so that both the transmitter and the re-
ceiver are controlled by the internal master clock.
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Table 9–87. PCR Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

8 CLKRM Receive clock mode bit 0

As shown in the following table, the role of CLKRM depends on whether the
McBSP is in the digital loopback mode (DLB  =  1).

Note: The polarity of the signal on the CLKR pin is determined by the CLKRP
bit.

DLB CLKRM Receive Clock Mode

0 0 The CLKR pin is an input pin that supplies the internal
receive clock (CLKR).

1 Internal CLKR is driven by the sample rate generator of
the McBSP. The CLKR pin is an output pin that reflects
internal CLKR.

1

Digital
loopback
mode

0 The CLKR pin is in the high impedance state. The inter-
nal receive clock (CLKR) is driven by the internal trans-
mit clock (CLKX). CLKX is derived according to the
CLKXM bit.

1 Internal CLKR is driven by internal CLKX. The CLKR
pin is an output pin that reflects internal CLKR.  CLKX
is derived according to the CLKXM bit.

7 SCLKME Sample rate generator input clock mode bit 0

The sample rate generator can produce a clock signal, CLKG. The frequency
of CLKG is:

CLKG frequency = (Input clock frequency) / (CLKGDV + 1)

SCLKME is used in conjunction with the CLKSM bit to select the input clock:

SCLKME CLKSM Input Clock For Sample Rate Generator

0 0 Signal on CLKS pin

0 1 CPU clock

1 0 Signal on CLKR pin

1 1 Signal on CLKX pin
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Table 9–87. PCR Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

6 CLKS_STAT CLKS pin status bit 0

CLKS_STAT is only applicable when the transmitter and receiver are both in
reset (XRST_  =  RRST_  =  0) and CLKS is configured for use as a general-
purpose input pin (XIOEN  =  RIOEN  =  1).

When CLKS_STAT is applicable, it reflects the level on the CLKS pin:

If XRST_  =  RRST_  =  0 and XIOEN  =  RIOEN  =  1:

0 The signal on the CLKS pin is low.

1 The signal on the CLKS pin is high.

5 DX_STAT DX pin status bit 0

DX_STAT is only applicable when the transmitter is in reset (XRST_  =  0) and
DX is configured for use as a general-purpose output pin (XIOEN  =  1).

When DX_STAT is applicable, you can toggle the signal on DX by writing to
DX_STAT:

If XRST_  =  0 and XIOEN  =  1:

0 Drive the signal on the DX pin low.

1 Drive the signal on the DX pin high.

4 DR_STAT DR pin status bit 0

DR_STAT is only applicable when the receiver is in reset (RRST_  =  0) and DR
is configured for use as a general-purpose input pin (RIOEN  =  1).

When DR_STAT is applicable, it reflects the level on the DR pin:

If RRST_  =  0 and RIOEN  =  1:

0 The signal on DR pin is low.

1 The signal on DR pin is high.

3 FSXP Transmit frame-sync polarity bit 0

FSXP determines the polarity of FSX as seen on the FSX pin:

0 Transmit frame-sync pulses are active high.

1 Transmit frame-sync pulses are active low.
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Table 9–87. PCR Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

2 FSRP Receive frame-sync polarity bit 0

FSRP determines the polarity of FSR as seen on the FSR pin:

0 Receive frame-sync pulses are active high.

1 Receive frame-sync pulses are active low.

1 CLKXP Transmit clock polarity bit 0

CLKXP determines the polarity of CLKX as seen on the CLKX pin:

0 Transmit data is sampled on the rising edge of CLKX.

1 Transmit data is sampled on the falling edge of CLKX.

0 CLKRP Receive clock polarity bit 0

CLKRP determines the polarity of CLKR as seen on the CLKR pin:

0 Receive data is sampled on the falling edge of CLKR.

1 Receive data is sampled on the rising edge of CLKR.

9.13.9 Receive Channel Enable Registers
(RCERA, RCERB, RCERC, RCERD, RCERE, RCERF, RCERG, RCERH)

Each McBSP has eight receive channel enable registers of the form shown in
Figure 9–123. There is one for each of the receive partitions: A, B, C, D, E, F,
G, and H. Table 9–88 provides a general bit description that applies to each
of the receive channel enable registers.

These I/O-mapped registers are only used when the receiver is configured to
allow individual enabling and disabling of the channels (RMCM = 1) or when
the receiver needs bit-enable patterns for the A-bis mode (ABIS = 1). For more
details about the way these registers are used be sure to read the topics at the
end of this section:

� RCERs Used in the Receive Multichannel Selection Mode (page 9-205)
� RCERs Used in the A-bis Mode (page 9-206)



McBSP Registers

9-203Multichannel Buffered Serial Port (McBSP)

Figure 9–123. Receive Channel Enable Registers(RCERA–RCERH)
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R/W Read/write access
– X X is the value after a DSP reset.

Table 9–88. RCEp0–RCEp15 Bit Descriptions  

Bits Name Description
Reset
Value

15–0 RCEp15
through
RCEp0

Receive channel enable bits for partition p
(p  =  A,  B,  C,  D,  E,  F,  G,  or  H)

0

RCEp0
The following summary describes the functions of the receive channel enable
bits for two scenarios: the receive multichannel selection mode and the A-bis
mode.

In the first column of the table, p is one of the partition letters. For example, parti-
tion G uses RCERG, which contains bits RCEG0 through RCEG15. In the sec-
ond column, n is the first of 16 contiguous channels that are assigned to partition
p.

In the receive multichannel selection mode (RMCM   =  1), either two receive
channel enable registers are used (RCERA and RCERB) or eight receive chan-
nel enable registers are used (RCERA through RCERH). In the A-bis mode
(ABIS   =  1), RCERA and RCERB (only) are used.

Bit Setting

Description For
Multichannel Selection
Mode

Description For
A-bis Mode

RCEp15  =  0
RCEp15  =  1

Channel (n  +  15) disabled
Channel (n  +  15) enabled

1st bit to arrive is ignored
1st bit to arrive is stored

RCEp14  =  0
RCEp14  =  1

Channel (n  +  14) disabled
Channel (n  +  14) enabled

2nd bit to arrive is ignored
2nd bit to arrive is stored

RCEp13  =  0
RCEp13  =  1

Channel (n  +  13) disabled
Channel (n  +  13) enabled

3rd bit to arrive is ignored
3rd bit to arrive is stored
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Table 9–88. RCEp0–RCEp15 Bit Descriptions (Continued)

Bits
Reset
ValueDescriptionName

RCEp12  =  0
RCEp12  =  1

Channel (n  +  12) disabled
Channel (n  +  12) enabled

4th bit to arrive is ignored
4th bit to arrive is stored

15–0 (cont.) RCEp11  =  0
RCEp11  =  1

Channel (n  +  11) disabled
Channel (n  +  11) enabled

5th bit to arrive is ignored
5th bit to arrive is stored

RCEp10  =  0
RCEp10  =  1

Channel (n  +  10) disabled
Channel (n  +  10) enabled

6th bit to arrive is ignored
6th bit to arrive is stored

RCEp9  =  0
RCEp9  =  1

Channel (n  +  9) disabled
Channel (n  +  9) enabled

7th bit to arrive is ignored
7th bit to arrive is stored

RCEp8  =  0
RCEp8  =  1

Channel (n  +  8) disabled
Channel (n  +  8) enabled

8th bit to arrive is ignored
8th bit to arrive is stored

RCEp7  =  0
RCEp7  =  1

Channel (n  +  7) disabled
Channel (n  +  7) enabled

9th bit to arrive is ignored
9th bit to arrive is stored

RCEp6  =  0
RCEp6  =  1

Channel (n  +  6) disabled
Channel (n  +  6) enabled

10th bit to arrive is ignored
10th bit to arrive is stored

RCEp5  =  0
RCEp5  =  1

Channel (n  +  5) disabled
Channel (n  +  5) enabled

11th bit to arrive is ignored
11th bit to arrive is stored

RCEp4  =  0
RCEp4  =  1

Channel (n  +  4) disabled
Channel (n  +  4) enabled

12th bit to arrive is ignored
12th bit to arrive is stored

RCEp3  =  0
RCEp3  =  1

Channel (n  +  3) disabled
Channel (n  +  3) enabled

13th bit to arrive is ignored
13th bit to arrive is stored

RCEp2  =  0
RCEp2  =  1

Channel (n  +  2) disabled
Channel (n  +  2) enabled

14th bit to arrive is ignored
14th bit to arrive is stored

RCEp1  =  0
RCEp1  =  1

Channel (n  +  1) disabled
Channel (n  +  1) enabled

15th bit to arrive is ignored
15th bit to arrive is stored

RCEp0  =  0
RCEp0  =  1

Channel n disabled
Channel n enabled

16th bit to arrive is ignored
16th bit to arrive is stored
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9.13.9.1 RCERs Used in the Receive Multichannel Selection Mode

For multichannel selection operation, the assignment of channels to the
RCERs depends on whether 32 or 128 channels are individually selectable,
as defined by the RMCME bit (see Table 9–89).

Table 9–89. Use of the Receive Channel Enable Registers in the
Receive Multichannel Selection Mode  

Selectable Channels Block Assignments Channel Assignments

32
(RMCME = 0)

RCERA: Channels n–(n + 15)
(channels assigned with the RPABLK bits)

RCEA0: Channel n
RCEA1: Channel (n + 1)
RCEA2: Channel (n + 2)
:
RCEA15: Channel (n + 15)

RCERB: Channels m–(m + 15)
(channels assigned with the RPBBLK bits)

RCEB0: Channel m
RCEB1: Channel (m + 1)
RCEB2: Channel (m + 2)
:
RCEB15: Channel (m + 15)

Other RCERs not used –

128
(RMCME = 1)

RCERA: Block 0 RCEA0: Channel 0
RCEA1: Channel 1
RCEA2: Channel 2
:
RCEA15: Channel 15

RCERB: Block 1 RCEB0: Channel 16
RCEB1: Channel 17
RCEB2: Channel 18
:
RCEB15: Channel 31

RCERC: Block 2 RCEC0: Channel 32
RCEC1: Channel 33
RCEC2: Channel 34
:
RCEC15: Channel 47

RCERD: Block 3 RCED0: Channel 48
RCED1: Channel 49
RCED2: Channel 50
:
RCED15: Channel 63
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Table 9–89. Use of the Receive Channel Enable Registers in the
Receive Multichannel Selection Mode (Continued)

Selectable Channels Channel AssignmentsBlock Assignments

128 (continued) RCERE: Block 4 RCEE0: Channel 64
RCEE1: Channel 65
RCEE2: Channel 66
:
RCEE15: Channel 79

RCERF: Block 5 RCEF0: Channel 80
RCEF1: Channel 81
RCEF2: Channel 82
:
RCEF15: Channel 95

RCERG: Block 6 RCEG0: Channel 96
RCEG1: Channel 97
RCEG2: Channel 98
:
RCEG15: Channel 111

RCERH: Block 7 RCEH0: Channel 112
RCEH1: Channel 113
RCEH2: Channel 114
:
RCEH15: Channel 127

9.13.9.2 RCERs Used in the A-bis Mode

In A-bis mode operation, only RCERA and RCERB are used. Sixteen bits at
a time are passed to the receiver. As each of the 16 bits arrives on the DR pin
(the MSB, bit 15, arrives first), the bit is stored or ignored, depending on the
bit-enable pattern in RCERA or RCERB. The first 16 bits that arrive are han-
dled according to the bit-enable pattern in RCERA. For example, if RCEA6 = 1
and all the other bits of RCERA are 0s, only bit 6 is stored. Each of the next
16 bits is stored or ignored according to the bit-enable pattern in RCERB. The
receiver alternately uses RCERA and RCERB for consecutive 16-bit words.

Table 9–90 shows how bits of RCERA correspond to the bits of the incoming
word.
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Table 9–90. Use of Receive Channel Enable Registers A and B in the A-bis Mode

Register Bits

RCERA RCEA15: Enables or masks the first bit of the incoming word
RCEA14: Enables or masks bit 14 of the incoming word
RCEA13: Enables or masks bit 13 of the incoming word
:
RCEA0: Enables or masks the last bit of the incoming word

RCERB RCEB15: Enables or masks the first bit of the incoming word
RCEB14: Enables or masks bit 14 of the incoming word
RCEB13: Enables or masks bit 13 of the incoming word
:
RCEB0: Enables or masks the last bit of the incoming word

9.13.10 Transmit Channel Enable Registers
(XCERA, XCERB, XCERC, XCERD, XCERE, XCERF, XCERG, XCERH)

Each McBSP has eight transmit channel enable registers of the form shown
in the following figure. There is one for each of the transmit partitions: A, B, C,
D, E, F, G, and H.  provides a general bit description that applies to each of the
transmit channel enable registers.

These I/O-mapped registers are only used when transmitter is configured to
allow individual disabling/enabling and masking/unmasking of the channels
(XMCM is nonzero) or when the transmitter needs bit-enable patterns for the
A-bis mode (ABIS = 1). For more details about the way these registers are
used, read the topics at the end of this section:

� XCERs Used in a Transmit Multichannel Selection Mode (page 9-208)
� XCERs Used in the A-bis Mode (page 9-209)

Figure 9–124. Transmit Channel Enable Registers (XCERA–XCERH
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R/W Read/write access
– X X is the value after a DSP reset.
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9.13.10.1 XCERs Used in a Transmit Multichannel Selection Mode

For multichannel selection operation, the assignment of channels to the
XCERs, depends on whether 32 or 128 channels are individually selectable,
as defined by the XMCME bit, as shown in the following table.

Note:

When XMCM = 11b (for symmetric transmission and reception), the trans-
mitter uses the receive channel enable registers (RCERs) to enable chan-
nels and uses the XCERs to unmask channels for transmission.

Table 9–91. Use of the Transmit Channel Enable Registers in a
Transmit Multichannel Selection Mode  

Selectable Channels Block Assignments Channel Assignments

32
(XMCME = 0)

XCERA: Channels n–(n + 15)
(channels assigned with the XPABLK bits for
XMCM = 01b or 10b; assigned with the
RPABLK bits for XMCM = 11b)

XCEA0: Channel n
XCEA1: Channel (n + 1)
XCEA2: Channel (n + 2)
:
XCEA15: Channel (n + 15)

XCERB: Channels m–(m + 15)
(channels assigned with the XPBBLK bits for
XMCM = 01b or 10b; assigned with the
RPBBLK bits for XMCM = 11b)

XCEB0: Channel m
XCEB1: Channel (m + 1)
XCEB2: Channel (m + 2)
:
XCEB15: Channel (m + 15)

Other XCERs not used –

128
(XMCME = 1)

XCERA: Block 0 XCEA0: Channel 0
XCEA1: Channel 1
XCEA2: Channel 2
:
XCEA15: Channel 15

XCERB: Block 1 XCEB0: Channel 16
XCEB1: Channel 17
XCEB2: Channel 18
:
XCEB15: Channel 31

XCERC: Block 2 XCEC0: Channel 32
XCEC1: Channel 33
XCEC2: Channel 34
:
XCEC15: Channel 47
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Table 9–91. Use of the Transmit Channel Enable Registers in a
Transmit Multichannel Selection Mode (Continued)

Selectable Channels Channel AssignmentsBlock Assignments

128 (continued) XCERD: Block 3 XCED0: Channel 48
XCED1: Channel 49
XCED2: Channel 50
:
XCED15: Channel 63

XCERE: Block 4 XCEE0: Channel 64
XCEE1: Channel 65
XCEE2: Channel 66
:
XCEE15: Channel 79

XCERF: Block 5 XCEF0: Channel 80
XCEF1: Channel 81
XCEF2: Channel 82
:
XCEF15: Channel 95

XCERG: Block 6 XCEG0: Channel 96
XCEG1: Channel 97
XCEG2: Channel 98
:
XCEG15: Channel 111

XCERH: Block 7 XCEH0: Channel 112
XCEH1: Channel 113
XCEH2: Channel 114
:
XCEH15: Channel 127

9.13.10.2 XCERs Used in the A-bis Mode

In A-bis mode operation, only XCERA and XCERB are used. Sixteen bits at
a time are passed to data transmit register 1 (DXR1) by the CPU or by the DMA
controller. Each of the 16 bits is transmitted on the DX pin or is ignored, de-
pending on the bit-enable pattern in XCERA or XCERB. The first 16 bits that
enter the transmitter are handled according to the bit-enable pattern in
XCERA. For example, if XCEA13 = 1 and all the other bits of XCERA are 0s,
only bit 13 is transmitted. Each of the next 16 bits is transmitted or ignored ac-
cording to the bit-enable pattern in XCERB. The transmitter alternately uses
XCERA and XCERB for consecutive 16-bit words.
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Table 9–92 shows how bits of XCERA and XCERB correspond to the bits of
a word written to DXR1 (MSB = most significant bit, LSB = least significant
bit).

Table 9–92. Use of Transmit Channel Enable Registers A and B in the A-bis Mode

Register Bits

XCERA XCEA15: Enables or masks the MSB of the word written to
DXR1
XCEA14: Enables or masks bit 14 of the word written to DXR1
XCEA13: Enables or masks bit 13 of the word written to DXR1
:
XCEA0: Enables or masks the LSB of the word written to DXR1

XCERB XCEB15: Enables or masks the MSB of the word written to
DXR1
XCEB14: Enables or masks bit 14 of the word written to DXR1
XCEB13: Enables or masks bit 13 of the word written to DXR1
:
XCEB0: Enables or masks the LSB of the word written to DXR1
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9.14 McBSP Register Worksheet

This register worksheet is meant to be printed and used as a guide for configur-
ing the McBSP registers. Each figure on the worksheet provides space in
every register field for entering the binary value that will need to be loaded into
that field. For read-only fields, you can use 0s or 1s. When all of the fields have
been filled in, you can use the line above the register figure to record the corre-
sponding hexadecimal value to load into the register during initialization.

9.14.1 General Control Registers
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MMC Controller

If your TMS320C55x  DSP supports MMC/SD communication, it contains
two MMC controllers. With each MMC controller, the DSP can read from or
write to the memory on a MultiMediaCard (an MMC) or a Secure Digital
Memory Card (an SD card).
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10.1 Introduction to the MMC Controller

Each of the two MMC controllers includes:

� Support for a MultiMediaCard (an MMC) or a Secure Digital Memory Card
(an SD card)

� The capability to use either the MMC/SD protocol or the SPI protocol

� Software-oriented implementation for future extensions

� A programmable frequency for the operation of the MMC controller.

� A programmable frequency for the clock that controls the timing of trans-
fers between the MMC controller and the memory card.

10.1.1 Role of the MMC Controller

As shown in Figure 10–1, the MMC passes data between the CPU or the DMA
controller on one side and a memory card or cards on the other side. The CPU
or the DMA controller can read from or write to the control and status registers
in the MMC controller. As necessary, the CPU and/or the DMA controller can
store or retrieve data in the DSP memory or in the registers of other peripher-
als. The MMC controller can notify the DMA controller of data activity with the
two events described in section 10.1.5 on page 10-7.

The MMC controller initiates transfers between itself and the memory card(s).
The communication follows either the controller’s native protocol or a protocol
that is based on the SPI standard. The native protocol can use one bidirection-
al data line (for MMCs) or four parallel data lines (for SD cards). The SPI proto-
col uses two serial data lines: one for storing data to the card and one for re-
trieving data from the card.

Figure 10–1. Role of the MMC Controller

MMC
controller

Control
and status
registers

CPU

DMA
controller

C55x DSP
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SD card(s)

Communications using
native protocol or SPI protocol
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10.1.2 MMC Controller Pins

Table 10–1 describes which of the seven pins of the MMC controller are used
for each of the three types of communications.

The native protocol provides a clock signal (to time transfers on the other pins),
a command line (for two-way communication with a controller on the memory
card), and one or four data lines. MMC communications use one data line, for
serial data. SD communications use four data lines, for 4-bit parallel data.

SPI communications use four pins: one for a clock, one for card selection, and
two for data. The card select line is used to select one card to transmit or re-
ceive data. Additional cards may be selected with any of the DSP’s general-
purpose I/O (GPIO) pins. One of the data pins acts as the DataIn line, carrying
serial data in to the selected card. The other data pin, the DataOut line, carries
serial data out of the selected card.

Table 10–1. Summary of the MMC Controller Pins 

Function

Pin Type † MMC Communications SD Communications SPI Communications

CLK O Clock line Clock line Clock line

CMD I/O/Z Command line Command line DataIn line (data to the card)

DAT0 I/O/Z Data line 0 Data line 0 DataOut line (data from the card)

DAT1 I/O/Z (Not used) Data line 1 (Not used)

DAT2 I/O/Z (Not used) Data line 2 (Not used)

DAT3 I/O/Z (Not used) Data line 3 Card select line
† I = Input to the MMC controller; O = Output from the MMC controller; Z = High-impedance
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10.1.3 Function Clock and Memory Clock

You must set the desired frequency for two clock signals in the MMC module:
the function clock and the memory clock.

The function clock  determines the frequency at which the MMC controller op-
erates. Figure 10–2 shows the source of this clock. The DSP clock generator
(described in Chapter 2) receives a signal from an external clock source and
produces a CPU clock with a programmed frequency. A programmable clock
divider in the MMC controller divides down the CPU clock to produce the func-
tion clock. To specify the divide-down value, initialize the FDIV field of the func-
tion clock control register, MMCFCLKn (see page 10-54). The resulting fre-
quency is:

function clock frequency �
CPU clock frequency

(FDIV � 1)

The memory clock  appears on the CLK pin of the MMC controller interface.
This clock controls the timing of communication between the MMC controller
and the attached memory card(s). As shown in Figure 10–2, a second clock
divider in the MMC controller divides down the function clock to produce the
memory clock. Load the divide-down value into the CDIV field of the clock con-
trol register, MMCCLK (see page 10-54). The resulting frequency is:

memory clock frequency �
function clock frequency

(CDIV � 1)

Figure 10–2. Clocking Diagram for the MMC Controller
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DSP clock

CDIVFDIV

CPU clock ÷ ÷Input clock
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10.1.4 Interrupt Activity in the MMC Controller

Each MMC module can generate the interrupt requests described in
Table 10–2 and shown in Figure 10–3. When an interrupt event occurs, its flag
bit is set in MMC status register 0 (MMCST0). If the corresponding enable bit
is set in the MMC interrupt enable register (MMCIE), an interrupt request is
generated. All such requests are multiplexed to a single MMC interrupt request
for the CPU.

The MMC interrupt is one of the maskable interrupts of the CPU. As with any
maskable interrupt request, if it is properly enabled in the CPU, the CPU exe-
cutes the corresponding interrupt service routine (ISR). The ISR for the MMC
interrupt can determine the event that caused the interrupt by checking the bits
in MMC status register 0 (MMCST0). When the CPU reads MMCST0, all of the
register’s bits are automatically cleared except for DRRDY and DXRDY.
DRRDY and DXRDY will remain set until your code explicitly clears them.

Table 10–2. Descriptions of the MMC Interrupt Requests

Interrupt Request Interrupt Event

DATEGINT An edge was detected on the DAT3 pin.

DRRDYINT MMCDRR is ready to be read (data received).

DXRDYINT MMCDXR is ready for new data (data transmitted).

SPIERRINT A data error token was received during a transfer in
the SPI mode.

CRCRSINT A CRC error was detected in a response from the
memory card.

CRCRDINT A CRC error was detected while data was being read
from the memory card.

CRCWRINT A CRC error was detected while data was being writ-
ten to the memory card.

TOUTRSINT A time-out condition occurred while the MMC control-
ler was waiting for a response to a command.

TOUTRDINT A time-out condition occurred while the MMC control-
ler was waiting for data from the memory card.
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Table 10–2. Descriptions of the MMC Interrupt Requests (Continued)

Interrupt Request Interrupt Source

RSPDNEINT For a command that requires a response:  The
MMC controller has received the response without a
CRC error.

For a command that does not require a response:
The MMC controller has finished sending the com-
mand.

BSYDNEINT The memory card is no longer sending a busy signal.

DATDNEINT For read operations:  The MMC controller has re-
ceived data without a CRC error.

For write operations:  The MMC controller has fin-
ished sending data.

Figure 10–3. Enable Paths of the MMC Interrupt Requests
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10.1.5 DMA Events Generated by the MMC Controller

If the DMA event enable bit is set (DMAEN = 1 MMCCTL), each of the MMC
controllers can generate the two DMA events described in Table 10–3. These
events are sent to the DSP DMA controller, which is described in Chapter 3.
Activity each DMA channel can be synchronized to respond to one of the two
DMA events from the MMC controllers. For more details on channel synchro-
nization, see section 3.8 on page 3-17.

Table 10–3. DMA Events Generated by the MMC Controller

DMA Event Description

MMC receive event New data is available to be read from the MMC data
receive register (MMCDRR).

MMC transmit event The MMC data transmit register (MMCDXR) is ready
to accept new data for transmission.

10.1.6 Data Flow in the Data Registers (MMCDRR and MMCDXR)

The DSP (via the CPU or the DMA controller) reads 16 bits at a time from the
data receive register (MMCDRR) and writes 16 bits at a time to the data trans-
mit register (MMCDXR). However, the memory cards are 8-bit devices; they
receive or transmit one byte at a time. Figure 10–4 and Figure 10–5 show how
this data-size difference is handled via the data registers.

In most cases, once DRR is filled with two bytes, the MMC controller generates
a data receive ready (DRRDY) event. If an odd number of bytes is received,
the last byte is loaded into the low half of DRR and a DRRDY event is gener-
ated.

During transmission, the DSP typically loads 2 bytes to DXR. When the second
byte leaves DXR, a data transmit ready (DXRDY) event is generated. If an odd
number of bytes is transmitted, the DSP writes the last byte right aligned (see
Figure 10–5). The transmission of the last byte causes a DXRDY event.
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Figure 10–4. Data Flow in the Data Receive Register (MMCDRR)
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Figure 10–5. Data Flow in the Data Transmit Register (MMCDXR)
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10.2 Native Mode

The interface of the MMC controller can use a native protocol or an SPI proto-
col (see section 10.5 on page 10-33). To use the native protocol, select the na-
tive mode by clearing the SPIEN bit of MMCCTL.

10.2.1 Native Mode Interface

Figure 10–6 summarizes the native mode interface.

In the native mode:

� The MMC controller supports one or more MultiMediaCards (MMCs) or
Secure Digital Memory Cards (SD cards). If multiple cards are connected,
the MMC controller selects one at a time by using an identification broad-
cast on the data line.

� The following MMC controller pins are used:

� CMD: This pin is used for two-way control communication with the
memory card or cards connected to the interface. On CMD, the MMC
controller drives commands followed by arguments, and the memory
card drives responses to the commands.

� DAT0 or DAT[3:0]: Only one data line (DAT0) is used for an MMC. Four
data lines are needed for an SD card. You configure the number of
DAT pins (the data bus width) when you initialize the WIDTH bit of
MMCCTL. For a comparison of the MMC and SD configurations, see
Figure 10–7 (page 10-11).

� CLK: This pin provides a clock signal to time transfers between the
controller and the memory card(s).

� Because the command and data lines are separate, the next command to
the card may be sent at the same time as data associated with the previous
command. Thus, the native mode allows sequential and multiple-block
read/write operations.
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Figure 10–6. Native Mode Interface
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Figure 10–7. MMC Configuration Versus SD Configuration
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10.2.1.1 Native Mode Write Sequence

Figure 10–8 and Table 10–4 describe the signal activity when the MMC
controller is in the native mode and is writing data to a memory card. The same
block length must be defined in the MMC controller and in the card. In a
successful write sequence:

1) The controller sends a write command to the card.

2) The card sends a response to acknowledge the command.

3) The controller sends a block of data to the card.

4) The card sends the CRC status to the controller.

5) The card sends low BUSY bits until all the data has been programmed into
the flash memory inside the card.
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Figure 10–8. Native Mode Write Sequence
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Busy
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512 bytes

Start
bit

1 byte

End
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Table 10–4. Native Mode Write Sequence 

Portion of the Sequence Description

WR CMD Write command. A 6-byte WRITE_BLOCK command token is sent from the DSP
to the card.

CMD RSP Command response. The card sends to the DSP a 6-byte response of type R1
to acknowledge the WRITE_BLOCK command.

DAT BLK Data block. The DSP writes a block of data to the card. The data content is preced-
ed by one start bit and is followed by two CRC bytes and one end bit.

CRC STAT CRC status. The card sends to the DSP a one byte of CRC status information,
which indicates to the DSP whether the data has been accepted by the card or
rejected due to a CRC error. The CRC status content is preceded by one start bit
and followed by one end bit.

BSY Busy bits. The CRC status information is followed by a continuous stream of low
busy bits until all of the data has been programmed into the flash memory on the
card.
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10.2.1.2 Native Mode Read Sequence

Figure 10–9 and Table 10–5 describe the signal activity when the MMC
controller is in the native mode and is reading data from a memory card. The
same block length must be defined in the MMC controller and in the card. In
a successful read sequence:

1) The controller sends a read command to the card.

2) The card sends a response to acknowledge the command.

3) The card sends a block of data to the DSP.

Figure 10–9. Native Mode Read Sequence

6 bytes

RD CMD
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2 CRC
bytes

CLK

6 bytes
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1–512 bytes

1 transfer
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CMD

Data

Stop
 bit

Start
 bit

Table 10–5. Native Mode Read Sequence 

Portion of the Sequence Description

RD CMD Read command. A 6-byte READ_SINGLE_BLOCK command token is sent
from the DSP to the card.

CMD RSP Command response. The card sends to the DSP a 6-byte response of type R1
to acknowledge the READ_SINGLE_BLOCK command.

DAT BLK Data block. The card sends a block of data to the DSP. The data content is
preceded by a start bit and then a transfer source bit. The data content is fol-
lowed by 2 CRC bytes and then a stop bit.
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10.2.2 Card Identification Operation

Before the MMC controller can start data transfers to or from memory cards
in the native mode, it has to first identify how many cards are present on the
bus and configure them.

For each card that responds to the ALL_SEND_CID broadcast command, the
controller reads that card’s unique card identification address (CID) and then
assigns it a relative address (RCA). This address is much shorter than the CID
and is used by the controller to identify the card in all future commands that
involve the card.

Only one card completes the response to ALL_SEND_CID at any one time.
The absence of any response to ALL_SEND_CID indicates that all cards have
been identified and configured.

The procedure for a card identification operation is as follows (see also
Figure 10–10):

1) Use the command register (MMCCMD) to send the GO_IDLE_STATE
broadcast command to the cards. This puts all cards in the idle state.

2) Use MMCCMD to send the ALL_SEND_CID broadcast command to the
cards. This tells all cards to identify themselves.

3) Wait for a card to respond. If a card responds, go to step 4. Otherwise,
stop.

4) Read the CID from the response registers (MMCRSP7–MMCRSP0), and
assign a relative address to the card by sending the SET_REL-
ATIVE_ADDR command.
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Figure 10–10. Card Identification (Native Mode)
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10.2.3 Native Mode Single-Block Write Operation

In the native mode, to write a single block of data to a memory card, use the
following procedure. Figure 10–11 illustrates this procedure with some addi-
tional details. Note that the data block length must be 512 bytes, and the same
block length must be defined in the MMC controller and in the card.

1) Write the card’s relative address to the argument registers. Load the high
part of the address to MMCARGH and the low part of the address to
MMCARGL.

2) Use the command register (MMCCMD) to send a
SELECT/DESELECT_CARD broadcast command. This selects the
addressed card and deselects the others.

3) Write the destination start address to the argument registers. Load the
high part to MMCARGH and the low part to MMCARGL.

4) Write the first byte of the data block to the data transmit register
(MMCDXR).

5) Send the WRITE_BLOCK command to the card.
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6) Use status register 0 to check for errors and to determine when the byte
has been successfully transmitted. If all of the data has not been written
and if the previous byte has been transmitted, go to step 7. If all of the data
has been written, stop.

7) Write the next byte of the data block to MMCDXR, and go to step 6.

Figure 10–11. Native Mode Single-Block Write Operation
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10.2.4 Native Mode Single-Block Read Operation

In the native mode, to read a single block of data from a memory card, use the
following procedure. The procedure is also illustrated in Figure 10–12 with
some additional details. The same block length must be defined in the MMC
controller and in the card.

1) Write the card’s relative address to the argument registers. Load the high
part of the address to MMCARGH and the low part of the address to
MMCARGL.

2) Send a SELECT/DESELECT_CARD broadcast command via the
command register (MMCCMD). This selects the addressed card and
deselects the others.

3) Write the source start address to the argument registers. Load the high
part to MMCARGH and the low part to MMCARGL.

4) Send a SET_BLOCKLEN command via MMCCMD (if the block length is
different than the length used in the previous operation).

5) Send a READ_SINGLE_BLOCK command via MMCCMD.

6) Use status register 0 to check for errors and to determine when a new byte
has been successfully received. If all of the data has not been read and
if a new byte has been received, go to step 7. If the all of the data has been
read, stop.

7) Read the new byte of data from the data receive register (MMCDRR), and
go to step 6.
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Figure 10–12. Native Mode Single-Block Read Operation
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ARG HIGH
BLK ADDRESS HIGH

ARG LOW
BLK ADDRESS LOW

Load starting block address
into the high and low argument
registers. Load block length
register. The read blocks
should never cross the
512-byte boundary. Start
reading one block of data.

COMMAND
SET_BLOCKLEN

COMMAND
READ_SINGLE_BLOCK

STATUS 0

Is TOUTRD = 1 ?
Is CRCRD = 1 ?
Is DRRDY = 1 ?
Is DATDNE = 1 ?

DATA RX
NEW DATA BYTE
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10.2.5 Native Mode Multiple-Block Read Operation

In the native mode, to read a multiple blocks of data from a memory card, see
the following procedure. The procedure is also illustrated in Figure 10–13 with
some additional details. The same block length must be defined in the MMC
controller and in the card.

Note:

The procedure in this section uses a STOP_TRANSMISSION command to
end the block transfer. This assume that the value in the number-of-blocks
register (MMCNBLK) is 0. A multiple-block operation can terminate itself if
you load MMCNBLK with the exact number of blocks you want transferred.

1) Write the card’s relative address to the argument registers. Load the high
part of the address to MMCARGH and the low part of the address to
MMCARGL.

2) Send a SET_BLOCKLEN command via MMCCMD (if the block length is
different than the length used in the previous operation). The block length
must be 512 bytes.

3) Send a READ__MULT_BLOCKS command via MMCCMD.

4) Use status register 0 to check for errors and to determine when a new byte
has been successfully received. If more bytes are to be read, go to step
5. If the all of the data has been read, go to step 6.

5) Read the new byte of data from the data receive register (MMCDRR), and
go to step 4.

6) Send a STOP_TRANSMISSION command via MMCCMD.
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Figure 10–13. Native Mode Multiple-Block Read Operation

MMC controller
register content

MMC controller
register

ARG HIGH
RCA ADDRESS HIGH

Select one card with relative
card address (RCA) while
deselecting the other cards.

ARG LOW
RCA ADDRESS LOW

COMMAND
SEL./DESEL._CARD

ARG HIGH
BLK ADDRESS HIGH

ARG LOW
BLK ADDRESS LOW

COMMAND
SET_BLOCKLEN

COMMAND
READ_MULT._BLOCK

Load starting block address
into the high and low argument
registers. Load block length
register with 512. Block length
must be 512 bytes. Start the
operation by loading a
READ_MULTIPLE_BLOCK
command into the command
register.

STATUS 0

Is TOUTRD = 1 ?
Is CRCWR = 1 ?
Is DXRDY = 1 ?

DATA RX
NEW DATA BYTE

Check TOUTRD bit to verify
that the read operation has not
timed-out.
Check CRCWR bit for any
write CRC errors
Check DRRDY it to see if a
new byte in is the data receive
register.

Terminate the multiple-block
read operation

COMMAND
STOP_TRANSMISSION
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10.3 Native Mode Initialization

The general procedure for initializing the MMC controller is given in the follow-
ing steps. Details about the registers or register bit fields to be configured in
the native mode are in the subsections that follow the procedure.

1) Place the MMC controller in its reset state by setting MMCCTL(CMDRST)
and MMCCTL(DATRST). With the same register write operation, write the
desired values to other bits in MMCCTL.

2) Write to other registers to complete the MMC controller configuration.

3) Clear MMCCTL(CMDRST) and MMCCTL(DATRST) to release the MMC
controller from its reset state. Make sure you do not change the values you
wrote to the other bits of MMCCTL in step 1.

4) Enable the CLK pin so that the memory clock is sent to the memory card.

10.3.1 Initializing the MMC Control Register (MMCCTL)

When the MMC controller for the native mode, the bit fields named in
Figure 10–14 affect the operation of the controller. The subsections that follow
the figure help you decide how to initialize each of the fields.

Figure 10–14. MMCCTL Fields Used During Native Mode Initialization

15 14 13 12 11 10 9 8

DMAEN

R/W–0

7 6 5 4 3 2 1 0

DATEG SPIEN WIDTH CMDRST DATRST

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R/W-x =  Read/Write-Reset value

10.3.1.1 Enable/Disable DMA Events

Register(Field) symval Value Description

MMCCTL(DMAEN) 0 Disable DMA events.

1 Enable DMA events.

Use DMAEN to disable for enable the MMC controller DMA events, which are
described in section 10.1.5 on page 10-7.
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10.3.1.2 Select a Type of Edge Detection (If Any) for the DAT3 Pin

Register(Field) symval Value Description

MMCCTL(DATEG) 00 Disable DAT3 edge detection.

01 Enable DAT3 rising edge detection.

10 Enable DAT3 falling edge detection.

11 Enable DAT3 dual edge detection (detect both
edges).

The DATEG control bit of MMCCTL enables or disables general-purpose edge
detection on the DAT3 pin. If you enable edge detection and an edge is de-
tected, the DATEG flag bit of MMCST0 is set. In addition, if DATEG = 1 in
MMCIE, an interrupt request is generated.

10.3.1.3 Enable Native Mode

Register(Field) symval Value Description

MMCCTL(SPIEN) 0 Enable native mode./Disable SPI mode.

1 Disable native mode./Enable SPI mode.

The SPIEN bit of MMCCTL determines whether the SPI mode is on. To enable
the native mode, turn the SPI mode off (SPIEN = 0).

10.3.1.4 Select a Data Bus Width

Register(Field) symval Value Description

MMCCTL(WIDTH) 0 1-bit data bus (DAT0 pin)

1 4-bit data bus (pins DAT0–DAT3)

In the native mode, the MMC controller must know how wide the data bus must
be for the memory card that is connected. If an MMC is connected, specify a
1-bit data bus (WIDTH = 0). If an SD card is connected, specify a 4-bit data bus
(WIDTH = 1).

10.3.1.5 Reset/Enable the MMC Controller

Register(Field) symval Value Description

MMCCTL(CMDRST) 0 Enable the CMD (command) logic of the MMC con-
troller.

1 Place the CMD logic of the MMC controller in its
reset state.

MMCCTL(DATRST) 0 Enable the DAT (data) logic of the MMC controller.

1 Place the DAT logic of the MMC controller in its
reset state.
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To place the MMC controller in its reset state and disable it, set the CMDRST
and DATRST bits of MMCCTL. The first step of the MMC controller initializa-
tion process is to disable both sets of logic. When initialization is complete but
before you enable the CLK pin, enable the MMC controller by clearing the
CMDRST and DATRST bits.

10.3.2 Initializing the Clock Control Registers (MMCFCLK and MMCCLK)

Figure 10–15 and Figure 10–16 show the bit fields in the function clock control
register (MMCFCLK) and the memory clock control register (MMCCLK). The
following subsections describe how decide on initialization values for these
fields.

Figure 10–15. MMCFCLK

15 9 8 7 0

reserved IDLEEN FDIV

R/W-0 R/W-0 R/W-00000111

Note: R/W-x =  Read/Write-Reset value

Figure 10–16. MMCCLK

15 5 4 3 0

reserved CLKEN CDIV

R/W-0 R/W-0 R/W-1111

Note: R/W-x =  Read/Write-Reset value

10.3.2.1 Set the Function Clock and the Memory Clock

Register(Field) symval Value Description

MMCFCLK(FDIV) 0–255 Divide-down value for the function clock.

MMCCLK(CDIV) 0–15 Divide-down value for the memory clock.

To generate the function clock (the clock for activity inside the MMC controller),
the MMC controller divides down the CPU clock as shown in the following
equation. When you initialize MMCFCLK, you specify FDIV, a divide-down
value in the range 0 through 255.

function clock frequency �
CPU clock frequency

(FDIV � 1)
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The memory clock (the clock for the attached memory card) is a divided-down
version of the function clock; see the following equation. When you initialize
MMCCLK, you specify CDIV, a divide-down value in the range 0 through 15.

memory clock frequency �
function clock frequency

(CDIV � 1)

For more information about the function clock and the memory clock , see sec-
tion 10.1.3 on page 10-4.

10.3.2.2 Determine Whether the Function Clock Stops in Response to an IDLE Instruction

Register(Field) symval Value Description

MMCFCLK(IDLEEN) 0 The MMC controller cannot be made idle.

1 If PERI = 1 (see just below), the MMC controller
is idle (the function clock is stopped) after the
IDLE instruction is executed.

ICR(PERI) 0 Any peripheral in the PERIPH idle domain will be
active after the IDLE instruction is executed.

1 Any peripheral in the PERIPH idle domain can
be idle after the IDLE instruction is executed,
depending on the state of that peripheral’s idle
enable bit.

The MMC controller is one of the peripheral devices in the PERIPH idle
domain. For details on controlling the various idle domains of the DSP, see
Chapter 8, Idle Configurations. If you want the MMC controller to go idle in
response to an IDLE instruction, make the following preparations:

1) Write 1 to the idle enable (IDLEEN) bit in MMCFCLK. This tells the DSP
to stop the function clock of the MMC controller when the PERIPH domain
becomes idle.

2) Write a 1 to the PERI bit in ICR (see page 8.7). This tells the DSP to make
the PERIPH domain idle when an IDLE instruction is executed.

10.3.2.3 Enable/Disable the CLK Pin

Register(Field) symval Value Description

MMCCLK(CLKEN) 0 Disable the CLK pin; drive a constant, low signal
on the pin.

1 Enable the CLK pin, so that it reflects the
memory clock signal.

The CLKEN bit determines whether the memory clock appears on the CLK pin.
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10.3.3 Initialize the Interrupt Enable Register (MMCIE)

Register(Field) symval Value Description

MMCIE(11–0) 000h–FFFh Determines which of the MMC interrupt requests
will be forwarded to the CPU.

The bits in MMCIE individually enable or disable the interrupt requests de-
scribed in section 10.1.4 on page 10-5. Figure 10–17 shows the bit fields of
MMCIE apply to the native mode. Set one of these bits to enable the associat-
ed interrupt request. Clear one of these bit to disable the associated interrupt
request. Load 0s into the bits not used in the native mode.

Figure 10–17. MMCIE Fields Used in the Native Mode

15 14 13 12 11 10 9 8

DATEG DRRDY DXRDY

R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R/W-x =  Read/Write-Reset value

10.3.4 Initialize the Time-Out Registers (MMCTOR and MMCTOD)

Specify the time-out period for responses (TOR, see Figure 10–18) and the
time-out period for read data (TOD, see Figure 10–19) as described in the
following subsections.
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Figure 10–18. MMCTOR

15 8 7 0

reserved TOR

R/W-0 R/W-0

Note: R/W-x =  Read/Write-Reset value

Figure 10–19. MMCTOD

15 0

TOD

R/W-0

Note: R/W-x =  Read/Write-Reset value

10.3.4.1 Set the Time-Out Period for a Response

Register(Field) symval Value Description

MMCTOR(7–0) 0 Do not check for a response time-out condition.

n = 1–255 If there is no response from the memory card in
n CLK cycles, record a time-out condition.

When the MMC controller sends a command a memory card, it often must wait
for a response. The controller can wait indefinitely or for up to 255 memory
clock cycles. If you load 0 into MMCTOR during initialization, the controller will
wait for a response indefinitely. If you load a nonzero value into MMCTOR, the
controller automatically stops waiting after the specified number of cycles and
then records a response time-out condition. If the associated interrupt request
is enabled, the controller also sends an interrupt request to the CPU.

10.3.4.2 Set the Time-Out Period for a Data Read Operation

Register(Field) symval Value Description

MMCTOD(15–0) 0 Do not check for a data-read time-out condition.

n =  1–65535 If no data is received from the memory card in
n CLK cycles, record a time-out condition.

When the MMC controller requests data from a memory card, it can wait indefi-
nitely for that data, or it can stop waiting after a programmable number of
cycles. If you load 0 into MMCTOD during initialization, the controller will wait
indefinitely. If you load a nonzero value n into MMCTOD, the controller will wait
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n memory clock cycles and then record a data-read time-out condition in
MMCST0. If the associated interrupt request is enabled, the controller also
sends an interrupt request to the CPU.

10.3.5 Initialize the Data Block Registers (MMCBLEN and MMCNBLK)

Specify the number of bytes in a data block (MMCBLEN, see Figure 10–20)
and the number of blocks in a multiple-block transfer (MMCNBLK, see
Figure 10–21). Details about these values are in the following subsections.

Figure 10–20. MMCBLEN

15 12 11 0

reserved BLEN

R/W-0 R/W-200h

Note: R/W-x =  Read/Write-Reset value

Figure 10–21. MMCNBLK

15 0

NBLK

R/W-0

Note: R/W-x =  Read/Write-Reset value

10.3.5.1 Set the Data Block Length

Register(Field) symval Value Description

MMCBLEN(11–0) 1–512 Number of bytes in a data block

In MMCBLEN, you must define the size for each block of data transferred be-
tween the MMC controller and a memory card. The valid size depends on the
type of read/write operation. A length of 0 bytes is prohibited.

10.3.5.2 If Necessary, Specify the Number of Blocks in a Multiple-Block Transfer

Register(Field) symval Value Description

MMCNBLK(15–0) 0 Transfer an infinite number of blocks.

n = 1–65535 Transfer n blocks.

For multiple-block transfers, you must specify how many blocks of data are to
be transferred between the MMC controller and a memory card. You can spec-
ify an infinite number of blocks by loading 0 into MMCNBLK. When
MMCNBLK = 0, the MMC controller transfer blocks until you end the transfer-
ring with a STOP_TRANSMISSION command. If you need a specific number
of blocks transferred, load MMCNBLK with a value from 1 through 65535.
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10.4 Monitoring Activity in the Native Mode

This section describes registers and specific register bits that you can use to
obtain the status of the MMC controller in the native mode.

10.4.1 Detecting Edges and Level Changes on the DAT3 Pin

Register(Field) symval Value Description

MMCST0(DATEG) 0 No edge detected on DAT3 pin

1 Edge detected on DAT3 pin

MMCST1(DAT) 0 Low signal level on DAT3

1 High signal level on DAT3

Detecting edges. The MMC controller sets the DATEG flag of status register
0 (MMCST0) if DAT3 edge detection is enabled (DATEG is nonzero in
MMCCTL) and the specified edge is detected. The CPU can also be notified
of the DAT3 by an interrupt if you enable the interrupt request in the interrupt
enable register (DATEG = 1 in MMIE).

Detecting level changes.  The DAT bit of status register 1 tracks the signal
level on the DAT3 pin.

10.4.2 Determining Whether New Data is Available in MMCDRR

Register(Field) symval Value Description

MMCST0(DRRDY) 0 MMCDRR not ready.

1 MMCDRR ready. New data has arrived and can
be read by the CPU or by the DMA controller.

The MMC controller sets the DRRDY flag of MMCST0 when new data arrives
in the data receive register (MMCDRR). The CPU can also be notified of the
event by an interrupt if you enable the interrupt request (DRRDY = 1 in MMIE).

10.4.3 Verifying That MMCDXR is Ready to Accept New Data

Register(Field) symval Value Description

MMCST0(DXRDY) 0 MMCDXR not ready.

1 MMCDXR ready. The data in MMCDXR has
been transmitted; MMCDXR can accept new
data from the CPU or from the DMA controller.

The MMC controller sets the DXRDY flag of MMCST0 when data leaves the
data transmit register (DXRDY). The CPU can also be notified of the event by
an interrupt if you enable the interrupt request (DXRDY = 1 in MMIE).
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10.4.4 Checking for CRC Errors

Register(Field) symval Value Description

MMCST0(CRCRS) 0 No response CRC error

1 Response CRC error detected

MMCST0(CRCRD) 0 No read-data CRC error

1 Read-data CRC error detected

MMCST0(CRCWR) 0 No write-data CRC error

1 Write-data CRC error detected

The MMC controller sets one of these flags in response to the corresponding
CRC error. The CPU can also be notified of the CRC error by an interrupt if you
enable the interrupt request (CRCRS/CRCRD/CRCWR = 1 in MMIE).

10.4.5 Checking for Time-Out Events

Register(Field) symval Value Description

MMCST0(TOUTRS) 0 No response time-out event

1 Response time-out event detected

MMCST0(TOUTRD) 0 No read-data time-out event

1 Read-data time-out event detected

The MMC controller sets one of these flags in response to a the corresponding
time-out event. The CPU can also be notified of the time-out event by an
interrupt if you enable the interrupt request (TOUTRS/TOUTRD = 1 in MMIE).

10.4.6 Determining When a Response/Command is Done

Register(Field) symval Value Description

MMCST0(RSPDNE) If the command requires a response:

0 Response not done

1 Response fully received with no CRC error

If no response required:

0 Command not done

1 Command has been sent

The MMC controller sets the RSPDNE flag when the response is done (or, in
the case of commands that do not require a response, when the command is
done). The CPU can also be notified of the done condition by an interrupt if you
enable the interrupt request (RSPDNE = 1 in MMIE).
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10.4.7 Determining Whether the Memory Card is Busy

Register(Field) symval Value Description

MMCST0(BSYDNE) 0 The memory card is busy.

1 The memory card is no longer sending a busy
signal.

MMCST1(BUSY) 0 The memory card has not sent a busy signal.

1 The memory card is busy.

The card sends a busy signal either as an expected part of an R1b response
or to indicate that the card is still programming the last write data into its flash
memory. The MMC controller has two flags to tell you whether the memory
card is sending a busy signal. The two flags are complements of each other:

� BSYDNE is set if the card did not send or is not sending a busy signal. As
with the other bits in status register 0, this bit has an associated interrupt
that you can enable (BSYDNE = 1 in MMCIE).

� BUSY is set when a busy signal is received from the card.

10.4.8 Determining Whether a Data Transfer is Done

Register(Field) symval Value Description

MMCST0(DATDNE) When reading from memory card:

0 Read operation not done

1 Data fully received with no CRC error

When writing to memory card:

0 Write operation not done

1 Data fully transmitted

The MMC controller sets the DATDNE flag when all the bytes of a data transfer
have been transmitted/received. You can poll this bit to determine when to stop
writing to the data transmit register (for a write operation) or when to stop
reading from the data receive register (for a read operation). The CPU can also
be notified of the time-out event by an interrupt if you enable the interrupt
request (TOUTRS/TOUTRD = 1 in MMIE).
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10.4.9 Checking For a Data Transmit Empty Condition

Register(Field) symval Value Description

MMCST1(DXEMP) 0 No data transmit empty condition

1 Data transmit empty condition

Typically, this bit is not used to control data transfers; rather, it is checked
during recovery from an error condition. There is no interrupt associated with
the transmit empty condition.

During transmission, a data value is passed from the data transmit register
(MMCDXR) to the data transmit shift register. Then value is passed from this
shift register to the memory card one bit at a time. The DXEMP bit indicates
when this shift register is empty; there are no bits available to shift out to the
memory card.

10.4.10 Checking for a Data Receive Full Condition

Register(Field) symval Value Description

MMCST1(DRFUL) 0 No data receive full condition

1 Data receive full condition

Typically, this bit is not used to control data transfers; rather, it is checked
during recovery from an error condition. There is no interrupt associated with
the data receive full condition.

During reception, the data receive shift register accepts a data value one bit
at a time. Then the whole value is passed from this shift register to the data
receive register (MMCDRR). The DRFUL bit indicates when this shift register
is full; no new bits can be shifted in from the memory card. Typically, this bit
is used only during recovery from the error condition.

10.4.11 Checking the Status of the CLK Pin

Register(Field) symval Value Description

MMCST1(CLKSTP) 0 CLK is active. The memory clock signal is being
driven on the pin.

1 CLK is held low. Possible reasons: Manual stop
(CLKEN = 0), data receive full condition, or data
transmit empty condition.

Read CLKSTP to determine whether the memory clock has been stopped on
the CLK pin.
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10.4.12 Getting the Remaining Block Count During a Multiple-Block Transfer

Register(Field) symval Value Description

MMCNBLC(15–0) n = 1–65535 There are n blocks left to be transferred.

During a the transfer of multiple data blocks, the block counter (MMCNBLC)
tells you how many blocks are left to be transferred.
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10.5 SPI Mode

The interface of the MMC controller can use a native (MMC/SD) protocol or
an SPI protocol. To use the SPI protocol, select the SPI mode by setting the
SPIEN bit of MMCCTL. In addition, make sure the memory card is in its SPI
mode.

10.5.1 SPI Mode Interface

Figure 10–6 summarizes the SPI mode interface.

In the SPI mode:

� The MMC controller supports one or more MultiMediaCards (MMCs) or
Secure Digital Memory Cards (SD cards). The MMC controller must
access the cards one at a time using dedicated card select signals. One
card select pin is available from the MMC controller. If multiple cards are
connected, use general-purpose I/O (GPIO) pins of the DSP to provide
additional card select signals.

� The following MMC controller pins are used:

� DAT3 (for CS): This pin is available as a card select line. The signal on
this pin can be controlled and monitored via MMC controller register
bits.

� DAT0 (for DataOut): The controller uses this pin to receive serial data
and responses from the selected memory card.

� CMD (for DataIn): The controller uses this pin to transmit commands
and serial data to the selected memory card.

� CLK: This pin provides a clock signal to time transfers between the
controller and the memory card(s).

� Because commands and data share the same line, they cannot overlap
in time. Thus, the SPI mode does not support sequential and multiple-
block read/write operations. Only single-block read/write operations can
be performed
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Figure 10–22. SPI Mode Interface
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10.5.1.1 SPI Mode Write Sequence

Figure 10–23 and Table 10–6 describe the signal activity when the MMC
controller is in the SPI mode and is writing data to a memory card. The same
block length must be defined in the MMC controller and in the card. In a
successful write sequence:

1) The controller sends a write command to the card.

2) The card sends a response to acknowledge the command.

3) The controller sends a block of data to the card.

4) The card sends a response to indicate acceptance of the data.

5) The card sends BUSY tokens until all the data has been programmed into
the flash memory inside the card.

The card select signal is active until the MMC controller receives the data
response.
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Figure 10–23. SPI Mode Write Sequence

Busy
bytes

DAT RSP BSYCMD RSP

1 byte

6 bytes

CS

WR CMD DAT BLK
DataIn

2 CRC
bytes

1 start
byte

DataOut

CLK

1 byte

512 bytes

Table 10–6. SPI Mode Write Sequence 

Portion of the Sequence Description

WR CMD Write command. A 6-byte WRITE_BLOCK command token is sent from the DSP
to the card.

CMD RSP Command response. The card sends to the DSP a 1-byte command response of
type R1 to acknowledge the WRITE_BLOCK command.

DAT BLK Data block. The DSP writes a block of data to the card. The data content is preced-
ed by one start byte and is followed by two CRC bytes.

DAT RSP Data response. The card sends to the DSP a data response token, indicating to
the DSP whether the data has been accepted by the card or rejected due to a CRC
error.

BSY Busy token(s). The data response token is followed by 1-byte busy tokens until
all of the data has been programmed into the flash memory inside the card.

10.5.1.2 SPI Mode Read Sequence

Figure 10–24 and Table 10–7 describe the signal activity when the MMC
controller is in the SPI mode and is reading data from a memory card. The
same block length must be defined in the MMC controller and in the card. In
a successful read sequence:

1) The controller sends a read command to the card.

2) The card sends a response to acknowledge the command.

3) The card sends a block of data or a data error token to the DSP.

The card select signal is active throughout the sequence.
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Figure 10–24. SPI Mode Read Sequence

1–512 bytes

CMD RSP

1 byte

6 bytes

CS

RD CMD

DAT BLK

DataIn

2 CRC
bytes

1 start
byte

CLK

DataOut

DAT ERR

1 byte
Or, if unable to read...

Table 10–7. SPI Mode Read Sequence 

Portion of the Sequence Description

RD CMD Read command. A 6-byte READ_SINGLE_BLOCK command token is sent
from the DSP to the card.

CMD RSP Command response. The card sends to the DSP a 1-byte command response
of type R1 to acknowledge the READ_SINGLE_BLOCK command.

DAT BLK or DAT ERR Data block or data error token. If the read operation is successful, the card
sends a block of data to the DSP. The data content is preceded by one start
byte and is followed by two CRC bytes. If the read operation is not successful,
the card instead sends a 1-byte data error token.

10.5.2 SPI Mode Single-Block Write Operation

In the SPI mode, to write a single block of data to a memory card, use the fol-
lowing procedure. Figure 10–25 illustrates this procedure with some addition-
al details. The block length must be 512 bytes, and the same block length must
be defined in the MMC controller and in the card.

1) Write 1 to the CSEN bit of the control register (MMCCTL). This drives the
the card select signal low. (If a general-purpose I/O pin is the card select
pin for the card, write to the appropriate GPIO bit.)

2) Write the destination start address to the argument registers. Load the
high part to MMCARGH and the low part to MMCARGL.



SPI Mode

10-37MMC Controller

3) Write the first byte of the data block to the data transmit register
(MMCDXR).

4) Send the WRITE_BLOCK command to the card via MMCCMD.

5) Use status register 0 to check for errors and to determine when the byte
has been successfully transmitted. If all of the data has not been written
and if the previous byte has been transmitted, go to step 6. If the all of the
data has been written, stop. Also, deselect the card by clearing the CSEN
bit.

6) Write the next byte of the data block to MMCDXR, and go to step 5.

Figure 10–25. SPI Mode Single-Block Write Operation

Is CRCRD = 1 ?
Is DATDNE = 1 ?
Is DXRDY = 1 ?

MMC controller
register content

MMC controller
register

STATUS 0

DATA TX
NEXT DATA BYTE

Check CRCWR bit for any
write CRC errors.
Check DATDNE bit to see if
the transfer is done. If not
then...
Check DXRDY bit to see if the
data transmit register is ready
for the next byte.
Load the next byte into the
data transmit register.

Set card select enable bit to 1CONTROL
1 to CSEN

ARG HIGH
BLK ADDRESS HIGH

ARG LOW
BLK ADDRESS LOW

Load starting block address
into the high and low argument
registers. Load the first byte of
the transfer. Start writing one
block of data. Only 512-byte
block length is permitted.

DATA TX
FIRST DATA BYTE

COMMAND
WRITE_BLOCK

Clear card select enable bitCONTROL
0 to CSEN
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10.5.3 SPI Mode Single-Block Read Operation

In the SPI mode, to read a single block of data from a memory card, use the
following procedure. The procedure is also illustrated in Figure 10–26 with
some additional details. The block length must be in the range of 1–512 bytes,
and the same block length must be defined in the MMC controller and in the
card.

1) Write 1 to the CSEN bit of the control register (MMCCTL). This drives the
the card select signal low. (If a general-purpose I/O pin is the card select
pin for the card, write to the appropriate GPIO bit.)

2) Write the source start address to the argument registers. Load the high
part to MMCARGH and the low part to MMCARGL.

3) Send a SET_BLOCKLEN command via MMCCMD (if the block length is
different than the length used in the previous operation).

4) Send a READ_SINGLE_BLOCK command via MMCCMD.

5) Use status register 0 to check for errors and to determine when a new byte
has been successfully received. If all of the data has not been read and
if a new byte has been received, go to step 6. If the all of the data has been
read, stop. Also, deselect the card by clearing the CSEN bit.

6) Read the new byte of data from the data receive register (MMCDRR), and
go to step 5.
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Figure 10–26. SPI Mode Single-Block Read Operation

Is SPIERR = 1 ?
Is CRCWR = 1 ?
Is DATDNE = 1 ?
Is DRRDY = 1 ?

MMC controller
register content

MMC controller
register

STATUS 0

DATA RX
NEW DATA BYTE

Check SPIERR bit to verify
that the card has not aborted
the read operation.
Check CRCWR bit for any
write CRC errors.
Check DATDNE bit to see if
the transfer is done. If not
then...
Check DRRDY bit to see if the
data receive register has
received a new byte.
Read the new byte from the
data receive register.

Set card select enable bit to 1CONTROL
1 to CSEN

ARG HIGH
BLK ADDRESS HIGH

ARG LOW
BLK ADDRESS LOW

Load starting block address
into the high and low argument
registers. Load block length
register. The read blocks
should never cross the
512-byte boundary. Start
reading one block of data.

BLK LEN
SET_BLKLEN

COMMAND
READ_SINGLE_BLOCK

Clear card select enable bitCONTROL
0 to CSEN
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10.6 SPI Mode Initialization

The general procedure for initializing the MMC controller is given in the follow-
ing steps. Details about the registers or register bit fields to be configured in
the SPI mode are in the subsections that follow the procedure.

1) Place the MMC controller in its reset state by setting MMCCTL(CMDRST)
and MMCCTL(DATRST). With the same register write operation, write the
desired values to other bits in MMCCTL.

2) Write to other registers to complete the MMC controller configuration.

3) Clear MMCCTL(CMDRST) and MMCCTL(DATRST) to release the MMC
controller from its reset state. Make sure you do not change the values you
wrote to the other bits of MMCCTL in step 1.

4) Enable the CLK pin so that the memory clock is sent to the memory card.

10.6.1 Initializing the MMC Control Register (MMCCTL)

When the MMC controller is in the SPI mode, the bit fields named in
Figure 10–14 affect the operation of the controller. The subsections that follow
the figure help you decide how to initialize each of the fields.

Figure 10–27. MMCCTL Fields Used During SPI Mode Initialization

15 14 13 12 11 10 9 8

CLKPRE CLKPST NACSKP DMAEN

R/W–0 R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

DATEG SPIEN CSEN SPICRC CMDRST DATRST

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R/W-x =  Read/Write-Reset value

10.6.1.1 If Needed, Add a Delay Before Driving the CS  Signal Low

Register(Field) symval Value Description

MMCCTL(CLKPRE) 0 Do not insert clock cycles.

1 Insert 8 CLK cycles before CS goes low.

10.6.1.2 If Needed, Add a Delay After Driving the CS  Signal High

Register(Field) symval Value Description

MMCCTL(CLKPST) 0 Do not insert clock cycles.

1 Insert 8 CLK cycles after CS goes high.
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10.6.1.3 Enable/Disable NAC Cycle Skip

Register(Field) symval Value Description

MMCCTL(NACSKP) 0 Disable first NAC cycle skip

1 Enable first NAC cycle skip

10.6.1.4 Enable/Disable DMA Events

Register(Field) symval Value Description

MMCCTL(DMAEN) 0 Disable DMA events.

1 Enable DMA events.

Use DMAEN to disable or enable the MMC controller DMA events, which are
described in section 10.1.5 on page 10-7.

10.6.1.5 Select a Type of Edge Detection (If Any) for the DAT3 Pin

Register(Field) symval Value Description

MMCCTL(DATEG) 00 Disable DAT3 edge detection.

01 Enable DAT3 rising edge detection.

10 Enable DAT3 falling edge detection.

11 Enable DAT3 dual edge detection (detect both
edges).

The use of the DATEG bit is applicable if the DAT3 pin is not used for the card
select signal.

The DATEG control bit of MMCCTL enables or disables general-purpose edge
detection on the DAT3 pin. If you enable edge detection and an edge is
detected, the DATEG flag bit of MMCST0 is set. In addition, if DATEG = 1 in
MMCIE, an interrupt request is generated.

10.6.1.6 Enable SPI Mode

Register(Field) symval Value Description

MMCCTL(SPIEN) 0 Disable SPI mode/Enable native mode.

1 Enable SPI mode./Disable native mode.

To enable the SPI mode, set this bit (SPIEN = 1).
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10.6.1.7 Drive the Card Select Signal High/Low

Register(Field) symval Value Description

MMCCTL(CSEN) 0 Drive DAT3 high to deselect the card.

1 Drive DAT3 low to select the card.

If you are using the DAT3 pin as a card select line, set CSEN to select the
memory card and clear CSEN to deselect the memory card. If you are using
general-purpose I/O pins as card select lines, select and deselect the cards
by writing to the appropriate GPIO bits.

10.6.1.8 Enable/Disable CRC Checking

Register(Field) symval Value Description

MMCCTL(SPICRC) 0 Disable CRC checking.

1 Enable CRC checking.

10.6.1.9 Reset/Enable the MMC Controller

Register(Field) symval Value Description

MMCCTL(CMDRST) 0 Enable the CMD (command) line portion of the
MMC controller.

1 Place the CMD line portion of the MMC controller
in its reset state.

MMCCTL(DATRST) 0 Enable the DAT (data) line portion of the MMC
controller.

1 Place the DAT line portion of the MMC controller
in its reset state.

To place the MMC controller in its reset state and disable it, set the CMDRST
and DATRST bits of MMCCTL. The first step of the MMC controller initializa-
tion process is to disable both sets of logic. When initialization is complete but
before you enable the CLK pin, enable the MMC controller by clearing the
CMDRST and DATRST bits.

10.6.2 Initializing the Clock Control Registers (MMCFCLK and MMCCLK)

Figure 10–15 and Figure 10–16 show the bit fields in the function clock control
register (MMCFCLK) and the memory clock control register (MMCCLK). The
following subsections describe how to choose initialization values for these
fields.
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Figure 10–28. MMCFCLK

15 9 8 7 0

reserved IDLEEN FDIV

R/W-0 R/W-0 R/W-00000111

Note: R/W-x =  Read/Write-Reset value

Figure 10–29. MMCCLK

15 5 4 3 0

reserved CLKEN CDIV

R/W-0 R/W-0 R/W-1111

Note: R/W-x =  Read/Write-Reset value

10.6.2.1 Set the Function Clock and the Memory Clock

Register(Field) symval Value Description

MMCFCLK(FDIV) 0–255 Divide-down value for the function clock.

MMCCLK(CDIV) 0–15 Divide-down value for the memory clock.

To generate the function clock (the clock for activity inside the MMC controller),
the MMC controller divides down the CPU clock as shown in the following
equation. When you initialize MMCFCLK, you specify FDIV, a divide-down val-
ue in the range 0 through 255.

function clock frequency �
CPU clock frequency

(FDIV � 1)

The memory clock (the clock for the attached memory card) is a divided-down
version of the function clock; see the following equation. When you initialize
MMCCLK, you specify CDIV, a divide-down value in the range 0 through 15.

memory clock frequency �
function clock frequency

(CDIV � 1)

For more information about the function clock and the memory clock , see sec-
tion 10.1.3 on page 10-4.
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10.6.2.2 Determine Whether the Function Clock Stops in Response to an IDLE Instruction

Register(Field) symval Value Description

MMCFCLK(IDLEEN) 0 The MMC controller cannot be made idle.

1 If PERI = 1 (see just below), the MMC controller
is idle (the function clock is stopped) after the
IDLE instruction is executed.

ICR(PERI) 0 Any peripheral in the PERIPH idle domain will be
active after the IDLE instruction is executed.

1 Any peripheral in the PERIPH idle domain can
be idle after the IDLE instruction is executed,
depending on the state of that peripheral’s idle
enable bit.

The MMC controller is one of the peripheral devices in the PERIPH idle
domain. For details on controlling the various idle domains of the DSP, see
Chapter 8, Idle Configurations. If you want the MMC controller to go idle in
response to an IDLE instruction, make the following preparations:

1) Write 1 to the idle enable (IDLEEN) bit in MMCFCLK. This tells the DSP
to stop the function clock of the MMC controller when the PERIPH domain
becomes idle.

2) Write a 1 to the PERI bit in ICR (see page 8.7). This tells the DSP to make
the PERIPH domain idle when an IDLE instruction is executed.

10.6.2.3 Enable/Disable the CLK Pin

Register(Field) symval Value Description

MMCCLK(CLKEN) 0 Disable the CLK pin; drive a constant, low signal
on the pin.

1 Enable the CLK pin, so that it shows the memory
clock signal.

The CLKEN bit determines whether the memory clock appears on the CLK pin.

10.6.3 Initialize the Interrupt Enable Register (MMCIE)

Register(Field) symval Value Description

MMCIE(11–0) 000h–FFFh Determines which of the MMC interrupt requests
will be forwarded to the CPU.

The bits in MMCIE individually enable or disable the interrupt requests
described in section 10.1.4 on page 10-5. Figure 10–30 shows the bit fields
of MMCIE apply to the SPI mode. Set one of these bits to enable the associat-
ed interrupt request. Clear one of these bit to disable the associated interrupt
request. Load 0s into the bits not used in the SPI mode.
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Figure 10–30. MMCIE Fields Used in the SPI Mode

15 14 13 12 11 10 9 8

DATEG DRRDY DXRDY SPIERR

R/W–0 R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR RSPDNE BSYDNE DATDNE

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R/W-x =  Read/Write-Reset value

10.6.4 Initialize the Block Length Register (MMCBLEN)

Register(Field) symval Value Description

MMCBLEN(11–0) 1–512 Number of bytes in a data block.

In MMCBLEN (see Figure 10–31), you must define the size for each block of
data transferred between the MMC controller and a memory card. The valid
size depends on the type of read/write operation. A length of 0 bytes is prohib-
ited.

Figure 10–31. MMCBLEN

15 12 11 0

reserved BLEN

R/W-0 R/W-200h
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10.7 Monitoring Activity in the SPI Mode

This section describes registers and specific register bits that you can use to
obtain the status of the MMC controller in the SPI mode.

10.7.1 Detecting Edges and Level Changes on the DAT3 Pin

Register(Field) symval Value Description

MMCST0(DATEG) 0 No edge detected on DAT3 pin

1 Edge detected on DAT3 pin

MMCST1(DAT) 0 Low signal level on DAT3

1 High signal level on DAT3

Detecting edges. The MMC controller sets the DATEG flag of status register
0 (MMCST0) if DAT3 edge detection is enabled (DATEG is nonzero in
MMCCTL) and the specified edge is detected. The CPU can also be notified
of the DAT3 by an interrupt if you enable the interrupt request in the interrupt
enable register (DATEG = 1 in MMIE).

Detecting level changes.  The DAT bit of status register 1 tracks the signal
level on the DAT3 pin.

10.7.2 Determining Whether New Data is Available in MMCDRR

Register(Field) symval Value Description

MMCST0(DRRDY) 0 MMCDRR not ready.

1 MMCDRR ready. New data has arrived and can
be read by the CPU or by the DMA controller.

The MMC controller sets the DRRDY flag of MMCST0 when new data arrives
in the data receive register (MMCDRR). The CPU can also be notified of the
event by an interrupt if you enable the interrupt request (DRRDY = 1 in MMIE).

10.7.3 Verifying That MMCDXR is Ready to Accept New Data

10.7.4 Verifying That MMCDXR is Ready to Accept New Data

Register(Field) symval Value Description

MMCST0(DXRDY) 0 MMCDXR not ready.

1 MMCDXR ready. The data in MMCDXR has
been transmitted; MMCDXR can accept new
data from the CPU or from the DMA controller.
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The MMC controller sets the DXRDY flag of MMCST0 when data leaves the
data transmit register (DXRDY). The CPU can also be notified of the event by
an interrupt if you enable the interrupt request (DXRDY = 1 in MMIE).

10.7.5 Checking for an SPI Data Error

Register(Field) symval Value Description

MMCST0(SPIERR) 0 No SPI data error

1 SPI data error detected. A data error token has
been received.

MMCETOK(7–0) 00h–FFh SPI data error token from the memory card

If an SPI read operation is successful, the card sends a block of data to the
DSP. If the read operation is not successful, the card instead sends a 1-byte
data error token, which is stored in the MMCETOK register of the MMC control-
ler. When the token arrives, the SPIERR bit is set. The CPU can also be noti-
fied of the error by an interrupt if you enable the interrupt request (SPIERR = 1
in MMIE).

10.7.6 Checking for CRC Errors

Register(Field) symval Value Description

MMCST0(CRCRS) 0 No response CRC error

1 Response CRC error detected

MMCST0(CRCRD) 0 No read-data CRC error

1 Read-data CRC error detected

MMCST0(CRCWR) 0 No write-data CRC error

1 Write-data CRC error detected

The MMC controller sets one of these flags in response to the corresponding
CRC error. The CPU can also be notified of the CRC error by an interrupt if you
enable the interrupt request (CRCRS/CRCRD/CRCWR = 1 in MMIE).
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10.7.7 Determining When a Response/Command is Done

Register(Field) symval Value Description

MMCST0(RSPDNE) If the command requires a response:

0 Response not done

1 Response fully received with no CRC error

If no response required:

0 Command not done

1 Command has been sent

The MMC controller sets the RSPDNE flag when the response is done (or, in
the case of commands that do not require a response, when the command is
done). The CPU can also be notified of the done condition by an interrupt if you
enable the interrupt request (RSPDNE = 1 in MMIE).

10.7.8 Determining Whether the Memory Card is Busy

Register(Field) symval Value Description

MMCST0(BSYDNE) 0 The memory card is busy.

1 The memory card is no longer sending a busy
signal.

MMCST1(BUSY) 0 The memory card has not sent a busy signal.

1 The memory card is busy.

The card sends a busy signal either as an expected part of an R1b response
or to indicate that the card is still programming the last write data into its flash
memory. The MMC controller has two flags to tell you whether the memory
card is sending a busy signal. The two flags are complements of each other:

� BSYDNE is set if the card did not send or is not sending a busy signal. As
with the other bits in status register 0, this bit has an associated interrupt
that you can enable (BSYDNE = 1 in MMCIE).

� BUSY is set when a busy signal is received from the card.
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10.7.9 Determining Whether a Data Transfer is Done

Register(Field) symval Value Description

MMCST0(DATDNE) When reading from memory card:

0 Read operation (if one is in progress) not done

1 Data fully received with no CRC error

When writing to memory card:

0 Write operation (if one is in progress) not done

1 Data fully transmitted

The MMC controller sets the DATDNE flag when all the bytes of a data transfer
have been transmitted/received. You can poll this bit to determine when to stop
writing to the data transmit register (for a write operation) or when to stop
reading from the data receive register (for a read operation). The CPU can also
be notified of the time-out event by an interrupt if you enable the interrupt
request (TOUTRS/TOUTRD = 1 in MMIE).f

10.7.10 Checking For a Data Transmit Empty Condition

Register(Field) symval Value Description

MMCST1(DXEMP) 0 No data transmit empty condition

1 Data transmit empty condition

Typically, this bit is not used to control data transfers; rather, it is checked dur-
ing recovery from an error condition. There is no interrupt associated with the
transmit empty condition.

During transmission, a data value is passed from the data transmit register
(MMCDXR) to the data transmit shift register. Then value is passed from this
shift register to the memory card one bit at a time. The DXEMP bit indicates
when this shift register is empty; there are no bits available to shift out to the
memory card.

10.7.11 Checking for a Data Receive Full Condition

Register(Field) symval Value Description

MMCST1(DRFUL) 0 No data receive full condition

1 Data receive full condition

Typically, this bit is not used to control data transfers; rather, it is checked dur-
ing recovery from an error condition. There is no interrupt associated with the
data receive full condition.
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During reception, the data receive shift register accepts a data value one bit
at a time. Then the whole value is passed from this shift register to the data
receive register (MMCDRR). The DRFUL bit indicates when this shift register
is full; no new bits can be shifted in from the memory card. Typically, this bit
is used only during recovery from the error condition.

10.7.12 Checking the Status of the CLK Pin

Register(Field) symval Value Description

MMCST1(CLKSTP) 0 CLK is active. The memory clock signal is being
driven on the pin.

1 CLK is held low. Possible reasons: Manual stop
(CLKEN = 0), data receive full condition, or data
transmit empty condition.

Read CLKSTP to determine whether the memory clock has been stopped on
the CLK pin.
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10.8 MMC Controller Registers
The MMC controller memory-mapped registers are listed in Table 10–8. The
x’s in the Address column indicate the part of the addresses that is device de-
pendent. For example, on a TMS320VC5509 DSP, the start address is 4800h
for MMC controller 0, and the MMCCLK register is at address 4802h.

Table 10–8. MMC Controller Memory-Mapped Registers

Address (Hex) Name Description

xx00 MMCFCLK MMC Function Clock Control Register

xx01 MMCCTL MMC Control Register

xx02 MMCCLK MMC Clock Control Register

xx03 MMCST0 MMC Status Register 0

xx04 MMCST1 MMC Status Register 1

xx05 MMCIE MMC Interrupt Enable Register

xx06 MMCTOR MMC Response Time–Out Register

xx07 MMCTOD MMC Data Read Time–Out Register

xx08 MMCBLEN MMC Block Length Register

xx09 MMCNBLK MMC Number of Blocks Register

xx0A MMCNBLC MMC Number of Blocks Counter

xx0B MMCDRR MMC Data Receive Register

xx0C MMCDXR MMC Data Transmit Register

xx0D MMCCMD MMC Command Register

xx0E MMCARGL MMC Argument Register Low

xx0F MMCARGH MMC Argument Register High

xx10 MMCRSP0 MMC Response Register 0

xx11 MMCRSP1 MMC Response Register 1

xx12 MMCRSP2 MMC Response Register 2

xx13 MMCRSP3 MMC Response Register 3

xx14 MMCRSP4 MMC Response Register 4

xx15 MMCRSP5 MMC Response Register 5

xx16 MMCRSP6 MMC Response Register 6

xx17 MMCRSP7 MMC Response Register 7

xx18 MMCDRSP MMC Data Response Register

xx19 MMCETOK MMC SPI Error Token Register

xx1A MMCCIDX MMC Command Index Register
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10.8.1 MMC Control Register (MMCCTL)

Figure 10–32. MMC Control Register (MMCCTL)

15 14 13 12 11 10 9 8

Reserved CLKPRE CLKPST NACSKP DMAEN

R/W–0 R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

DATEG SPIEN CSEN SPICRC WIDTH CMDRST DATRST

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R/W-x =  Read/Write-Reset value

Table 10–9. MMC Control Register (MMCCTL) Field Values 

Bit field symval Value Description

15–12 Reserved Reserved. The reserved bit location is always read as zero.

11 CLKPRE Pre-CS low CLK cycles (only in SPI mode).

0 Do not insert clock cycles.

1 Insert 8 CLK cycles before CS goes low.

10 CLKPST Post-CS high CLK cycles (only in SPI mode).

0 Do not insert clock cycles.

1 Insert 8 CLK cycles after CS goes high.

9 NACSKP First NAC cycle skip enable (only in SPI mode).

0 Disable first NAC cycle skip.

1 Enable first NAC cycle skip.

8 DMAEN DMA event enable bit.

0 Disable DMA events.

1 Enable DMA events.

7–6 DATEG DAT3 Edge Detection Select bits.

00 DAT3 edge detection is disabled.

01 DAT3 rising edge detection is enabled.

10 DAT3 falling edge detection is enabled.

11 DAT3 dual edge detection is enabled (both edges detected).
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Table 10–9. MMC Control Register (MMCCTL) Field Values (Continued)

Bit DescriptionValuesymvalfield

5 SPIEN SPI Mode Enable bit.

0 Native mode is selected.

1 SPI mode is selected.

4 CSEN Card select enable (only in SPI mode).

0 Drive CS (DAT3) high to deselect the card.

1 Drive CS (DAT3) low to select the card.

3 SPICRC CRC Checking (only in SPI mode).

0 CRC checking is disabled.

1 CRC checking is enabled.

2 WIDTH Data Bus Width (only in native mode).

0 Data bus has 1 bit (only DAT0 is used).

1 Data bus has 4 bits (DAT0–3 are used).

1 CMDRST CMD (command) logic reset

0 CMD logic of the MMC controller is enabled.

1 CMD logic of the MMC controller is in the reset state.

0 DATRST DAT (data) logic reset

0 DAT logic of the MMC controller is enabled.

1 DAT logic of the MMC controller is in the reset state.
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10.8.2 MMC Function Clock Control Register (MMCFCLK)

Figure 10–33. MMC Function Clock Control Register (MMCFCLK)

15 9 8 7 0

Reserved IDLEEN FDIV

R/W-0 R/W-0000 0111

Note: R/W-x =  Read/Write-Reset value

Table 10–10. MMC Function Clock Control Register (MMCFCLK) Field Values

Bit field symval Value Description

15–9 Reserved Reserved. The reserved bit location is always read as zero.

8 IDLEEN IDLE enable bit.

0 The function clock cannot be stopped by an IDLE instruction.

1 If an IDLE instruction makes the PERIPH domain idle, the MMC
controller is idle (the function clock is stopped).

7–0 FDIV Divide-down value for the function clock. The CPU clock is
divided as follows to create the function clock:
 function clock frequency = CPU clock frequency/(FDIV + 1)

10.8.3 MMC Clock Control Register (MMCCLK)

Figure 10–34. MMC Clock Control Register (MMCCLK)

15 5 4 3 0

Reserved CLKEN CDIV

R/W-0 R/W-1111

Note: R/W-x =  Read/Write-Reset value

Table 10–11. MMC Clock Control Register (MMCCLK) Field Values

Bit field symval Value Description

15–5 Reserved Reserved. The reserved bit location is always read as zero.

4 CLKEN CLK enable bit.

0 CLK pin is disabled and fixed low.

1 CLK pin is enabled; it reflects the memory clock signal.

3–0 CDIV 0–15 Divide-down value for the memory clock. The function clock is
divided down as follows to produce the memory clock:
memory clock frequency = function clock frequency/(CDIV + 1)
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10.8.4 MMC Status Register 0 (MMCST0)

The transition from 0 to 1 of each bit in MMCST0 may cause interrupt signal
to the CPU. It depends on MMCIE. Each status bit is cleared when reading by
the CPU except DRRDY and DXRDY.

Figure 10–35. MMC Status Register 0 (MMCST0)

15 14 13 12 11 10 9 8

Reserved DATEG DRRDY DXRDY SPIERR

R–0 R–0 R–0 R–1

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

R–0 R–0 R–0 R–0 R–0 R–0 R–0 R–0

Note: R/W-x =  Read/Write-Reset value

Table 10–12. MMC Status Register 0 (MMCST0) Field Values 

Bit field symval Value Description

15–12 Reserved Reserved. The reserved bit location is always read as zero.

11 DATEG DAT3 edge detect bit.

0 No DAT3 edge is detected.

1 DAT3 edge has been detected.

10 DRRDY Data receive ready bit. DRRDY is cleared to 0 when the DAT
logic is reset (DATRST = 1), when a command is sent with data
receive/transmit clear (DCLR = 1), or when data is read from
MMCDRR.

0 MMCDRR not ready

1 MMCDRR ready. New data has arrived and can be read by the CPU
or by the DMA controller.

9 DXRDY Data transmit ready bit. DXRDY is cleared to 0 when the DAT
logic is reset (DATRST = 1), when a command is sent with data
receive/transmit clear (DCLR = 1), or when data is written to
MMCDXR.

0 MMCDXR not ready.

1 MMCDXR ready. The data in MMCDXR has been transmitted;
MMCDXR can accept new data from the CPU or from the DMA
controller.
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Table 10–12. MMC Status Register 0 (MMCST0) Field Values (Continued)

Bit DescriptionValuesymvalfield

8 SPIERR Data error bit (in SPI mode)

0 No data error is received.

1 Data error token has been received.

7 CRCRS Response CRC error bit

0 No CRC error is detected.

1 CRC error has been detected.

6 CRCRD Read-data CRC error bit

0 No CRC error is detected.

1 CRC error has been detected.

5 CRCWR Write-data CRC error bit

0 No CRC error is detected.

1 CRC error has been detected.

4 TOUTRS Response time-out bit

0 No time-out event

1 A time-out event has occurred while the MMC controller was waiting
for a response to a command.

3 TOUTRD Read-data time-out bit

0 No time-out event

1 A time-out event has occurred while the MMC controller was waiting
for data.

2 RSPDNE Command/response done bit.

If the command requires a response:

0 Response not done

1 Response fully received with no CRC error

If no response required:

0 Command not done

1 Command has been sent
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Table 10–12. MMC Status Register 0 (MMCST0) Field Values (Continued)

Bit DescriptionValuesymvalfield

1 BSYDNE Busy done bit used for commands with R1b response (CMD38)
to indicate card is busy. BSYDNE is set to indicate card is no lon-
ger busy.

0 The memory card is busy.

1 The memory card is no longer sending a busy signal.

0 DATDNE Data transfer done bit.

When reading from memory card:

0 Read operation not done

1 Data fully received with no CRC error

When writing to memory card:

0 Write operation not done

1 Data fully transmitted

10.8.5 MMC Status Register 1 (MMCST1)

There are no interrupts associated with events that set the flags in MMCST1.

Figure 10–36. MMC Status Register 1 (MMCST1)

15 5 4 3 2 1 0

Reserved DAT DXEMP DRFUL CLKSTP BUSY

R-0 R-0 R-0 R-0 R-0

Note: R/W-x =  Read/Write-Reset value

Table 10–13. MMC Status Register 1 (MMCST1) Field Values 

Bit field symval Value Description

15–5 Reserved Reserved. The reserved bit location is always read as zero.

4 DAT DAT3 status bit.

0 Low signal level on DAT3 pin

1 High signal level on DAT3 pin



MMC Controller Registers

 10-58

Table 10–13. MMC Status Register 1 (MMCST1) Field Values (Continued)

Bit DescriptionValuesymvalfield

3 DXEMP Data transmit empty

0 No data transmit empty condition. The data transmit shift register is
not empty.

1 Data transmit empty condition. The data transmit shift register is
empty. No bits are available to be shifted out to the memory card.

2 DRFUL Data receive full

0 No data receive full condition. The data receive shift register is not
full.

1 Data receive full condition. The data receive shift register is full. No
new bits can be shifted in from the memory card.

1 CLKSTP Clock stop status bit.

0 CLK is active. The memory clock signal is being driven on the pin.

1 CLK is held low. Possible reasons: Manual stop (CLKEN = 0), data
receive full condition, or data transmit empty condition.

0 BUSY Busy bit

0 No busy signal detected from memory card

1 Busy signal detected (memory card is busy)

10.8.6 MMC Interrupt Enable Register (MMCIE)

This register is used to enable or disable status interrupts. To disable an inter-
rupt, clear the corresponding bit in MMCIE to 0; to enable it, set the bit to 1.

Figure 10–37. MMC Interrupt Enable Register (MMCIE)

15 14 13 12 11 10 9 8

Reserved DATEG DRRDY DXRDY SPIERR

R/W–0 R/W–0 R/W–0 R/W–0

7 6 5 4 3 2 1 0

CRCRS CRCRD CRCWR TOUTRS TOUTRD RSPDNE BSYDNE DATDNE

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Note: R/W-x =  Read/Write-Reset value
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Table 10–14. MMC Interrupt Enable Register (MMCIE) Field Values 

Bit field symval Value Description

15–12 Reserved Reserved. The reserved bit location is always read as zero.

11 DATEG DAT3 edge detect interrupt enable

0 DAT3 edge detect interrupt is disabled.

1 DAT3 edge detect interrupt is enabled.

10 DRRDY Data receive ready interrupt enable

0 Data receive ready interrupt is disabled.

1 Data receive ready interrupt is enabled.

9 DXRDY Data transmit ready interrupt enable

0 Data transmit ready interrupt is disabled.

1 Data transmit ready interrupt is enabled.

8 SPIERR SPI data error interrupt enable (in SPI mode)

0 SPI data error interrupt is disabled.

1 SPI data error interrupt is enabled.

7 CRCRS Response CRC error interrupt enable

0 Response CRC error interrupt is disabled.

1 Response CRC error interrupt is enabled.

6 CRCRD Read-data CRC error interrupt enable

0 Read-data CRC error interrupt is disabled.

1 Read-data CRC error interrupt is enabled.

5 CRCWR Write-data CRC error interrupt enable

0 Write-data CRC error interrupt is disabled.

1 Write-data CRC error interrupt is enabled.

4 TOUTRS Response time-out interrupt enable

0 Response time-out interrupt is disabled.

1 Response time-out interrupt is enabled.
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Table 10–14. MMC Interrupt Enable Register (MMCIE) Field Values (Continued)

Bit DescriptionValuesymvalfield

3 TOUTRD Read-data time-out interrupt enable

0 Read-data time-out interrupt is disabled.

1 Read-data time-out interrupt is enabled.

2 RSPDNE Response/command done interrupt enable

0 Response/command done interrupt is disabled.

1 Response/command done interrupt is enabled.

1 BSYDNE Busy done interrupt enable

0 Busy done interrupt is disabled.

1 Busy done interrupt is enabled.

0 DATDNE Data transfer done interrupt enable

0 Data transfer done interrupt is disabled.

1 Data transfer done interrupt is enabled.

10.8.7 MMC Response Time-Out Register (MMCTOR)

Figure 10–38. MMC Response Time-Out Register (MMCTOR)

15 8 7 0

Reserved TOR

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–15. MMC Response Time-Out Register (MMCTOR) Field Values

Bit field symval Value Description

15–8 Reserved Reserved. The reserved bit location is always read as zero.

7–0 TOR Time-out period for response (native mode)

00h No time-out.

01h–FFh 1 CLK clock cycle  to 255 CLK clock cycles.
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10.8.8 MMC Data Read Time-Out Register (MMCTOD)

Figure 10–39. MMC Data Read Time-Out Register (MMCTOD)

15 0

TOD

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–16. MMC Data Read Time-Out Register (MMCTOD) Field Values

Bit field symval Value Description

15–0 TOD Time-out period for data read (native mode)

0000h No time-out.

0001h–
FFFFh

1 CLK clock cycles to 65535 CLK clock cycles

10.8.9 MMC Block Length Register (MMCBLEN)

MMCBLEN specifies the data block length in bytes. This value must be same
as CSD register settings in the memory card. The default value in this register
after a DSP reset is 512.

Figure 10–40. MMC Block Length Register (MMBLEN)

15 12 11 0

Reserved BLEN

R/W-200h (512)

Note: R/W-x =  Read/Write-Reset value

Table 10–17. MMC Block Length Register (MMCBLEN) Field Values

Bit field symval Value Description

15–12 Reserved Reserved. The reserved bit location is always read as zero.

11–0 BLEN 1–512 Block length value specifies the byte count of a date block.
The value 0 is prohibited.
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10.8.10 MMC Number of Blocks Register (MMCNBLK)

MMCNBLK is used for specifying number of blocks for a multiple-block trans-
fer (only possible in the native mode).

Figure 10–41. MMC Number of Blocks Register (MMCNBLK)

15 0

NBLK

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–18. MMC Number of Blocks Register (MMCNBLK) Field Values

Bit field symval Value Description

15–0 NBLK Number of blocks value specifies the total number of blocks to be
transferred.

0 Infinite number of blocks.

1–65535 Number of blocks value specifies the total number of blocks to be
transferred. The value 0000h indicates an infinite number of
blocks.

10.8.11 MMC Number of Blocks Counter Register (MMCNBLC)

MMCNBLC is a down counter for tracking the number of blocks left to be trans-
ferred.

Figure 10–42. MMC Number of Blocks Counter Register (MMCNBLC)

15 0

NBLC

R-0

Note: R/W-x =  Read/Write-Reset value

Table 10–19. MMC Number of Blocks Counter Register (MMCNBLC) Field Values

Bit field symval Value Description

15–0 NBLC 0–65535 Number of blocks left to be transferred.
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10.8.12 MMC Data Receive Register (MMCDRR)

Data comes into the MMC controller via MMCDRR. The CPU or the DMA con-
troller can read data from this register.

Figure 10–43. MMC Data Receive Register (MMCDRR)

15 0

DRR

R/W-0

Note: R/W-x =  Read/Write-Reset value

10.8.13 MMC Data Transmit Register (MMCDXR)

Data exits the MMC controller via MMCDXR. The CPU or the DMA controller
can write data to this register.

Figure 10–44. MMC Data Transmit Register (MMCDXR)

15 0

DXR

R/W-0

Note: R/W-x =  Read/Write-Reset value
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10.8.14 MMC Command Register (MMCCMD)

Writing to MMCCMD causes the MMC controller to send the command.
Thus, the argument registers (MMCARGH and MMCARGL) have to be
loaded properly before a write to MMCCMD. For the format of a command
(index, arguments, and other bits), see the description for the argument regis-
ters (page 10-65).

The CMD field of MMCMD specifies the type of command to be sent. The other
fields define the operation (command, response, additional activity) for the
MMC controller.

The content of MMCCMD is kept after the transfer to the transmit shift register.

Figure 10–45. MMC Command Register (MMCCMD)

15 14 13 12 11 10 9 8 7 6 5 0

DCLR INIT DATA STREAM WRITE RSPFMT BSYEXP Reserved CMD

R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–20. MMC Command Register (MMCCMD) Field Values 

Bit field symval Value Description

15 DCLR Data receive/transmit clear

0 Do not clear the data receive ready (DRRDY) and data transmit
ready (DXRDY) bits.

1 Clear DRRDY and DXRDY.

14 INIT Initialization clock cycles

0 Do not insert initialization clock cycles.

1 Insert initialization clock cycles; insert 80 CLK cycles before send-
ing the command specified in the CMD field. These dummy clock
cycles are required for resetting a card after power on.

13 DATA Data transfer indicator

0 No data transfer

1 A data transfer associated with the command.

12 STREAM Stream enable

0 If DATA = 1, the data transfer is a block transfer.

1 If DATA = 1, the data transfer is a stream transfer.
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Table 10–20. MMC Command Register (MMCCMD) Field Values (Continued)

Bit DescriptionValuesymvalfield

11 WRITE Write enable

0 If DATA = 1, the data transfer is a read operation.

1 If DATA = 1, the data transfer is a write operation.

10–9 RSPFMT Response format (expected type of response to the command)

00 No response

01 R1/R4/R5/R6

Native mode: 48 bits with CRC
SPI mode: 8 bits with CRC (if CRC enabled)

10 R2

Native mode: 136 bits with CRC
SPI mode: 16 bits with CRC (if CRC enabled)

11 R3

Native mode: 48 bits with no CRC
SPI mode: Not applicable

8 BSYEXP Busy expected. If an R1b (R1 with busy) response is expected,
set RSPFMT = 01 and BSYEXP = 1.

0 No busy signal expected.

1 Busy signal expected.

7–6 Reserved Reserved. These reserved bits are always read as 0s.

5–0 CMD xxxxx Command index for the command to be sent to the memory
card.

10.8.15 MMC Argument Registers (MMCARGH and MMCARGL)

MMCARGH and MMCARGL (see 10-66) are used for specifying the
arguments to be sent with the command specified in MMCCMD. Writing to
MMCCMD causes the MMC controller to send a command; load MMCARGH
and MMCARGL before writing to MMCCMD. Also, make sure you do not
modify the argument registers while they are being used for an
operation.  The contents of the argument registers are kept after transfer to
the shift register.

Table 10–21 shows the format for a command.
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Figure 10–46. MMC Argument Registers (MMCARGH and MMCARGL)

15 0

ARGH (high part of argument)

R/W-0

15 0

ARGL (low part of argument)

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–21. Command Format

Register Bit Position Description

47 Start bit

46 Transmission bit

MMCCMD(5–0) 45–40 Command index

MMCARGH 39–24 Argument, high part

MMCARGL 23–8 Argument, low part

7–1 CRC7

0 End bit
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10.8.16 MMC Response Registers (MMCRSPn)

Each command has a preset response type. When the MMC controller re-
ceives a response, it is stored in some or all of the eight response registers
(MMCRSP7–MMCRSP0). The response registers are updated as the re-
sponses arrive, even if the CPU has not read the previous contents.

As shown in Figure 10–47, each of the response registers holds up to 16 bits.
The tables that follow the figure show which registers are used for each type
of response. Table 10–22 and Table 10–23 show response formats for the na-
tive mode. Note that in the native mode, the first byte of the response is a com-
mand index byte and stored in the MMC command index register (MMCIDX;
see page ). Table 10–24 and Table 10–25 show SPI mode response formats.

Figure 10–47. Format of an MMC Response Register (MMCRSPn)

15 0

RSP

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–22. R1/R4/R5/R6 or R3 Response in the Native Mode

Register Bit Position of Response

MMCIDX 47–40

MMCRSP7 39–24

MMCRSP6 23–8

MMCRSP5–0 — (Last byte of this type of response is not recorded)
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Table 10–23. R2 Response in the Native Mode

Register Bit Position of Response

MMCIDX 135–128

MMCRSP7 127–112

MMCRSP6 111–96

MMCRSP5 95–80

MMCRSP4 79–64

MMCRSP3 63–48

MMCRSP2 47–32

MMCRSP1 31–16

MMCRSP0 15–0

Table 10–24. R1 Response in SPI Mode

Register Bit Position of Response

MMCRSP7 7–0 (stored in least significant byte of MMCRSP7)

MMCRSP6–0 —

Table 10–25. R2 Response in SPI Mode

Register Bit Position of Response

MMCRSP7 15–0

MMCRSP6–0 —
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10.8.17 MMC Command Index Register (MMCCIDX)

Figure 10–48. MMC Command Index Register (MMCCIDX)

15 8 7 0

Reserved CIDX

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–26. MMC Command Index Register (MMCCIDX) Field Values

Bit field symval Value Description

15–8 Reserved Reserved. The reserved bit location is always read as zero.

7–0 CIDX Command index byte of a response, consists of start bit,
transmission bit, and command index; stored when it is
received in the native mode.

10.8.18 MMC Data Response Register (MMCDRSP)

Figure 10–49. MMC Data Response Register (MMCDRSP)

15 8 7 0

Reserved DRSP

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–27. MMC Data Response Register (MMCDRSP) Field Values

Bit field symval Value Description

15–8 Reserved Reserved. The reserved bit location is always read as zero.

7–0 DRSP Native mode: During a write operation, the CRC status token
is stored in this register (see section 10.2.1.1 on page 10-11).

SPI mode: During a write operation, the data response byte is
stored in this register (see section 10.5.1.1 on page 10-34).
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10.8.19 MMC SPI Error Token Register (MMCETOK)

Figure 10–50. MMC SPI Error Token Register (MMCETOK)

15 8 7 0

Reserved ETOK

R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 10–28. MMC SPI Error Token Register (MMCETOK) Field Values

Bit field symval Description

15–8 reserved Reserved. These reserved bits are always read as 0s.

7–0 ETOK Native mode: Not used
SPI mode: If a read operation is not successful, the card responds with a
1-byte data error token (see section 10.5.1.2 on page 10-35). The MMC
controller stores the token in this field.
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Real-Time Clock (RTC)

This chapter discusses the real-time clock (RTC) of the TMS320C55x
(C55x ) DSPs. To determine whether a particular C55x DSP has an RTC, see
the data sheet for that DSP.
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11.1 Introduction to the Real-Time Clock (RTC)

The real-time clock (RTC) provides the following features:

� 100-year calendar up to year 2099

� Peripheral bus interface

� 32 bytes of configuration/status registers

� Counts seconds, minutes, hours, day of the week, date, month, and year
with leap year compensation

� Binary-coded-decimal (BCD) representation of time, calendar, and alarm

� 12-hour (with AM and PM in 12-hour mode) or 24-hour clock modes

� Second, minute, hour, or day alarm interrupt

� Update Cycle interrupt

� Periodic interrupt

� Single interrupt port

� Supports external 32 kHz oscillator

� Separate power supply

The RTC has a separate clock domain and power supply. The clock is derived
from the external 32 kHz crystal (RTCX1 and RTCX2). Figure 11–1 shows a
block diagram of the RTC. Table 11–1 lists and describes the signals.
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Figure 11–1.Real-Time Clock Block Diagram

Write
buffer

Time,
calendar,

alarm

Control
status

registers

interface
Bus

Clock divider

Clock selector

RTCX2

IRQ

DO[7:0]

RTCX1

TCLK

Peripheral bus

NRESET

DI[7:0] buffer
Read

Table 11–1. Real-Time Clock Signal Descriptions 

Name I/O Signal Descriptions

DI(7:0) Input Data input bus.

DO(7:0) Output Data output bus.

IRQ Output Interrupt request. IRQ is an active-high output that goes high when one of the
three interrupts (periodic, alarm, or update-ended) is present and the
corresponding interrupt enable bit, in the interrupt enable register, is set. IRQ
remains high until the CPU reads the interrupt flag register. NRESET also
clears pending interrupts.
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Table 11–1. Real-Time Clock Signal Descriptions (Continued)

Signal DescriptionsI/OName

NRESET Input Reset. NRESET has no effect on the clock, timer, or calendar. When NRESET
is low, the following occurs:

� Periodic Interrupt Enable (PIE) bit is cleared to 0.

� Alarm Interrupt Enable (AIE) bit is cleared to 0.

� Update-Ended Interrupt Enable (UIE) bit is cleared to 0.

� Interrupt Request Status Flag (IRQF) bit is cleared to 0.

� Periodic Interrupt Flag (PF) bit is cleared to 0.

� Alarm Interrupt Flag (AF) bit is cleared to 0.

� Update-Ended Interrupt Flag (UF) bit is cleared to 0.

� IRQ signal is in the high state.

Note that these bits are not stable until NRESET is applied.

PS Input Power sense. Indication for power detection from the core.

RTCX1 Input 32.768 kHz time base.

RTCX2 Output 32.768 kHz time base.

TCLK Input Test clock. TCLK is only used for a test.
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11.2 Real-Time Clock Power

The RTC has its own power supply; therefore, it will operate while the rest of
the TMS320C55x DSP is powered off or has 0 voltage in its core and I/O pins.
When the RTC detects the core is not powered, its outputs into the core are
in a tristate mode and it uses busholders at the inputs of the RTC from the core,
so they are not floating. Figure 11–2 shows a block diagram of this circuit. The
input signals have a bus holder with a tristate inverter (IV2x1) to hold the state
with the bus holder. The output does not require this special consideration
because the output signal connects to a gate that is protected by an insulator
and does not leak into the core logic.

The RTC can be idled by not supplying its 32 kHz oscillator signal and it can
be turned off by not providing power to the RTC power supply pins, RCVDD and
RDVDD.

Figure 11–2.Real-Time Clock Power Isolation Block Diagram

Bus
holder

Bus
holder

RTC
IP

macro
Oscillator
32 KHz

X1
X0

RTC powered area
Signal from
unpowered
area

Signal to
unpowered
area

Tie
off
HI

TMS320C55x DSP (unpowered area)



Real-Time Clock Registers

 11-6

11.3 Real-Time Clock Registers

The RTC registers are listed in Table 11–2.

Table 11–2. Real-Time Clock Registers

Address (Hex) Name Description

1800h RTCSEC Seconds Register

1801h RTCSECA Seconds Alarm Register

1802h RTCMIN Minutes Register

1803h RTCMINA Minutes Alarm Register

1804h RTCHOUR Hours Register

1805h RTCHOURA Hours Alarm Register

1806h RTCDAYW Day of the Week Register

1807h RTCDAYM Day of the Month (date) Register

1808h RTCMONTH Month Register

1809h RTCYEAR Year Register

180Ah RTCPINTR Periodic Interrupt Selection Register

180Bh RTCINTEN Interrupt Enable Register

180Ch RTCINTFL Interrupt Flag Register

180Dh–1BFFh Reserved

11.3.1 RTC Time, Alarm, and Calendar Registers

The time, calendar, and alarm registers are set or initialized by writing to the
appropriate register bytes. The contents of the time, calendar, and alarm regis-
ters are in binary-coded-decimal (BCD) format; that is, the use of 4 binary bits
representing a single-decimal digit. Before writing to the time and calendar
registers, the SET bit in the interrupt enable register (RTCINTEN) should be
set to prevent updates while an access is being attempted. The SET bit should
be cleared after the data has been written to allow the RTC to update the time,
calendar, and alarm bytes. When writing to the time, calendar, and alarm
registers, all data must be in BCD format. Once initialized, the RTC makes all
updates in BCD mode. Table 11–3 shows the BCD format of the time, calen-
dar, and alarm registers.
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Table 11–3. Real-Time Clock Registers Decimal Range and BCD Format 

Address (Hex) Name Function Decimal Range BCD Format

1800h RTCSEC Seconds 0–59 00–59

1801h RTCSECA Seconds alarm 0–59

don’t care

00–59

C0–FF

1802h RTCMIN Minutes 0–59 00–59

1803h RTCMINA Minutes alarm 0–59

don’t care

00–59

C0–FF

1804h RTCHOUR 12-hour mode 1–12 01–12 (AM),
81–92 (PM)

24-hour mode 0–23 00–23

1805h RTCHOURA 12-hour mode alarm 1–12

don’t care

01–12 (AM),
81–92 (PM)

C0–FF

24-hour mode alarm 0–23

don’t care

00–23

C0–FF

1806h RTCDAYW Day of the Week
(Sunday = 1)

1–7 1–7

Day of the Week Alarm
(Sunday = 1)

1–7

don’t care

1–7

8–F

1807h RTCDAYM Day of the month (Date) 1–31 01–31

1808h RTCMONTH Month (January = 01) 1–12 01–12

1809h RTCYEAR Year 0–99 00–99
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The 12-hour or 24-hour time modes cannot be changed without reinitializing
the hours register (RTCHOUR) and hours alarm register (RTCHOURA). When
the 12-hour format is selected, the MSB of RTCHOUR selects either AM or
PM; AM when the MSB is cleared to 0, PM when the MSB is set to 1.

The time, calendar, and alarm bytes are always accessible because they are
double buffered. However, if the read of the time and calendar bytes occurs
during an update, a problem may exist and the data being read may not be
correct.

There are three (seconds, minutes, and hours) alarm registers that can be
used in one of two ways:

� Write an alarm time in the appropriate hours, minutes, and seconds for an
alarm condition, the alarm interrupt occurs at the specified time of each
day if the alarm enable bit is set.

� Insert a “don’t care” state in one or more of the three alarms bytes.

The “don’t care” state is any hexadecimal value from C0 to FF written to an
alarm register; the two most-significant bits of each alarm register when set to
1 set the “don’t care” condition. For example, an alarm is generated each hour
when the “don’t care” bits are set in the hours alarm register (RTCHOURA).
Similarly, an alarm is generated every minute when the “don’t care” bits are set
in RTCHOURA and the minutes alarm register (RTCMINA). The “don’t care”
bits set in all three alarm registers (RTCHOURA, RTCMINA, and RTCSECA)
generates an interrupt every second.

The DAEN bit in the day of the week register (RTCDAYW) allows you to extend
the alarm interrupt up to once per week. When the DAEN bit is set to 1, the
upper-half bits (bits 7–4) of RTCDAYW are assigned for the day-of-the-week
alarm. Similar to other alarm registers, the DAR bits represent the alarm value
and bit 7 represents the “don’t care” condition. Only bits 7–4 of RTCDAYW are
transferred when the SET bit, in RTCINTEN, is cleared to 0. When the DAEN
bit is cleared to 0, the day-of-the-week alarm is disabled and the DAY bits of
RTCDAYW are transferred. The seconds, minutes, or hours data is kept with
same data format, when PS falls.
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11.3.1.1 RTC Seconds Register (RTCSEC)

Figure 11–3.RTC Seconds Register (RTCSEC)

7 6 0

reserved SEC

R-0 R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–4. RTC Seconds Register (RTCSEC) Field Values

Bit field † symval †
BCD
Value Description

7 reserved Reserved. The reserved bit location is always read as zero.

6–0 SEC 00–59 Seconds select bits. This BCD value sets the second of the time.

† For CSL C macro implementation, use the notation RTC_RTCSEC_field_symval

11.3.1.2 RTC Seconds Alarm Register (RTCSECA)

Figure 11–4.RTC Seconds Alarm Register (RTCSECA)

7 0

SAR

R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–5. RTC Seconds Alarm Register (RTCSECA) Field Values

Bit field † symval †
BCD
Value Description

7–0 SAR 00–59 Seconds alarm select bits. This BCD value sets the second of the
alarm time.

When bits 7 and 6 are set to 1, a “don’t care” condition is set. The “don’t
care” bits set in all three alarm registers (RTCHOURA, RTCMINA, and
RTCSECA) generates an interrupt every second.

† For CSL C macro implementation, use the notation RTC_RTCSECA_field_symval
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11.3.1.3 RTC Minutes Register (RTCMIN)

Figure 11–5.RTC Minutes Register (RTCMIN)

7 6 0

reserved MIN

R-0 R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–6. RTC Minutes Register (RTCMIN) Field Values

Bit field † symval †
BCD
Value Description

7 reserved Reserved. The reserved bit location is always read as zero.

6–0 MIN 00–59 Minutes select bits. This BCD value sets the minute of the time.

† For CSL C macro implementation, use the notation RTC_RTCMIN_field_symval

11.3.1.4 RTC Minutes Alarm Register (RTCMINA)

Figure 11–6.RTC Minutes Alarm Register (RTCMINA)

7 0

MAR

R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–7. RTC Minutes Alarm Register (RTCMINA) Field Values

Bit field † symval †
BCD
Value Description

7–0 MAR 00–59 Minutes alarm select bits. This BCD value sets the minute of the alarm
time.

When bits 7 and 6 are set to 1, a “don’t care” condition is set. The “don’t
care” bits set in the hours and minutes alarm registers (RTCHOURA
and RTCMINA) generates an interrupt every minute.

† For CSL C macro implementation, use the notation RTC_RTCMINA_field_symval
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11.3.1.5 RTC Hours Register (RTCHOUR)

Figure 11–7.RTC Hours Register (RTCHOUR)

7 6 5 0

AM/PM reserved HR

R/W- R-0 R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–8. RTC Hours Register (RTCHOUR) Field Values 

Bit field † symval †
BCD
Value Description

7 AM/PM AM/PM select bit.

0 Time is set for AM.

1 Time is set for PM.

6 reserved Reserved. The reserved bit location is always read as zero.

5–0 HR Hours select bits. This BCD value sets the hour of the time.

For 12-hour mode (TM = 0 in RTCINTEN):

01–12 This BCD value in conjunction with the AM/PM bit sets the hour of the
time. For AM, AM/PM bit must be cleared to 0; for PM, AM/PM bit must
be set to 1.

For 24-hour mode (TM = 1 in RTCINTEN):

00–23 This BCD value in conjunction with the AM/PM bit sets the hour of the
time. AM/PM bit must be cleared to 0.

† For CSL C macro implementation, use the notation RTC_RTCHOUR_field_symval



Real-Time Clock Registers

 11-12

11.3.1.6 RTC Hours Alarm Register (RTCHOURA)

Figure 11–8.RTC Hours Alarm Register (RTCHOURA)

7 6 0

AM/PM HAR

R/W- R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–9. RTC Hours Alarm Register (RTCHOURA) Field Values 

Bit field † symval †
BCD
Value Description

7 AM/PM AM/PM select bit.

0 Alarm time is set for AM or is in 24-hour mode.

1 Alarm time is set for PM.

6–0 HAR Hours alarm select bits. This BCD value sets the hour of the alarm
time.

When bits 6 and 5 are set to 1, a “don’t care” condition is set. The “don’t
care” bits generate an interrupt every hour.

For 12-hour mode (TM = 0 in RTCINTEN):

01–12 This BCD value in conjunction with the AM/PM bit sets the hour of the
alarm time. For AM, AM/PM bit must be cleared to 0; for PM, AM/PM
bit must be set to 1.

For 24-hour mode (TM = 1 in RTCINTEN):

00–23 This BCD value in conjunction with the AM/PM bit sets the hour of the
alarm time. AM/PM bit must be cleared to 0.

† For CSL C macro implementation, use the notation RTC_RTCHOURA_field_symval
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11.3.1.7 RTC Day of the Week and Day Alarm Register (RTCDAYW)

Figure 11–9.RTC Day of the Week and Day Alarm Register (RTCDAYW)

7 4 3 2 0

DAR DAEN DAY

R/W- R/W- R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–10. RTC Day of the Week and Day Alarm Register (RTCDAYW) Field Values

Bit field † symval †
BCD
Value Description

7–4 DAR 1–7 Day-of-the-week alarm select bits. This BCD value sets the day-of-
the-week alarm (Sunday = 1).

When bit 7 is set to 1, a “don’t care” condition is set. The “don’t care”
bit generates an interrupt every week.

3 DAEN Day-of-the-week alarm enable bit.

0 Day-of-the-week alarm is disabled.

1 Day-of-the-week alarm is enabled. Day-of-the-week alarm is set to
BCD value of DAR bits.

2–0 DAY 1–7 Day-of-the-week select bits. This BCD value sets the day of the week
(Sunday = 1).

† For CSL C macro implementation, use the notation RTC_RTCDAYW_field_symval

11.3.1.8 RTC Day of the Month (Date) Register (RTCDAYM)

Figure 11–10. RTC Day of the Month (Date) Register (RTCDAYM)

7 6 5 0

reserved DATE

R-0 R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–11. RTC Day of the Month (Date) Register (RTCDAYM) Field Values

Bit field † symval †
BCD
Value Description

7–6 reserved Reserved. The reserved bit location is always read as zero.

5–0 DATE 01–31 Date select bits. This BCD value sets the date of the calendar.

† For CSL C macro implementation, use the notation RTC_RTCDAYM_field_symval
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11.3.1.9 RTC Month Register (RTCMONTH)

Figure 11–11.RTC Month Register (RTCMONTH)

7 5 4 0

reserved MONTH

R-0 R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–12. RTC Month Register (RTCMONTH) Field Values

Bit field † symval †
BCD
Value Description

7–5 reserved Reserved. The reserved bit location is always read as zero.

4–0 MONTH 01–12 Month select bits. This BCD value sets the month of the calendar
(January = 01).

† For CSL C macro implementation, use the notation RTC_RTCMONTH_field_symval

11.3.1.10 RTC Year Register (RTCYEAR)

Figure 11–12. RTC Year Register (RTCYEAR)

7 0

YEAR

R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–13. RTC Year Register (RTCYEAR) Field Values

Bit field † symval †
BCD
Value Description

7–0 YEAR 00–99 Year select bits. This BCD value sets the year of the calendar.

† For CSL C macro implementation, use the notation RTC_RTCYEAR_field_symval
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11.3.2 RTC Interrupt Registers

The RTC has three interrupt control registers that can be accessed at any time.

11.3.2.1 RTC Periodic Interrupt Selection Register (RTCPINTR)

Figure 11–13. RTC Periodic Interrupt Selection Register (RTCPINTR)

7 6 5 4 0

UIP reserved RS

R/W- R-0 R/W-

Note: R/W-x =  Read/Write-Reset value

Table 11–14. RTC Periodic Interrupt Selection Register (RTCPINTR)
Field Values 

Bit field † symval † Value Description

7 UIP Update-in-progress bit.

0 Update cycle will not occur for at least 244 µs.

1 After UIP goes high, update cycle will occur in 244 µs.

6–5 reserved Reserved. The reserved bit location is always read as zero.

4–0 RS Periodic interrupt rate select bits.

00000 None

00001 3.90625 ms

00010 7.8125 ms

00011 122.070 µs

00100 244.141 µs

00101 488.281 µs

00110 976.5625 µs

00111 1.953125 ms

01000 3.90625 ms

01001 7.8125 ms

01010 15.625 ms

01011 31.25 ms

† For CSL C macro implementation, use the notation RTC_RTCPINTR_field_symval
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Table 11–14. RTC Periodic Interrupt Selection Register (RTCPINTR)
Field Values (Continued)

Bit DescriptionValuesymval †field †

01100 62.5 ms

01101 125 ms

01110 250 ms

01111 500 ms

10000
–11111

1 minute

† For CSL C macro implementation, use the notation RTC_RTCPINTR_field_symval

Update-In-Progress (UIP) Bit

The update-in-progress (UIP) bit is a status flag that can be monitored. When
the UIP bit is set to 1, the update cycle will occur soon. When the UIP bit is
cleared to 0, the update cycle will not occur for at least 244 µs. All time and
calendar data is accessible when the UIP bit is 0. The UIP bit is a read-only
bit and is not affected by an NRESET signal. Writing a 1 to the SET bit in the
interrupt enable register (RTCINTEN) clears the UIP bit.

The UIP bit is used to determine how soon the update cycle will occur. Because
the RTC has a register-based time and calendar, the RTC does not require an
additional clock period to transfer data from time and calendar counters. This
means the time and calendar data can be read at any time other than at the
update cycle time.

Periodic Interrupt Rate Select (RS) Bits

The RS bits select 1 of the 13 taps out of the 16-stage divider or disable the
divider output. The selected tap is used for generating a periodic interrupt.
Bit 4 of RS affects only the 1 minute periodic interrupt and the other RS bits
are ignored when bit 4 is set to 1. These bits are read/write bits and are not
affected by an NRESET signal.
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11.3.2.2 RTC Interrupt Enable Register (RTCINTEN)

Figure 11–14. RTC Interrupt Enable Register (RTCINTEN)

7 6 5 4 3 2 1 0

SET PIE AIE UIE reserved TM reserved

R/W- R/W- R/W- R/W- R-0 R/W- R-0

Note: R/W-x =  Read/Write-Reset value

Table 11–15. RTC Interrupt Enable Register (RTCINTEN) Field Values  

Bit field † symval † Value Description

7 SET SET bit isolates or connects the write and read buffers from the time,
calendar, and alarm registers. Loading new data to time, calendar, or
alarm and updating time and calendar data to read buffer are blocked
while the SET bit is set to 1. The SET bit is a read/write bit that is not
affected by an NRESET signal.

0 The write and read buffers are connected to the time, calendar, and
alarm registers.

1 The write and read buffers are isolated from the time, calendar, and
alarm registers so a read or write operation can be executed
independent with the update cycle.

6 PIE Periodic interrupt enable bit allows the periodic interrupt flag (PF) bit
in the interrupt flag register (RTCINTFL) to cause an active IRQ. The
PIE bit is a read/write bit that is cleared by an NRESET signal.

0 Periodic interrupts are disabled.

1 Periodic interrupts are enabled.

5 AIE Alarm interrupt enable (AIE) bit allows the alarm interrupt flag (AF) bit
in the interrupt flag register (RTCINTFL) to cause an active IRQ. The
AIE bit is a read/write bit that is cleared by an NRESET signal.

0 Alarm interrupts are disabled.

1 Alarm interrupts are enabled.

4 UIE Update-ended interrupt enable (UIE) bit allows the update-ended flag
(UF) bit in the interrupt flag register (RTCINTFL) to cause an active
IRQ. The UIE bit is a read/write bit that is cleared by an NRESET
signal.

0 Update-ended interrupts are disabled.

1 Update-ended interrupts are enabled.

† For CSL C macro implementation, use the notation RTC_RTCINTEN_field_symval
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Table 11–15. RTC Interrupt Enable Register (RTCINTEN) Field Values  (Continued)

Bit DescriptionValuesymval †field †

3–2 reserved Reserved. The reserved bit location is always read as zero.

1 TM Time mode bit indicates whether the hour byte is in 24-hour mode or
12-hour mode. The TM bit is a read/write bit that is not affected by an
NRESET signal.

0 12-hour mode

1 24-hor mode

0 reserved Reserved. The reserved bit location is always read as zero.

† For CSL C macro implementation, use the notation RTC_RTCINTEN_field_symval

11.3.2.3 RTC Interrupt Flag Register (RTCINTFL)

Figure 11–15. RTC Interrupt Flag Register (RTCINTFL)

7 6 5 4 3 0

IRQF PF AF UF reserved

R- R- R- R- R-0

Note: R/W-x =  Read/Write-Reset value

Table 11–16. RTC Interrupt Flag Register (RTCINTFL) Field Values  

Bit field Value Description

7 IRQF Interrupt request status flag bit indicates if an interrupt has occurred.

0 No interrupt flags are set.

1 One or more of the interrupt flags and the corresponding enables are set. Any time
the IRQF bit is set, the IRQ signal is driven active high. To clear an interrupt flag,
write a 1 to the interrupt flag bit that caused the interrupt.

6 PF Periodic interrupt flag bit indicates if a periodic interrupt has occurred.

0 No periodic interrupt occurred.

1 Periodic interrupt has occurred. The PF bit is set based on the status of the PIE bit
in the interrupt enable register (RTCINTEN) and cleared by an NRESET signal or
by writing a 1 into this bit.
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Table 11–16. RTC Interrupt Flag Register (RTCINTFL) Field Values  (Continued)

Bit DescriptionValuefield

5 AF Alarm interrupt flag bit indicates if an alarm interrupt has occurred.

0 No alarm interrupt occurred.

1 Alarm interrupt has occurred. The AF bit is set based on the status of the AIE bit
in the interrupt enable register (RTCINTEN) and cleared by an NRESET signal or
by writing a 1 into this bit.

4 UF Update-ended interrupt flag bit indicates if an update-ended interrupt has occurred.

0 No update-ended interrupt occurred.

1 Update-ended interrupt has occurred. The UF bit is set based on the status of the
UIE bit in the interrupt enable register (RTCINTEN) and cleared by an NRESET
signal or by writing a 1 into this bit.

3–0 reserved Reserved. The reserved bit location is always read as zero.

Figure 11–16 shows the events when both an alarm interrupt and an
update-ended interrupt occur and how they are cleared by writing a 1 into their
corresponding bit fields of the interrupt flag register (RTCINTFL). In
Figure 11–16 the alarm interrupt occurs, setting the IRQF bit and AF bit in
RTCINTFL. The AF bit is cleared by writing a 1 to the AF bit in RTCINTFL. After
the alarm interrupt occurs, the update-ended interrupt occurs, setting the
IRQF bit and UF bit in RTCINTFL. The UF bit is cleared by writing a 1 to the
UF bit in RTCINTFL. The IRQF bit is cleared when a 1 is written to AF bit and
UF bit.

Figure 11–16. Clearing Alarm Interrupt and Update-Ended Interrupts

Alarm interrupt

Update-ended interrupt

IRQF bit

Interrupt clear signal

Cleared by a write
to AF bit in RTCINTFL

Cleared by a write
to UF bit in RTCINTFL

Write a 1 to
AF bit in RTCINTFL

Write a 1 to
UF bit in RTCINTFL



Real-Time Clock Interrupts

 11-20

11.4 Real-Time Clock Interrupts

The RTC provides three separate interrupts. The alarm interrupt can be
programmed to occur at rates from once per second to once per week. The
periodic interrupt can be selected for rates from 500 ms to 122 µs.

11.4.1 Interrupt Enable and Flag Bits

Three bits (PIE, AIE, and UIE) in the interrupt enable register (RTCINTEN)
enable the interrupts. Writing a logic 1 to an interrupt enable bit allows that
interrupt to be initiated when the event occurs. If an interrupt flag is already set
when an interrupt is enabled, the IRQ signal is immediately set to an active
level, although the interrupt initiating the event may have occurred much
earlier. Pending interrupts should be cleared before first enabling new
interrupts.

When an interrupt event occurs, the corresponding flag bit (PF, AF, or UF) is
set in the interrupt flag register (RTCINTFL). These flag bits are set indepen-
dent of the state of the corresponding enable bit in RTCINTEN. The flag bit can
be used in a polling mode without enabling the corresponding enable bits.
However, care should be taken when using the flag bits since they are cleared
each time RTCINTFL is read. Double latching is used to insure that bits are
stable throughout the read cycle. If a new interrupt occurs during the read
cycle, the interrupt is set in the corresponding flag bit after the read cycle is
completed. All three bits can be set when reading RTCINTFL.

If one of the three flag bits becomes active and the corresponding enable bit
is set, the IRQ signal becomes active high. The IRQ signal is asserted as long
as at least one of the three interrupt flag bits and enable bits are set. The IRQF
bit in RTCINTFL is set to 1 when IRQ is driven active high. The IRQF bit
indicates that one or more interrupts have been initiated by the RTC. Reading
RTCINTFL clears the IRQF bit.

The RTC also provides ALARMIRQ that is driven active, when the AF bit in
RTCINTFL is set active.

11.4.2 Periodic Interrupt

The periodic interrupt causes the IRQ signal to go to an active state from once
every 1 minute to once every 122 µs. The periodic interrupt rate is selected
using the RS bits in the periodic interrupt selection register (RTCPINTR), see
Table 11–17. Changing the four LSBs of the RS bits affects the periodic inter-
rupt rate. When bit 4 of the RS bits is set to 1, the periodic interrupt is asserted
every minute regardless of the other RS bit values. The minute interrupt is trig-
gered when the second register is changed from 59 to 00. The periodic inter-
rupts are enabled by the PIE bit in RTCINTEN.
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Table 11–17. RTC Periodic Interrupt Rates Based on RS Bits

RTCPINTR Bits

RS4 RS3 RS2 RS1 RS0 Periodic Interrupt Rate

0 0 0 0 0 None

0 0 0 0 1 3.90625 ms

0 0 0 1 0 7.8125 ms

0 0 0 1 1 122.070 µs

0 0 1 0 0 244.141 µs

0 0 1 0 1 488.281 µs

0 0 1 1 0 976.5625 µs

0 0 1 1 1 1.953125 ms

0 1 0 0 0 3.90625 ms

0 1 0 0 1 7.8125 ms

0 1 0 1 0 15.625 ms

0 1 0 1 1 31.25 ms

0 1 1 0 0 62.5 ms

0 1 1 0 1 125 ms

0 1 1 1 0 250 ms

0 1 1 1 1 500 ms

1 X X X X 1 minute
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11.5 Real-Time Clock Update Cycle

The RTC executes an update cycle once per second regardless of the SET bit
value in the interrupt enable register (RTCINTEN). When the SET bit is set to
1, the time, calendar, and alarm bytes are double buffered and become
separate from the actual time, calendar, and alarm registers. This allows the
RTC to maintain accuracy independent of reading or writing to the buffers. The
update cycle also compares each alarm byte with the corresponding time byte.

There are three methods that the RTC uses to avoid any possibility of access-
ing inconsistent time and calendar data.

� The first method uses the update-ended interrupt enable (UIE) bit in
RTCINTEN. If the update-ended interrupt is enabled, an interrupt occurs
after every update cycle that indicates that over 999 ms are available to
read valid time and calendar data. If this interrupt is used, the IRQF bit in
the interrupt flag register (RTCINTFL) should be cleared before leaving
the interrupt routine.

� The second method uses the update-in-progress (UIP) bit in the periodic
interrupt selection register (RTCPINTR) to determine if the update cycle
is in progress. The UIP bit pulses once per second, and after the UIP bit
goes high, the update occurs 244 µs later. If a low is read on the UIP bit,
the update does not occur for at least 244 µs.

� The third method uses the periodic interrupt flag (PF) bit in RTCINTFL to
determine if the update cycle is in progress. The UIP bit in RTCPINTR is
set between the setting of the PF bit in RTCINTFL (see Figure 11–17). The
periodic interrupt that is greater than tBCU allows determining the update
cycle. The read should be completed within tPI/2 after the PF bit is set.

Figure 11–17. Setting of the Update-In-Progress (UIP) Bit in RTCPINTR

tBCU

tPI/2 tPI/2

UIP bit

UF bit

PF bit
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11.6 Real-Time Clock Operating Modes

The RTC works with three operation modes: a normal mode, a battery-backup
mode, and a test mode. No mode affects the time, calendar, and alarm
registers.

11.6.1 Normal Mode

In a normal mode, the power is fully supplied and all registers can be accessed.

11.6.2 Low-Power Mode

In low-power mode, the TMS320C55x device is not powered, but the RTC is
powered. In this mode, all ports should be isolated from nonpowered sections
of the device. The calendar timer is working in this mode.

11.6.3 Test Mode

Three test modes are provided for TI-use only and are used for testing the
RTC.
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11.7 Real-Time Clock Programming Sequence

11.7.1 Initialization

The 10 bytes of data in the time, calendar, and alarm registers have to be
initialized with data after setting the appropriate bits in both the periodic
interrupt selection register (RTCPINTR) and the interrupt enable register
(RTCINTEN), see Figure 11–18. The SET bit in RTCINTEN has to be set to
1 before the 10 bytes of data are initialized, then the counting starts when the
SET bit is cleared to 0.

Figure 11–18. Initialization Flow Diagram

Set 10 bytes
of data

(SET = 1)
Set RTCINTEN

Power on

Set RTCPINTR

Start count

SET = 0
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11.7.2 Read/Write Time, Calendar, or Alarm Register

Reading or writing of the registers should be followed by a detecting update
cycle and the data mode must be same for all registers.

11.7.2.1 Using UIP Bit to Access Registers

Figure 11–19 shows how to access the time, calendar, or alarm register by
using the update-in-progress (UIP) bit in the periodic interrupt selection regis-
ter (RTCPINTR). If the UIP bit is cleared to 0, an update cycle will not occur
for at least 244 µs.

Figure 11–19. Using UIP Bit to Access Registers

SET = 0

Read RTCPINTR

UIP = 0?
No

Access time,
calendar or

alarm register

Yes

(SET = 1)
Set RTCINTEN
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11.7.2.2 Using PF Bit to Access Registers

Figure 11–20 shows how to access the time, calendar, or alarm register by
using the periodic interrupt flag (PF) bit in the interrupt flag register
(RTCINTFL). If the PF bit is set to 1, an update cycle will not occur for at least
a time of tPI/2.

Figure 11–20. Using PF Bit to Access Registers

SET = 0

Read RTCINTFL

PF = 1?
No

Access time,
calendar or

alarm register

Yes

(SET = 1)
Set RTCINTEN
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11.7.2.3 Using UF Bit to Access Registers

Figure 11–21 shows how to access the time, calendar, or alarm register by
using the update ended interrupt flag (UF) bit in the interrupt flag register
(RTCINTFL). If the UF bit is set to 1, an update cycle will not occur for at least
1 second.

Figure 11–21. Using UF Bit to Access Registers

SET = 0

Read RTCINTFL

UF = 1?
No

Access time,
calendar or

alarm register

Yes

(SET = 1)
Set RTCINTEN
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11.7.2.4 Using AF Bit to Access Registers

Figure 11–22 shows how to access the time, calendar, or alarm register by
using the alarm interrupt flag (AF) bit in the interrupt flag register (RTCINTFL).
If the AF bit is set to 1, an update cycle will not occur for at least 1 second.

Figure 11–22. Using AF Bit to Access Registers

SET = 0

Read RTCINTFL

AF = 1?
No

Access time,
calendar or

alarm register

Yes

(SET = 1)
Set RTCINTEN
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11.7.2.5 Using IRQ Signal or IRQF Bit to Access Registers

Figure 11–23 shows how to access the time, calendar, or alarm register by
using the status of the IRQ pin. If the IRQ pin is active high, an update cycle
will not occur. Any time the interrupt request status flag (IRQF) bit in the inter-
rupt flag register (RTCINTFL) is set to 1, the IRQ signal is driven active high.

Figure 11–23. Using IRQ Signal or IRQF Bit to Access Registers

SET = 0

Enable IRQ

Read RTCINTFL

IRQ = 1?
No

Access time,
calendar or

alarm register

Yes

(SET = 1)
Set RTCINTEN
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11.7.2.6 Using No Flags to Access Registers

Since the timer, calendar, or alarm register is protected, it can be read at any
time regardless of the update cycle. Figure 11–24 shows that the register
should be read at least twice, to avoid the possibility of reading unstable data
that could occur while the update cycle has occurred.

Figure 11–24. Using No Flags to Access Registers

Valid data

Same?
No

Access time,
calendar or

alarm register

Yes

Read second
register

Read second
register
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System Control Registers

This chapter describes the boot mode register and system register of the
TMS320C55x  DSP.
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12.1 Boot Mode Register

The boot mode register (BOOT_MOD) is a read-only register in the peripheral
bus controller of the DSP. This register allows you to see the boot mode
selected by the three BOOTM pins of the DSP. For example, the following table
shows the boot modes available on the TMS320VC5510 DSPs. Only the three
lowest bits of BOOT_MOD are used; other bits are undefined (shown as x in
the table). For the I/O address of BOOT_MOD, see the data sheet for your
TMS320C55x DSP.

Table 12–1. TMS320VC5510 Boot Modes Selected With the BOOTM Pins
and Reflected in BOOT_MOD

BOOTM2
At Reset

BOOTM1
At Reset

BOOTM0
At Reset

BOOT_MOD
After Reset Boot Mode Selected

Low Low Low xxxx xxxx xxxx x000b No boot

Low Low High xxxx xxxx xxxx x001b Reserved (do not use)

Low High Low xxxx xxxx xxxx x010b Reserved (do not use)

Low High High xxxx xxxx xxxx x011b 16-bit asynchronous memory boot

High Low Low xxxx xxxx xxxx x100b 32-bit asynchronous memory boot

High Low High xxxx xxxx xxxx x101b EHPI boot

High High Low xxxx xxxx xxxx x110b McBSP 0 boot, 16-bit serial word length

High High High xxxx xxxx xxxx x111b McBSP 0 boot, 8-bit serial word length
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12.2 System Register

The system register (SYSR) includes the CLKDIV bits, which determine how
much the CPU clock is divided down for the CLKOUT pin (for more details, see
section 2.6 on page 2-9). SYSR is an I/O-mapped register. Figure 12–1 and
Table 12–2 describe the bit fields of SYSR.

Figure 12–1. System Register (SYSR)
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Legend:

R/W Read/write access
– X X is the value after a DSP reset

Table 12–2. SYSR Bit Descriptions 

Bit(s) Name Description
Reset
Value

15–3 Reserved Bits 15–3 of SYSR are not available for your use. Whenever you modify
SYSR, write 0s to bits 15–3.

–

2–0 CLKDIV Clock divide-down value for CLKOUT. CLKDIV determines the amount by
which the CPU clock is divided down to produce the signal on the CLKOUT
pin. If you want the CLKOUT frequency and the CPU clock frequency to be
the same, make CLKDIV = 000b.

000b

000b CLKOUT frequency = 1/1 × CPU clock frequency

001b CLKOUT frequency = 1/2 × CPU clock frequency

010b CLKOUT frequency = 1/3 × CPU clock frequency

011b CLKOUT frequency = 1/4 × CPU clock frequency

100b CLKOUT frequency = 1/5 × CPU clock frequency

101b CLKOUT frequency = 1/6 × CPU clock frequency

110b CLKOUT frequency = 1/7 × CPU clock frequency

111b CLKOUT frequency = 1/8 × CPU clock frequency
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Timer

This chapter describes the type of timer available on the TMS320C55x
DSPs. The C55x DSP has two identical but independent software-program-
mable timers. Two uses for the timers are to generate periodic interrupts and
to provide periodic signals to devices outside the C55x DSP.
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13.1 Introduction to the Timer

Each timer has up to a 20-bit dynamic range provided by two counters: a 4-bit
prescale counter and a 16-bit main counter. Figure 13–1 shows a high-level
diagram of the timer.

Figure 13–1. Conceptual Block Diagram of the Timer

16-bit main counter

TIMPRD

4-bit prescale counter

PSCTDDR

Interrupt request (TINT)
sent to CPU

Synchronization event (TEVT)
sent to DMA controller

MUX

Input clock

CPU clock
External clock

TIN/TOUT
pin

Output (TOUT)

TCR

DATOUT bit

High
impedance

11b

01b
10b

FUNC = 00b

The timer has two count registers (PSC and TIM) and two period registers
(TDDR and PRD). During timer initialization or during timer reloading, the con-
tents of the period registers are copied into the count registers. A timer control
register (TCR) controls and monitors the operation of the timer and the timer
pin (TIN/TOUT). Depending on the value of the FUNC bits in TCR, the pin can
be a general-purpose output (connected to the DATOUT bit of TCR), a timer
output, or a clock input—or it can be in the high impedance state. (The details
of the timer registers are in section 13.10 on page 13-15. More information
about the timer pin is in section 13.2.)
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The prescale counter is driven by an input clock, which may be the CPU clock
or an external clock. PSC is decremented by 1 every input clock cycle. One
cycle after PSC reaches 0, the TIM is decremented by 1. One cycle after TIM
reaches 0, the timer sends an interrupt request (TINT) to the CPU, a synchro-
nization event (TEVT) to the DMA controller, and (if applicable) an output to
the timer pin. The rate at which timer sends these signals is

TINT rate �
Input clock rate

(TDDR � 1) � (PRD � 1)
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13.2 Timer Pin

Each timer has one pin. The pin can be configured in the ways described in
Table 13–1. The two FUNC bits in the timer control register (TCR) define the
function of the timer pin and determine the required clock source for the timer.
As described in the table, in some cases, the signal on the pin is affected by
other TCR bits (POLAR, C/P, and PWID, or DATOUT).

Sections 13.2.1 through 13.2.4 show different uses for the timer pin (different
settings for the FUNC bits).

Note:

There are limitations on changing the FUNC bits. For details, see section
13.6 on page 13-11.

Table 13–1. Configuring the Timer Pin With the FUNC Bits

FUNC Bits Timer Pin Function Clock Source

00b None
The pin is in the high impedance state.

Internal
(from DSP clock
generator)

01b Timer output
The signal on pin changes each time the main
counter decrements to 0. The signal polarity
is selected by the POLAR bit, and the signal
toggles or pulses, depending on the C/P bit. If
pulsing is selected, the pulse width is defined
by the PWID bits.

Internal
(from DSP clock
generator)

10b General-purpose output
The signal level on the pin reflects the value
in the DATOUT bit.

Internal
(from DSP clock
generator)

11b External clock input
The pin receives a clock signal from a source
outside the DSP.

External
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13.2.1 Timer Pin in the High Impedance State

When FUNC = 00b (see Example 13–1), it is independent of the timer, and it
neither receives nor drives a signal. The timer input clock must be the CPU
clock.

Example 13–1. Timer Pin in High Impedance State

16-bit main counter

4-bit prescale counter

Interrupt request (TINT)
sent to CPU

Synchronization event (TEVT)
sent to DMA controller

CPU clock

TIN/TOUT
pin

High
impedance

11b

01b
10b

FUNC = 00b
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13.2.2 Timer Pin Configured to Reflect the Timer Output (TOUT)

Example 13–2 shows the case when FUNC = 01b. The timer pin is used for
the timer output and, therefore, cannot be used for an external clock source.
The input clock must be the CPU clock.

Example 13–2. Timer Pin Configured to Reflect Timer Output (TOUT)

16-bit main counter

4-bit prescale counter

Interrupt request (TINT)
sent to CPU

Synchronization event (TEVT)
sent to DMA controller

CPU clock

Output (TOUT)

TIN/TOUT
pin

11b

01b
10b

FUNC = 00b
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13.2.3 Timer Pin Used as a General-Purpose Output

Example 13–3 shows the case when FUNC = 10b. The timer pin is configured
as a general-purpose output; it is independent of the timer. The pin reflects the
value of the DATOUT bit. To bring the output signal low, write 0 to DATOUT.
To bring the output signal high, write 1 to DATOUT. The timer input clock must
be the CPU clock.

Example 13–3. Timer Pin Used as a General-Purpose Output

16-bit main counter

4-bit prescale counter

Interrupt request (TINT)
sent to CPU

Synchronization event (TEVT)
sent to DMA controller

CPU clock

TIN/TOUT
pin

TCR

DATOUT bit

11b

01b
10b

FUNC = 00b
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13.2.4 Timer Pin Used for an External Input Clock

Example 13–4 shows the case when FUNC = 11b. The timer pin is used by an
external clock source and, therefore, cannot be used for the timer output. The
only outputs of the timer are the interrupt request and the DMA synchroniza-
tion event.

Example 13–4. Timer Pin Used for External Input Clock

16-bit main counter

4-bit prescale counter

Interrupt request (TINT)
sent to CPU

Synchronization event (TEVT)
sent to DMA controller

External clock

TIN/TOUT
pin

11b

01b
10b

FUNC = 00b
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13.3 Timer Interrupt

Each timer has a timer interrupt signal (TINT). For a given timer, the timer inter-
rupt request is sent to the CPU when the main count register (TIM) counts
down to 0. The timer interrupt rate is:

TINT rate �
Input clock rate

(TDDR � 1) � (PRD � 1)

TINT automatically sets a flag in one of the interrupt flag registers (IFR0 and
IFR1). You can enable or disable the interrupt in one of the interrupt enable
registers (IER0 and IER1) and in one of the debug interrupt enable registers
(DBIER0 and DBIER1). When you are not using the timer, disable the timer
interrupt so that it does not cause unexpected interrupts.
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13.4 Initializing a Timer

Use the following procedure to initialize a timer. Example 13–5 illustrates how
the procedure can be implemented in the C55x assembly language.

1) Make sure that the timer is stopped (TSS = 1), that timer loading is
enabled (TLB = 1), and that the other control bits in TCR are set properly.
While TLB = 1, the count registers (TIM and PSC) are loaded from the
period registers (PRD and TDDR).

2) Load the desired prescale counter period (in input clock cycles) by writing
to TDDR in PRSC.

3) Load the desired main counter period (in input clock cycles) into PRD.

4) Turn off timer loading (TLB = 0) and start the timer (TSS = 0). When the
timer starts, TIM holds the value that was loaded into PRD, and PSC holds
the value that was loaded into TDDR.

Example 13–5. Initializing Timer 0 on a TMS320VC5510 DSP

MOV #9D70h, port(#1002h ; Load TCR0 such that:
; IDLE_EN = 1 (Allow idle mode)
; FUNC = 01b (Pin reflects timer output)
; TLB = 1 (Load TIM and PSC until TLB = 0)
; FREE = 1 (Timer not stopped by breakpoints)
; PWID = 01b (Pulses on pin last 2 CPU clock cycles)
; ARB = 1 (Reload TIM and PSC when TIM reaches 0)
; TSS = 1 (Stop timer)
; C/P = 0 (Pulse mode selected for pin)
; POLAR = 0 (Signal on pin starts low, pulses high)
; Other bits contain 0s

; Timer to generate output every 196608 clock cycles:
MOV #2h, port(#1003h ; TDDR = 2 in PRSC0
MOV #FFFFh, port(#1001h) ; PRD0 = FFFFh = 65535

MOV #9960h, port(#1002h) ; Modify TCR0 such that:
; TLB = 0 (Stop loading TIM and PSC)
; TSS = 0 (Start timer)
; Other bits are unchanged

13.5 Stopping/Starting a Timer

Use the TSS bit of the timer control register (TCR) to stop the timer (TSS = 1)
or start the timer (TSS = 0).

Initializing a Timer / Stopping/Starting a Timer
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13.6 Changing the Timer Pin Function/Clock Source

Table 13–2 explains when and how you can select each of the four pin func-
tion/clock source configurations. After the table is a procedure for using an
external clock source. All of the bits mentioned in this section are in the timer
control register (see page 13-16).

A DSP reset forces FUNC = 00b. You can keep it at 00b or choose any other
configuration. If FUNC = 01b or 10b, you can only toggle between these two
values until you reset the DSP.

Table 13–2. Selecting and Switching Pin Function/Clock Source Configurations

Current Configuration Can Be Directly Changed To … Comments

FUNC=00b (default)
  Pin: In high impedance state
  Clock Source: Internal

FUNC=01b, 10b, or 11b If you want to switch to an external
clock (FUNC = 11b), see the
procedure that follows this table.

FUNC = 01b
  Pin: Timer output
  Clock Source: Internal

FUNC=10b
  Pin: General-purpose output
  Clock Source: Internal

To change to a value other than
FUNC = 10b, you must reset the
DSP. Otherwise, the change
creates an error condition that sets
the ERR_TIM error flag in the timer
control register (TCR). To recover
from the error condition, reset the
DSP.

FUNC = 10b
  Pin: General-purpose output
  Clock Source: Internal

FUNC = 01b
  Pin: Timer output
  Clock Source: Internal

To change to a value other than
FUNC = 01b, you must reset the
DSP. Otherwise, the change
creates an error condition that sets
the ERR_TIM error flag in TCR. To
recover from the error condition,
reset the DSP.

FUNC = 11b
  Pin: Timer clock input
  Clock Source: External

No other configuration To change from FUNC = 11b to
another configuration, you must
reset the DSP. Otherwise, the
change creates an error condition
that sets the ERR_TIM error flag in
TCR. To recover from the error
condition, reset the DSP.
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13.6.1 Using an External Clock Source (Changing From FUNC = 00b to FUNC = 11b)

FUNC = 11b is the only configuration that supports an external clock source.
The following procedure explains how to use FUNC = 11b.

1) Reset the DSP. (This forces FUNC = 00b.)

2) Write 11b to the FUNC bits.

3) Poll the INT/EXT bit in TCR until it is 1. When INT/EXT = 1, the timer is
ready to run using an external clock source from the timer pin. (Reading
INT/EXT clears the bit automatically.)

4) Complete the other steps in timer initialization (see page 13-10).
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13.7 Reloading the Timer Count Registers

The timer count registers can be reloaded manually or automatically. To reload
them manually, write to the I/O addresses of the registers. The following exam-
ple loads PSC and TIM for timer 1 on the TMS320VC5510 DSP:

MOV #0202h, port(#2403h ; PSC = 2 (and TDDR = 2) in PRSC1
MOV #FFh, port(#2400h) ; TIM1 = 00FFh

The TLB and ARB bits in the timer control register (TCR) provide two different
methods to have the registers reloaded automatically. While TLB = 1, PSC is
loaded from TDDR, and TIM is loaded from PRD. This method helps with timer
initialization (see page 13-10).

If ARB = 1, the count registers are reloaded from the period registers each
time TIM reaches 0. This method allows the timer to count continually without
input from your program. If ARB = 0, the timer stops counting the next time TIM
reaches 0.

13.8 Timer Emulation Mode

You can program the timer to respond in one of three ways to a software break-
point that occurs during emulation:

� Stop when the main counter decrements to 0.

� Stop immediately.

� Do not stop.

To program a response, use the SOFT and FREE bits of the timer control regis-
ter (see page 13-16).

Reloading the Timer Count Registers / Timer Emulation Mode
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13.9 Timers at Reset

A DSP reset forces the following conditions for each timer by resetting the time
registers. For details on the registers, see page 13-15.

� The timer is stopped (TSS = 1).

� The count for the prescale counter is 0.

� The count for the main counter is FFFFh.

� The timer is set to count down once (ARB = 0) rather than repeatedly.

� The timer cannot be forced into its idle mode by the idle instruction
(IDLE_EN = 0).

� A software breakpoint during emulation will cause the timer to stop imme-
diately (SOFT = FREE = 0).

� The timer pin is in the high impedance state, and the clock source is inter-
nal (FUNC = 00b).
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13.10 Timer Registers

For each timer, the DSP contains the registers listed . For the I/O address of
each register, see the data sheet for your TMS320C55x DSP.

Table 13–3. Registers of a Timer

Register Description For Details, See ...

TIM Main count register Section 13.10.1

PRD Main period register Section 13.10.1

PRSC Timer prescale register Section 13.10.1

TCR Timer control register Section 13.10.2 (page 13-16)

13.10.1 Period and Count Registers (TDDR, PSC, PRD, TIM)

Figure 13–2 and Table 13–4 summarize the period and count registers avail-
able for each timer. Each timer has two counters: a 4-bit prescale counter and
a 16-bit main counter. Each of the two counters has a count register and a peri-
od register. During timer operation, the count registers are decremented. The
timer can automatically reload each count register by copying the content of
the associated period register.

Table 13–4. Period and Count Registers for Each Timer Counter

Counter Register Description

Prescale counter PSC Prescale count register. Bits 9–6 of the timer
prescale register (PRSC).

TDDR Timer divide-down register (prescale period
register). Bits 3–0 of PRSC.

Main counter TIM Main count register

PRD Main period register
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Figure 13–2. Period and Count Registers of a Timer
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13.10.2 Timer Control Register (TCR)

Each timer has a timer control register (TCR) of the form shown in Figure 13–3.
describes the bits of TCR. Using specific bits in TCR, you can configure, start,
stop, load, and reload the associated timer. Other bits in the TCR control the
functionality of the associated timer output pin.

Figure 13–3. Timer Control Register (TCR)
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Table 13–5. TCR Bit Descriptions 

Bit(s) Name Description
Reset
Value

15 IDLE_EN Idle enable bit for the timer. If the PERIPH idle domain is configured to be
idle and IDLE_EN = 1, the timer stops and enters a low-power (idle) state.

0

0 The timer cannot be placed in an idle state.

1 If the PERIPH domain is idle (PERIS = 1 in the idle status
register), the timer is stopped in a low-power state.

The idle domains are described beginning on page 8-2. The idle regis-
ters are described in section 8.7 (page 8-9).

14 INT/EXT Internal-to-external clock change indicator. When changing the timer
clock source from internal to external, a program can check this bit to
determine when the timer is adjusted and is ready to use an external clock
source.

0

0 Timer not ready to use an external clock source

1 Timer ready to use an external clock source

13 ERR_TIM Timer-pin error flag. Some changes to the FUNC bits create an error
condition that is reflected in ERR_TIM. When TIM_ERR = 1, reset the
DSP and reinitialize the timer.

0

0 No error detected or TIM_ERR has been read

1 Error detected in a write to the FUNC bits. One of the following
changes was attempted:

Change from FUNC = 01b to FUNC = 00b or 11b
Change from FUNC = 10b to FUNC = 00b or 11b
Change from FUNC = 11b to any other value
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Table 13–5. TCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

12–11 FUNC Function bits for the timer pin. The two FUNC bits define the function of
the timer pin and determine the required clock source for the timer. If the
internal clock source is chosen, the CPU clock drives the counting of the
timer. If an external clock source is chosen, the timer is driven by a clock
signal coming in on the timer pin.

00b

00b Pin Function:  None. The pin is in the high impedance state.

Clock Source: Internal (from DSP clock generator)

01b Pin Function:  Timer output. The signal on pin changes each
time the main counter decrements to 0. The signal polarity is se-
lected by the POLAR bit. The signal toggles or pulses, depend-
ing on the C/P bit. If pulsing is selected, the pulse width is defined
by the PWID bits.

Clock Source:  Internal (from DSP clock generator)

10b Pin Function:  General-purpose output. The signal level on the
pin reflects the value in the DATOUT bit.

Clock Source:  Internal (from DSP clock generator)

11b Pin Function:  External clock input. The pin receives a clock sig-
nal from a source outside the DSP.

Clock Source:  External

10 TLB Timer load bit. While TLB = 1, the count registers are loaded from the
period registers.

0

0 TLB has been cleared.

1 Until TLB = 0, load TIM from PRD, and load PSC from TDDR.
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Table 13–5. TCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

9
8

SOFT
FREE

Timer emulation mode bits. SOFT and FREE determine the response of
the timer when a breakpoint is encountered in the high-level language
debugger. If FREE = 1, the timer does not stop in response to a software
breakpoint, regardless of the value of SOFT. If FREE = 0, SOFT
determines how the timer responds to a breakpoint.

00b

SOFT FREE When A Breakpoint Is Encountered ...

0 0 The timer stops immediately. (Reset condition)

0 1 The timer continues to run.

1 0 The timer stops after the main count register (TIM)
decrements to 0.

1 1 The timer continues to run.

7–6 PWID Timer-output pulse width bit. PWID determines the width of each pulse on
the timer pin under the following conditions:

� The timer pin is configured to show the timer output (FUNC = 01b).
� The pulse mode is selected (C/P = 0).

The pulse width is defined in CPU clock periods.

00b

00b 1 CPU clock period

01b 2 CPU clock periods

10b 4 CPU clock periods

11b 8 CPU clock periods

5 ARB Auto-reload bit. When ARB = 1, the count registers are automatically
reloaded from the period registers whenever the main count register
(TIM) is decremented past 0.

0

0 ARB has been cleared.

1 Each time TIM reaches 0, reload TIM from PRD, and reload PSC
from TDDR.

4 TSS Timer stop status bit. Use TSS to stop the timer, start the timer, or
determine whether the timer is stopped.

1

0 Start the timer./The timer is running.

1 Stop the timer./The timer is stopped. (Reset condition)
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Table 13–5. TCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

3 C/P Timer clock mode/pulse mode bit. When the timer pin is configured to
show the timer output (FUNC = 01b), C/P determines whether the signal
on the pin is pulsed or toggled.

0

0 Pulse mode. A pulse is driven on the timer pin each time the main
count register (TIM) reaches 0. The width of the pulse is defined
by the PWID bits. The polarity of the pulse is defined by the
POLAR bit.

1 Clock mode. The signal on the timer pin has a 50% duty cycle.
The signal toggles (from high to low or from low to high) each
time TIM reaches 0.

2 POLAR Timer-output polarity bit. When the timer pin is configured to show the
timer output (FUNC = 01b), POLAR determines the polarity of the signal
on the pin. The specific effect of this bit depends on whether pulse mode
(C/P = 0) or clock mode (C/P = 1) is selected.

0

0 The signal on the timer pin starts low. Then ...

Pulse
mode

Each time the main count register (TIM) reaches 0, a
high pulse is driven on the timer pin. The width of the
pulse is defined by the PWID bits. Between pulses the
signal is low.

Clock
mode

The first time TIM reaches 0, the signal on the timer pin
toggles high. During subsequent countdowns: If the
signal is high, it toggles low; if the signal is low, it
toggles high.

1 The signal on the timer pin starts high. Then ...

Pulse
mode

Each time TIM reaches 0, a low pulse is driven on the
timer pin. The width of the pulse is defined by the PWID
bits. Between pulses, the signal is high.

Clock
mode

The first time TIM reaches 0, the signal on the timer pin
toggles low. During subsequent countdowns: If the
signal is low, it is toggled high; if the signal is high, it is
toggled low.
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Table 13–5. TCR Bit Descriptions (Continued)

Bit(s)
Reset
ValueDescriptionName

1 DATOUT Data output bit. When the timer pin is configured as a general-purpose
output pin (FUNC = 10b), use DATOUT to control the signal level on the
pin.

0

0 Drive the signal on the timer pin low.

1 Drive the signal on the timer pin high.

0 Reserved This bit is not available for your use. –
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USB Module

If your TMS320C55x  DSP contains a USB module, you can use the C55x
DSP to create a full speed USB slave device that is compliant with Universal
Serial Bus Specification Version 1.1. This chapter explains the architecture of
the module and how to program the module.
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14.1 USB Concepts Overview

This section explains USB concepts and terminology used in this chapter.

14.1.1 Terminology

In a USB system, the host is the master. The host initiates all data transfers
between itself and attached USB devices. Therefore, the direction of a data
transfer is described relative to the host:

OUT transfer A transfer of data from the host to a device:

Host → Device

IN transfer A transfer of data from a device to the host:

Host ← Device

Each IN or OUT transfer can be one of the following types. The types of trans-
fers on a USB are:

Control transfer A data transfer that is used by the USB host to send
commands to a USB device, including commands to
enumerate the device when it is first attached. Control
transfers include error checking.

Bulk transfer A data transfer that is used by the host for large
amounts of data that are not time-critical. Can use
when transfer time is not critical. The host only allo-
cates bus time for bulk transfers when the time is not
need by transfers of the other types. Bulk transfers
include error checking. A device such as a printer is a
good application for this type of transfer.

Interrupt transfer The data transfer used when a USB device must send
or receive moderate amounts of data periodically with
minimum latency. Interrupt transfers include error
checking. Typical devices that use this type of transfer
are keyboards and joysticks.

Isochronous
transfer

A data transfer available to support USB devices that
need to send or receive data in real time at a constant
rate. Isochronous transfers can handle more data
than interrupt transfers, but no error checking is per-
formed. A device such as a digital speaker is a typical
application for isochronous transfers.
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Note:

From an implementation standpoint, bulk and interrupt transfers are treated
the same way in the C55x USB module. The only difference is that, in the
case of an interrupt transfer, the transfer is initiated periodically by the host,
whereas a bulk transfer is initiated by the host whenever the bus is not used
for other transfers.

For data transfer between a USB host and a USB device, the data passes
through an endpoint in the device:

Endpoint A designated storage location within a USB device.
Each endpoint in a device is uniquely identified by its
number and its direction (IN or OUT).

OUT Endpoint An endpoint that holds data received from the USB
host. To use data from the host, the USB device must
read the data from an OUT endpoint.

Each device must have an OUT endpoint 0 to be used
for control transfers.

IN Endpoint An endpoint that holds data to be sent to the USB host.
To send data to the host, the USB device must write
to an IN endpoint.

Each device must have an IN endpoint 0 to be used
for control transfers.

The overall characteristics of the USB device and the type of each endpoint
must be reported to the host when the device is attached to the bus for the first
time. This process is called enumeration.

The USB bandwidth is shared by multiple USB devices. Data is transferred on
the bus at regular (1-millisecond) intervals. Each of these intervals is called a
frame , and the host divides up the frame for all the devices on the bus. As each
new USB device is recognized and successfully configured by the host, it gains
a portion of the frame. The size of the portion depends on factors such as the
type of transfer (for example, isochronous versus bulk) and the amount of
bandwidth that is not being used by other devices that are already on the bus.

14.1.2 Data Toggle Mechanism

For non-isochronous transfers, the USB uses a data toggle mechanism to
detect transmission errors, to ensure that the transmitter and the receiver of
USB data are synchronizing throughout a transfer. The data toggle mecha-
nism requires two data packet types (DATA0 and DATA1) and two toggle bits
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(one in the transmitter and one in the receiver). Each packet transmitted is a
DATA0 packet or a DATA1 packet, depending on the value of the transmitter’s
toggle bit (0 = DATA0; 1 = DATA1). If the receiver is synchronized, its toggle
bit matches that of the transmitter, and the receiver expects the data type that
was transmitted. Once the packet is successfully received, the receiver com-
plements its toggle bit and sends an acknowledgement to the transmitter.
When the acknowledgement arrives at the transmitter, the transmitter comple-
ments its toggle bit.

A USB transfer may be comprised of a number of transactions, but the first
packet of the first transaction is a DATA0 packet. Subsequent packets alter-
nate in type (DATA1, DATA0, DATA1, and so on).
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14.2 Introduction to the USB Module

The USB module described in this section is a USB 1.1-compliant, full speed
slave device.

The C55x USB module has 16 endpoints:

� Two control endpoints (for control transfers only): OUT endpoint 0 and IN
endpoint 0.

� Fourteen general-purpose endpoints (for other types of transfers): OUT
endpoints 1–7 and IN endpoints 1–7. Each of these endpoints has:

� Support for bulk, interrupt, and isochronous transfers.

� An optional double-buffer scheme for fast data throughput.

� A dedicated DMA channel. A DMA controller inside the USB module
can pass data between the general-purpose endpoints and the DSP
memory while the CPU performs other tasks. (This DMA controller
does not access the control endpoints.)

14.2.1 Block Diagram of the USB Module

Figure 14–1 contains a conceptual block diagram of the USB module. The
shaded blocks in the figure are outside the USB module. Following the figure
is a list that describes each of the main components of the module.
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Figure 14–1. Conceptual Block Diagram of the USB Module
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� Interface pins:

Pin Description

DP Connect this pin to the line of the USB connector that carries the positive
differential data.

DN Connect this pin to the line of the USB connector that carries the nega-
tive differential data.

PU Use this pin to connect a 1.5 Kohm pullup resistor to the DP line. A soft-
ware-controlled switch can connect the pullup resistor to an internal
3.6-V source.

When the CPU sets the connect bit of USBCTL (CONN = 1), the switch
closes and completes the pullup circuit, causing the USB host to detect
the USB module as a new device on the bus, and to start the enumera-
tion process.

To disconnect the device from the USB system, clear the CONN bit. The
switch will open and disconnect the pullup resistor.

� Serial interface engine (SIE).  The SIE is the USB protocol handler. It
parses the USB bit stream for data packets that are meant for the USB de-
vice. For an OUT transfer, the SIE converts the serial data to parallel data
and passes them to the USB buffer manager. For an IN transfer, the SIE
converts parallel data from the UBM to serial data, and transmits them
over the USB.

The SIE also handles error-checking tasks. For an OUT transfer, the SIE
does the error checking and transfers only the good data to the UBM. For
an IN transfer, the SIE generates the necessary error-checking informa-
tion before sending the data on the bus.

� USB buffer manager (UBM) and the control and status registers.  The
UBM controls data flow between the SIE and the buffer RAM. Most of the
control registers are used to control the behavior of the UBM, and most of
the status registers are modified by the UBM, to notify the CPU when any
events occur.

� Buffer RAM.  The buffer RAM contains registers that are mapped in the
DSP I/O space. In the RAM are:

� Relocatable buffer space for each of the general-purpose endpoints
(3.5K bytes). A general-purpose endpoint can have one data buffer (X
buffer) or two data buffers (X buffer and Y buffer).

� A fixed data buffer for OUT endpoint 0 (64 bytes)

� A fixed data buffer for IN endpoint 0 (64 bytes)
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� A fixed data buffer for a setup packet (8 bytes)

� Descriptor registers. For each of the general-purpose endpoints,
there are eight registers that determine the endpoint characteristics.

� USB DMA controller and its context registers.  This DMA controller can
transfer data between the DSP memory and the X and Y buffers of the gen-
eral-purpose endpoints. Each of these endpoints has a dedicated DMA
channel and a dedicated set of DMA context registers for controlling and
monitoring activity in that channel. The CPU can read from or write to each
of these context registers by accessing the appropriate 16-bit address in
I/O space.

The USB DMA controller accesses memory via the auxiliary port of the
DSP DMA controller that is described in Chapter 3. This auxiliary port is
shared by the USB DMA controller and the enhanced host port interface
(EHPI), but the USB DMA controller is given the higher priority.

A state machine in the USB DMA controller handles data transfers in the
host-DMA mode (see section 14.5 on page 14-40).

� Buffer RAM arbiter.  The 8-bit-wide buffer RAM can be accessed by the
UBM, by the USB DMA controller, and by the DSP CPU. The buffer RAM
arbiter provides a fair access scheme to arbitrate accesses from these
three requesters.

The USB DMA controller only accesses the X and Y buffers of the general-
purpose endpoints. The controller uses 24-bit byte addresses to access
DSP memory.

The CPU can access the buffer RAM, including the descriptor registers,
via I/O space. The CPU writes 16-bit values to I/O space. However, when
the CPU writes to the RAM, the high eight bits are ignored, and when the
CPU reads from the RAM, the high eight bits are 0s.

14.2.2 Transferring Data Between the USB Host and the DSP Memory

Figure 14–2 shows, at a high-level, how data travels between the USB host
and the DSP memory when a C55x DSP handles the USB activity for a USB
device. During IN transfers, the SIE (serial interface engine) converts the par-
allel data from the UBM into a serial data stream for the host. During OUT
transfers, the SIE converts the host’s serial data into a parallel format for the
UBM. The UBM either moves data from the SIE to the buffer RAM or from the
buffer RAM to the SIE. Before the UBM transfers data to the SIE, the CPU or
the USB DMA controller must put the data into the buffer RAM. When the CPU
or the DMA controller is ready to move data to the DSP memory, it must wait
for the UBM to move the data from the SIE to the buffer RAM.
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Figure 14–2. Path for Data Transferred Between the Host and the DSP Memory
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14.2.3 Clock Generation for the USB Module

As shown in Figure 14–3, the USB module has a dedicated clock generator
that is independent of the DSP clock generator. Both generators receive their
input from the CLKIN pin. The DSP clock generator supplies the CPU clock
that is used by the CPU and most of the other modules inside the DSP. The
USB clock generator supplies the clock needed to operate the USB module.
Because the generators are independent, if an IDLE instruction turns off the
DSP clock generator, the USB module can keep running.

Note:

The USB module requires a 48-MHz clock. The clock on the CLKIN pin may
vary, but you must program the USB clock generator to produce a 48-MHz
clock.
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Figure 14–3. Clock Generation for the USB Module
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To understand the USB clock generator, see the description of the DSP clock
generator in Chapter 2. The two clock generators are nearly identical in
function. The USB clock mode register, USBCLKMD (shown in Figure 14–4),
has the same bit fields of the DSP clock mode register (CLKMD), which is
described in section 2.8 on page 2-12. However, the reset value of the
BYPASS DV bits in USBCLKMD is not determined by a pin. These bits are
always reset to 01b, providing a USB clock that is half the speed of the input
clock. For the I/O address of USBCLKMD, check the data sheet for your C55x
DSP.

Figure 14–4. USB Clock Mode Register (USBCLKMD)
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14.3 USB Buffer Manager (UBM)

When data is to be moved to or from the buffer RAM, the UBM accesses one
of the following buffers in the buffer RAM:

Buffers For Transfers
To DSP Memory

Buffers Transfers
From DSP Memory

Control endpoint buffers

OUT endpoint 0 buffer IN endpoint 0 buffer

General-purpose endpoint buffers

OUT endpoint 1 buffer (X or Y) IN endpoint 1 buffer (X or Y)

OUT endpoint 2 buffer (X or Y) IN endpoint 2 buffer (X or Y)

OUT endpoint 3 buffer (X or Y) IN endpoint 3 buffer (X or Y)

OUT endpoint 4 buffer (X or Y) IN endpoint 4 buffer (X or Y)

OUT endpoint 5 buffer (X or Y) IN endpoint 5 buffer (X or Y)

OUT endpoint 6 buffer (X or Y) IN endpoint 6 buffer (X or Y)

OUT endpoint 7 buffer (X or Y) IN endpoint 7 buffer (X or Y)

Each of the general-purpose endpoints can be configured to have a single
buffer (X) or a double buffer (two buffers, X and Y). This is controlled by the
double buffer mode (DBUF) bit in USBxCNFn. If there are two buffers, the
UBM keeps track of which buffer to use. If the endpoint is in the non-isochrono-
us mode, the UBM uses the X buffer for a DATA0 packet and the Y buffer for
a DATA1 packet.

Each of the endpoint buffers is associated with a programmable count register
of the following format:

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

ÁÁÁ
ÁÁÁ
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The NAK bit corresponds to the negative acknowledgement (NAK) of the USB
protocol. While the NAK bit is set (NAK = 1), the UBM sends a NAK in
response to a host request at that particular endpoint. The UBM does not
access the buffer until NAK is cleared (NAK = 0). The role of the NAK bit is
summarize in the flow chart of Figure 14–5.
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When an OUT packet is received from the serial interface engine (SIE), the
UBM writes the incoming data to the appropriate endpoint buffer. Then the
UBM sets the NAK bit to prevent the host from overwriting the packet before
it is read by the CPU or the USB DMA controller. When an IN token is received,
the UBM transfers data from the buffer to the SIE. Then the UBM sets the NAK
bit so that the host will not receive the same packet multiple times before a new
packet is loaded into the buffer. When NAK is cleared by the CPU or by the
USB DMA controller, the UBM can access the buffer again.

The CT (count) field indicates the number of bytes in a transfer between the
SIE and an endpoint buffer. For an IN transfer, you must initialize the CT field
to tell the UBM how many bytes to read from the buffer. In addition, you must
clear NAK when you want the UBM to start. In the case of an OUT transfer, the
UBM updates the CT field after moving a new data packet from the SIE to the
endpoint buffer.

Note:

In isochronous transfers, the count can be as large as 1023 bytes, requiring
a 10-bit CT field. Thus, for isochronous transfers, the count value is extended
by three high bits from another register (see section 14.8.3.4 on page 14-75).

Figure 14–5. Role of a NAK bit in UBM Activity (at an Individual Endpoint)
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14.4 USB DMA Controller

The USB module contains a dedicated DMA controller that can transfer data
between the DSP memory and the data buffers of the general-purpose end-
points (OUT endpoints 1–7 and IN endpoints 1–7). This DMA controller cannot
access the control endpoints (OUT endpoint 0 and IN endpoint 0).

Note:

The information in this section assumes that you have not enabled the host-
DMA mode. For details about this mode, see section 14.5 on page 14-40.

14.4.1 Advantage of Using the USB DMA Controller

The USB DMA controller transfers data between the endpoint buffers and the
DSP memory with minimal CPU involvement. The CPU tells the USB DMA
controller to begin a data transfer; then it can continue with other tasks while
the controller moves the data. The controller notifies the CPU of the transfer
status via GO and RLD status flags and interrupts (see section 14.6.3 on page
14-50).

14.4.2 Things To Consider

Keep the following facts in mind when you use the USB DMA controller:

� Each of the general-purpose endpoints must be in double-buffer mode
(DBUF = 1 in USBOCNF1–USBOCNF7 and in USBICNF1–USBICNF7).
The USB DMA controller assumes there an X buffer and a Y buffer for each
general-purpose endpoint, and it accesses the buffers alternately, begin-
ning with the X buffer.

� The USB DMA controller accesses the DSP memory via the auxiliary port
of the DSP DMA controller that is described in Chapter 3. This auxiliary
port is also used by the enhanced host port interface (EHPI). The USB
module has the higher priority and thus can delay EHPI memory
accesses.

� The DSP DMA controller must share the external memory interface
(EMIF) with other parts of the DSP. The EMIF handles requests from
throughout the DSP according to a preset priority ranking. When the USB
DMA controller must access external memory, the DSP DMA controller
sends a request to the EMIF and waits to be serviced. For a table of EMIF
request types and their priorities, see section 5.3 on page 5-8.
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If the USB DMA controller is not used:

� Make sure the software does not write to the DMA control register
(USBODCTLn or USBIDCTLn) of any endpoint. Writing 1 to the GO bit of
any DMA control register initiates a DMA transfer in the controller. In addi-
tion, if the controller finishes a DMA transfer and finds that the RLD bit is
1, the controller will perform another transfer.

� Do not enable RLD and GO interrupt requests in the registers USBODIE
and USBIDIE.

14.4.3 Interaction Between the CPU and the USB DMA Controller

Table 14–1 shows how the CPU and the USB DMA controller interact. Each
action of the CPU, of course, depends on the instructions in your code.
Figure 14–6 (a) (page 14-16) shows how DMA activity is affected by the GO
and RLD bits set by the CPU and how it is affected by the NAK bit in an endpoint
buffer count register. Figure 14–6 (b) (page 14-17) shows how the CPU (via
your code) can handle GO and RLD reports from the controller.

After a DMA transfer, the GO bit of USBxDCTLn is cleared if the RLD bit of
USBxDCTLn is 0. If RLD is 1, and neither OVF nor STP is set in USBxDCTLn,
the controller performs a DMA reload operation (see section 14.4.5 on page
14-18): The contents of the primary address and size registers are swapped
with the contents of the reload address and size registers. After a reload opera-
tion, the controller automatically starts a new DMA transfer.
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Table 14–1. CPU-Initiated DMA Transfers 

Action of the CPU (Executing Your Code) Action of the USB DMA Controller

Initialize the DMA context registers.

Each general-purpose endpoint has eight DMA con-
text registers (see section 14.4.7).

Behave according to the contents of the DMA context
registers.

Issue a go command (set the GO bit).

The GO bit is in the DMA control register for the end-
point (USBODCTLn or USBIDCTLn). Before initiating
a new transfer, poll the GO bit to make sure the pre-
vious transfer (or series of transfers) is complete
(GO = 0).

Respond to a go command.

When the CPU sets the GO bit, the controller begins
polling the NAK bit in the X-/Y-buffer count register.
When NAK = 1, the controller begins the DMA trans-
fer, unless the endpoint is in the isochronous mode
(ISO = 1) . When ISO = 1, the controller also waits for
a start-of-frame packet (SOF) on the bus.

Set or clear the RLD (reload) bit as desired.

The RLD bit is in the DMA control register for the end-
point. Set RLD if you want to tell the controller to begin
another transfer after the current transfer is complete.
Make sure you initialize the reload address and size
registers first.

Behave according to the value of RLD.

Once a DMA transfer is complete, the controller
checks the RLD bit. If RLD = 0, the controller stops,
clears GO, and waits for the CPU to set GO again. If
RLD = 1, the controller performs a DMA reload opera-
tion, clears RLD, and begins another transfer (if
NAK = 1).

Issue a stop command (optional).

To stop the controller before it would normally stop it-
self, set the STP bit (STP = 1) in the DMA control reg-
ister for the endpoint.

Respond to a stop command.

The controller normally stops when it has completed
a transfer and the RLD bit is 0. However, if the CPU
sets the STP bit for the endpoint, the controller stops
its activity on the next packet boundary or at the end
of the current DMA transfer, whichever happens first.
As it stops, the controller clears the STP and GO bits.

Enable/disable interrupts, and respond to interrupts.

Using the GO and RLD interrupt enable registers, in-
dividually enable/disable GO and RLD interrupts. If an
interrupt is enabled, it is passed to the CPU as a USB
interrupt. The interrupt service routine (ISR) can read
USBINTSRC (see page 14-85) to determine the inter-
rupt source. Then the ISR can execute the appropri-
ate subroutine.

Generate interrupts.

When the controller completes a transfer and
RLD = 0, the controller clears the GO bit and sets the
GO interrupt flag. The RLD interrupt flag is set when
the controller completes a reload operation and clears
the RLD bit. When an interrupt flag is set, the corre-
sponding interrupt (if enabled) is sent to the CPU. For
information about the GO and RLD flags and inter-
rupts, see section 14.6.3 (page 14-50).

Read status information.

To monitor the activity of the controller, read the status
bits in the DMA control register and the flag bits in the
interrupt flag registers.

Record status information for the CPU.

The controller modifies bits in the DMA control regis-
ter and in the interrupt flag registers to notify the CPU
of specific actions or errors.
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Figure 14–6. Activity for CPU-Initiated DMA Transfers
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Figure 14–6.Activity for CPU-Initiated DMA Transfers (Continued)
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14.4.4 Automatic Alternating Accesses of the X and Y Buffers

For non-isochronous USB transfers, the USB DMA controller automatically
tracks the data packet type and determines which of the endpoint’s buffers to
access, X or Y:

Data Packet Type USB DMA Controller Accesses ...

DATA0 X buffer

OUT transfer: The controller reads data from the X buffer.
IN transfer: The controller writes data to the X buffer.

DATA1 Y buffer

OUT transfer: The controller reads data from the Y buffer.
IN transfer: The controller writes data to the Y buffer.

For isochronous USB transfers, the USB DMA controller uses the X buffer first
and then alternates between the Y buffer and the X buffer.

14.4.5 DMA Reload Operation (Automatic Register Swapping)

For each endpoint n (n = 1, 2, 3, 4, 5, 6, or 7), the USB DMA controller has a
set of primary registers and a set of reload registers for the DMA transfer size
and the DSP memory address (see Table 14–2). The primary registers are
used for the current DMA transfer, and the reload registers are used to queue
up an address and size for the next transfer.

Table 14–2. Primary USB DMA Size and Address Registers and
the Corresponding Reload Registers 

Endpoint Primary Register Register Contains ... Reload Register

OUT endpoint n USBODSIZn
USBODADLn
USBODADHn

DMA transfer size in bytes
Low 16 bits of DSP memory address
High 8 bits of DSP memory address

USBODRSZn
USBODRALn
USBODRAHn

IN endpoint n USBIDSIZn
USBIDADLn
USBIDADHn

DMA transfer size in bytes
Low 16 bits of DSP memory address
High 8 bits of DSP memory address

USBIDRSZn
USBIDRALn
USBIDRAHn

As mentioned in Table 14–1 on page 14-15, when the USB DMA controller
completes a DMA transfer, it checks the RLD (reload) bit of the appropriate
DMA control register. If RLD = 1, the controller performs a DMA reload opera-
tion: The controller swaps the contents of the primary registers and the reload
registers. Example 14–1 shows a reload operation involving the registers for
OUT endpoint 3.
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This register swapping saves CPU time if you repeatedly toggle between the
same two blocks in memory. Rather than putting new values into the reload
registers between transfers, you can set the reload registers once and initiate
a reload operation each time you want the controller to access the other block.

Example 14–1. DMA Reload Operation for OUT Endpoint 3

USBODSIZ3 USBODRSZ3

USBODADL3 USBODRAL3

USBODADH3 USBODRAH3

Primary registers Reload registers

swap

swap

swap

14.4.6 Transfer Count Saved to DSP Memory For an OUT Transfer

For each new DMA transfer, the USB DMA controller ensures that the transfer
count for the endpoint starts at 0. When you give a go command (GO = 1), the
controller clears the endpoint’s count register (USBxDCTn) before moving the
data. Likewise, after the controller completes a DMA reload operation (see
section 14.4.5), it clears the count register before beginning the next DMA
transfer.

At times, an OUT transfer will end with a short packet. If the USB DMA control-
ler performs a DMA reload operation and immediately starts the next transfer,
the count register is cleared before you can read the number of bytes in the
packet. To prevent this loss of information, the controller copies the count to
the DSP memory after every read from an endpoint buffer.

Figure 14–7 shows the positions of the data and the count in DSP memory.
The start address is the address programmed in the primary address registers
(USBxDADHn and USBDADLn). When the controller moves the data, it begins
writing at (start address + 2). When all of the data has been moved, the con-
troller stores the 2-byte count at the start address.
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Figure 14–7. Storage of Transfer Count For an OUT Transfer
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To properly read data from an OUT transfer, follow these guidelines:

� When you define the size of the buffer in DSP memory, include an
additional two bytes for the DMA transfer count. Specifically, the buffer
must be two bytes larger than the size you programmed in USBxDSIZn.

� When you read the data, keep in mind that the data starts two bytes after
the start address you specified in USBxDADHn and USBxDADLn.

14.4.7 Configuring the USB DMA Controller

To configure an endpoint that will be accessed with CPU-initiated DMA
transfers, use the instructions in the following paragraphs. In the register and
bit names that appear in these paragraphs, a lowercase x can be O (for OUT)
or I (for IN), and a lowercase n can be 1, 2, 3, 4, 5, 6, or 7 (indicating the
endpoint number). For example, one of the possible values for USBxDCTLn
is USBIDCTL4, which represents the DMA control register for IN endpoint 4.

14.4.7.1 Set the Transfer Size

Register(Field) symval Value Description

USBxDSIZn(15–0) 1–65535 Number of bytes to be transferred

USBxDCTn(15–0) 1–65535 Number of bytes that have been transferred

For an endpoint n, you must tell the USB DMA controller how many bytes to
transfer between the DSP memory and the endpoint. Write the number of
bytes (up to 64K bytes) to USBxDSIZn.
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The count value in USBxDCTn is cleared before each new DMA transfer and
is updated with the number of bytes transferred at the end of the transfer. If you
specified a DMA reload operation (RLD = 1), the controller automatically
clears USBxDCTn before beginning the next DMA transfer.

For information about using the GO and RLD bits, see section 14.4.3 on page
14-14.

14.4.7.2 Set the DSP Memory Address

Register(Field) symval Value Description

USBxDADHn(15–0) 0000h–00FFh High 8 bits of the DSP memory address

USBxDADLn(15–0) 0000h–FFFFh Low 16 bits of the DSP memory address

Because each endpoint has a dedicated DMA channel, the USB DMA control-
ler knows the location of the buffer for endpoint n, but you must tell the control-
ler which address to use when accessing the DSP memory. The controller
accesses bytes in the endpoint buffer.

The address you specify must be a byte address  with 24 bits. Load the 8 high
bits of the address into USBxDADHn. (Bits 15–8 of USBxDADHn must contain
0s). Load the 16 low bits of the address into USBxDADLn.

In addition, the address must be 16-bit aligned . Make sure the least signifi-
cant bit (LSB) of USBxDADL is 0.

14.4.7.3 Enable/Disable a DMA Reload Operation and, If Necessary,
Initialize the Reload Registers

Register(Field) symval Value Description

USBxDCTLn(RLD) 0 No pending DMA reload operation. (Writing 0 to
RLD has no effect.)

1 Enable DMA reload operation.

USBxDRSZn(15–0) 0–65535 Reload-size value for USBxDSIZn

USBxDRAHn(15–0) 0000h–00FFh Reload-address value for USBxDADHn

USBxDRALn(15–0) 0000h–FFFFh Reload-address value for USBxDADLn

The USB DMA controller checks RLD at the end of each DMA transfer to deter-
mine whether to stop or to begin another transfer. If you want the controller to
begin another transfer after the first, initialize the reload registers
(USBxDRSZn, USBxDRAHn, and USBxDRALn) and then set the RLD bit.
When the controller is done with the first transfer and it finds RLD = 1, it per-
forms a DMA reload operation (see section 14.4.5 on page 14-18) and begins
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the next transfer. If the controller is stopped (GO = 0), setting RLD has no
effect.

Each time the controller performs a DMA reload operation, it clears RLD and
notifies the CPU. To notify the CPU, the controller sets the endpoint’s RLD
interrupt flag bit in USBxDRIF. In addition, if the endpoint’s DMA interrupts are
enabled in USBxDIE, the controller sends an interrupt request to the CPU. To
keep DMA transfers continuous, the CPU can set the RLD bit again before the
end of each DMA transfer (that is, before the GO bit is cleared to 0).

14.4.7.4 If Desired, Enable DMA Interrupt Requests

Register(Field) symval Value Description

USBxDIE(xEn) 0 Disable DMA GO and RLD interrupt requests.

1 Enable DMA GO and RLD interrupt requests.

If DMA interrupts for an endpoint are enabled, the USB DMA controller can
generate a GO interrupt request each time it clears the GO bit of USBxDCTLn;
that is, it can notify the CPU that the controller has stopped. Similarly, the con-
troller can use a RLD interrupt request to notify the CPU that a DMA reload
operation is done (when the controller clears the RLD bit of USBxDCTLn).

Both of these DMA interrupt requests are enabled or disabled by a bit in one
of the DMA interrupt enable registers. The interrupt enable bits for OUT end-
points 1–7 are in USBODIE; those for IN endpoints 1–7 are in USBIDIE. You
enable GO and RLD interrupt requests for an endpoint by writing to the corre-
sponding interrupt enable bit. For example, to enable DMA interrupt requests
for IN endpoint 6, write a 1 to USBIDIE(IE6). For OUT endpoint 2, write a 1 to
USBODIE(OE2).

For more details about the DMA interrupt requests, see section 14.6.3 on page
14-50.

14.4.7.5 Determine Whether to Reverse the Endianness (Orientation) of Data
During DMA Transfers

Register(Field) symval Value Description

USBxDCTLn(END) 0 Do not change the order of the bytes in the next
DMA transfer.

1 Reverse the endianness of each word moved in
the next DMA transfer.

In the Big Endian data orientation for words, the first byte is the most significant
byte (MSByte) of the word. In the Little Endian orientation, the first byte is the
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least significant byte (LSByte). The C55x CPU assumes that data in memory
has the Big Endian orientation. When the UBM transfers data between the SIE
and the endpoint buffer, the UBM does not change the order of any data bytes.
However, by using the END bit, you can tell the USB DMA controller to swap
the byte orientation before writing to the endpoint buffer or after reading from
the endpoint buffer.

Figure 14–8 shows the effect of making END = 1 for an endpoint: The USB
DMA controller reverses the endianness of the words it transfers between the
DSP memory and the endpoint buffer. When END = 0 for an endpoint, the USB
DMA controller does not change the order of the bytes.

Figure 14–8. The Effect of END = 1 on USB DMA Transfers
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14.4.7.6 Enable/Disable Concatenation

Register(Field) symval Value Description

USBxDCTLn(CAT) 0 Disable concatenation.

1 Enable concatenation.

When the packet sent or received at an endpoint is larger than the DMA trans-
fer size, you may want to set CAT = 1, so that the USB DMA controller does
multiple DMA transfers for a single OUT or IN transfer on the USB. For more
details, see the description for the CAT bit in section 14.8.2.1 (page 14-60).

14.4.7.7 Select Whether to Require Short Packets

Register(Field) symval Value Description

USBxDCTLn(SHT) 0 Short packets not required

1 Short packets required

Typically, a USB transfer ends with a short packet, a packet that is shorter than
the maximum allowable size for the endpoint. If a maximum-size packet is the
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last packet, the transmitter (host or slave device) can send one more packet,
of zero length, to indicate that there is no more data. The SHT bit tells the USB
DMA controller whether to wait for/generate 0-byte packets when the transfer
ends with a maximum-size packet. For more details, see the description for the
SHT bit in section 14.8.2.1 (page 14-60).

14.4.7.8 Select Whether a Missing Packet is an Error During Isochronous Transfers

Register(Field) symval Value Description

USBxDCTLn(EM) 0 Do not halt the USB DMA controller in response
to a missing packet. Treat a missing packet as a
zero-length packet.

1 A missing packet is an error and will stop the
USB DMA controller.

If the USB DMA controller is handling data packets for an isochronous end-
point, this bit determines how the controller will respond if no packet is received
in/transmitted from the endpoint buffer during the current USB frame. For more
details, see the description for the EM bit in section 14.8.2.1 (page 14-60).

14.4.8 Monitoring CPU-Initiated DMA Transfers

To monitor an endpoint that is involved in CPU-initiated DMA transfers, use the
instructions in the following paragraphs. In the register and bit names that
appear in these paragraphs, a lowercase x can be O (for OUT) or I (for IN), and
a lowercase n can be 1, 2, 3, 4, 5, 6, or 7 (indicating the endpoint number). For
example, one of the possible values for USBxDCTLn is USBODCTL5, which
represents the DMA control register for OUT endpoint 5.

14.4.8.1 Checking the Transfer Count (USBxDCTn)

Register(Field) symval Value Description

USBxDCTn(15–0) 0–65535 Indicates how many bytes have been transferred

The USB DMA controller clears USBxDCTn before each new DMA transfer,
including those transfers following DMA reload operations. USBxDCTn is up-
dated with the number of bytes transferred at the end of a transfer. You can
read this register to determine how many bytes were moved.

14.4.8.2 Determining Whether a DMA Transfer is In Progress/Done

Register(Field) symval Value Description

USBxDCTLn(GO) 0 The USB DMA controller is idling (ready for the
next DMA transfer).

1 A DMA transfer is in progress.
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Register(Field) DescriptionValuesymval

USBxDGIF(xEn) 0 No DMA GO interrupt is pending.

1 The USB DMA controller has completed the cur-
rent DMA transfers or series of transfers and has
cleared the GO bit. This event also generates a GO
interrupt if the interrupt is enabled by USBx-
DIE(xEn).

When the CPU sets the GO bit, the DMA controller begins a DMA transfer. At
the end of the transfer, if the RLD bit is 1, the controller does not clear GO.
Instead the controller performs a DMA reload operation (see section 14.4.5 on
page 14-18) and begins a new transfer with the new address and size. By
using repeated reload operations, you can have the controller perform a series
of transfers.

When the controller completes a transfer and finds RLD = 0, it clears GO to
0. In addition, it sets the endpoint’s GO flag in USBxDGIF and generate an
interrupt request. For example, if the controller is done at OUT endpoint 4, it
sets the OE4 bit in USBODGIF. If the corresponding interrupt request is
enabled by the OE4 bit in USBODGIE, an interrupt request is generated.

14.4.8.3 Determining Whether a DMA Reload Operation is In Progress/Done

Register(Field) symval Value Description

USBxDCTLn(RLD) 0 USB DMA controller is done with the previously re-
quested reload operation.

1 USB DMA controller is waiting to complete a re-
load operation.

USBxDRIF(xEn) 0 No DMA RLD interrupt is pending.

1 The USB DMA controller has completed the DMA
reload operation and has cleared RLD. This event
also generates a RLD interrupt if the interrupt is en-
abled by USBxDIE(xEn).

When the USB DMA controller completes a DMA transfer, it checks the RLD
bit. If RLD = 1, the controller performs a DMA reload operation (see section
14.4.5 on page 14-18). When the DMA reload operation is done, the controller
clears RLD. In addition, it sets the endpoint’s RLD flag in USBxDRIF and can
generate an interrupt request. For example, if the controller complete a DMA
reload operation for OUT endpoint 4, it sets the OE4 bit in USBODRIF. If the
corresponding interrupt request is enabled by the OE4 bit in USBODRIE, an
interrupt request is generated.
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14.4.8.4 Checking for an Overflow or Underflow Condition

Register(Field) symval Value Description

USBxDCTLn(OVF) 0 No overflow/underflow detected

1 Overflow/underflow detected

Essentially, an overflow condition occurs when too many bytes are arriving in
an endpoint buffer, and an underflow condition occurs when not enough bytes
are available to be read from the endpoint buffer. For more details, see the
description for the OVF bit in section 14.8.2.1 (page 14-60).

14.4.8.5 Watching for Missed Packets During Isochronous Transfers

Register(Field) symval Value Description

USBxDCTLn(PM) 0 No missing packet.

1 Missing packet: A packet did not arrive in the
previous USB frame for the endpoint.

If the USB DMA controller is handling data packets for an isochronous end-
point, and you can determine how the controller will respond if no packet is
received in/transmitted from the endpoint buffer during the current USB frame.
If you want the controller to consider a missing packet an error condition, set
the EM bit in USBxDCTLn. If EM = 1, you can watch for missing packets by
monitoring the PM bit in USBxDCTLn. EM and PM are described in section
14.8.2.1 (page 14-60).

14.4.9 USB DMA State Tables and State Diagrams

This section contains the following state tables to summarize the status of the
USB DMA controller under various conditions:

� Table 14–3: Non-isochronous IN DMA Transfer (page 14-27)
� Table 14–4: Non-isochronous OUT DMA Transfer (page 14-29)
� Table 14–5: Isochronous IN DMA Transfer (page 14-31)
� Table 14–6: Isochronous OUT DMA Transfer (page Table 14–6)

This section also includes the following state diagrams to support the isochro-
nous transfer state tables:

� Figure 14–9: Missing Packet Response for Isochronous OUT DMA Trans-
fer (page 14-38)

� Figure 14–10: Missing Packet Response for Isochronous IN DMA Trans-
fer (page 14-39)
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Table 14–3. State Table: Non-Isochronous IN DMA Transfer  

Description Initial State End State

DMA transfer
state

Programmer
view

Bytes
free in
endpt
buffer

Bytes in
DMA
transfer

S
T
P

R
L
D

C
A
T

S
H
T

End of
current
DMA
transfer

Reload
and
swap

Reset
GO

Reset
STP

Update
DMA
count

Send
packet
(clear
NAK)

DMA
transfer
activity

Normal transfer
in progress

> 0 > 0 x x x x In progress

Endpoint buffer
full

Stop requested 0 x 1 x x x 1 1 1 Idle

DMA transfer
completion

Stop requested > 0 0 1 x x x 1 1 1 Idle

Endpoint buffer
full, more data
remaining in DMA
transfer

0 > 0 0 x x x 1 Max Idle

DMA transfer
completion,

0 0 0 0 1 x 1 0 1 1 Max Idle
com letion,
endpoint buffer
full

1 1 0

DMA transfer
completion,

0 0 0 0 0 0 1 0 1 1 Max Idle
com letion,
endpoint buffer
full

1 1 0

DMA transfer
completion,
endpoint buffer
full

Short packet
requested

0 0 0 x 0 1 1 Max Idle until
current
packet
moves out,
then
prepare a
0-byte
packet
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Table 14–3. State Table: Non-Isochronous IN DMA Transfer (Continued)

Description End StateInitial State

DMA transfer
state

DMA
transfer
activity

Send
packet
(clear
NAK)

Update
DMA
count

Reset
STP

Reset
GO

Reload
and
swap

End of
current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Bytes in
DMA
transfer

Bytes
free in
endpt
buffer

Programmer
view

DMA transfer
completion,

> 0 0 0 0 0 x 1 0 1 1 Short Idle
com letion,
endpoint buffer
not  full

1 1 0

DMA transfer
completion,
endpoint buffer
not  full

CAT requested,
next buffer is
not  ready yet

> 0 0 0 0 1 x 1 1 1 Pause

DMA transfer
completion,
endpoint buffer
not  full

CAT requested,
next buffer is
ready

> 0 0 0 1 1 x 1 1 1 In progress
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Table 14–4. State Table: Non-Isochronous OUT DMA Transfer  

Description Initial State End State

DMA
transfer
state

Programmer
view

Received
packet
size

Bytes
in
endpt
buffer

Bytes in
DMA
transfer

S
T
P

R
L
D

C
A
T

S
H
T

End of
current
DMA
transfer

Reload
and
swap

Reset
GO

Reset
STP

Set
OVF

Update
DMA
count

Clear
NAK
for
next
packet

DMA
transfer
activity

Normal
transfer  in
progress

x > 0 > 0 x x x x In
progress

Packet
transfer
completion

Stop
requested

x 0 x 1 x x x 1 1 1 1 1 Idle

DMA transfer
completion

Stop
requested

x > 0 0 1 x x x 1 1 1 Idle

Packet
transfer
completion,
more data
remaining in
DMA transfer

Max 0 > 0 0 x x x 1 1 Idle

Packet
transfer
completion,

Short 0 > 0 0 0 x x 1 0 1 1 1 Idle

com letion,
more data
remaining in
DMA transfer

1 1 0

DMA transfer
completion,

Max 0 0 0 0 x 0 1 0 1 1 1 Idle
com letion,
packet fits ex-
actly 1 1 0

DMA transfer
completion,

Max 0 0 0 0 1 x 1 0 1 1 1 Idle
com letion,
packet fits
exactly

1 1 0



U
S

B
 D

M
A

 C
ontroller

14-30

Table 14–4. State Table: Non-Isochronous OUT DMA Transfer (Continued)

Description End StateInitial State

DMA
transfer
state

DMA
transfer
activity

Clear
NAK
for
next
packet

Update
DMA
count

Set
OVF

Reset
STP

Reset
GO

Reload
and
swap

End of
current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Bytes in
DMA
transfer

Bytes
in
endpt
buffer

Received
packet
size

Programmer
view

DMA transfer
completion,
packet fits
exactly

Short
packet
requested

Max 0 0 0 x 0 1 1 1 Idle,
expecting
a 0–byte
packet

DMA transfer
completion,

Short
packet

Short 0 0 0 0 x x 1 0 1 1 1 Idle
com letion,
packet fits
exactly

acket
requested 1 1 0

DMA transfer
completion,
more data
remaining in
endpoint
buffer

Overflow
condition

x > 0 0 0 x 0 x 1 1 1 1 Idle

DMA transfer
completion,
more data
remaining in
endpoint
buffer

CAT
requested,
next buffer
is not ready
yet

x > 0 0 0 0 1 x 1 1 1 Pause

DMA transfer
completion,
more data
remaining in
endpoint
buffer

CAT
requested,
next buffer
is ready

x > 0 0 0 1 1 x 1 1 1 In
progress
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Table 14–5. State Table: Isochronous IN DMA Transfer  

Description Initial State Final State

DMA
Transfer
State

Program-
mer view

DMA
transfer
complete
before
SOF

Bytes
free in
Endpt
Buffer

Bytes in
DMA
transfer

Missing
Packet
Error †

S
T
P

R
L
D

C
A
T

S
H
T

End of
Current
DMA
transfer

Reload
and
Swap

Reset
GO

Reset
STP

Set
OVF

Update
DMA
Count

Send
Packet
(clear
NAK)

DMA
Transfer
Activity

DMA failed
to keep up
with USB

0 x x x x x x x 1 1 1 Idle

Normal
transfer in
progress

1 > 0 > 0 x x x x x In
progress

Endpoint
buffer full,
more data
remaining
in DMA
transfer

Stop
requested

1 0 > 0 x 1 x x x 1 1 1 1 Max Idle

DMA
transfer
completion,
endpoint
buffer is
not  full

Stop
requested

1 > 0 0 x 1 x x x 1 1 1 Idle

DMA
transfer
completion,
endpoint
buffer is full

Stop
requested

1 0 0 x 1 x x x 1 1 1 1 Max Idle

† Entries in this column are taken from the missing packet response state diagram of Figure 14–9 (page 14-38).
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Table 14–5. State Table: Isochronous IN DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Send
Packet
(clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
and
Swap

End of
Current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Missing
Packet
Error †

Bytes in
DMA
transfer

Bytes
free in
Endpt
Buffer

DMA
transfer
complete
before
SOF

Program-
mer view

Endpoint
buffer full,
more data
remaining
in DMA
transfer,
host
missed an
IN request
earlier

1 0 > 0 1 0 x x x 1 1 0 Max Idle

Endpoint
buffer full,
more data
remaining
in DMA
transfer

1 0 > 0 0 0 x x x 1 Max Idle

DMA
transfer
completion,

Current
buffer is
the last of

1 > 0 0 0 0 0 0 x 1 0 1 1 Non-
max
packet

Idle

com letion,
endpoint
buffer is
not  full

the last of
the
transfer

1 1 0

acket

† Entries in this column are taken from the missing packet response state diagram of Figure 14–9 (page 14-38).
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Table 14–5. State Table: Isochronous IN DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Send
Packet
(clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
and
Swap

End of
Current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Missing
Packet
Error †

Bytes in
DMA
transfer

Bytes
free in
Endpt
Buffer

DMA
transfer
complete
before
SOF

Program-
mer view

DMA
transfer
completion,
endpoint
buffer is
not  full

CAT
requested
, next
buffer is
not ready
yet
(underflo
w
condition)

1 > 0 0 0 0 0 1 x 1 1 1 1 Non-
max
packet

Idle

DMA
transfer
completion,
endpoint
buffer is
not  full

CAT
requested
, next
buffer is
ready

1 > 0 0 0 0 1 1 x 1 1 Start next
transfer,
fill up
rest of
endpoint
buffer

DMA
transfer
completion,
endpoint
buffer full,
missing
packet
error seen

1 0 0 1 0 x x x 1 1 Idle

DMA
transfer
completion

1 0 0 0 0 0 0 0 1 0 1 1 Max Idle

completion,
endpoint
buffer full

1 1 0

† Entries in this column are taken from the missing packet response state diagram of Figure 14–9 (page 14-38).
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Table 14–5. State Table: Isochronous IN DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Send
Packet
(clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
and
Swap

End of
Current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Missing
Packet
Error †

Bytes in
DMA
transfer

Bytes
free in
Endpt
Buffer

DMA
transfer
complete
before
SOF

Program-
mer view

DMA
transfer
completion,
endpoint
buffer full

Short
(0-byte)
packet
requested

1 0 0 0 0 x 0 1 1 Short
(zero)

Idle

DMA
transfer
completion

CAT
requested

1 0 0 0 0 0 1 x 1 0 1 1 Max Idle

completion,
endpoint
buffer full

1 1 0

† Entries in this column are taken from the missing packet response state diagram of Figure 14–9 (page 14-38).
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Table 14–6. State Table: Isochronous OUT DMA Transfer  

Description Initial State Final State

DMA
Transfer
State

Program-
mer view

DMA
transfer
complete
before
SOF

Bytes
in
Endpt
Buffer

Bytes in
DMA
transfer

Normal,
Short,
Ignore,
Missing
Error  †

S
T
P

R
L
D

C
A
T

S
H
T

End of
Current
DMA
transfer

Reload
and
Swap

Reset
GO

Reset
STP

Set
OVF

Update
DMA
Count

Receive
Packet
(Clear
NAK)

DMA
Transfer
Activity

DMA
failed to
keep up
with USB

0 x x x x x x x 1 1 1 Idle

Normal
transfer
in
progress

1 > 0 > 0 x x x x x In
Progress

Endpoint
buffer is
empty

Stop
requested

1 0 x x 1 x x x 1 1 1 1 1 Idle

Endpoint
buffer

1 0 > 0 Normal 0 x x x 1 1 Idle
buffer
empty, 1 0 > 0 Short 0 0 x x 1 0 1 1 1 Idley
more
data 1 1 0data
remaining
in DMA

1 0 > 0 Ignore 0 x x x 1 Idle
in DMA
transfer 1 0 > 0 Missing

Error
0 x x x 1 1 1 1 Idle

† Entries in this column are taken from the missing packet response state diagram of Figure 14–10 (page 14-39).
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Table 14–6. State Table: Isochronous OUT DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Receive
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
and
Swap

End of
Current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Normal,
Short,
Ignore,
Missing
Error  †

Bytes in
DMA
transfer

Bytes
in
Endpt
Buffer

DMA
transfer
complete
before
SOF

Program-
mer view

DMA
transfer
completion

Stop
requested

1 > 0 0 Normal 1 x x x 1 1 1 1 Idle

completion,
more data
remaining
in the

Overflow
condition

1 > 0 0 Normal 0 x 0 x 1 1 1 1 1 Idle

in the
endpoint
buffer.

CAT
requested,
next buffer
is not
ready yet
(overflow
condition)

1 > 0 0 Normal 0 0 1 x 1 1 1 1 1 Idle

CAT
requested,
next buffer
is ready

1 > 0 0 Normal 0 1 1 x 1 1 1 0 In
progress

† Entries in this column are taken from the missing packet response state diagram of Figure 14–10 (page 14-39).
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Table 14–6. State Table: Isochronous OUT DMA Transfer (Continued)

Description Final StateInitial State

DMA
Transfer
State

DMA
Transfer
Activity

Receive
Packet
(Clear
NAK)

Update
DMA
Count

Set
OVF

Reset
STP

Reset
GO

Reload
and
Swap

End of
Current
DMA
transfer

S
H
T

C
A
T

R
L
D

S
T
P

Normal,
Short,
Ignore,
Missing
Error  †

Bytes in
DMA
transfer

Bytes
in
Endpt
Buffer

DMA
transfer
complete
before
SOF

Program-
mer view

DMA
transfer
completion

Stop
requested

1 0  0 x 1 x x x 1 1 1 1 1 Idle

completion,
endpoint
b ff i

CAT
requested

1 0  0 Normal 0 0 1 x 1 0 1 1 1 Idle
buffer  is
empty

requested
1 1 0y

1 0 0 Normal 0 0 0 0 1 0 1 1 1 Idle

1 1 0

Short
(0-byte)
Packet
expected

1  0 0 Normal 0 x 0 1 1 1 Expect a
short
packet
next

DMA
expecting
a short

1  0 0 Missing
Error

0 x x x 1 1 1 1 Idle

a short
(0-byte)

k t t
1  0 0 Short 0 0 x x 1 0 1 1 1 Idle

packet to
end the 1 1 0

transfer
1 0 0 Ignore 0 x x x 1 In

progress

† Entries in this column are taken from the missing packet response state diagram of Figure 14–10 (page 14-39).
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Figure 14–9. Missing Packet Response for Isochronous IN DMA Transfer
(Supports Table 14–5 on Page 14-31)
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Figure 14–10. Missing Packet Response for Isochronous OUT DMA Transfer
(Supports Table 14–6 on Page 14-35)
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14.5 Host-DMA Mode: Host-Initiated Direct Memory Accesses

In the host-DMA mode, the host can initiate direct memory accesses through
two general-purpose endpoints (one OUT endpoint and one IN endpoint). On
the USB, the host-DMA endpoints appear as bulk endpoints (endpoints that
expect bulk transfers). During enumeration, the device should report that
these endpoints are bulk endpoints, and the host should communicate with
these endpoints as it would with any bulk endpoint.

Each host-DMA transfer is performed on a packet-by-packet basis. Each
transfer begins with an OUT packet containing a 5 byte host-DMA protocol
header (described in section 14.5.1). If data is moving from the host to the de-
vice, the data being transferred follows the protocol header in the same pack-
et. If the data is moving from the device to the host, the data being transferred
is sent in a subsequent IN packet.

When the CPU has relinquished DMA control to the host, the CPU should not
write to the GO bit or the RLD bit. However, the CPU can be notified by interrupt
flags and (if enabled) interrupts when a host-DMA transfer is complete or if an
error has occurred. You do not need to initialize any of the DMA context regis-
ters because the details of each transfer are in the header protocol sent by the
host.

Note:

Once the two bulk endpoints are selected for this purpose, the endpoints
cannot be used for any other purpose until a USB software reset (write 1 to
the SOFTRST bit of USBGCTL) or a DSP reset (drive the RESET pin low)
is performed.

14.5.1 Protocol Header For the Host-DMA Mode

Each time the host communicates with host-DMA endpoints, the host must
first send a 5-byte protocol header to describe the desired transfer to the USB
DMA controller. Figure 14–11 shows the values the host must send in the
header. Byte 1 tells the USB DMA controller about the data transfer that is re-
quested. Table 14–7 gives the details about this first byte. Bytes 2–5 must con-
tain the DSP memory address as shown in the following figure. Because a
C55x DSP uses 24-bit addresses, byte 5 of the header protocol must be 0s.
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Figure 14–11. Bytes of the Host-DMA Protocol Header
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Table 14–7. The Fields of Byte 1 of the Host-DMA Protocol Header

Bit field symval Value Function

7 R/W 0 Host write operation:
The host wants the USB DMA controller to write data to the
DSP memory.

1 Host read operation:
The host wants the USB DMA controller to read data from
the DSP memory.

6 INT 0 No host interrupt

1 Host interrupt requested:
The host wants the USB DMA controller to generate a host
interrupt (HINT) at the end of the transfer.

5–0 BURST n =1–59 The host wants n  bytes transferred by the USB DMA con-
troller. The host can send as few as one byte (BURST = 1)
and as many as 59 bytes (BURST = 59).
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14.5.2 Initiating a Host Read Operation (Data to Host)

When the host wants to read data from the DSP memory, the host must initiate
two bulk transfers on the USB in the following order:

1) OUT transfer to program the DMA state machine.  In the first transfer,
the host sends a protocol header (5 bytes), which includes a bit to indicate
that the host wants to read data. The UBM receives the header from the
SIE and then passes the header to the selected OUT endpoint buffer. The
USB DMA controller reads the header, configures itself, and then moves
the requested data from the memory to the selected IN endpoint buffer.

2) IN transfer to get the data.  In the second transfer, the host sends a re-
quest for the data. The SIE passes up to 64 bytes to the host. The first 5
bytes is a copy of the protocol header that was sent in the previous OUT
transfer. The next 1 to 59 bytes are the data the UBM has retrieved from
the selected IN endpoint buffer.

14.5.3 Initiating a Host Write Operation (Data to DSP Memory)

To write data to the DSP memory, the host must initiate one bulk transfer: an
OUT transfer that sends the 5-byte protocol header followed by up to 59 bytes
of data (up to 64 bytes total). After the UBM has passed all the bytes to the
selected OUT endpoint buffer, the USB DMA controller interprets the header
and then moves the 1 to 59 data bytes from the buffer to the DSP memory.

14.5.4 Configuring the USB Module for the Host-DMA Mode

The following tables and paragraphs explain the steps to follow to prepare the
USB module for the host-DMA mode. First, choose two of the general-purpose
endpoints to serve as the host-DMA endpoints, and program these two
endpoints as bulk endpoints with the double buffer mode enabled. Second,
select the endpoints in USBHEPSEL and (if desired) enabled the interrupts for
the host-DMA mode. Finally, enable the host-DMA mode.
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14.5.4.1 Make Sure the Chosen Endpoints are in the Non-Isochronous Mode

Register(Field) symval Value Description

USBxCNFn(ISO) 0 Non-isochronous mode

1 Isochronous mode

The host-DMA endpoints must be configured as bulk endpoints, and for bulk
transfers, an endpoint must be in the non-isochronous mode. Clear the ISO
bit of the appropriate endpoint configuration registers. For example, if your
host-DMA endpoints are OUT endpoint 4 and IN endpoint 4, make sure that
USBOCNF4(ISO) = 0 and USBICNF4(ISO) = 0. The endpoint configuration
registers are described on pages 14-70 (for IN endpoints) and 14-72 (for OUT
endpoints).

14.5.4.2 Make Sure the Chosen Endpoints are in the Double Buffer Mode

Register(Field) symval Value Description

USBxCNFn(DBUF) 0 Single buffer mode

1 Double buffer mode

Whenever the USB DMA controller accesses an endpoint buffer, the controller
assumes that the endpoint buffer is equally divided between an X buffer and
a Y buffer. To meet this requirement for your host-DMA endpoints, set the
DBUF bits in the appropriate endpoint configuration registers. For example,
if your host-DMA endpoints are OUT endpoint 1 and IN endpoint 3, make sure
that USBOCNF1(DBUF) = 1 and USBICNF3(DBUF) = 1. The endpoint con-
figuration registers are described on pages 14-70 (for IN endpoints) and 14-72
(for OUT endpoints).

14.5.4.3 Set the Maximum Packet Size for the Chosen Endpoints
(64 Bytes Recommended)

Register(Field) symval Value Description

USBxSIZn(SIZ) 0–64 Size for buffer X/Y (maximum packet size)

In the double buffer mode (required for the USB DMA controller), the USB
DMA controller accesses one of the buffers at a time (X or Y), based on the
data toggle sequence (DATA0, DATA1, DATA0, and so on). The 7-bit SIZ field
in USBxSIZn determines the maximum packet size: the number of bytes the
active buffer (X or Y) can hold at one time. Because the host-DMA mode allows
transfers up to 64 bytes long, it is recommended that you load 64 into SIZ for
each of the host-DMA endpoints. If you want more than 59 data bytes
transferred, send them in multiple host-DMA transfers. The fields of the buffer
size register are described in section 14.8.3.5 (page 14-78).
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14.5.4.4 Select the Chosen Endpoints in USBHEPSEL

Register(Field) symval Value Description

USBHEPSEL(IEP) 1–7 Indicates which IN endpoint will be used as the
host-DMA endpoint for IN transfers.

USBHEPSEL(OEP) 1–7 Indicates which OUT endpoint will be used as the
host-DMA endpoint for OUT transfers.

With USBHEPSEL you must select one of the OUT endpoints and one of the
IN endpoints to be used for host-initiated DMA transfers. Once you select the
host-DMA endpoints in this register, these two endpoints cannot be used for
any other purpose until you initiate a USB software reset (write 1 to the
SOFTRST bit of USBGCTL) or a DSP reset (drive the RESET pin low). The
fields of USBHEPSEL are described in section 14.8.6.2 on page 14-94.

14.5.4.5 Enable or Disable the Interrupts Associated with the Host-DMA Mode

Register(Field) symval Value Description

USBHCTL(HIE) 0 Disable host interrupt requests.

1 Enable host interrupt requests.

USBHCTL(HERRIE) 0 Disable host error interrupt requests.

1 Enable host error interrupt requests.

USBHSTAT(HIF) 0 Host-DMA transfer not done

1 Host-DMA transfer done. The USB DMA controller
has completed a DMA transfer between the DSP
memory and a host-DMA endpoint. This flag is set
only if the host requests the interrupt by setting the
INT bit in the first byte of the protocol header.

USBHSTAT(HERRIF) 0 No host error

1 A host error has occurred: During an OUT transfer,
the size of the data transferred from the host did not
match the size specified in the protocol header.

If you want the host to be able to generate an interrupt request at the end of
a host-DMA transfer, set the host interrupt enable (HIE) bit of the host control
register (USBHCTL). Likewise, if you want the CPU to be notified of a host
transfer error, set the host error interrupt enable (HERRIE) bit of USBHCTL.

The host status register (USBHSTAT) has flags that the CPU can poll regard-
less of whether the interrupts are enabled. The HIF bit indicates that the USB
DMA controller has completed a host-DMA transfer and the host requested an
interrupt at the end of the DMA transfer (in the protocol header). The HERRIF
bit indicates that a host error has occurred.
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14.5.4.6 Enable the Host-DMA Mode

Register(Field) symval Value Description

USBHCTL(EN) 0 Disable host-DMA mode.

1 Enable host-DMA mode (allow the host to initiate
DMA transfers at the endpoints selected in
USBHEPSEL).

USBHSTAT(DIS) 0 Host-DMA mode enabled.

1 Host-DMA mode disabled.

A reset clears the EN bit of USBHCTL. Set the EN bit to enable the host-DMA
mode. To verify that the mode is on, you can check the DIS bit of USBHSTAT.
If DIS = 1, the mode is disabled. The fields of USBHCTL and USBHSTAT are
described in on pages 14-93 and 14-94, respectively.
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14.6 Interrupt Activity in the USB Module

The interrupt requests generated by the USB module can be grouped into the
following main categories:

� USB bus interrupt requests (see section 14.6.1 on page 14-47)
� Endpoint interrupt requests (see section 14.6.2 on page 14-48)
� USB DMA interrupt requests (see section 14.6.3 on page 14-50)
� Host-DMA mode interrupt requests (see section 14.6.4 on page 14-52)

As shown in Figure 14–12, all requests are multiplexed through an arbiter to
a single USB interrupt request for the CPU. When the arbiter receives multiple
interrupt requests at the same time, it services them one at a time according
to a predefined priority ranking. The priority of each request is included in the
description of the interrupt source register (USBINTSRC) on page 14-95.

The USB interrupt is one of the maskable interrupts of the CPU. As with any
maskable interrupt request, if it is properly enabled in the CPU, the CPU exe-
cutes the corresponding interrupt service routine (ISR). The ISR for the USB
interrupt can determine the interrupt source by reading the interrupt source
register, USBINTSRC (see page 14-95). Then the ISR can branch to the
appropriate subroutine.

After the CPU reads USBINTSRC, the following events occur:

1) The interrupt flag for the source interrupt is cleared in the corresponding
interrupt flag register. Exception: The STPOW and SETUP bits in USBIF
are not cleared when USBINTSRC is read. To clear one of these bits, write
a 1 to it.

2) The arbiter determines which of the remaining interrupt requests has the
highest priority, writes the code for that interrupt to USBINTSRC, and
forwards the interrupt request to the CPU.

Figure 14–12. Possible Sources of a USB Interrupt Request
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14.6.1 USB Bus Interrupt Requests

The USB module can generate a number of interrupt requests that are related
to activity on the USB (see Table 14–8). As shown in Figure 14–13, each of
the interrupt requests has a flag bit in the USB interrupt flag register (USBIF)
and an enable bit in the USB interrupt enable register (USBIE). When one of
the specified events occurs, its flag bit is set. If the corresponding enable bit
is 0, the the interrupt request is blocked. If the enable bit is 1, the request is
forwarded to the CPU as a USB interrupt.

Table 14–8. Descriptions of the USB Bus Interrupt Requests

USB Bus
Interrupt Request Interrupt Source

RSTRINT A reset condition is detected on the USB.

SUSRINT A suspend condition is detected on the USB.

RESRINT Activity on the USB resumes, ending a suspend condition.

SETUPINT A setup packet arrived. (Setup data is stored in the setup
packet buffer.)

STPOWINT A setup overwrite has occurred; that is, a new setup pack-
et arrived before the previous setup packet was read from
the setup packet buffer.

SOFINT A start-of-frame (SOF) packet is detected on the USB.

PSOFINT The pre-SOF (PSOF) timer has finished counting down. If
you want an interrupt to occur n (1 to 255) clock cycles
before each SOF packet, load n into the pre-SOF interrupt
timer count register, USBPSOFTMR (see page 14-97).
The counter runs at 750 kHz (12MHz/16).
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Figure 14–13. Enable Paths of USB Bus Interrupt Requests
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14.6.2 Endpoint Interrupt Requests

For each endpoint, the UBM can generate an interrupt request every time data
moves in or out of the endpoint buffer. As shown in Figure 14–14:

� Each OUT endpoint has a flag bit in the OUT endpoint interrupt flag regis-
ter (USBOEPIF) and an enable bit in the OUT endpoint interrupt enable
register (USBOEPIE).

� Each IN endpoint has a flag bit in the IN endpoint interrupt flag register
(USBIEPIF) and an enable bit in the IN endpoint interrupt enable register
(USBIEPIE).

� For either type of endpoint, when both the flag bit and the enable bit are
set, an interrupt request is passed to the CPU.
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Software must set the enable bit, but the flag bit is set by the UBM when a spe-
cific event occurs:

� For an OUT endpoint (data from host): When the UBM receives a valid
data packet, it writes the data to the appropriate OUT endpoint buffer. The
UBM then sets the NAK bit of the endpoint’s count register, to keep the
host from writing to the buffer before the data is read. When the NAK bit
is set, the associated interrupt flag bit is also set.

� For an IN endpoint (data to host): When the USB module receives an
IN packet, the UBM reads the data from the appropriate IN endpoint buffer.
Then the UBM sets the NAK bit of the endpoint’s count register, to keep
the host from reading again before new data is placed in the buffer. When
the NAK bit is set, the associated interrupt flag bit is also set.

Figure 14–14. Enable Paths for the Endpoint Interrupt Requests
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14.6.3 USB DMA Interrupt Requests

The USB module can generate an interrupt request every time the USB DMA
controller clears the GO bit or RLD (reload) bit for one of the general-purpose
endpoints (OUT endpoints 1–7 and IN endpoints 1–7). As shown in
Figure 14–15:

� Each OUT endpoint has:

� One flag bit in the OUT endpoint DMA GO interrupt flag register
(USBODGIF).

� Another flag bit in the OUT endpoint DMA RLD interrupt flag register
(USBODRIF).

� A single enable bit in the OUT endpoint DMA interrupt enable register
(USBODIE). This bit enables or disables both GO and RLD interrupt
requests.

� Each IN endpoint has:

� One flag bit in the IN endpoint DMA GO interrupt flag register
(USBIDGIF)

� Another flag bit in the IN endpoint DMA RLD interrupt flag register
(USBIDRIF)

� A single enable bit in the OUT endpoint DMA interrupt enable register
(USBIDIE). This bit enables or disables both GO and RLD interrupt
requests.

� For either type of endpoint, when either or both of the flag bits are set and
the enable bit is set, an interrupt request is passed to the CPU.
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Software must set the enable bit, but the flag bit is set by the DMA controller
for a specific event. To see how the GO and RLD bits are used to control DMA
activity, see section 14.4.3 on page 14-14.

Figure 14–15. Enable Paths for the USB DMA Interrupt Requests
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14.6.4 Host-DMA Mode Interrupt Requests

If the host-DMA mode (see section 14.5 on page 14-40) is enabled, a special
state machine in the USB DMA controller can generate the following types of
interrupts. The flag bits, enable bits, and interrupt requests are shown in
Figure 14–16. Notice these interrupt requests are dependent on the EN bit in
USBHCTL; when EN = 1, the host-DMA mode is enabled.

� Host interrupt (HINT).  If the USB DMA controller completes a transfer
between the USB host and the DSP memory (via an endpoint buffer) and
the host requested an interrupt at the end of the transfer, the state machine
sets the HIF flag bit in the host status register (USBHSTAT). If the HIE
enable bit is 1 in the host control register (USBHCTL), an interrupt request
is passed to the CPU.

� Host error interrupt (HERRINT).  During an OUT transfer, if the size of the
data transferred from the host does not match the size specified in the pro-
tocol header, the state machine sets the HERRIF flag bit in USBHSTAT.
If the HERRIE enable bit is 1 in USBHCTL, an interrupt request goes to
the CPU.

Figure 14–16. Enable Paths for the Host-DMA Mode Interrupt Requests
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14.7 Power, Emulation, and Reset Considerations

This section is a summary of the effects of power control, emulation, and reset
operations on the USB module.

14.7.1 Putting the USB Module into Its Idle Mode

The USB module is one of the peripheral devices in the PERIPH idle domain.
For details on controlling the various idle domains of the DSP, see Chapter 8,
Idle Configurations. If you want the USB module to become idle in response
to an IDLE instruction, make the following preparations:

1) Write 1 to the idle enable (IDLEEN) bit in USBIDLECTL (see page 14-103).
This tells the DSP to make the USB module idle when the PERIPH domain
becomes idle.

2) Write a 1 to the PERI bit in ICR (see page 8.7). This tells the DSP to make
the PERIPH domain idle in response to an IDLE instruction.

14.7.2 USB Module Indirectly Affected By Certain Idle Configurations

As mentioned in section 14.7.1, the USB module can be affected by any idle
configuration that turns off the PERIPH idle domain. In addition, activity in the
USB module can be affected by other idle configurations. For example:

� Idle configurations that turn off the CPU, preventing the CPU from control-
ling and monitoring USB activity. (If enabled, an interrupt from the USB
module will wake the CPU.)

� Idle configurations that turn off the DSP DMA controller, preventing the
USB module from accessing the DSP memory

� Idle configurations that turn off the EMIF, preventing the DSP DMA control-
ler from accessing external memory

For more details about idle configurations, see Chapter 8.

14.7.3 USB Module During Emulation

During emulation, the USB module is not halted by a breakpoint. However, the
CPU is halted and, therefore, unable to respond to USB interrupts or other
requests.

In addition, the USB DMA controller cannot access memory if the DSP DMA
controller is programmed to halt when a breakpoint is encountered in the
debugger software. The FREE bit of DMA_GCR controls the emulation behav-
ior of the DSP DMA controller. If FREE = 0 (the reset value), a breakpoint
suspends DMA transfers. If FREE = 1, DMA transfers are not interrupted by
a breakpoint. The DSP DMA controller is described in Chapter 3.
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14.7.4 Resetting the USB Module

There are three ways to reset the USB module:

� Write 1 to the USB software reset bit (SOFTRST) in the USB global control
register (USBGCTL). This resets the USB module but does not hold it in
reset. Immediately after the reset operation, the USB module is free to run.
The reset operation disconnects the USB module from the bus. Note: The
reset triggered by setting the SOFTRST bit does not affect the USB control
register (USBCTL).

� Write 0 to the USB reset bit (USBRST) in the USB idle control register
(USBIDLECTL). This resets the USB module and holds it in reset until you
write 1 to USBRST. During the reset operation, all of the USB module
registers assume their power-on default values (shown in the register
figures of section 14.8 on page 14-55). One important effect is that the
USB module is disconnected from the USB (CONN = 0 in USBCTL).

� Initiate a DSP reset by driving the RESET pin low. The entire DSP is reset
and is held in the reset state until you drive the pin high. When all DSP
registers assume their reset values, the USBRST bit is forced to 0, which
causes a USB reset.
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14.8 USB Module Registers

This section cover the following topics

Topic See ...

High-level summary of the USB registers Section 14.8.1

DMA context registers Section 14.8.2 on page 14-59

Descriptor registers for IN and OUT
Endpoints 1–7

Section 14.8.3 on page 14-68

Descriptor registers for IN and OUT
Endpoints 0

Section 14.8.4 on page 14-82

Interrupt registers Section 14.8.5 on page 14-85

Host-DMA mode registers Section 14.8.6 on page 14-93

General control and status registers Section 14.8.7 on page 14-95

14.8.1 High-Level Summary of USB Module Registers

Table 14–9 lists the registers that are part of the USB module. These registers
are in the I/O space of the C55x DSP. There are two additional registers that
also reside in I/O space but are not part of the USB module:

� USBCLKMD, which controls the operation of the the dedicated USB clock
generator (see section 14.2.3 on page 14-9)

� USBIDLECTL, which contains bits to put the USB module into its idle
mode or into reset (see section 14.8.7.8 on page 14-103)

On each C55x DSP that contains a USB module, the set of USB module regis-
ters may start at a different base address, but the individual registers are at the
same offset from the base address. To form a register’s address, add the base
address and the offset shown in the first column of Table 14–9. For example,
the base address on a TMS320VC5509 DSP is 5800h, and the OUT endpoint
1 DMA context registers begin at I/O address 5808h.
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Table 14–9. High-Level Summary of the USB Module Registers 

I/O Address
(Word Address)

Number of 
Registers

Width
(Bits) Description

DMA context registers (for details, see section 14.8.2 on page 14-59)

Base address + 0000h Reserved

Base address + 0008h 8 16 OUT endpoint 1 DMA context block

Base address + 0010h 8 16 OUT endpoint 2 DMA context block

Base address + 0018h 8 16 OUT endpoint 3 DMA context block

Base address + 0020h 8 16 OUT endpoint 4 DMA context block

Base address + 0028h 8 16 OUT endpoint 5 DMA context block

Base address + 0030h 8 16 OUT endpoint 6 DMA context block

Base address + 0038h 8 16 OUT endpoint 7 DMA context block

Base address + 0040h Reserved

Base address + 0048h 8 16 IN endpoint 1 DMA context block

Base address + 0050h 8 16 IN endpoint 2 DMA context block

Base address + 0058h 8 16 IN endpoint 3 DMA context block

Base address + 0060h 8 16 IN endpoint 4 DMA context block

Base address + 0068h 8 16 IN endpoint 5 DMA context block

Base address + 0070h 8 16 IN endpoint 6 DMA context block

Base address + 0078h 8 16 IN endpoint 7 DMA context block
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Table 14–9. High-Level Summary of the USB Module Registers (Continued)

I/O Address
(Word Address) Description

Width
(Bits)

Number of 
Registers

USB buffer RAM

Base address + 0080h 3584 8 Space for X and Y data buffers for OUT endpoints
1–7 and IN endpoints 1–7

Base address + 0E80h 64 8 OUT endpoint 0 buffer

Base address + 0EC0h 64 8 IN endpoint 0 buffer

Base address + 0F00h 8 8 Setup packet buffer

Descriptor registers (for details, see section 14.8.3 on page 14-68)

Base address + 0F08h 8 8 OUT endpoint 1 descriptor block

Base address + 0F10h 8 8 OUT endpoint 2 descriptor block

Base address + 0F18h 8 8 OUT endpoint 3 descriptor block

Base address + 0F20h 8 8 OUT endpoint 4 descriptor block

Base address + 0F28h 8 8 OUT endpoint 5 descriptor block

Base address + 0F30h 8 8 OUT endpoint 6 descriptor block

Base address + 0F38h 8 8 OUT endpoint 7 descriptor block

Base address + 0F40h Reserved

Base address + 0F48h 8 8 IN endpoint 1 descriptor block

Base address + 0F50h 8 8 IN endpoint 2 descriptor block

Base address + 0F58h 8 8 IN endpoint 3 descriptor block

Base address + 0F60h 8 8 IN endpoint 4 descriptor block

Base address + 0F68h 8 8 IN endpoint 5 descriptor block

Base address + 0F70h 8 8 IN endpoint 6 descriptor block

Base address + 0F78h 8 8 IN endpoint 7 descriptor block
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Table 14–9. High-Level Summary of the USB Module Registers (Continued)

I/O Address
(Word Address) Description

Width
(Bits)

Number of 
Registers

Control and status registers (for details, see section 14.8.7 on page 14-95)

Base address + 0F80h 1 IN endpoint 0 configuration register

Base address + 0F81h 1 8 IN endpoint 0 count register

Base address + 0F82h 1 8 OUT endpoint 0 configuration register

Base address + 0F83h 1 8 OUT endpoint 0 count register

Base address + 0F84h Reserved

Base address + 0F91h 1 8 Global control register

Base address + 0F92h 1 8 Interrupt source register

Base address + 0F93h 1 8 Endpoint interrupt flag register for IN endpoints

Base address + 0F94h 1 8 Endpoint interrupt enable register for OUT end-
points

Base address + 0F95h 1 8 DMA RLD (reload) interrupt flag register for IN
endpoints

Base address + 0F96h 1 8 DMA RLD interrupt flag register for OUT end-
points

Base address + 0F97h 1 8 DMA GO interrupt flag register for IN endpoints

Base address + 0F98h 1 8 DMA GO interrupt flag register for OUT endpoints

Base address + 0F99h 1 8 DMA interrupt enable register for IN endpoints

Base address + 0F9Ah 1 8 DMA interrupt enable register for OUT endpoints

Base address + 0F9Bh 1 8 Endpoint interrupt enable register for IN endpoints

Base address + 0F9Ch 1 8 Endpoint interrupt enable register for OUT end-
points

Base address + 0F9Dh Reserved

Base address + 0FA0h 1 8 Host control register

Base address + 0FA1h 1 8 Host endpoint select register

Base address + 0FA2h 1 8 Host status register

Base address + 0FA3h Reserved
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Table 14–9. High-Level Summary of the USB Module Registers (Continued)

I/O Address
(Word Address) Description

Width
(Bits)

Number of 
Registers

Base address + 0FF8h 1 8 Frame number register, low part

Base address + 0FF9h 1 8 Frame number register, high part

Base address + 0FFAh 1 8 Pre-SOF interrupt timer register

Base address + 0FFBh Reserved

Base address + 0FFCh 1 8 USB control register

Base address + 0FFDh 1 8 USB interrupt enable register

Base address + 0FFEh 1 8 USB interrupt flag register

Base address + 0FFFh 1 8 USB device address register

14.8.2 DMA Context Registers

Each of the general-purpose endpoints (OUT endpoints 1–7 and IN endpoints
1–7) has a dedicated DMA channel and a dedicated block of DMA context
registers for controlling and monitoring transfer activities in that channel. This
section describes function of each of the context registers, which are summa-
rized in Table 14–10.

For each endpoint, the block of DMA context registers starts at a different base
address, but the individual registers are at the same offset from the base
address. The first column of Table 14–10 shows the offsets.
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Table 14–10. USB DMA Context Registers for Each OUT or IN Endpoint n
(n = 1, 2, 3, 4, 5, 6, or 7)

Offset From
Context Block’s

USB DMA Context Register
Context  Block s
Base Address
(Words) OUT endpoint n IN endpoint n Description

0 USBODCTLn USBIDCTLn Control register

1 USBODSIZn USBIDSIZn Size register (transfer size in bytes)

2 USBODADLn USBIDADLn Address register, low part (byte address for
a location in DSP memory)

3 USBODADHn USBIDADHn Address register, high part (byte address
for a location in DSP memory)

4 USBODCTn USBIDCTn Count register (transfer count in bytes)

5 USBODRSZn USBIDRSZn Reload-size register (reload value for
USBxDSIZn, x = O or I)

6 USBODRALn USBIDRALn Reload-address register, low part (reload
value for USBxDADLn, x = O or I)

7 USBODRAHn USBIDRAHn Reload-address register, high part (reload
value for USBxDADHn, x = O or I)

14.8.2.1 USB DMA Control Register (USBxDCTLn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

This register controls the operation of the endpoint DMA channel. The control
bits in this register affect the DMA state changes described in section 14.4.9
on page 14-26.

The state of bits 4–6 is captured when a 1 is written to the GO bit and is not
captured during the DMA transfer. When the DMA transfer completes, if the
RLD bit is set, the state of bits 4–6 is captured again and a new transfer is
started. If the RLD bit is set when a DMA transfer ends, the captured
USBxDADLn, USBxDADHn, and USBxDSIZn values are swapped with the
values stored in USBxDRALn, USBxDRAHn, and USBxDRSZn, respectively.
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Figure 14–17. USB DMA Control Register (USBxDCTLn)
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R Read-only access
R/W Read access/Write access

R/W1C Read access/Write 1 to clear this bit
–X X is the value after a DSP reset (X = U indicates that the DSP reset value is undefined).

Table 14–11. USBxDCTLn Bit Descriptions 

Bit field symval Value Description

15–9 Reserved These bits are not available for use.

8 PM Previous packet missing. This status bit indicates that a packet did
not occur during the previous frame. The software should consid-
er this bit as a don’t care when EM=0.

0 A packet did occur on the previous frame for this endpoint.

1 A packet did NOT occur on the previous frame for this endpoint.

7 EM Error on missing packet. This control bit determines if, during an
isochronous transfer, missing a packet during a frame should be
considered an error condition.

0 Missing packets are treated the same as zero-length packets.

1 Missing packets will cause the GO bit to be cleared and the DMA
to be halted. The error status will show in the PM bit. This event
will only occur when PM goes from 0 to 1.
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Table 14–11. USBxDCTLn Bit Descriptions (Continued)

Bit DescriptionValuesymvalfield

6 SHT Short packet control. This bit only takes effect on a start or reload
condition.

For IN transfers:

0 If the size of the last packet in the transfer matches the maximum
packet size, do not insert an additional, 0-byte packet.

1 If the size of the last packet in the transfer matches the maximum
packet size, insert a zero-length (0-byte) packet to terminate the
transaction with a short packet.

For OUT transfers:

0 If the size of the last packet in the transfer matches the maximum
packet size, do not wait for a 0-byte packet to indicate the end of
the transfer.

1 If the size of the last packet in the transfer matches the maximum
packet size, wait for an additional, 0-byte packet as an indication
of the end of the transfer.

5 CAT Concatenation control. This bit only takes effect on a start or re-
load condition.

For IN transfers:

0 If the transfer size is not enough to fill a maximum-size packet, al-
low the USB module to transfer a short packet.

1 Concatenate DMA transfers. If the transfer size is not enough to
fill a packet, then perform the next DMA transfer to fill the packet
before allowing the USB module to send the data out.

For OUT transfers:

0 If the packet size exceeds the number of bytes remaining in the
DMA transfer, record an overflow in the OVF bit.

1 Concatenate DMA transfers. If the packet size exceeds the num-
ber of bytes remaining in the DMA transfer, do not record an over-
flow. Instead, record the current position in the buffer. When the
next DMA transfer starts, read the rest of the data, beginning at
the recorded position.
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Table 14–11. USBxDCTLn Bit Descriptions (Continued)

Bit DescriptionValuesymvalfield

4 END Endianness (byte orientation). This bit only takes effect on a start
or reload condition.

0 Little Endian (first byte is least significant byte in word)

1 Big Endian (first byte is most significant byte in word)

3 OVF Overflow/Underflow. For conditions that set this flag, see the state
tables in section 14.4.9 (page 14-26).

For isochronous IN transfers:

0 Read – No underflow condition

1 Read – Underflow condition
Write – Write 1 to clear this flag.

For isochronous and non-isochronous OUT transfers:

0 Read – No overflow condition

1 Read – Overflow condition
Write – Write 1 to clear this flag.

2 RLD Reload control. User writes a 1 to reload the address and size reg-
isters from reload registers when there are no pending transfers.
The current address and size are automatically swapped with the
reload address and size

0 Do not use the reload registers.

1 Reload and swap the address and size registers.

1 STP Stop DMA transfer. This bit stops the DMA transfer on the next
packet boundary. The data in the UBM Buffer is not affected.

0 DMA functions normally

1 DMA stops on the next packet boundary or at the end of the cur-
rent DMA transfer (whichever occurs first), without clearing the
UBM state or sending the current packet. At this time the GO and
STP bits are reset.
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Table 14–11. USBxDCTLn Bit Descriptions (Continued)

Bit DescriptionValuesymvalfield

0 GO Start DMA transfer. When written with 1, this bit starts the DMA
transfer for the endpoint. Writes of 0 have no effect. GO is cleared
when a DMA transfer is no longer active.

0 The USB DMA controller is idling (the controller is available for a
new transfer).

1 Read 1 – The USB DMA controller is performing a transfer.

Write 1 – Start the endpoint DMA transfer (STP bit must be 0).

14.8.2.2 USB DMA Address Registers (USBxDADHn and USBxDADLn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

The USB DMA controller handles transfers between an endpoint buffer and
the DSP memory. Because each of the USB DMA channels is dedicated to a
particular endpoint, the start address for the endpoint buffer is known. Soft-
ware must supply only a start address for the DSP memory.

The start address must be a byte address . Load the high 8 bits of the byte
address to USBxDADHn and the low 16 bits to USBxDADLn. The DMA con-
troller concatenates the two values to form a 24-bit address:

DSP memory address: DADH:DADL

In addition the address must be 16-bit aligned . Make sure that the least signif-
icant bit (LSB) is 0.

The DMA starts an OUT transfer from (DADH:DADL) + 2 and continues to
(DADH:DADL) + DSIZ + 2 or the transfer is otherwise terminated (for exam-
ple, by a stop command via the STP bit or by a short OUT packet). The 16 bit
word at (DADH:DADL) is then updated with the count of bytes actually trans-
ferred. The byte order of this word is architecture dependent and not depen-
dent on the state of the END bit.

IN transfers start from (DADH:DADL) and continue to (DADH:DADL) + DSIZ.
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Figure 14–18. USB DMA Address Registers (USBxDADLn and USBxDADHn)
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Legend:

R/W Read/write access
–U The contents of the registers is undefined after a DSP reset.

Table 14–12. USBxDADLn and USBxDADHn Bit Descriptions 

Bit field symval Value Description

USBxDADLn(15–0) DADL 0000h–FFFFh Low part of the DSP memory start ad-
dress. The start address must be
16-bit aligned; therefore, make sure
bit 0 of this register is 0.

USBxDADHn(7–0) DADH 0000h–00FFh High part of the DSP memory start
address. C55x DSP memory address-
es have 24 bits; therefore, load the 8
high bits of DADH with 0s.

14.8.2.3 USB DMA Size Register (USBxDSIZn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

USBxDSIZn specifies the number of bytes for the DMA controller to transfer
in a single DMA transfer. During a DMA reload operation (see section 14.4.5
on page 14-18), the content of USBxDSIZn is swapped with the content of
USBxDRSZn (described on page 14-68).

Figure 14–19. DMA Size Register (USBxDSIZn)
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R/W Read/write access
–U The content of the register is undefined after a DSP reset.
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Table 14–13. USBxDSIZn Bit Description 

Bit field symval Value Description

15–0 DSIZ 1–65535 Number of bytes for the DMA controller to
transfer

14.8.2.4 DMA Count Register (USBxDCTn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

USBxDCTn counts up, to track the number of bytes that have been transferred
for OUT or IN endpoint n. The USB DMA controller automatically loads this
register with 0 before beginning each DMA transfer. This includes the transfer
that follows a DMA reload operation.

Note:

When the USB DMA controller stores data from an OUT transfer, it also
stores USBxDCTn to the DSP memory (see section 14.4.6 on page 14-19).

Figure 14–20. DMA Count Register (USBxDCTn)
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R Read-only register
–U The content of the register is undefined after a DSP reset.

Table 14–14. USBxDCTn Bit Description 

Bit field symval Value Description

15–0 DCT 0–65535 Indicates the number of bytes that have been
transferred by the USB DMA controller

Note: Before starting each new DMA trans-
fer, the controller loads this register with 0.
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14.8.2.5 USB DMA Reload-Address Registers (USBxDRALn and USBxDRAHn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

USBxDRALn specifies the low 16 bits of the reload address, and USBxDRAHn
specifies the high 8 bits of the reload address. If the RLD bit is set when the
current DMA transfer is completed, then the contents of these reload registers
are swapped with the contents of their corresponding primary registers:

� The content of USBxDRALn is swapped with the content of USBxDADLn.

� The content of USBxDRAHn is swapped with the content of USBxDADHn.

This register swapping is part of the DMA reload operation described in section
14.4.5 on page 14-18.

Figure 14–21. DMA Reload-Address Registers (USBxDRALn and USBxDRAHn)
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R/W Read/write access
–U The contents of the registers is undefined after a DSP reset.

Table 14–15. USBxDRALn and USBxDRAHn Bit Descriptions 

Bit field symval Value Description

USBxDRALn(15–0) DRAL 0000h–FFFFh Reload value for DADL

The addresses used by the USB DMA
controller must be 16-bit aligned; there-
fore, make sure bit 0 of this register is
0.

USBxDRAHn(15–0) DRAH 0000h–00FFh Reload value for DADH

C55x DSP memory addresses have 24
bits; therefore, load the 8 high bits of
DRAH with 0s.
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14.8.2.6 DMA Reload-Size Register (USBxDRSZn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

Specifies the reload size. If the RLD bit is set when the current DMA transfer
is completed, the content of USBxDRSZn is swapped with the content of
USBxDSIZn. This register swapping is part of the DMA reload operation de-
scribed in section 14.4.5 on page 14-18.

Figure 14–22. DMA Reload-Size Register (USBxDRSZn)
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Legend:

R/W Read/write access
–U The content of the register is undefined after a DSP reset.

Table 14–16. USBxDRSZn Bit Description 

Bit field symval Value Description

15–0 DRSZ 1–65535 Reload value for DSIZ

14.8.3 Descriptor Registers for IN and OUT Endpoints 1–7

The general-purpose endpoints (IN endpoints 1–7 and OUT endpoints 1–7)
each have a block of eight descriptor registers to define the endpoint charac-
teristics for the UBM. Table 14–17 shows the descriptor registers available for
an OUT endpoint and for an IN endpoint. To access a descriptor register, find
the base address of the descriptor block and add the offset shown in the first
column of Table 14–17. The actual addresses can be found in the data sheet
of the respective C55x DSP.

Table 14–17. Descriptor Registers for Each OUT or IN Endpoint n
(n = 1, 2, 3, 4, 5, 6, or 7)  

Offset From the
Descri ptor Block’s

Endpoint Descriptor Register
Descriptor  Block s
Base Address
(Words) OUT Endpoint n IN Endpoint n Description

0 USBOCNFn USBICNFn Endpoint n configuration register

1 USBOBAXn USBIBAXn X-buffer base address register (bits 11–4
of a byte address)
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Table 14–17. Descriptor Registers for Each OUT or IN Endpoint n
(n = 1, 2, 3, 4, 5, 6, or 7)  (Continued)

Offset From the
Descriptor Block’s
Base Address
(Words) Description

Endpoint Descriptor RegisterOffset From the
Descriptor Block’s
Base Address
(Words) DescriptionIN Endpoint nOUT Endpoint n

2 USBOCTXn USBICTXn X-buffer count register (transfer count in
bytes)

3 USBOCTXHn USBISIZHn OUT endpoint: X-buffer count extension
register (used for isochronous transfers
only)

IN endpoint:  X-/Y-buffer size extension
register (used for isochronous transfers
only)

4 USBOSIZn USBISIZn X-/Y-buffer size register (transfer size in
bytes)

5 USBOBAYn USBIBAYn Y-buffer base address register (bits 11–4
of a byte address)

6 USBOCTYn USBICTYn Y-buffer count register (transfer count in
bytes)

7 USBOCTYHn Reserved OUT endpoint:  Y-buffer count extension
register (used for isochronous transfers
only)

IN endpoint:  Not available for use
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14.8.3.1 IN Endpoint n Configuration Register (USBICNFn)
(n = 1, 2, 3, 4, 5, 6, or 7)

As shown in Figure 14–23, the function of bits 5–0 of USBICNFn depend on
whether you have programmed the endpoint for non-isochronous transfers or
for isochronous transfers. Table 14–18 describes the bits of USBICNFn, tak-
ing into account the optional function of bits 5–0.

Figure 14–23. IN Endpoint n Configuration Register (USBICNFn)
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Legend:

R/W Read access/Write access
–U The content of these bits is undefined after a DSP reset.

Table 14–18. USBICNFn Bit Descriptions 

Bit field symval Value Description

7 UBME UBM access enable

0 The UBM cannot access this endpoint (the endpoint is
inactive).

1 The UBM can access this endpoint (the endpoint is active).

6 ISO Isochronous mode enable

0 Non-isochronous mode

1 Isochronous mode
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Table 14–18. USBICNFn Bit Descriptions (Continued)

Bit DescriptionValuesymvalfield

Bits 5–0 in Non-Isochronous Mode (ISO = 0)

5 TOGGLE Endpoint data toggle. This bit reflects the data toggle se-
quence (see section 14.1.2 on page 14-3). Note: You do not
need to write to this bit; it is maintained by the UBM.

0 The next data packet is DATA0.

1 The next data packet is DATA1.

4 DBUF Double buffer mode enable

Note:  The USB DMA controller requires the double buffer
mode. If the DMA controller will be servicing the endpoint,
make sure DBUF = 1 before you start the controller.

0 Single buffer used (X buffer only)

1 Double buffer mode. The USB DMA controller tracks the data
toggle sequence to determine the active buffer. For a DATA0
packet, the controller uses the X buffer; for a DATA1 packet,
the controller uses the Y buffer.

3 STALL Endpoint stall. Set this bit to tell the USB host that the end-
point is stalled.

0 No stall

1 Endpoint stalled. A STALL handshake will be initiated in re-
sponse to host access requests until the STALL bit is cleared.

2–0 Reserved Write 0s to these bits.

Bits 5–0 in Isochronous Mode (ISO = 1)

5–3 CTXH 000b–111b IN endpoint X-buffer byte count – high bits.

2–0 CTYH 000b–111b IN endpoint Y-buffer byte count – high bits.
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14.8.3.2 OUT Endpoint n Configuration Register (USBOCNFn)
(n = 1, 2, 3, 4, 5, 6, or 7)

As shown in Figure 14–24, the function of bits 5–0 of USBOCNFn depend on
whether you have programmed the endpoint for non-isochronous transfers or
for isochronous transfers. Table 14–19 describes the bits of USBOCNFn, tak-
ing into account the optional function of bits 5–0.

Figure 14–24. OUT Endpoint n Configuration Register (USBOCNFn)
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Legend:

R/W Read access/Write access
– U The content of these bits is undefined after a DSP reset.

Table 14–19. USBOCNFn Bit Descriptions 

Bit field symval Value Description

7 UBME UBM access enable

0 The UBM cannot access this endpoint (the endpoint is
inactive).

1 The UBM can access this endpoint (the endpoint is
active).

6 ISO Isochronous mode enable

0 Non-isochronous mode

1 Isochronous mode
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Table 14–19. USBOCNFn Bit Descriptions (Continued)

Bit DescriptionValuesymvalfield

Bits 5–0 in Non-Isochronous Mode (ISO = 0)

5 TOGGLE Endpoint data toggle. This bit reflects the data toggle se-
quence (see section 14.1.2 on page 14-3). Note: You do
not need to write to this bit; it is maintained by the UBM.

0 The next data packet is DATA0.

1 The next data packet is DATA1.

4 DBUF Double buffer mode enable

Note:  The USB DMA controller requires the double buff-
er mode. If the DMA controller will be servicing the end-
point, make sure DBUF = 1 before you start the control-
ler.

0 Single buffer used (X buffer only)

1 Double buffer mode. The USB DMA controller tracks the
data toggle sequence to determine the active buffer. For
a DATA0 packet, the controller uses the X buffer; for a
DATA1 packet, the controller uses the Y buffer.

3 STALL Endpoint stall. Set this bit to tell the USB host that the
endpoint is stalled.

0 No stall

1 Endpoint stalled. A STALL handshake will be initiated in
response to host access requests until the STALL bit is
cleared.

2–0 Reserved These bits are not available for use.

Bits 5–0 in Isochronous Mode (ISO = 1)

5–3 Reserved Write 0s to these bits.

2–0 SIZH 000h–111b OUT endpoint X-/Y-buffer size – high bits
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14.8.3.3 Endpoint n Buffer Base Address Registers (USBxBAXn, USBxBAYn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

Each general-purpose endpoint has two buffer base address registers: one for
its X buffer and one for its Y buffer (see Figure 14–25 and Table 14–20). By
writing to one of these registers, you provide bits 11–4 of a 12-bit relative ad-
dress. The USB module adds 0s for the bits 3–0 of the relative address. The
address is relative to the start address of the USB module registers.

Consider Example 14–2, which follows Table 14–20. Rather than the absolute
address, you load the offset shifted right by 4 bits. The 4-bit shift is required
because the buffer base address registers must hold the 8 high bits. When the
USB module uses those 8 bits, it extends them with four least significant 0s.

Figure 14–25. Endpoint Buffer Base Address Registers
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R/W – U Á
ÁLegend:

R/W Read/write access
– U The contents of the registers is undefined after a DSP reset.

Table 14–20. Endpoint Buffer Base Address Register Bit Descriptions 

Bit field symval Value Description

For IN endpoint n:

USBIBAXn(7–0) BAX 00h–FFh Bits 11–4 of the X-buffer base address for
IN endpoint n. BIts 3–0 are 0s.

USBIBAYn(7–0) BAY 00h–FFh Bits 11–4 of the Y-buffer base address for
IN endpoint n. Bits 3–0 are 0s.

For OUT endpoint n:

USBOBAXn(7–0) BAX 00h–FFh Bits 11–4 of the X-buffer base address for
OUT endpoint n. Bits 3–0 are 0s.

USBOBAYn(7–0) BAY 00h–FFh Bits 11–4 of the Y-buffer base address for
OUT endpoint n. Bits 3–0 are 0s.
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Example 14–2. Loading the Endpoint Buffer Base Addresses

IN endpoint 1, X buffer: Assigned to the 1st 64 bytes of the buffer RAM
IN endpoint 1, Y buffer: Assigned to the 2nd 64 bytes of the buffer RAM

Buffer I/O Address Seen by CPU
Value Loaded into Buffer
Base Address Register

X
+

USB module registers base address
Offset for top of buffer RAM (80h)

USBIBAX1 = (80 >>4)

Y
+

USB module registers base address
Offset for 64 bytes further (C0h)

USBIBAY1 = (C0 >>4)

14.8.3.4 Endpoint n Count Registers (USBxCTXn, USBxCTYn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

Each general-purpose endpoint has two count registers (see Figure 14–26
and Table 14–21): one for its X buffer and one for its Y buffer. The NAK bit cor-
responds to the negative acknowledgement (NAK) of the USB protocol. While
the NAK bit is set (NAK = 1), the UBM sends a NAK in response to host data
requests at the endpoint. For more details about the role of the NAK bit, see
section 14.3 on page 14-11.

Each buffer (X or Y) needs a count register to determine how many bytes the
UBM should move out of the buffer (for an IN endpoint) or to record how many
bytes the UBM has moved into the buffer (for an OUT endpoint). If the endpoint
is in the non-isochronous mode (ISO = 0), the CTX/CTY field is the full count
register. If the endpoint is in the isochronous mode (ISO = 1), the CTX/CTY
field is the 7 low bits of a 10-bit count register. The 3 high bits come from anoth-
er register, as described in Table 14–21.

Figure 14–26. Endpoint n Count Registers
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R/W Read/write access
– U The contents of these bits are undefined after a DSP reset.



USB Module Registers

 14-76

Table 14–21. Endpoint Count n Register Bit Descriptions 

Bit field symval Value Description

7 NAK Negative acknowledgement

For IN endpoint n:

0 Data in the endpoint buffer is ready for an IN transfer.

1 Data in the endpoint buffer is not ready. The UBM will
send a NAK in response to an IN token.

For OUT endpoint n:

0 The endpoint buffer is ready for an OUT transfer.

1 Either the endpoint buffer is not ready or it contains a
valid data packet from the previous transfer. The UBM
will send a NAK in response to an OUT token.

6–0 CTX/CTY Count bits for buffer b (b = X or Y).

In the non-isochronous mode:

0–64 For IN endpoint n:  When NAK = 0, this value indicates
the number of bytes the UBM should move out of buffer
b in response to an IN token.

For OUT endpoint n:  This value is a running count of
the bytes the UBM has stored to buffer b.

Note:  If CTb holds a value greater than 64, the results
are unpredictable.

In the isochronous mode:

000 0000b–
111 1111b

For IN endpoint n:  These bits are the 7 low bits of the
10-bit byte count for buffer b. As shown in Figure 14–27
(page 14-77), the 3 high bits are taken from
USBICNFn. Load into these 10 bits the number of bytes
you want the UBM to read from buffer b in response to
an IN token. When an IN token arrives and NAK = 0,
the UBM reads that many bytes, passing them to the
serial interface engine (SIE) for the host.

For OUT endpoint n:  These bits are the 7 low bits of
the 10-bit byte counter for buffer b. As shown in
Figure 14–28 (page 14-78), the 3 high bits are taken
from USBOCTXHn/USBOCTYHn. The 10-bit counter
keeps a running count of the bytes the UBM has written
to buffer b.
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Figure 14–27. IN Endpoint n Extended Count Values in
the Isochronous Mode (ISO = 1)
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Figure 14–28. OUT Endpoint n Extended Count Values in
the Isochronous Mode (ISO = 1)
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14.8.3.5 Endpoint n X-/Y-Buffer Size Register (USBxSIZn)
(x = O or I; n = 1, 2, 3, 4, 5, 6, or 7)

The SIZ field in USBxSIZn determines the maximum packet size: the number
of bytes the endpoint buffer can hold at one time. In the double buffer mode
(required for the USB DMA controller), the X buffer and the Y buffer are of equal
size, and SIZ defines that size.

Figure 14–29. Endpoint n X-/Y-Buffer Size Register (USBxSIZn)
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R/W Read/write access
– U The contents of these bits are undefined after a DSP reset.
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Table 14–22. Endpoint Size Register Bit Descriptions 

Bit field symval Value Description

7 Reserved This bit is not available for use.

6–0 SIZ X-/Y-buffer size

In the non-isochronous mode:

8, 16, 32,
or 64

The number of bytes in the buffer RAM allocated for the
X buffer. In the double buffer mode (DBUF = 1), the
same number of bytes is allocated for the Y buffer.

Note:  If SIZ holds a value greater than 64, the results
are unpredictable.

In the isochronous mode:

000 0001b–
111 1111b

The 7 low bits of the 10-bit buffer size. As shown in
Figure 14–30 (page 14-80), the 3 high bits are taken
from USBISIZHn for an IN endpoint or from
USBOCNFn for an OUT endpoint. The 10-bit buffer
size is used for the X buffer and, in the double buffer
mode, is also used for the Y buffer.
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Figure 14–30. Extended Size Values in the Isochronous Mode (ISO = 1)
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X-/Y-buffer size
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Res. SIZ

SIZH SIZ

ISOUSBOCNFn (ISO=1)

USBOSIZn

OUT endpoint n
X-/Y-buffer size
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14.8.3.6 Endpoint n Buffer Size and Count Extension Registers:
USBISIZHn, USBICTXHn, USBOCTYHn (n = 1, 2, 3, 4, 5, 6, or 7)

These registers provide buffer size and count extensions for isochronous
transfers between the USB module and a host processor. Specifically:

� If IN endpoint n is using the isochronous mode (ISO = 1 in USBICNFn),
USBISIZHn supplies 3 high bits to extend the X-/Y-buffer size from a 7-bit
value (SIZ) to a 10-bit value (SIZH:SIZ). The formation of this extended
size value is shown in Figure 14–30 on page 14-80.

� If OUT endpoint n is using the isochronous mode (ISO = 1 in
USBOCNFn):

� USBOCTXHn supplies 3 high bits to extend the X-buffer byte count
from a 7-bit value (CTX) to a 10-bit value (CTXH:CTX).

� USBOCTYHn supplies 3 high bits to extend the Y-buffer byte count
from a 7-bit value (CTY) to a 10-bit value (CTYH:CTY).

The formation of these extended count values is shown in Figure 14–28
on page 14-78.

Figure 14–31. Endpoint Buffer Size and Count Extension Registers
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– U The content of these bits is undefined after a DSP reset.
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Table 14–23. Endpoint Size and Count Extension Register Bit Descriptions 

Bit field symval Value Description

USBISIZHn(2–0) SIZH 000h–111h In the isochronous mode (ISO = 1), these
bits are the 3 high bits of the IN endpoint X-/
Y-buffer byte count. The 7 low bits are in the
SIZ bits of USBISIZn (see section 14.8.3.5
on page 14-78).

USBOCTXHn(2–0) CTXH 000h–111h In the isochronous mode (ISO = 1), these
bits are the 3 high bits of the OUT endpoint
X-buffer byte count. The 7 low bits are in the
CTX bits of USBOCTXn (see section
14.8.3.4 on page 14-75).

USBOCTYHn(2–0) CTYH 000h–111h In the isochronous mode (ISO = 1), these
bits are the 3 high bits of the OUT endpoint
Y-buffer byte count. The 7 low bits are in the
CTY bits of USBOCTYn (see section
14.8.3.4 on page 14-75).

14.8.4 Descriptor Registers for IN and OUT Endpoints 0

The control endpoints (IN endpoint 0 and OUT endpoint 0) each have two des-
criptor registers to define them: a configuration register and a count register,
which are described here.

14.8.4.1 Endpoint 0 Configuration Register (USBxCNF0)
(x = O or I)

IN endpoint 0 and OUT endpoint 0 each have a configuration register of the
form shown in Figure 14–32. Table 14–24 describes the bit fields of this regiser.

Figure 14–32. Endpoint 0 Configuration Register (USBxCNF0)
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Legend:

R Read-only access
R/W Read/write access

– 0 A DSP reset forces these bits to 0.
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Table 14–24. USBxCNF0 Bit Descriptions 

Bit field symval Value Description

7 UBME UBM access enable

0 The UBM cannot access this endpoint (the endpoint is
inactive).

1 The UBM can access this endpoint (the endpoint is ac-
tive).

6 Reserved This bit is not available for use.

5 TOGGLE Endpoint data toggle. This bit reflects the data toggle se-
quence (see section 14.1.2 on page 14-3).

0 The next data packet is DATA0.

1 The next data packet is DATA1.

4 Reserved This bit is not available for use.

3 STALL Endpoint stall. Set this bit to tell the USB host that the
endpoint is stalled.

0 No stall

1 Endpoint stalled. A STALL handshake will be initiated in
response to host access requests until the STALL bit is
cleared. The STALL bit is automatically cleared when the
next setup packet arrives.

2–0 Reserved These bits are not available for use.

14.8.4.2 Endpoint 0 Count Register (USBxCT0)
(x = O or I)

IN endpoint 0 and OUT endpoint 0 each has one count register. As shown in
Figure 14–33 and Figure 14–34, the two count registers have the same form
but different reset values for their NAK bits and different accessibility for their
CT0 (count) fields.

Table 14–25 describes the bit fields of an endpoint 0 count register. The NAK
bit corresponds to the negative acknowledgement (NAK) of the USB protocol.
While the NAK bit is set (NAK = 1), the UBM sends a NAK in response to host
requests at the endpoint. For more details about the role of the NAK bit, see
section 14.3 on page 14-11. The CT0 field determines how many bytes the
UBM should move out of the endpoint buffer (for IN endpoint 0) or records how
many bytes the UBM has moved into the endpoint buffer (for OUT endpoint 0).
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Figure 14–33. Count Register for IN Endpoint 0 (USBICT0)
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R/W Read/write access
– X X is the value after a DSP reset.

Figure 14–34. Count Register for OUT Endpoint 0 (USBOCT0)
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Legend:

R Read-only access
R/W Read/write access
– X X is the value after a DSP reset.

Table 14–25. USBxCT0 Bit Descriptions 

Bit field symval Value Description

7 NAK Negative acknowledgement

For IN endpoint 0:

0 Data in the endpoint buffer is ready for an IN transfer.

1 Data in the endpoint buffer is not ready. The UBM will
send a NAK in response to an IN token.

For OUT endpoint 0:

0 The endpoint buffer is ready for an OUT transfer.

1 Either the endpoint buffer is not ready or it contains a
valid data packet from the previous transfer. The UBM
will send a NAK in response to an OUT token.
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Table 14–25. USBxCT0 Bit Descriptions (Continued)

Bit DescriptionValuesymvalfield

6–0 CT0 Count bits

0–64 For IN endpoint 0: When NAK = 0, this value indicates
the number of bytes the UBM should move out of the
endpoint buffer in response to an IN token.

For OUT endpoint 0: This value is a running count of
the bytes the UBM has stored to the endpoint buffer.

Note:  If CT0 holds a value greater than 64, the results
are unpredictable.

14.8.5 Interrupt Registers

This section describes registers that identify the current USB interrupt source
(USBINTSRC), hold flags for interrupt events (USBxEPIF, USBxDGIF, and
USBxDRIF), enable/disable interrupt requests (USBxEPIE and USBxDIE).

14.8.5.1 Interrupt Source Register (USBINTSRC)

All interrupt requests generated in the USB module are multiplexed through
an arbiter to a single USB interrupt request for the CPU. The interrupt service
routine can determine the interrupt source by reading the interrupt source reg-
ister (USBINTSRC). Then the ISR can branch to the appropriate subroutine.

When the CPU reads the INTSRC field (see Figure 14–35), it obtains a 7-bit
interrupt source code. Table 14–27 shows the valid INTSRC codes and the
corresponding interrupt sources.

When the interrupt arbiter receives multiple interrupt requests at the same
time, it services them one at a time according to a predefined priority ranking.
The INTSRC value also identifies the priority of an interrupt source (02h is
highest, 52h is lowest).

For more details about the interrupt sources and how USBINTSRC is used,
see section 14.6 on page 14-46.

Figure 14–35. Interrupt Source Register (USBINTSRC)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved INTSRC

R–0
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Table 14–26. Interrupt Source Register (USBINTSRC) Field Values

Bit field symval Value Function

15–8 Reserved These bits are not available for use.

7–0 INTSRC 00h–52h These 8 bits indicate the interrupt source, the event that
caused an interrupt to the CPU. In addition, these bits indicate
the priority of each interrupt source. The interrupt source cor-
responding to INTSRC = 02h has the highest priority, and the
interrupt source corresponding to INTSRC = 52h has the low-
est priority.

Table 14–27. Interrupt Sources Matched to INTSRC Values  

INTSRC Value/
Priority Interrupt Source

INTSRC Value/
Priority Interrupt Source

00h (no interrupt)

02h OUT endpoint 0 32h OUT endpoint 1 DMA Reload

33h OUT endpoint 1 DMA Go

04h IN endpoint 0 34h OUT endpoint 2 DMA Reload

35h OUT endpoint 2 DMA Go

06h RSTR interrupt 36h OUT endpoint 3 DMA Reload

37h OUT endpoint 3 DMA Go

08h SUSR interrupt 38h OUT endpoint 4 DMA Reload

39h OUT endpoint 4 DMA Go

0Ah RESR interrupt 3Ah OUT endpoint 5 DMA Reload

3Bh OUT endpoint 5 DMA Go

0Ch SETUP packet received 3Ch OUT endpoint 6 DMA Reload

3Dh OUT endpoint 6 DMA Go

0Eh STPOW packet received 3Eh OUT endpoint 7 DMA Reload

3Fh OUT endpoint 7 DMA Go

10h SOF

11h PSOF

12h OUT endpoint 1 42h IN endpoint 1 DMA Reload
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Table 14–27. Interrupt Sources Matched to INTSRC Values (Continued)

INTSRC Value/
Priority Interrupt Source

INTSRC Value/
PriorityInterrupt Source

14h OUT endpoint 2 43h IN endpoint 1 DMA Go

16h OUT endpoint 3 44h IN endpoint 2 DMA Reload

18h OUT endpoint 4 45h IN endpoint 2 DMA Go

1Ah OUT endpoint 5 46h IN endpoint 3 DMA Reload

1Ch OUT endpoint 6 47h IN endpoint 3 DMA Go

1Eh OUT endpoint 7 48h IN endpoint 4 DMA Reload

49h IN endpoint 4 DMA Go

22h IN endpoint 1 4Ah IN endpoint 5 DMA Reload

24h IN endpoint 2 4Bh IN endpoint 5 DMA Go

26h IN endpoint 3 4Ch IN endpoint 6 DMA Reload

28h IN endpoint 4 4Dh IN endpoint 6 DMA Go

2Ah IN endpoint 5 4Eh IN endpoint 7 DMA Reload

2Ch IN endpoint 6 4Fh IN endpoint 7 DMA Go

2Eh IN endpoint 7 50h Host interrupt

52h Host error
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14.8.5.2 Endpoint Interrupt Flag Register (USBxEPIF)
(x = O or I)

For each endpoint, the USB module sets an interrupt flag in USBxEPIF every
time the UBM moves data in/out of the endpoint’s buffer. For example, if the
UBM has finished moving data into the buffer for OUT endpoint 2, the OE2 flag
is set in USBOEPIF. In addition to setting a flag, the USB module can generate
an endpoint interrupt request. For more details about endpoint interrupt re-
quests, see section 14.6.2 on page 14-48.

Figure 14–36. Endpoint Interrupt Flag Register for OUT Endpoints (USBOEPIF)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 OE0

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Figure 14–37. Endpoint Interrupt Flag Register for IN Endpoints (USBIEPIF)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Table 14–28. Endpoint Interrupt Flag Register (USBxEPIF) Field Values

Bit field symval Value Function

15–8 Reserved 0 These bits are not available for use.

7–1 xE[7:0] x = O (for OUT) or I (for IN).

0 No interrupt pending

1 Indicates that the corresponding endpoint generated an in-
terrupt. It is set by the hardware and cleared either when the
CPU reads the interrupt source register (USBINTSRC) with
INTSRC equal to the corresponding interrupt or when the
CPU writes a 1 to this bit.
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14.8.5.3 Endpoint Interrupt Enable Register (USBxEPIE)
(x = O or I)

If a bit gets set in the endpoint interrupt flag register (USBxEPIF) and the corre-
sponding bit is set in USBxEPIE, an endpoint interrupt request is generated.
For example, if the IE2 bit of USBIEPIF gets set and the IE2 bit of USBIEPIE
is 1, an IN endpoint 2 interrupt request is generated. For more details about
endpoint interrupt requests, see section 14.6.2 on page 14-48.

Figure 14–38. Endpoint Interrupt Enable Register for OUT Endpoints (USBOEPIE)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 OE0

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Figure 14–39. Endpoint Interrupt Enable Register for IN Endpoints (USBIEPIE)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 IE0

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Table 14–29. Endpoint Interrupt Enable Register (USBxEPIE) Field Values

Bit field symval Value Function

15–8 Reserved 0 These bits are not available for use.

7–1 xE[7:0] Endpoint interrupt enable. x = O (for OUT) or I (for IN).

0 Endpoint interrupt requests are disabled for the endpoint.

1 Endpoint interrupt requests are enabled for the endpoint.
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14.8.5.4 DMA GO Interrupt Flag Register (USBxDGIF)
(x = O or I)

At the completion of a DMA transfer, if RLD = 0, the USB DMA controller clears
the GO bit of the endpoint, and the corresponding GO interrupt flag is set in
USBxDGIF. For example, when the controller goes idle after servicing OUT
endpoint 6, the OE6 bit is set in USBODGIF. In addition to setting the flag, the
USB module can generate a DMA GO interrupt request. For details on GO in-
terrupt requests, see section 14.6.3 on page 14-50.

Figure 14–40. DMA GO Interrupt Flag Register for OUT Endpoints (USBODGIF)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 Reserved

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Figure 14–41. DMA GO Interrupt Flag Register for IN Endpoints (USBIDGIF)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 Reserved

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Table 14–30. DMA GO Interrupt Flag Register (USBxDGIF) Field Values

Bit field symval Value Function

15–8 Reserved 0 These bits are not available for use.

7–1 xE[7:1] x = O (for OUT) or I (for IN). The USB DMA controller sets
the DMA GO flag bit to indicate that the controller is ready
for a new DMA transfer. The flag bit is cleared either when
the CPU reads the interrupt source register
(USBINTSRC) with INTSRC equal to the corresponding
interrupt or when the CPU writes a 1 to this bit.

0 No GO interrupt pending

1 GO interrupt pending

0 Reserved 0 This bit is not available for use.
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14.8.5.5 DMA RLD Interrupt Flag Register (USBxDRIF)
(x = O or I)

At the completion of a DMA transfer, if RLD = 1, the USB DMA controller clears
the RLD bit of the endpoint, and the corresponding RLD interrupt flag is set in
USBxDRIF. For example, when the controller performs a DMA reload opera-
tion for IN endpoint 7, the IE7 bit is set in USBIDRIF. In addition to setting the
flag, the USB module can generate a DMA RLD interrupt request. For details
on RLD interrupt requests, see section 14.6.3 on page 14-50.

Figure 14–42. DMA RLD Interrupt Flag Register for OUT Endpoints (USBODRIF)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 Reserved

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Figure 14–43. DMA RLD Interrupt Flag Register for IN Endpoints (USBIDRIF)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 Reserved

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0

Table 14–31. DMA RLD Interrupt Flag Register (USBxDRIF) Field Values

Bit field symval Value Function

15–8 Reserved 0 These bits are not available for use.

7–1 xE[7:1] x = O (for OUT) or I (for IN). The DMA RLD flag bit is set when
the USB DMA controller completes a DMA reload operation
(see section 14.4.5 on page 14-18). The flag bit is cleared
either when the CPU reads the interrupt source register
(USBINTSRC) with INTSRC equal to the corresponding in-
terrupt or when the CPU writes a 1 to this bit.

0 No RLD interrupt pending

1 RLD interrupt pending

0 Reserved This bit is not available for use.
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14.8.5.6 DMA Interrupt Enable Register (USBxDIE)
(X = O or I)

USBxDIE enables or disables both DMA GO interrupt requests and DMA RLD
interrupt requests. Consider DMA interrupt activity for IN endpoint 2. If the USB
module sets the IE2 GO flag in USBIDGIF and IE2 = 1 in USBIDIE, a DMA GO
interrupt request is generated for the endpoint. Likewise, if the IE2 RLD flag
is set in USBIDRIF and IE2 = 1 in USBIDIE, a DMA RLD interrupt is generated
for the endpoint. For more details about DMA interrupt requests, see section
14.6.3 on page 14-50.

Figure 14–44. DMA Interrupt Enable Register for OUT Endpoints (USBODIE)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

OE7 OE6 OE5 OE4 OE3 OE2 OE1 Reserved

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Figure 14–45. DMA Interrupt Enable Register for IN Endpoints (USBIDIE)

15 14 13 12 11 10 9 8

Reserved

7 6 5 4 3 2 1 0

IE7 IE6 IE5 IE4 IE3 IE2 IE1 Reserved

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Table 14–32. DMA Interrupt Enable Register (USBxDIE) Field Values

Bit field symval Value Function

15–8 Reserved 0 These bits are not available for use.

7–1 xE[7:1] x = O (for OUT) or I (for IN). DMA interrupt enable. This
bit enables or disables both the RLD interrupt and the GO
interrupt for the endpoint.

0 RLD and GO interrupt requests are disabled for the
endpoint.

1 RLD and GO interrupt requests are enabled for the
endpoint.

0 Reserved 0 This bit is not available for use.
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14.8.6 Host-DMA Mode Registers

This section describes the registers used to configure the host-DMA mode of
the USB module and to monitor host-DMA transfers. For more information
about this mode, see section 14.5 on page 14-40.

14.8.6.1 Host Control Register (USBHCTL)

USBHCTL has bits to enable or disable the following: the host-DMA mode, the
host interrupt, and the host error interrupt.

Figure 14–46. Host Control Register (USBHCTL)

7 6 5 4 3 2 1 0

Reserved HERRIE HIE EN

R/W–0 R/W–0 R/W–0

Table 14–33. Host Control Register (USBHCTL) Field Values

Bit field symval Value Function

7–3 Reserved This bits are not available for use.

2 HERRIE Host error interrupt enable

0 Host error interrupt disabled

1 Host error interrupt enabled

1 HIE Host interrupt enable

0 Host interrupt disabled

1 Host interrupt enabled

0 EN Host-DMA mode enable

0 Host-DMA mode disabled

1 Host-DMA mode enabled
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14.8.6.2 Host Endpoint Select Register (USBHEPSEL)

USBHEPSEL determines which two of the 14 general-purpose endpoints are
to be used by the USB DMA controller for host-DMA transfers.

Figure 14–47. Host Endpoint Select Register (USBHEPSEL)

7 6 5 4 3 2 1 0

Reserved IEP Reserved OEP

R/W–0 R/W–0

Table 14–34. Host Endpoint Select Register (USBHEPSEL) Field Values

Bit field symval Value Function

7 Reserved This bit is not available for use.

6–4 IEP 1–7 IN endpoint number. IEP determines which of the general-pur-
pose IN endpoints will be the host-DMA endpoint for IN trans-
fers in the host-DMA mode.

3 Reserved This bit is not available for your  use.

2–0 OEP 1–7 OUT endpoint number. OEP determines which of the general-
purpose OUT endpoints will be the host-DMA endpoint for
OUT transfers in the host-DMA mode.

14.8.6.3 Host Status Register (USBHSTAT)

Check USBHSTAT to determine whether the host-DMA mode is disabled (DIS
bit). USBSTAT also provides interrupt flag bits for the host interrupt and the
host error interrupt.

Figure 14–48. Host Status Register (USBHSTAT)

7 6 5 4 3 2 1 0

Reserved HERRIF HIF DIS

R/W1C–0 R/W1C–0 R–1

Table 14–35. Host Status Register (USBHSTAT) Field Values  

Bit field symval Value Function

7–3 Reserved These bits are not available for use.

2 HERRIF Host error interrupt flag

0 No host error interrupt pending

1 A host error has occurred: During an OUT transfer, the size of
the data transferred from the host did not match the size speci-
fied in the protocol header.



USB Module Registers

14-95USB Module

Table 14–35. Host Status Register (USBHSTAT) Field Values (Continued)

Bit FunctionValuesymvalfield

1 HIF Host interrupt flag

0 No host interrupt pending

1 The USB DMA controller has completed a DMA transfer be-
tween the DSP memory and a host-DMA endpoint. This flag is
set only if the host requests the interrupt by setting the INT bit
in the first byte of the protocol header.

0 DIS Host-DMA mode disabled flag

0 Host-DMA mode not disabled

1 Host-DMA mode disabled

14.8.7 General Control and Status Registers

This section describes the USB registers that perform general control and sta-
tus functions. The bits in these registers allow such functions as resetting the
USB module, shutting down the USB module, responding to specific condi-
tions on the USB, and tracking USB frames for isochronous transfers.

14.8.7.1 Global Control Registe (USBGCTL)

The SOFTRST bit in USBGCTL enables you to reset the USB module without
resetting the entire DSP.

Figure 14–49. Global Control Register (USBGCTL)

7 1 0

Reserved SOFTRST

W–0
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Table 14–36. Global Control Register (USBGCTL) Field Values

Bit field symval Value Function

7–1 Reserved These bits are not available for use.

0 SOFTRST Software reset

1 Reset the USB module. The effects are the same as a
hardware DSP reset (see page 14-54): All of the USB
module registers assume their power-on default values
except for USBCTL. Two effects are: (1) The USB module
goes inactive, and (2) The USB module is disconnected
from the USB.

As soon as the reset is complete, SOFTRST is cleared to
0, and the USB is free to run.

14.8.7.2 Frame Number Registers (USBFNUMH, USBFNUML)

See Figure 14–50 and Figure 14–51. The register formed by the
concatenation of the bits in USBFNUMH and USBFNUML can help you with
isochronous transfers. This register reports the current USB frame number.
The 11-bit value rolls over to 0 if it grows larger than 2047.

Figure 14–50. Frame Number (High Part) Register (USBFNUMH)

7 6 5 4 3 2 1 0

Reserved FNUMH

R–0

Figure 14–51. Frame Number (Low Part) Register (USBFNUML)

7 6 5 4 3 2 1 0

FNUML

R–0

Table 14–37. Frame Number Register (USBFNUMH and USBFNUML) Field Values

Register(Bit) field symval Value Function

USBFNUMH(7–3) Reserved 0 Reserved. Reads as 0.

USBFNUMH(2–0) FNUMH 0h–3h Most significant 3 bits of the current USB
frame number.

USBFNUML(7–0) FNUML 00h–FFh Least significant 8 bits of the current USB
frame number.
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14.8.7.3 PSOF Interrupt Timer Counter (USBPSOFTMR)

USBPSOFTMR is shown in Figure 14–52 and described in Table 14–38.

A start-of-frame (SOF) token is expected on the USB every 1 millisecond. If
an endpoint is placed in the isochronous mode, the SOF token triggers a pend-
ing DMA transfer for that endpoint. To provide the minimum latency between
the preparation of data buffers and the availability of those buffers to the USB
DMA controller, the USB module can give advance notice of each SOF token.
Advance notice can come from a pre-SOF (PSOF) interrupt request. If you
load USBPSOFTMR with a value n and enable PSOF interrupt requests, the
USB module generates a PSOF interrupt request n 750-kHz clock cycles
ahead of the expected arrival of the SOF token.

Figure 14–52. PSOF Interrupt Timer Counter (USBPSOFTMR)

7 6 5 4 3 2 1 0

PSOFTMR

R/W–0

Table 14–38. PSOF Interrupt Timer Counter (USBPSOFTMR) Field Values

Bit field symval Value Function

7–0 PSOFTMR 0–255 Indicates the number of clocks a PSOF interrupt should
proceed each SOF token. The clock is 750 kHz (USB
12 MHz clock divided by 16).

Note: The time of the next SOF token is predicted and the
prediction is not guaranteed to be precise.

14.8.7.4 USB Control Register (USBCTL)

USBCTL enables and controls the features that are described in Table 14–39.
This register is not affected during a reset operation that is initiated with the
SOFTRST bit. This register is affected by other reset operations.

Figure 14–53. USB Control Register (USBCTL)

7 6 5 4 3 2 1 0

CONN FEN RWUP FRSTE Reserved SETUP DIR

R/W–0 R/W–1 R/W–0 R/W–1 R/W–0 R/W–0
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Table 14–39. USB Control Register (USBCTL) Field Values  

Bit field symval Value Function

7 CONN Connect/disconnect

0 Upstream port is disconnected. The pull-up disabled.

1 Upstream port is connected. Pull up enabled

6 FEN Function enable

0 The USB module is inactive.

1 The USB module is active. If connected to the bus (see the de-
scription for the CONN bit), the module will communicate with
the host.

5 RWUP Device remote wakeup request. Writing a 1 to this bit generates
a remote wake up signal on the bus. The USB module clears
RWUP after the signal is sent.

0 Writing a 0 to this bit has no effect.

1 The CPU has asked the USB module to generate a remote wa-
keup signal on the bus.

4 FRSTE Function reset/USB reset connection enable

0 Function (module) reset is not connected to a USB reset. If a
USB reset request is detected on the bus, the RSTR interrupt
request is generated, but the USB module is not reset.

1 Function (module) reset is connected to a USB reset. If a USB
reset request is detected on the bus, the RSTR interrupt request
is generated and the USB module is reset. All pending interrupts
are cleared except the RSTR interrupt. The USB module is not
disconnected from the bus.

3–2 Reserved 0 These bits are not available for use.

1 SETUP Setup interrupt status. Software can write a 1 to this bit to indi-
cate when a SETUP interrupt is being serviced. A write of 0 has
no effect.

0 The CPU has cleared this SETUP bit by writing 1 to the SETUP
bit of the USB interrupt flag register (USBIF). A new setup pack-
et will be accepted.

1 Do not accept a new setup packet.The USB module will send
a STALL in response to any setup packet until the SETUP bit is
0.
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Table 14–39. USB Control Register (USBCTL) Field Values (Continued)

Bit FunctionValuesymvalfield

0 DIR Endpoint 0 data direction. When a setup packet arrives, the
CPU must decode the packet and set or clear the DIR bit to re-
flect the direction of data flow. This bit also determines the end-
point’s response to a 0-byte handshake packet. The USB mod-
ule will not generate an endpoint interrupt upon completion of
a control transfer handshake (a 0-byte transfer). The USB mod-
ule stalls endpoint 0 if an OUT packet is expected (DIR = 0,
OUT NAK = 0, IN NAK = 1) and an IN token arrives (early
handshake), or the other way around.

0 An OUT control transaction is expected. If an IN token (early
handshake) arrives, respond with STALL.

1 An IN control transaction is expected. If an OUT token (early
handshake) arrives, respond with STALL.

14.8.7.5 USB Interrupt Flag Register (USBIF)

USBIF indicates the current status of the USB bus interrupts.

Notes:

1) The STPOW and SETUP bits are not automatically cleared when the
CPU reads the interrupt source register (USBINTSRC). To clear one of
these bits, write a 1 to it. The other bits in USBIF are automatically
cleared when the corresponding interrupt value is read from
USBINTSRC.

2) If a new setup token is received before SETUP is cleared, the USB mod-
ule sets STPOW and an STPOW interrupt request (if enabled) is gener-
ated.

Figure 14–54. USB Interrupt Flag Register (USBIF)

7 6 5 4 3 2 1 0

RSTR SUSR RESR SOF PSOF SETUP Reserved STPOW

R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0 R/W1C–0
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Table 14–40. USB Interrupt Flag Register (USBIF) Field Values  

Bit field symval Value Function

7 RSTR Function reset request. This bit is set in response to host
initiating a port reset. This bit is not affected by a USB module
reset.

0 No reset condition detected on the USB

1 Reset condition detected on the USB

6 SUSR Function suspend request

0 No suspend condition detected on the USB

1 Suspend condition detected on the USB

5 RESR Function resume request

0 No resume condition detected on the USB

1 Activity on the USB resumes after a suspend condition.

4 SOF Start of frame (SOF) notification

0 No SOF packet detected on the USB

1 SOF packet detected on the USB

3 PSOF 0 Pre-SOF (PSOF) notification. This bit is set a multiple of 16
USB clock cycles ahead of when the SOF token is expected.
This allows the user to provide a transfer buffer for the USB
DMA controller in time to prevent overflow or underflow
conditions. This is especially helpful for isochronous transfers.
The timing of this event is controlled by the content of the
USBPSOFTMR register.

0 No PSOF notification received

1 PSOF notification received from PSOF timer

2 SETUP 0 SETUP packet received. Clearing this bit also clears the
SETUP bit in the USB control register (USBCTL) and allows a
new setup packet to move into the setup packet buffer.

0 No setup packet received

1 A new setup packet has arrived.

1 Reserved This bit is not available for use.
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Table 14–40. USB Interrupt Flag Register (USBIF) Field Values (Continued)

Bit FunctionValuesymvalfield

0 STPOW Setup overwrite

0 No setup overwrite

1 A setup overwrite has occurred; that is, SETUP = 1 in USBIF
and another setup packet has arrived.

14.8.7.6 USB Interrupt Enable Register (USBIE)

The bits in USBIE enable or disable each of the interrupts associated with the
bits in the USB interrupt flag register, USBIF (see section 14.8.7.5).

Figure 14–55. USB Interrupt Enable Register (USBIE)

7 6 5 4 3 2 1 0

RSTR SUSR RESR SOF PSOF SETUP Reserved STPOW

R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0 R/W–0

Table 14–41. USB Interrupt Enable Register (USBIE) Field Values  

Bit field symval Value Function

7 RSRT Function reset interrupt enable. This bit is not affected by a
USB reset.

0 Function reset interrupt disabled

1 Function reset interrupt enabled

6 SUSR Function suspend interrupt enable

0 Function suspend interrupt disabled

1 Function suspend interrupt enabled

5 RESR Function resume interrupt enable

0 Function resume interrupt disabled

1 Function resume interrupt enabled

4 SOF Start-of-frame (SOF) interrupt enable

0 SOF interrupt disabled

1 SOF interrupt enabled
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Table 14–41. USB Interrupt Enable Register (USBIE) Field Values (Continued)

Bit FunctionValuesymvalfield

3 PSOF Pre-SOF (PSOF) interrupt enable

0 PSOF interrupt disabled

1 PSOF interrupt enabled

2 SETUP SETUP interrupt enable

0 SETUP interrupt disabled

1 SETUP interrupt enabled

1 Reserved This bit is not available for use.

0 STPOW Setup overwrite interrupt enable

0 STPOW interrupt disabled

1 STPOW interrupt enabled

14.8.7.7 USB Device Address Register (USBADDR)

This register contains the address that uniquely identifies the USB module to
the USB host.

Figure 14–56. USB Device Address Register (USBADDR)

7 6 5 4 3 2 1 0

Reserved ADDR

R/W–0

Table 14–42. USB Device Address Register (USBADDR) Field Values

Bit field symval Value Function

7 Reserved 0 Reserved = 0

6–0 ADDR 00h–3Fh These seven bits hold the USB address assigned to the
USB module. The CPU writes the address to this register as
a result of a Set Address request from the host.
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14.8.7.8 USB Idle Control Register (USBIDLECTL)

This register, shown in Figure 14–57, is not part of the USB module, but it
contains the idle enable bit that enables the CPU to put the USB module in its
idle mode. It also contains an idle status bit that indicates when the USB
module is in the idle mode. Finally, USBIDLECTL contains the USBRST bit,
which the CPU can use to hold the USB module in reset. The details about
these bits are in Table 14–43.

This register resides in I/O space.

Figure 14–57. USB Idle Control Register (USBIDLECTL)

7 3 2 1 0

Reserved USBRST IDLESTAT IDLEEN

R/W–0 R–0 R/W–0

Table 14–43. USB Idle Control Register (USBIDLECTL) Field Values

Bit field symval Value Function

7–3 Reserved These bits are not available for use.

2 USBRST USB module reset

0 Hold the USB module in reset.

1 Bring the USB module out of reset.

1 IDLESTAT Idle status

0 The USB module has not been turned off by an IDLE instruc-
tion.

1 The USB module is idle following an IDLE instruction.

0 IDLEEN Idle enable

0 The USB module cannot be affected by an IDLE instruction.

1 Allow the USB module to be deactivated by an IDLE instruc-
tion.

If the PERIPH domain has been deactivated by an IDLE
instruction (PERIS = 1 in the idle status register), the USB
module is inactive.
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Watchdog Timer

Some TMS320C55x  (C55x ) DSPs include a watchdog timer. The watch-
dog timer prevents the system from locking up, if the software becomes
trapped in loops with no controlled exit. To determine whether a particular
C55x DSP has a watchdog timer, see the data sheet for that DSP.
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15.1 Introduction to the Watchdog Timer

The watchdog timer output has a 4-way mux associated with it. The watchdog
timer requires a special servicing sequence to be executed periodically.
Without this periodic servicing, the watchdog timer counter reaches zero and
times out. Consequently, an active-low pulse will be asserted on the watchdog
timer output. The watchdog timer output can be selected to be not connected
or to be connected to the local hardware reset, NMI (nonmaskable interrupt),
or watchdog timer interrupt. This output selection allows maximum flexibility
for utilizing the watchdog timer as required by the particular application.

The watchdog timer consists of a 16-bit counter and a prescaler, and supports
up to a 32-bit dynamic range. Out of reset, the watchdog timer is disabled by
default, this allows a flexible period of time for code to be loaded into the
on-chip memory. However, during this time, the counter starts to run with the
default values in the counters and prescalers, and the watchdog timer output
is disconnected from the watchdog time-out event. The counter reaches zero
when the counter value and prescaler value are exhausted, consequently, the
watchdog timer interrupt is triggered and the WDFLAG bit is set to 1. The
counters and prescalers are reloaded automatically and start to run
continuously. Once the watchdog timer is enabled by setting the WDEN bit to
1, the watchdog timer output is connected to the watchdog time-out event and
the counters and prescalers are reloaded accordingly. To enable the watchdog
timer, a certain sequence of events shall be followed as shown in the watchdog
timer operation state diagram (Figure 15–1).

As shown in Figure 15–1, before the watchdog timer enters the Active state,
the watchdog timer is disabled. The watchdog timer outputs (INT3, NMI, or
RESET) are active only during Active, Service, and Timeout states.

Once the watchdog timer is enabled, it cannot be disabled by software but can
be disabled by a watchdog time-out event or hardware reset. A special key
sequence is provided to prevent the watchdog timer from being accidentally
serviced while the software is trapped in a dead loop or in some other software
failures.

The watchdog timer’s clock is part of the clock generator domain; thus, the
watchdog timer is constantly clocked during an IDLE instruction as long as the
CLKI bit of the IDLE configuration register (ICR) is set.
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Figure 15–1. Watchdog Timer Operation State Diagram
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15.2 Watchdog Timer Registers

Once the watchdog timer is enabled, the registers are under write protection.
Writes to WDTIM, WDPRD, and WDTCR has no effect. Writes to the
WDFLAG, WDEN, and PREMD bits in WDTCR2 has no effect. However,
incorrect key (not 5C6h or A7Eh) sequence to the WDKEY bit results in a
watchdog timer time-out event.

The watchdog timer memory-mapped registers are listed in Table 15–1.

Table 15–1. Watchdog Timer Memory-Mapped Registers

Address (Hex) Name Description

4000 WDTIM Watchdog Timer Counter Register

4001 WDPRD Watchdog Timer Period Register

4002 WDTCR Watchdog Timer Control Register

4003 WDTCR2 Watchdog Timer Control Register 2

15.2.1 Watchdog Timer Counter Register (WDTIM)

The WDTIM is loaded with the 16-bit value in the watchdog period register
(WDPRD). When the PSC bit (in the WDTCR) is decremented past 0 or the
watchdog timer is reset, the WDTIM value is decremented.

Figure 15–2. Watchdog Timer Counter Register (WDTIM)

15 0

Watchdog timer counter

R/W-FFFFh

Note: R/W-x =  Read/Write-Reset value

Table 15–2. Watchdog Timer Counter Register (WDTIM) Field Values

Bit field symval Value Description

15–0 OF(value) 0–FFFFh This 16-bit value is loaded with the watchdog timer period register
(WDPRD) value and decremented.
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15.2.2 Watchdog Timer Period Register (WDPRD)

The WDPRD is used to reload the watchdog timer counter register (WDTIM).

Figure 15–3. Watchdog Timer Period Register (WDPRD)

15 0

Watchdog timer period

R/W-FFFFh

Note: R/W-x =  Read/Write-Reset value

Table 15–3. Watchdog Timer Period Register (WDPRD) Field Values

Bit field symval Value Description

15–0 OF(value) 0–FFFFh This 16-bit value is used to reload the watchdog timer counter reg-
ister (WDTIM).

15.2.3 Watchdog Timer Control Register (WDTCR)

The WDTCR provides the control and status information for the watchdog
timer.

Figure 15–4. Watchdog Timer Control Register (WDTCR)

15 14 13 12 11 10 9 6 5 4 3 0

reserved WDOUT SOFT FREE PSC reserved TDDR

R-0 R/W-0 R/W-0 R/W-0 R-1111b R-0 R/W-1111b

Note: R/W-x =  Read/Write-Reset value

Table 15–4. Watchdog Timer Control Register (WDTCR) Field Values 

Bit field symval Value Description

15–14 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

13–12 WDOUT Watchdog timer output bits control the 4-output mux to deter-
mine where the watchdog timer output is connected.

00 Output is internally connected to timer interrupt (INT3).

01 Output is internally connected to NMI.

10 Output is internally connected to RESET.

11 Output is not connected.
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Table 15–4. Watchdog Timer Control Register (WDTCR) Field Values (Continued)

Bit DescriptionValuesymvalfield

11 SOFT Used in conjunction with FREE bit to determine the state of the
watchdog timer when a breakpoint is encountered in the HLL de-
bugger. When FREE bit is cleared, SOFT bit selects the watchdog
timer mode.

BRKPTNOW 0 The watchdog timer stops immediately.

WAITZERO 1 The watchdog timer stops when the watchdog timer counter
register (WDTIM) decrements to 0.

10 FREE Used in conjunction with SOFT bit to determine the state of the
watchdog timer when a breakpoint is encountered in the HLL
debugger. When FREE bit is cleared, SOFT bit selects the
watchdog timer mode.

WITHSOFT 0 SOFT bit selects the watchdog timer mode.

NOSOFT 1 The watchdog timer runs free regardless of SOFT bit status.

9–6 PSC Watchdog timer prescaler counter bits. This read-only bit specifies
the count for the watchdog timer when in direct mode (PREMD bit
is cleared in the WDTCR2). When the PSC bit is decremented past
0 or the watchdog timer is reset, the PSC bit is loaded with the
contents of the TDDR bit and the WDTIM value is decremented.

5–4 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

3–0 TDDR The watchdog timer prescaler bits.

In prescaler direct mode (PREMD = 0 in WDTCR2):

OF(value) 0–15 This value specifies a direct prescaler count, up to 15, for the
watchdog timer. When the PSC bit is decremented past 0, the PSC
bit is loaded with contents of this TDDR bit.

In prescaler indirect mode (PREMD = 1 in WDTCR2):

OF(value) This value specifies an indirect prescaler count, up to 65535, for the
watchdog timer. When the PSC bit is decremented past 0, the PSC
bit is loaded with this prescaler value.

0000 Prescaler value: 0001h

0001 Prescaler value: 0003h

0010 Prescaler value: 0007h

0011 Prescaler value: 000Fh
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Table 15–4. Watchdog Timer Control Register (WDTCR) Field Values (Continued)

Bit DescriptionValuesymvalfield

0100 Prescaler value: 001Fh

0101 Prescaler value: 003Fh

0110 Prescaler value: 007Fh

0111 Prescaler value: 00FFh

1000 Prescaler value: 01FFh

1001 Prescaler value: 03FFh

1010 Prescaler value: 07FFh

1011 Prescaler value: 0FFFh

1100 Prescaler value: 1FFFh

1101 Prescaler value: 3FFFh

1110 Prescaler value: 7FFFh

1111 Prescaler value: FFFFh

15.2.4 Watchdog Timer Control Register 2 (WDTCR2)

The WDTCR2 contains bits to indicate watchdog flag, to enable watchdog, to
set general timer or watchdog mode, to set prescaler mode as well as provides
the 12 bit WDKEY for watchdog service.

Figure 15–5. Watchdog Timer Control Register 2 (WDTCR2)

15 14 13 12 11 0

WDFLAG WDEN reserved PREMD WDKEY

R/W-0 R/W-0 R-0 R/W-1 R/W-0

Note: R/W-x =  Read/Write-Reset value

Table 15–5. Watchdog Timer Control Register 2 (WDTCR2) Field Values 

Bit field symval Value Description

15 WDFLAG Watchdog timer flag bit. This bit can be cleared by enabling the watch-
dog timer, by a device reset, or by being written with a 1.

0 No watchdog timer time-out event occurred.

1 Watchdog timer time-out event occurred.
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Table 15–5. Watchdog Timer Control Register 2 (WDTCR2) Field Values (Continued)

Bit DescriptionValuesymvalfield

14 WDEN Watchdog timer enable bit.

0 Watchdog timer is disabled. Watchdog timer output is disconnected
from the watchdog timer time-out event and the counter starts to run.

1 Watchdog timer is enabled. Watchdog timer output is connected to the
watchdog timer time-out event. Watchdog timer can be disabled by a
watchdog timer time-out event or by a device reset.

13 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

12 PREMD Prescaler mode select bit.

0 Direct mode. When PSC bit in WDTCR is decremented past 0, PSC
bit is loaded with TDDR content in WDTCR.

1 Indirect mode. When PSC bit in WDTCR is decremented past 0, PSC
bit is loaded with the prescaler value associated with TDDR bit in
WDTCR.

11–0 WDKEY Watchdog timer reset key bits. A 12-bit value that before a watchdog
timer time-out event occurs, only a write sequence of a 5C6h followed
by an A7Eh services the watchdog timer. Any other writes triggers a
watchdog timer time-out event immediately.
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15.3 Watchdog Timer Servicing

The watchdog timer has to be serviced periodically such that a 5C6h is written
followed by an A7Eh to the WDKEY bit, in WDTCR2, before a watchdog timer
time-out event occurs. Both 5C6h and A7Eh are allowed to be written to the
WDKEY bit. Only the write sequence of a 5C6h followed by an A7Eh to the
WDKEY bit services the watchdog timer. Any other writes to the WDKEY bit
triggers the watchdog timer time-out event immediately, and consequently:

� the WDFLAG bit, in WDTCR2, is set to 1

� the internal maskable watchdog timer interrupt, nonmaskable interrupt
(NMI), or RESET is triggered

However, reads from WDTCR2 do not cause a time-out event.

When the watchdog timer is in a time-out state, the watchdog timer is disabled
and the WDEN bit, in WDTCR2, is cleared. The watchdog timer output is dis-
connected from the watchdog timer time-out event, the timer is reloaded and
continues to run.

Out of reset, the watchdog timer is disabled and reads or writes to the watch-
dog timer registers are allowed. However, once a 5C6h is written to the
WDKEY bit and the watchdog timer enters the Pre-Active state, writes to
WDTCR2 are allowed only when the write comes with the correct key (5C6h
or A7Eh) to the WDKEY bit. In the Pre-Active state, an A7Eh written to the
WDKEY bit with the WDEN bit set to 1 enables the watchdog timer (Active
state). Once the watchdog timer is enabled, it cannot be disabled by software
but can be disabled by a watchdog time-out event or hardware reset. The
watchdog timer service is secured by the WDKEY bit.

The WDTIM, WDPRD, WDTCR, and the PREMD bit in WDTCR2 shall be con-
figured as desired before the watchdog timer enters the Active state. You can
set the WDEN bit to 1 and configure the PREMD bit at the same time an A7Eh
is written to the WDKEY bit, during the Pre-Active state. By default,
WDTIM = FFFFh, WDPRD = FFFFh, the PREMD bit = 1, and the TDDR
bit = 1111b.  Every time the watchdog timer is serviced, the watchdog timer
counters and prescalers are automatically reloaded accordingly.
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McBSP reception 9-103
McBSP transmission 9-137

clock polarities
input clock of sample rate generator (receiver

configuration) 9-108
input clock of sample rate generator (transmitter

configuration) 9-142
clock stop (SPI) mode

introduction 9-62
McBSP receiver configuration 9-78
McBSP transmitter configuration 9-115

clock stop (SPI) mode bits (CLKSTP) 9-158
clock stop (SPI) mode timing diagrams 9-65
clock synchronization mode bit for CLKG

(GSYNC) 9-181
clock synchronization mode for sample rate

generator
McBSP receiver configuration 9-106
McBSP transmitter configuration 9-140

clocking data in McBSP 9-11
column strobe signal (SDCAS_) 5-4
companding data (McBSP) 9-8
companding internal data (McBSP) 9-10
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companding mode
McBSP reception 9-87
McBSP transmission 9-123

compressing transmit data (McBSP) 9-8

configuration vs. working registers (DMA
controller) 3-5

configuring CE spaces 5-12
control register of ADC (ADCR) 1-5

control signals (HCNTL0–1) 4-4

conversion examples, ADC 1-9
ConvRateDiv bits of ADCDR 1-7

count and period registers of timer 13-15

count registers, reloading 13-13
CPU idle domain 8-2

CPU-domain idle configuration bit (CPUI) 8-9

CPU-domain idle status bit (CPUIS) 8-9
CPUI bit of ICR 8-9

CPUIS bit of ISTR 8-9

D
D bus of EMIF 5-4
DAEN bit of RTCDAYW 11-13

DAR bits of RTCDAYW 11-13

data accesses via EMIF
16-bit data accesses 5-21
32-bit data accesses 5-16
8-bit data accesses 5-23

DATA bits
of ICDRR 7-21
of ICDXR 7-23

data bits for pins IO0–IO7 6-1

data bus of EHPI (HD) 4-4
data bus of EMIF (D) 5-4

data count register of I2C (ICCNT) 7-21

data delay
McBSP reception 9-89
McBSP transmission 9-126

data output bit for timer (DATOUT) 13-16

data packing in McBSP
using frame length and word length 9-152
using word length and the frame-sync ignore

function 9-153

data receive register of I2C (ICDRR) 7-21
data receive registers (DRR1 and DRR2) 9-156

data receive shift register of I2C (ICRSR) 7-29
data reception in McBSP 9-18
data register of ADC (ADDR) 1-6
data strobe signals (HDS1–2_) 4-4
data transfer process of McBSP 9-7
data transmission in McBSP 9-19
data transmit register of I2C (ICDXR) 7-23
data transmit registers (DXR1 and DXR2) 9-157
data transmit shift register of I2C (ICXSR) 7-29
DATA TYPE bits of DMA_CSDP 3-40
DATE bits of RTCDAYM 11-13
date register (RTCDAYM) 11-13
DATOUT bit of TCR 13-16
DAY bits of RTCDAYW 11-13
day of the month register (RTCDAYM) 11-13
DBUS bit (D bus error status bit) of EMI_BE 5-47
destination addressing mode bits

(DST AMODE) 3-29
destination burst enable bits (DST BEN) 3-40
destination packing enable bit (DST PACK) 3-40
destination selection bits (DST) 3-40
destination start address registers

(DMA_CDSA_L/U) 3-45
diagrams

ADC 1-2
ADC total conversion time 1-3
DMA controller 3-3
EHPI 4-2
EMIF 5-2
I2C module 7-4
idle configuration process 8-4
initializing the real-time clock (RTC) 11-24
McBSP 9-4
McBSP data transfer process 9-7
McBSP reception 9-18
McBSP transmission 9-19
multiple I2C modules connections 7-2
real-time clock (RTC) 11-3
real-time clock (RTC) power isolation 11-5
sample rate generator 9-23
timer 13-2
watchdog timer 15-3

digital loopback mode
McBSP receiver configuration 9-77
McBSP transmitter configuration 9-114

digital loopback mode bit (DLB) 9-158
direction bits for pins IO0–IO7

(IO0DIR–IO7DIR) 6-1
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disabled channel (McBSP) 9-55
divide-down value for CLKG (CLKGDV) 9-181
divide-down value for CLKOUT (CLKDIV) 12-3
dividing down

CPU clock for CLKOUTpin 2-9
input clock of sample rate generator (McBSP

receiver configuration) 9-105
input clock of sample rate generator (McBSP

transmitter configuration) 9-139
DLB bit of ICMDR 7-23
DLB bit of SPCR1 9-158
DMA channel enable bit (EN) 3-29
DMA channels

definition 3-5
monitoring 3-19
start addresses 3-13
synchronizing 3-17

DMA controller
block diagram 3-3
channels and port accesses 3-5
effects of DSP reset 3-23
EHPI access configurations 3-7
emulation modes 3-23
introduction 3-2
latency in DMA transfers 3-22
monitoring channel activity 3-19
power reduction 3-23
register structure 3-5
registers 3-27
service chains 3-8
start addresses 3-13
time-out conditions 3-21
units of data 3-12
updating addresses 3-16

DMA error status bit of EMI_BE 5-47
DMA events generated by McBSP 9-22
DMA idle domain 8-2
DMA synchronization events, for A-bis mode 9-60
DMA-domain idle configuration bit (DMAI) 8-9
DMA-domain idle status bit (DMAIS) 8-9
DMA_CCR 3-29
DMA_CDSA_L and DMA_CDSA_U 3-45
DMA_CEI 3-46
DMA_CEN 3-45
DMA_CFI 3-46
DMA_CFN 3-45
DMA_CICR 3-36

DMA_CSDP 3-40
DMA_CSR 3-36
DMA_CSSA_L and DMA_CSSA_U 3-44
DMA_GCR 3-28
DMAI bit of ICR 8-9
DMAIS bit of ISTR 8-9
DR pin 9-6
DR pin status bit (DR_STAT) 9-195
DR_STAT bit of PCR 9-195
DROP bit of DMA_CSR 3-36
DROP IE bit of DMA_CICR 3-36
dropped synchronization event 3-18
DRR1 and DRR2 9-156
DSP reset

effects on clock generator 2-10
effects on DMA controller 3-23
effects on EHPI 4-22
effects on idle domains 8-8
effects on McBSP 9-147
effects on timer 13-14
EHPI changing the process 4-20

DSP-to-host interrupt signal (HINT_) 4-4
DSPINT bit of HPIC 4-23
DST AMODE bits of DMA_CCR 3-29
DST BEN bits of DMA_CSDP 3-40
DST bits of DMA_CSDP 3-40
DST PACK bit of DMA_CSDP 3-40
DX delay enabler mode 9-128
DX delay enabler mode bit (DXENA) 9-158
DX pin 9-6
DX pin status bit (DX_STAT) 9-195
DX_STAT bit of PCR 9-195
DXENA bit of SPCR1 9-158
DXR1 and DXR2 9-157

E
EBUS bit (E bus error status bit) of EMI_BE 5-47
EGCR 5-43
EHPI

access configurations 3-7
affected by idle configurations 4-21
autoincrement mode 4-17
boot loading 4-20
changing DSP reset process 4-20
effects of DSP reset 4-22
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EHPI (continued)
emulation modes 4-21
interrupts between host and DSP 4-18
introduction 4-2
memory accessible 4-19
multiplexed mode 4-12
nonmultiplexed mode 4-7
registers 4-23
signals 4-4

EHPI address register 4-23

EHPI control register 4-23

EHPI data register 4-23

EHPI EXCL bit of DMA_GCR 3-28

EHPI exclusive access bit (EHPI EXCL) 3-28

EHPI PRIO bit of DMA_GCR 3-28

EHPI priority bit (EHPI PRIO) 3-28

element index register (DMA_CEI) 3-46

element number register (DMA_CEN) 3-45

element of data (DMA controller) 3-12

EMI_BE 5-47

EMI_RST 5-46

EMIF
16-bit data accesses 5-21
32-bit data accesses 5-16
8-bit data accesses 5-23
configuring CE spaces 5-12
introduction 5-2
memory map and CE spaces 5-9
program accesses 5-13
registers 5-43
request priorities 5-8
signals 5-4
supported memory and access types 5-11
using asynchronous memory 5-27
using SBSRAM 5-36

EMIF idle domain 8-2

EMIF-domain idle configuration bit (EMIFI) 8-9

EMIF-domain idle status bit (EMIFIS) 8-9

EMIFI bit of ICR 8-9

EMIFIS bit of ISTR 8-9

emulation mode bit for DMA controller
(FREE) 3-28

emulation mode bits for timer (SOFT and
FREE) 13-16

emulation mode bits of McBSP (FREE and
SOFT) 9-158

emulation modes
DMA controller 3-23
EHPI 4-21
McBSP 9-146
timer 13-13

EN bit of DMA_CCR 3-29

enabled channel (McBSP) 9-55

END PROG bit of DMA_CCR 3-29

end-of-programmation bit (END PROG) 3-29

enhanced host port interface (EHPI)
access configurations 3-7
affected by idle configurations 4-21
autoincrement mode 4-17
boot loading 4-20
changing DSP reset process 4-20
effects of DSP reset 4-22
emulation modes 4-21
interrupts between host and DSP 4-18
introduction 4-2
memory accessible 4-19
multiplexed mode 4-12
nonmultiplexed mode 4-7
registers 4-23
signals 4-4

ERR_TIM bit of TCR 13-16

error/exception conditions of McBSP 9-36

event drop interrupt enable bit (DROP IE) 3-36

event drop status bit (DROP) 3-36

events for A-bis mode 9-60

exception/error conditions of McBSP 9-36

exclusive access bit for EHPI (EHPI EXCL) 3-28

expanding receive data (McBSP) 9-8

extended address enable bit (XADD) 4-23

extended hold period (EMIF parameter) 5-28

external memory
buffering write data and addresses 5-42
HOLD requests 5-41
map 5-9

external memory interface (EMIF)
16-bit data accesses 5-21
32-bit data accesses 5-16
8-bit data accesses 5-23
configuring CE spaces 5-12
introduction 5-2
memory map and CE spaces 5-9
program accesses 5-13
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external memory interface (EMIF) (continued)
registers 5-43
request priorities 5-8
signals 5-4
supported memory and access types 5-11
using asynchronous memory 5-27
using SBSRAM 5-36

F
FBUS bit (F bus error status bit) of EMI_BE 5-47

FDF bit of ICMDR 7-23

figures
see diagrams

FPER bits of SRGR2 9-181

FRAME bit of DMA_CSR 3-36

frame configuration for multichannel selection 9-49

frame frequency (McBSP) 9-14

FRAME IE bit of DMA_CICR 3-36

frame index register (DMA_CFI) 3-46

frame length
McBSP reception 9-84
McBSP transmission 9-120

frame number register (DMA_CFN) 3-45

frame of data (DMA controller) 3-12

frame of data (McBSP) 9-12

frame phases
introduction 9-15
McBSP reception 9-81
McBSP transmission 9-118

frame sync generation in the sample rate
generator 9-28

frame synchronization (McBSP) 9-12

frame-sync ignore function
McBSP reception 9-85
McBSP transmission 9-122

frame-sync logic reset bit (FRST_) 9-158

frame-sync modes
McBSP reception 9-94
McBSP transmission 9-130

frame-sync period bits for FSG (FPER) 9-181

frame-sync period for sample rate generator
McBSP receiver configuration 9-99
McBSP transmitter configuration 9-134

frame-sync pin polarities
McBSP reception 9-97
McBSP transmission 9-132

frame-sync pulse 9-12
frame-sync pulse width bits for FSG (FWID) 9-181
frame-sync pulse width for sample rate generator

McBSP receiver configuration 9-99
McBSP transmitter configuration 9-134

frame/element synchronization bit (FS) 3-29
FREE and SOFT bits of SPCR2 9-158
FREE and SOFT bits of TCR 13-16
FREE and SOFT bits of WDTCR 15-5
FREE bit of DMA_GCR 3-28
FREE bit of ICMDR 7-23
FRST_ bit of SPCR2 9-158
FS bit of DMA_CCR 3-29
FSGM bit of SRGR2 9-181
FSR pin 9-6
FSR pin polarity bit (FSRP) 9-195
FSRM bit of PCR 9-195
FSRP bit of PCR 9-195
FSX pin 9-6
FSX pin polarity bit (FSXP) 9-195
FSXM bit of PCR 9-195
FSXP bit of PCR 9-195
FUNC bits of TCR 13-16
FWID bits of SRGR1 9-181

G
general-purpose I/O

output on timer pin 13-4
using McBSP pins 9-144

general-purpose I/O port (GPIO)
introduction 6-1
registers 6-1

general-purpose I/O register of I2C (ICGPIO) 7-28
global control register of DMA controller

(DMA_GCR) 3-28
global control register of EMIF (EGCR) 5-43
global reset register of EMIF (EMI_RST) 5-46
GPIO

introduction 6-1
registers 6-1

GRST_ bit of SPCR2 9-158
GSYNC bit of SRGR2 9-181
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H
HA signals 4-4

HALF bit of DMA_CSR 3-36

half frame interrupt enable bit (HALF IE) 3-36

half frame status bit (HALF) 3-36

HALF IE bit of DMA_CICR 3-36

HAR bits of RTCHOURA 11-12

HAS_ signal 4-4

HBE signals 4-4

HCNTL signals 4-4

HCS_ signal 4-4

HD signals 4-4

HDS_ signals 4-4

HINT_ signal 4-4

HMODE signal 4-4

HOLD acknowledge signal (HOLDA_) 5-4

HOLD bit (HOLD_ signal status bit) of EGCR 5-43

hold period (EMIF parameter) 5-28

HOLD request signal (HOLD_) 5-4

HOLD requests 5-41

HOLD_ disable bit (NOHOLD) 5-43

HOLD_ signal 5-4

HOLDA bit (HOLDA_ signal status bit) of
EGCR 5-43

HOLDA_ signal 5-4

host address bus (HA) 4-4

host byte enable signals (HBE1–0) 4-4

host data bus (HD) 4-4

host port interface (EHPI)
access configurations 3-7
affected by idle configurations 4-21
autoincrement mode 4-17
boot loading 4-20
changing DSP reset process 4-20
effects of DSP reset 4-22
emulation modes 4-21
interrupts between host and DSP 4-18
introduction 4-2
memory accessible 4-19
multiplexed mode 4-12
nonmultiplexed mode 4-7
registers 4-23
signals 4-4

host processor
controlling DSP reset duration 4-20
sending/receiving interrupts 4-18

host-to-DSP interrupt request bit (DSPINT) 4-23
HPIA 4-23
HPIC 4-23
HPID 4-23
HR bits of RTCHOUR 11-11
HR/W_ signal 4-4
HRDY signal 4-4

I
I/O port (GPIO), introduction 6-1
I2C address 0 status bit (AD0) 7-17
I2C address as slave bit (AAS) 7-17
I2C arbitration-lost interrupt flag bit (AL) 7-17
I2C arbitration-lost interrupt mask enable bit

(AL) 7-16
I2C bit count bits (BC) 7-23
I2C bus busy bit (BB) 7-17
I2C countdown counter bits (ICDC) 7-21
I2C digital loop back mode enable bit (DLB) 7-23
I2C expanded address enable bit (XA) 7-23
I2C free data format enable bit (FDF) 7-23
I2C free running bit (FREE) 7-23
I2C high-time clock division factor bits (ICCH) 7-20
I2C idle enable bit (IDLEEN) 7-23
I2C interrupt code bits (INTCODE) 7-27
I2C low-time clock division factor bits (ICCL) 7-20
I2C master bit (MST) 7-23
I2C module

arbitration 7-9
as master receiver 7-8
as master transmitter 7-8
as slave receiver 7-9
as slave transmitter 7-9
bit transfer 7-5
block diagram 7-4
clock generation 7-10
data validity 7-6
features 7-2
features not supported 7-3
flow diagrams 7-31
functional overview 7-3
interrupts 7-12
introduction 7-2
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I2C module (continued)
operational details 7-5
programming examples 7-30
registers 7-14
serial data formats 7-7
START and STOP conditions 7-6

I2C no-acknowledgement interrupt flag bit
(NACK) 7-17

I2C no-acknowledgement interrupt mask enable bit
(NACK) 7-16

I2C prescaler counter bits (IPSC) 7-28
I2C receive data bits (DATA) 7-21
I2C receive data bits (RECEIVEDATA) 7-29
I2C receive-data-ready interrupt flag bit

(ICRRDY) 7-17
I2C receive-data-ready interrupt mask enable bit

(ICRRDY) 7-16
I2C receive-shift register full bit (RSFULL) 7-17
I2C register-access-ready interrupt flag bit

(ARDY) 7-17
I2C register-access-ready interrupt mask enable bit

(ARDY) 7-16
I2C repeat mode enable bit (RM) 7-23
I2C reset enable bit (IRS) 7-23
I2C slave address bits (A6–A0)

of ICOAR 7-15
of ICSAR 7-22

I2C START byte mode enable bit (STB) 7-23
I2C start condition bit (STT) 7-23
I2C stop condition bit (STP) 7-23
I2C transmit data bits (DATA) 7-23
I2C transmit data bits (TRANSMITDATA) 7-29
I2C transmit-data-ready interrupt flag bit

(ICXRDY) 7-17
I2C transmit-data-ready interrupt mask enable bit

(ICXRDY) 7-16
I2C transmit-shift register empty bit (XSMT) 7-17
I2C transmitter bit (TRX) 7-23
IAI bit of CLKMD 2-12
ICCH bits of ICCLKH 7-20
ICCL bits of ICCLKL 7-20
ICCLKH 7-20
ICCLKL 7-20
ICCNT 7-21
ICDC bits of ICCNT 7-21
ICDRR 7-21

ICDXR 7-23
ICGPIO 7-28
ICIMR 7-16
ICIVR 7-27
ICMDR 7-23
ICOAR 7-15
ICPSC 7-28
ICR 8-9
ICRRDY bit

of ICIMR 7-16
of ICSTR 7-17

ICRSR 7-29
ICSAR 7-22
ICSTR 7-17
ICXRDY bit

of ICIMR 7-16
of ICSTR 7-17

ICXSR 7-29
idle configuration register (ICR) 8-9
idle configurations

definition 8-1
effects on DMA controller 3-23
effects on EHPI 4-21
interrupt handling when CPU is reactivated 8-8
process 8-4
to change 8-6
valid 8-5

idle domains
description 8-2
effects of reset 8-8

idle enable bit for McBSP 9-195
idle enable bit for timer 13-16
idle instruction used to change idle

configurations 8-4
idle modes

clock generator 2-8
DMA controller 3-23
McBSP 9-147

idle status register (ISTR) 8-9
IDLE_EN bit of PCR 9-195
IDLE_EN bit of TCR 13-16
IdleEn bit of ADCCR 1-8
IDLEEN bit of ICMDR 7-23
illustrations

see diagrams
index registers (DMA_CEI and DMA_CFI) 3-46
initialize-after-idle bit (IAI) 2-12
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initialize-on-break bit (IOB) 2-12

initializing a McBSP 9-147

initializing a sample rate generator 9-31

initializing a timer 13-10

input clock for sample rate generator
McBSP receiver configuration 9-107
McBSP transmitter configuration 9-141

input clock polarity for sample rate generator
McBSP receiver configuration 9-108
McBSP transmitter configuration 9-142

input/output port (GPIO), introduction 6-1

INT/EXT bit of TCR 13-16

INTCODE bits of ICIVR 7-27

internal-to-external clock change indicator
(INT/EXT) 13-16

interrupt control register of DMA controller
(DMA_CICR) 3-36

interrupt enable register (RTCINTEN) 11-17

interrupt flag register (RTCINTFL) 11-18

interrupt handling when CPU is reactivated 8-8

interrupt mask register of I2C (ICIMR) 7-16

interrupt modes
McBSP reception 9-93
McBSP transmission 9-129

interrupt vector register of I2C (ICIVR) 7-27

interrupts
between host and DSP 4-18
between McBSP block transfers 9-58
DSP-to-host interrupt signal (HINT_) 4-4
generated by McBSP 9-22
host-to-DSP interrupt request bit

(DSPINT) 4-23
in the I2C module 7-12
in the real-time clock 11-20
monitoring DMA channel activity 3-19
timer 13-9
used to wake the CPU and clock generator 8-6

IO0–IO7 pins
data bits (IO0D–IO7D) 6-1
direction bits (IO0DIR–IO7DIR) 6-1

IO0D–IO7D bits of IODATA 6-1

IO0DIR–IO7DIR bits of IODIR 6-1

IOB bit of CLKMD 2-12

IPSC bits of ICPSC 7-28

IRQF bit of RTCINTFL 11-18

IRS bit of ICMDR 7-23
ISTR 8-9

J
justification of receive data (McBSP) 9-91

L
LAST bit of DMA_CSR 3-36
last frame interrupt enable bit (LAST IE) 3-36
last frame status bit (LAST) 3-36
LAST IE bit of DMA_CICR 3-36
latency in DMA transfers 3-22
LOCK bit of CLKMD 2-12
lock mode 2-6
lock-mode indicator (LOCK) 2-12
LSB-first option for McBSP transfers 9-11

M
MAR bits of RTCMINA 11-10
masked channel (McBSP) 9-55
McBSP

A-bis mode (introduction) 9-59
A-bis mode (receiver configuration) 9-80
A-bis mode (transmitter configuration) 9-117
block diagram 9-4
clock stop (SPI) mode (introduction) 9-62
clock stop (SPI) mode (receiver

configuration) 9-78
clock stop (SPI) mode (transmitter

configuration) 9-115
clocking and framing data 9-11
companding internal data 9-10
configuration for SPI operation 9-67
data transfer process 9-7
digital loopback mode (receiver

configuration) 9-77
digital loopback mode (transmitter

configuration) 9-114
emulation modes 9-146
exception/error conditions 9-36
frame phases 9-15
initializing 9-147
interrupts and DMA events 9-22
interrupts between block transfers 9-58
introduction 9-2
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McBSP (continued)
master in the SPI protocol 9-68
operating transmitter synchronously with

receiver 9-30
pins 9-6
possible responses to receive frame-sync

pulses 9-38
possible responses to transmit frame-sync

pulses 9-44
receive multichannel selection mode

(introduction) 9-53
receive multichannel selection mode (receiver

configuration) 9-79
receiver configuration procedure 9-73
reception 9-18
reducing power consumed 9-147
register worksheet 9-211
registers 9-155
resetting 9-147
sample rate generator 9-23
sign-extension and justification mode 9-91
slave in the SPI protocol 9-70
transmission 9-19
transmit multichannel selection modes

(introduction) 9-54
transmit multichannel selection modes

(transmitter configuration) 9-116
transmitter configuration procedure 9-110

MCR1 and MCR2 9-185

MEMCEN bit of EGCR 5-43

MEMFREQ bits of EGCR 5-43

memory accessible via EHPI 4-19

memory accessible via EMIF 5-9

memory clock enable bit (MEMCEN) 5-43

memory clock frequency bits (EGCR) 5-43

memory clock signal (CLKMEM) 5-4

memory interface (EMIF)
see EMIF16-bit data accesses 5-21
32-bit data accesses 5-16
8-bit data accesses 5-23
configuring CE spaces 5-12
introduction 5-2
memory map and CE spaces 5-9
program accesses 5-13
registers 5-43
request priorities 5-8
signals 5-4

memory interface (EMIF) (continued)
supported memory and access types 5-11
using asynchronous memory 5-27
using SBSRAM 5-36

memory type bits (MTYPE) 5-50

memory types supported by EMIF 5-11

MIN bits of RTCMIN 11-10

MMC controller
introduction 10-2
native mode 10-9
native mode initialization 10-21
native mode monitoring 10-28
registers 10-51
SPI mode 10-33
SPI mode initialization 10-40
SPI mode monitoring 10-46

mode register of I2C (ICMDR) 7-23

monitoring channel activity (DMA controller) 3-19

MONTH bits of RTCMONTH 11-14

MST bit of ICMDR 7-23

MTYPE bits of CEn_1 5-50

Mu-law format (companding) 9-8

multichannel buffered serial port (McBSP)
A-bis mode (introduction) 9-59
A-bis mode (receiver configuration) 9-80
A-bis mode (transmitter configuration) 9-117
block diagram 9-4
clock stop (SPI) mode (introduction) 9-62
clock stop (SPI) mode (receiver

configuration) 9-78
clock stop (SPI) mode (transmitter

configuration) 9-115
clocking and framing data 9-11
companding internal data 9-10
configuration for SPI operation 9-67
data transfer process 9-7
digital loopback mode (receiver

configuration) 9-77
digital loopback mode (transmitter

configuration) 9-114
emulation modes 9-146
exception/error conditions 9-36
frame phases 9-15
initializing 9-147
interrupts and DMA events 9-22
interrupts between block transfers 9-58
introduction 9-2
master in the SPI protocol 9-68
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multichannel buffered serial port (McBSP)
(continued)
operating transmitter synchronously with

receiver 9-30
pins 9-6
possible responses to receive frame-sync

pulses 9-38
possible responses to transmit frame-sync

pulses 9-44
receive multichannel selection mode

(introduction) 9-53
receive multichannel selection mode (receiver

configuration) 9-79
receiver configuration procedure 9-73
reception 9-18
reducing power consumed 9-147
register worksheet 9-211
registers 9-155
resetting 9-147
sample rate generator 9-23
sign-extension and justification mode 9-91
slave in the SPI protocol 9-70
transmission 9-19
transmit multichannel selection modes

(introduction) 9-54
transmit multichannel selection modes

(transmitter configuration) 9-116
transmitter configuration procedure 9-110

multichannel control registers (MCR1 and
MCR2) 9-185

multichannel selection modes 9-48
multiplexed mode (EHPI) 4-12

N
NACK bit

of ICIMR 7-16
of ICSTR 7-17

NOHOLD bit of EGCR 5-43
nonmultiplexed mode (EHPI) 4-7
number of elements set in DMA_CEN 3-45
number of frames set in DMA_CFN 3-45

O
operating modes for the real-time clock 11-23
output buffer enable signal (SSOE_) 5-4
output enable signal (AOE_) 5-4

overrun in the McBSP receiver 9-37
overwrite in the McBSP transmitter 9-41
own address register of I2C (ICOAR) 7-15

P
parameters for asynchronous accesses 5-28
partition of channels (McBSP)

definition 9-48
using eight partitions 9-51
using two partitions 9-49

PBUS bit (P bus error status bit) of EMI_BE 5-47
PCR 9-195
PERI bit of ICR 8-9
period and count registers of timer 13-15
periodic interrupt selection register

(RTCPINTR) 11-15
PERIPH idle domain 8-2
PERIPH-domain idle configuration bit (PERI) 8-9
PERIPH-domain idle status bit (PERIS) 8-9
PERIS bit of ISTR 8-9
PF bit of RTCINTFL 11-18
phases of a frame

introduction 9-15
McBSP receive frame 9-81
McBSP transmit frame 9-118

pictures
see diagrams

PIE bit of RTCINTEN 11-17
pin control register (PCR) 9-195
PLL DIV bits of CLKMD 2-12
PLL divide value (PLL DIV) 2-12
PLL ENABLE bit of CLKMD 2-12
PLL MULT bits of CLKMD 2-12
PLL multiply value (PLL MULT) 2-12
POLAR bit of TCR 13-16
polarity of sample rate generator input clock

McBSP receiver configuration 9-108
McBSP transmitter configuration 9-142
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