
TMS320 DSP Algorithm Standard
Rules and Guidelines

Literature Number: SPRU352D
January 2001

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

This document defines a set of requirements for DSP algorithms that, if fol-
lowed, allow system integrators to quickly assemble production-quality sys-
tems from one or more such algorithms. Thus, this standard is intended to en-
able a rich COTS marketplace for DSP algorithm technology and to significant-
ly reduce the time to market for new DSP-based products.

In describing these requirements and their purpose, it is often necessary to de-
scribe how applications might be structured to take advantage of standard-
compliant algorithms. It is important to keep in mind, however, that the
TMS320 DSP Algorithm Standards makes no substantive demands on the cli-
ents of these algorithms.

Intended Audience

This document assumes that the reader is fluent in the C language, has a good
working knowledge of Digital Signal Processing (DSP) and the requirements
of DSP applications, and has some exposure to the principles and practices
of object-oriented programming.

This document describes rules that must be followed by all standard-complaint
algorithm software and interfaces between algorithms and applications that
use these algorithms. There are two audiences for this document:

� Algorithm writers should read this document to learn how ensure that an
algorithm can coexist with other algorithms in a single system and how to
package an algorithm for deployment into a wide variety of systems.

� System integrators can read this document to learn how to incorporate
multiple algorithms from separate sources into a complete system.

Document Overview

Throughout this document, the rules and guidelines of the TMS320 DSP Algo-
rithm Standard are highlighted. Rules must be followed to be compliant with
the TMS320 DSP Algorithm Standard Guidelines. Guidelines should be ob-
eyed but may be violated by standard-compliant software. A complete list of

iv

all rules and guidelines is provided in Appendix A. Electronic versions of this
document contain hyperlinks from each rule and guideline in Appendix A to the
main body of the document.

This document contains the following chapters:

� Chapter 1 – Overview , provides the motivation for the standard and de-
scribes how algorithms (as defined by the TMS320 DSP Algorithm
Standard) are used in DSP systems.

� Chapter 2 – General Programming Guidelines , describes a general
programming model for DSP software and contains rules and guidelines
that apply to all standard–compliant software.

� Chapter 3 – Algorithm Component Model , describes rules and guide-
lines that enable standard–compliant algorithms from multiple sources to
operate harmoniously in a single system.

� Chapter 4 – Algorithm Performance Characterization , describes how
an standard–compliant algorithm’s performance must be characterized.

� Chapter 5 – DSP-Specific Guidelines , defines a model for describing the
DSP’s on-chip registers and contains rules and guidelines for each specif-
ic DSP architecture covered by this specification.

� Chapter 6 – Use of the DMA Resource , develops guidelines and rules
for creating compliant algorithms that utilize the DMA resource.

� Appendix A – Rules and Guidelines , contains a complete list of all rules
and guidelines in this specification.

� Appendix B – Core Run-time Support APIs , contains a complete de-
scriptions of the APIs that a standard–compliant algorithm may reference.

Additional Documents

The TMS320 DSP Algorithm Standard is documented in the following manu-
als:

� TMS320 DSP Algorithm Standard Rules and Guidelines (this document).
Describes all the rules and guidelines that make up the TMS320 DSP Al-
gorithm Standard.

� TMS320 DSP Algorithm Standard API Reference. Contains APIs that are
required by the TMS320 DSP Algorithm Standard and full source exam-
ples of standard-compliant algorithm components.

Although these documents are largely self-contained, there are times when it
is best not to duplicate documentation that exists in other documents. The fol-

Additional Documents

vRead This First

lowing documents contain supplementary information necessary to adhere to
the TMS320 DSP Algorithm Standards.

� DSP/BIOS User’s Guide

� TMS320 C54x/C6x/C2x Optimizing C Compiler User’s Guide

Text Conventions

The following typographical conventions are used in this specification:

� Text inside back-quotes (‘‘) represents pseudo-code

� Program source code, function and macro names, parameters, and com-
mand line commands are shown in a mono-spaced font.

Rule n

Text is shown like this to indicate a requirement of the TMS320 DSP Algo-
rithm Standard.

Guideline n

Text is shown like this to indicate a recommendation of the TMS320 DSP Al-
gorithm Standard.

Text Conventions

Contents

vii

Contents

1 Overview 1-1.
1.1 Scope of the Standard 1-2.

1.1.1 Rules and Guidelines 1-3.
1.2 Requirements of the Standard 1-4.
1.3 Goals of the Standard 1-5.
1.4 Intentional Omissions 1-7.
1.5 System Architecture 1-8.

1.5.1 Frameworks 1-8.
1.5.2 Algorithms 1-9.
1.5.3 Core Run-Time Support 1-10.

2 General Programming Guidelines 2-1.
2.1 Use of C Language 2-2.
2.2 Threads and Reentrancy 2-3.

2.2.1 Threads 2-3.
2.2.2 Preemptive vs. Non-preemptive Multitasking 2-3.
2.2.3 Reentrancy 2-5.
2.2.4 Example 2-6.

2.3 Data Memory 2-9.
2.3.1 Memory Spaces 2-9.
2.3.2 Scratch verses Persistent 2-10.
2.3.3 Algorithm verses Application 2-12.

2.4 Program Memory 2-14.
2.5 ROM-ability 2-16.
2.6 Use of Peripherals 2-17.

3 Algorithm Component Model 3-1.
3.1 Interfaces and Modules 3-2.

3.1.1 External Identifiers 3-4.
3.1.2 Naming Conventions 3-5.
3.1.3 Module Initialization and Finalization 3-5.
3.1.4 Module Instance Objects 3-6.
3.1.5 Design-time Object Creation 3-7.
3.1.6 Run-time Object Creation and Deletion 3-8.
3.1.7 Module Configuration 3-8.
3.1.8 Example Module 3-9.
3.1.9 Multiple Interface Support 3-11.
3.1.10 Interface Inheritance 3-12.
3.1.11 Summary 3-12.

Contents

viii

3.2 Algorithms 3-14.
3.3 Testing and Diagnostics 3-16.
3.4 Packaging 3-17.

3.4.1 Object Code 3-17.
3.4.2 Header Files 3-18.
3.4.3 Debug Verses Release 3-18.

4 Algorithm Performance Characterization 4-1.
4.1 Data Memory 4-2.

4.1.1 Heap Memory 4-2.
4.1.2 Stack Memory 4-3.
4.1.3 Static Local and Global Data Memory 4-4.

4.2 Program Memory 4-6.
4.3 Interrupt Latency 4-7.
4.4 Execution Time 4-8.

4.4.1 MIPS Is Not Enough 4-8.
4.4.2 Execution Time Model 4-9.

5 DSP-Specific Guidelines 5-1.
5.1 CPU Register Types 5-2.
5.2 Use of Floating Point 5-4.
5.3 TMS320C6xxx Guidelines 5-4.

5.3.1 Endian Byte Ordering 5-4.
5.3.2 Data Models 5-4.
5.3.3 Program Model 5-5.
5.3.4 Register Conventions 5-5.
5.3.5 Status Register 5-6.
5.3.6 Interrupt Latency 5-7.

5.4 TMS320C54xx Guidelines 5-8.
5.4.1 Data Models 5-8.
5.4.2 Program Models 5-8.
5.4.3 Register Conventions 5-9.
5.4.4 Status Registers 5-10.
5.4.5 Interrupt Latency 5-11.

5.5 TMS320C55x Rules and Guidelines 5-12.
5.5.1 Stack Architecture 5-12.
5.5.2 Data Models 5-12.
5.5.3 Program Models 5-12.
5.5.4 Relocatability 5-13.
5.5.5 Register Conventions 5-14.
5.5.6 Status Bits 5-16.

5.6 TMS320C24xx Guidelines 5-18.
5.6.1 General 5-18.
5.6.2 Data Models 5-18.
5.6.3 Program Models 5-19.
5.6.4 Register Conventions 5-19.
5.6.5 Status Registers 5-19.
5.6.6 Interrupt Latency 5-20.

Contents

ixContents

6 Use of the DMA Resource 6-1.
6.1 Overview 6-2.
6.2 Algorithm and Framework 6-2.
6.3 Requirements for the Use of the DMA Resource 6-3.
6.4 DMA Controller 6-4.
6.5 Logical Channel 6-5.
6.6 Data Transfer Synchronization 6-6.
6.7 Inter-algorithm Synchronization 6-7.

6.7.1 Non-preemptive System 6-7.
6.7.2 Preemptive System 6-8.

6.8 Abstract Interface 6-12.
6.9 Resource Characterization 6-13.
6.10 Runtime APIs 6-15.

A Rules and Guidelines A-1.
A.1 General Rules A-2.
A.2 Guidelines A-4.
A.3 Performance Characterization Rules A-5.
A.4 IDMA Rules A-6.

B Core Run-Time APIs B-1.
B.1 TI C-Language Run-time Support Library B-2.
B.2 DSP/BIOS Run-time Support Library B-3.

C Bibliography C-1.
C.1 Books C-1.
C.2 URLS C-1.

D Glossary D-1.
D.1 Glossary of Terms D-1.

Figures

x

Figures

1–1 TMS320 DSP Algorithm Standard Elements 1-2.
1–2 DSP Software Architecture 1-8.
2–1 Scratch vs Persistent Memory Allocation 2-11.
2–2 Data Memory Types 2-13.
3–1 Module Interface and Implementation 3-3.
3–2 Module Object Creation 3-6.
3–3 Example Module Object 3-7.
3–4 Example Implementation of IALG Interface 3-14.
4–1 Execution Timeline for Two Periodic Tasks 4-8.
5–1 Register Types 5-3.
6–1 Sharing of Physical DMA Channel in a Non-preemptive System 6-7.
6–2 Sharing of a Physical DMA Channel in a Preemptive System 6-9.
6–3 Sharing of a Physical DMA Channel in a Preemptive System 6-10.

1-1

Overview

This chapter provides an overview of the TMS320 DSP Algorithm Standard.

Topic Page

1.1 Scope of the Standard 1-2.

1.2 Requirements of the Standard 1-4.

1.3 Goals of the Standard 1-5.

1.4 Intentional Omissions 1-7.

1.5 System Architecture 1-8.

Digital Signal Processors (DSPs) are often programmed like “traditional” em-
bedded microprocessors. That is, they are programmed in a mix of C and as-
sembly language, directly access hardware peripherals, and, for performance
reasons, almost always have little or no standard operating system support.
Thus, like traditional microprocessors, there is very little use of Commercial
Off-the-Shelf (COTS) software components for DSPs.

However, unlike general-purpose embedded microprocessors, DSPs are de-
signed to run sophisticated signal processing algorithms and heuristics. For
example, they may be used to detect DTMF digits in the presence of noise, to
compress toll quality speech by a factor of 20, or for speech recognition in a
noisy automobile traveling at 65 miles per hour.

Such algorithms are often the result of many years of doctoral research. How-
ever, because of the lack of consistent standards, it is not possible to use an
algorithm in more than one system without significant reengineering. Since
few companies can afford a team of DSP PhDs and the reuse of DSP algo-
rithms is so labor intensive, the time-to-market for a new DSP-based product
is measured in years rather than months.

This document defines a set of requirements for DSP algorithms that, if fol-
lowed, allow system integrators to quickly assemble production-quality
systems from one or more such algorithms. Thus, this standard is intended to
enable a rich COTS marketplace for DSP algorithm technology and to signifi-
cantly reduce the time to market for new DSP-based products.

Chapter 1

Overview

Scope of the Standard

 1-2

1.1 Scope of the Standard
The TMS320 DSP Algorithm Standard defines three levels of guidelines.

Figure 1–1. TMS320 DSP Algorithm Standard Elements

Rules for C62xx

Level 1

Level 2

Level 3

Level 4
Telecom

Rules for C54xx Rules for C2xxx

Imaging Audio Automotive Other

Algorithm Component Model

General Programming Guidelines
� C callable

� No hard codded addresses

� Reentrant

� etc.

� Modules

� Generic interfaces

� Packaging

� etc.

� Interrupt usage

� Memory usage

� Register usage

� etc.

� Interrupt usage

� Memory usage

� Register usage

� etc.

� Interrupt usage

� Memory usage

� Register usage

� etc.

� vocoders

� echo cancel

� etc.

� JPEG

� etc.

� coders

� etc.

� etc.

Level 1 contains programming guidelines that apply to all algorithms on all
DSP architectures regardless of application area. Almost all recently devel-
oped software modules follow these common sense guidelines already, so this
level just formalizes them.

Level 2 contains rules and guidelines that enable all algorithms to operate har-
moniously within a single system. Conventions are established for algorithm’s
use of data memory and names for external identifiers, for example. In addi-
tion, simple rules for how algorithms are packaged are also specified.

Level 3 contains the guidelines for specific families of DSPs. Today, there are
no agreed-upon guidelines for algorithms with regard to the use of processor
resources. These guidelines will provide guidance on the dos and don’ts for
the various architectures. There is always the possibility that deviations from
these guidelines will occur, but then the algorithm vendor can explicitly draw
attention to the deviation in the relevant documentation or module headers.

The shaded boxes represent the areas that are covered in this version of the
specification.

Level 4 contains the various vertical markets. Due to the inherently different
nature of each of these businesses, it seems appropriate for the stakeholders

Scope of the Standard

1-3Overview

in each of these markets to define the interfaces for groups of algorithms based
on the vertical market. If each unique algorithm were specified with an inter-
face, the standard would never be able to keep up and thus not be effective.
It is important to note that at this level, any algorithm that conforms to the rules
defined in the top three levels is considered standard-compliant.

1.1.1 Rules and Guidelines

The TMS320 DSP Algorithm Standard specifies both rules and guidelines.
Rules must be followed in order for software to be standard-compliant. Guide-
lines, on the other hand, are strongly suggested recommendations that should
be obeyed, but are not required, in order for software to be standard-com-
pliant.

Requirements of the Standard

 1-4

1.2 Requirements of the Standard

In this section, we list the required elements of the TMS320 DSP Algorithm
Standard. These requirements are used throughout the remainder of the doc-
ument to motivate design choices. They also help clarify the intent of many of
the stated rules and guidelines.

� Algorithms from multiple vendors can be integrated into a single system.

� Algorithms are framework-agnostic. That is, the same algorithm can be
efficiently used in virtually any application or framework.

� Algorithms can be deployed in purely static as well as dynamic run-time
environments.

� Algorithms can be distributed in binary form.

� Integration of algorithms does not require recompilation of the client
application; reconfiguration and relinking may be required however.

A huge number of DSP algorithms are needed in today’s marketplace, includ-
ing modems, vocoders, speech recognizers, echo cancellation, and text-to-
speech. It is not possible for a product developer, who wants to leverage this
rich set of algorithms, to obtain all the necessary algorithms from a single
source. On the other hand, integrating algorithms from multiple vendors is
often impossible due to incompatibilities between the various implementa-
tions. In order to break this Catch-22, standard-compliant algorithms from dif-
ferent vendors must all interoperate.

Dozens of distinct third-party DSP frameworks exist in the telephony vertical
market alone. Each vendor has hundreds and sometimes thousands of cus-
tomers. Yet, no one framework dominates the market. To achieve the goal of
algorithm reuse, the same algorithm must be usable in all frameworks.

Marketplace fragmentation by various frameworks has a legitimate technical
basis. Each framework optimizes performance for an intended class of sys-
tems. For example, client systems are designed as single-channel systems
with limited memory, limited power, and lower-cost DSPs. As a result, they are
quite sensitive to performance degradation. Server systems, on the other
hand, use a single DSP to handle multiple channels, thus reducing the cost per
channel. As a result, they must support a dynamic environment. Yet, both cli-
ent-side and server-side systems may require exactly the same vocoders.

It is important that algorithms be deliverable in binary form. This not only pro-
tects the algorithm vendor’s intellectual property; it also improves the reusabil-
ity of the algorithm. If source code were required, all clients would require re-
compilation. In addition to being destabilizing for the clients, version control for
the algorithms would be close to impossible.

Goals of the Standard

1-5Overview

1.3 Goals of the Standard

In this section, we list the goals of this standard. While it may not be possible
to perfectly attain these goals, they represent the primary concerns that need
to be addressed after addressing the required elements described in the pre-
vious section.

� Easy to adhere to the standard

� Possible to verify conformance to standard

� Enable system integrators to easily migrate between TI DSPs

� Enable host tools to simplify a system integrator’s tasks, including
configuration, performance modeling, standard conformance, and
debugging.

� Incur little or no “overhead” for static systems

Although TI currently enjoys a leadership role in the DSP marketplace, it can-
not directly control the algorithm software base. This is especially true for rela-
tively mature DSPs such as the C54xx family where significant algorithm
technology currently exists. Thus, for any specification to achieve the status
of a standard it must represent a low hurdle for the legacy code base.

While we can all agree to a guideline that states that every algorithm be of high
quality, this type of guideline cannot be measured or verified. Thus, all algo-
rithms will be represented as being of high quality and this guideline will not
have any value to the system integrator. Thus, it is important that each guide-
line be measurable or, in some sense, verifiable.

While this standard does define algorithm’s APIs in a DSP-independent man-
ner, it does not seek to solve the DSP migration problem. For example, it does
not require that algorithms be provided on both a C54x and a C6x platform. It
does not specify a multiple binary object file format to enable a single binary
to be used in both a C5x and a C6x design. Nor does it supply tools to translate
code from one architecture to another or require the use of an architecture in-
dependent language (such as C) in the implementation of algorithms.

Wherever possible, this standard tries to anticipate the needs of the system
integrator and provide rules for the development of algorithms that allow host
tools to be created that will assist the integration of these algorithms. For ex-
ample, rules related to algorithm naming conventions enable tools that auto-
matically resolve name conflicts and select alternate implementations as ap-
propriate.

Maurice Wilkes once said, “There is no problem in computer programming that
cannot be solved by an added level of indirection.” Frameworks are perfect ex-

Goals of the Standard

 1-6

amples of how indirection is used to “solve” DSP software architecture prob-
lems; device independence is achieved by adding a level of indirection be-
tween algorithms and physical peripherals and algorithm interchangeability is
achieved by using function pointers.

On the other hand, Jim Gray has been quoted as saying, “There is no perfor-
mance problem that cannot be solved by eliminating a level of indirection.” It
is essential that the TMS320 DSP Algorithm Standard remain true to the spirit
of the DSP developer: any overhead incurred by adherence to the standard
must be minimized.

Intentional Omissions

1-7Overview

1.4 Intentional Omissions

In this section, we describe those aspects of the standard that are intentionally
omitted. This is not to say that these issues are not important but, in the interest
of timeliness, this version does not make any recommendation. Future ver-
sions will address these omissions.

� Version control

� Licensing, encryption, and IP protection

� Installation and verification (i.e., digital signatures)

� Documentation and online help

Like all software, algorithms evolve over time and, therefore, require version
control. Moreover, as the TMS320 DSP Algorithm Standard evolves, older al-
gorithm components may fail to be compliant with the latest specification.
Ideally, a version numbering scheme would be specified that allowed host
based tools to automatically detect incompatible versions of algorithm compo-
nents.

In order to support the ability of a system integrator to rapidly evaluate algo-
rithms from various vendors, a mechanism should be defined that allows a
component to be used for evaluation only. This would encourage algorithm
vendors to provide free evaluations of their technology. It is important to pro-
vide mechanisms, such as encryption of the code, that protect the vendor’s IP;
otherwise, vendors will not make their components readily available.

Each algorithm component is typically delivered with documentation, on-line
help files, and example programs. Ideally, this set of files would be standard-
ized for each algorithm and installation into the Code Composer Studio envi-
ronment would be standardized. The standardization will greatly simplify the
rapid evaluation and system integration process. In addition, it is important that
when a component is obtained, its origin can be reliably determined; to prevent
component theft among algorithm vendors.

System Architecture

 1-8

1.5 System Architecture

Many modern DSP system architectures can be partitioned along the lines de-
picted in the figure below.

Figure 1–2. DSP Software Architecture

ALG

ALG

ALG

Framework

Status

Cmd

Status

Cmd

Core run time support

Algorithms are “pure” data transducers; i.e., they simply take input data buffers
and produce some number of output data buffers. The core run-time support
includes functions that copy memory, functions to enable and disable inter-
rupts, and real-time debugging aids (such as DSP/BIOS’ LOG_printf). The
framework is the “glue” that integrates the algorithms with the real-time data
sources and sinks using the core run time support, to create a complete DSP
sub-system. Frameworks for the DSP often interact with the real-time periph-
erals (including other processors in the system) and often define the I/O inter-
faces for the algorithm components.

Unfortunately, for performance reasons, many DSP systems do not enforce
a clear line between algorithm code and the system-level code (i.e., the frame-
work). Thus, it is not possible to easily reuse an algorithm in more than one
system. The TMS320 DSP Algorithm Standard is intended to clearly define
this line in such a way that performance is not sacrificed and algorithm reus-
ability is significantly enhanced.

1.5.1 Frameworks

Frameworks often define a device independent I/O sub-system and specify
how essential algorithms interact with this sub-system. For example, does the
algorithm call functions to request data or does the framework call the algo-
rithm with data buffers to process? Frameworks also define the degree of mod-
ularity within the application; i.e., what components can be replaced, added,
removed, and when can components be replaced (compile time, link time, or
real-time)?

System Architecture

1-9Overview

Even within the telephony application space, there are a number of different
frameworks available and each is optimized for a particular application seg-
ment; e.g., large volume client-side products and low volume high-density
server-side products. Given the large number of incompatibilities between
these various frameworks and the fact that each framework has enjoyed suc-
cess in the market, this standard does not make any significant requirements
of a framework.

1.5.2 Algorithms

Careful inspection of the various frameworks in use reveals that, at some level,
they all have “algorithm components”. While there are differences in each of
the frameworks, the algorithm components share many common attributes.

� Algorithms are C callable

� Algorithms are reentrant

� Algorithms are independent of any particular I/O peripheral

� Algorithms are characterized by their memory and MIPS requirements

In approximately half of the frameworks reviewed, algorithms are also required
to simply process data passed to the algorithm. The others assume that the
algorithm will actively acquire data by calling framework specific hardware in-
dependent I/O functions. In all cases, algorithms are designed to be indepen-
dent of the I/O peripherals in the system.

In an effort to minimize framework dependencies, this standard requires that
algorithms process data that is passed to them via parameters. It seems likely
that conversion of an “active” algorithm to one that simply accepts data in the
form of parameters is straightforward and little or no loss of performance will
be incurred.

Given the similarities between the various frameworks, it seems possible to
standardize at the level of the algorithm. Moreover, there is real benefit to the
framework vendors and system integrators to this standardization: algorithm
integration time will be reduced, it will be possible to easily comparison shop
for the “best” algorithm, and more algorithms will be available.

It is important to realize that each particular implementation of, say a speech
detector, represents a complex set of engineering trade-offs between code
size, data size, MIPS, and quality. Moreover, depending on the system de-
signed, the system integrator may prefer an algorithm with lower quality and
smaller footprint to one with higher quality detection and larger footprint; e.g.,
an electronic toy doll verses a corporate voice mail system. Thus, multiple im-

System Architecture

 1-10

plementations of exactly the same algorithm sometimes make sense; there is
no single best implementation of many algorithms.

Unfortunately, the system integrator is often faced with choosing all algorithms
from a single vendor to ensure compatibility between the algorithms and to
minimize the overhead of managing disparate APIs. Moreover, no single algo-
rithm vendor has all the algorithms for all their customers. The system integra-
tor is, therefore, faced with having to chose a vendor that has “most” of the re-
quired algorithms and negotiate with that vendor to implement the remaining
DSP algorithms.

By enabling system integrators to “plug-replace” one algorithm for another, we
reduce the time to market because the system integrator can chose algorithms
from multiple vendors. We effectively create a huge catalog of inter-operable
parts from which any system can be built.

1.5.3 Core Run-Time Support

In order to enable algorithms to satisfy the minimum requirements of reentran-
cy, I/O peripheral independence, and debuggability, algorithms must rely on
a core set of services that are always present. Since most algorithms are still
produced using assembly language, many of the services provided by the core
must be accessible and appropriate for assembly language.

The core run-time support includes a subset of DSP/BIOS 1.1 together with
some possible additions to support atomic modification of control/status regis-
ters (to set the overflow mode, for example). It also includes a subset of the
standard C language run-time support libraries; e.g., memcpy, strcpy, etc. The
run-time support is described in detail in Appendix B of this document.

2-1

General Programming Guidelines

In this chapter, we develop programming guidelines that apply to all algorithms
on all DSP architectures regardless of application area.

Topic Page

2.1 Use of C Language 2-2.

2.2 Threads and Reentrancy 2-3.

2.3 Data Memory 2-9.

2.4 Program Memory 2-14.

2.5 ROM-ability 2-16.

2.6 Use of Peripherals 2-17.

Almost all recently developed software modules follow these common sense
guidelines already, so this chapter just formalizes them. In addition to these
guidelines, we also develop a general model of data memory that enables ap-
plications to efficiently manage an algorithm’s memory requirements.

Chapter 2

Use of C Language

 2-2

2.1 Use of C Language

All algorithms will follow the run-time conventions imposed by the C program-
ming language. This ensures that the system integrator is free to use C to
“bind” various algorithms together, control the flow of data between algorithms,
and interact with other processors in the system easily.

Rule 1

All algorithms must follow the run-time conventions imposed by TI’s imple-
mentation of the C programming language.

It is very important to note that this does not mean that algorithms must be writ-
ten in the C language. Algorithms may be implemented entirely in assembly
language. They must, however, be callable from the C language and respect
the C language run time conventions. Most significant algorithms are not im-
plemented as a single function; like any sophisticated software, they are com-
posed of many interrelated internal functions. Again, it is important to note that
these internal functions do not need to follow the C language conventions; only
the top-most interfaces must obey the C language conventions. On the other
hand, these internal functions must be careful not to cause the top-most func-
tion to violate the C run-time conventions; e.g., no called function may use a
word on the stack with interrupts enabled without first updating the stack
pointer.

Threads and Reentrancy

2-3General Programming Guidelines

2.2 Threads and Reentrancy

Because of the variety of frameworks available for DSP systems, there are
many differing types of threads and, therefore, reentrancy requirements. In
this section, we try to precisely define the types of threads supported by this
standard and the reentrancy requirements of algorithms.

2.2.1 Threads

A thread is an encapsulation of the flow of control in a program. Most people
are accustomed to writing single-threaded programs—that is, programs that
only execute one path through their code “at a time”. Multi-threaded programs
may have several threads running through different code paths “simulta-
neously”.

Why are some phrases above in quotes? In a typical multi-threaded program,
zero or more threads may actually be running at any one time. This depends
on the number of CPUs in the system in which the process is running, and on
how the thread system is implemented. A system with n CPUs can, intuitively
enough, run no more than n threads in parallel, but it may give the appearance
of running many more than n “simultaneously”, by sharing the CPUs among
threads. The most common case being that of n equal to one; i.e., a single CPU
running all the threads of an application.

Why are threads interesting? An OS or framework can schedule them, reliev-
ing the developer of an individual thread from having to know about all the oth-
er threads in the system. In a multi-CPU system, communicating threads can
be moved among the CPUs to maximize system performance without having
to modify the application code. In the more common case of a single CPU, the
ability to create multi-threaded applications allows the CPU to be used more
effectively; while one thread is waiting for data another can be processing data.

Virtually all DSP systems are multi-threaded; even the simplest systems con-
sist of a main program and one or more hardware interrupt service routines.
Additionally, many DSP systems are designed to manage multiple “channels”
or “ports”; i.e., they perform the same processing for two or more independent
data streams.

2.2.2 Preemptive vs. Non-preemptive Multitasking

Non-preemptive multitasking relies on each thread to voluntarily relinquish
control to the operating system before letting another thread execute. This is
usually done by requiring threads to periodically call an operating system func-
tion, say yield(), to allow another thread to take control of the CPU or by simply

Threads and Reentrancy

 2-4

requiring all threads to complete within a specified short period. In a non-pre-
emptive multi-threading environment, the amount of time a thread is allowed
to run is determined by the thread, whereas in a preemptive environment, the
time is determined by the operating system and the entire set of tasks that are
ready to run.

Note that the difference between those two flavors of multi-threading can be
a very big one; for example, under a non-preemptive system, you can safely
assume that no other thread executes while a particular algorithm processes
data using on-chip data memory. Under preemptive execution, this is not true
because a thread may be preempted while it is in the middle of processing.
Thus, if your application relies on the assumption that things do not change in
the middle of processing some data, it might break under a preemptive execu-
tion scheme.

Since preemptive systems are designed to preserve the state of a preempted
thread and restore it when its execution continues, threads can safely assume
that most registers and all of the thread’s data memory remain unchanged.
What would cause an application to fail? Any assumptions related to the maxi-
mum amount of time that can elapse between any two instructions, the state
of any global system resource such as a data cache, or the state of a global
variable accessed by multiple threads can cause an application to fail in a pre-
emptive environment.

Non-preemptive environments incur less overhead and often result in higher
performance systems; for example, data caches are much more effective in
non-preemptive systems since each thread can control when preemption (and
therefore, cache flushing) will occur.

On the other hand, non-preemptive environments require that either each
thread complete within a specified maximum amount of time or explicitly relin-
quish control of the CPU to the framework (or operating system) at some mini-
mum periodic rate. By itself, this is not a problem since most DSP threads are
periodic with real-time deadlines. However, this minimum rate is a function of
the other threads in the system and, consequently, non-preemptive threads
are not completely independent of one another; they must be sensitive to the
scheduling requirements of the other threads in the system. Thus, systems
that are by their nature multi-rate and multi-channel often require preemption;
otherwise, all of the algorithms used would have to be re-written whenever a
new algorithm is added to the system.

If we want all algorithms to be framework independent, we must either define
a framework neutral way for algorithms to relinquish control or assume that al-
gorithms used in a non-preemptive environment always complete in less than
the required maximum scheduling latency time. Since we require documenta-

Threads and Reentrancy

2-5General Programming Guidelines

tion of worst case execution times, it is possible for system integrators to quick-
ly determine if an algorithm will cause a non-preemptive system to violate its
scheduling latency requirements. Thus, the TMS320 DSP Algorithm Standard
does not define a framework neutral “yield” operation for algorithms.

Since algorithms can be used in both preemptive and non-preemptive environ-
ments, it is important that all algorithms be designed to support both. This
means that algorithms should minimize the maximum time that they can delay
other algorithms in a non-preemptive system.

2.2.3 Reentrancy

Reentrancy is the attribute of a program or routine that allows the same copy
of the program or routine to be used concurrently by two or more threads.

Reentrancy is an extremely valuable property for functions. In multi-channel
systems, for example, any function that can be invoked as part of one chan-
nel’s processing must be reentrant; otherwise, that function would not be us-
able for other channels. In single channel multi-rate systems, any function that
must be used at two different rates must be reentrant; for example, a general
digital filter function used for both echo cancellation and pre-emphasis for a
vocoder. Unfortunately, it is not always easy to determine if a function is reen-
trant.

The definition of reentrant code often implies that the code does not retain
“state” information. That is if you invoke the code with the same data at differ-
ent times, by the same or other thread, it will yield the same results. This is not
always true, however. How can a function maintain state and still be reentrant?
Consider the rand() function. Perhaps a better example is a function with state
that protects that state by disabling scheduling around its critical sections.
These examples illustrate some of the subtleties of reentrant programming.

The property of being reentrant is a function of the threading model; after all,
before you can determine whether multiple threads can use a particular func-
tion, you must know what types of threads are possible in a system. For exam-
ple, if threads are not preemptive, a function may freely use global variables
if it uses them for scratch storage only; i.e., it does not assume these variables
have any values upon entry to the function. In a preemptive environment, how-
ever, use of these global variables must be protected by a critical section or
they must be part of the context of every thread that uses them.

Although there are exceptions, reentrancy usually requires that algorithms:

� only modify data on the stack or in an instance “object”

� treat global and static variables as read-only data

Threads and Reentrancy

 2-6

� never employ self modifying code

These rules can sometimes be relaxed by disabling all interrupts (and there-
fore, disabling all thread scheduling) around the critical sections that violate
the rules above. Since algorithms are not permitted to directly manipulate the
interrupt state of the processor, the DSP/BIOS must be used to create these
critical sections.

Rule 2

All algorithms must be reentrant within a preemptive environment (including
time-sliced preemption).

2.2.4 Example

In the remainder of this section we consider several implementations of a sim-
ple algorithm, digital filtering of an input speech data stream, and show how
it can be made reentrant and maintain acceptable levels of performance. It is
important to note that, although these examples are written in C, the principles
and techniques apply equally well to assembly language implementations.

Speech signals are often passed through a pre-emphasis filter to flatten their
spectrum prior to additional processing. Pre-emphasis of a signal can be ac-
complished by applying the following difference equation to the input data:

21 32
13

−− ς+−= nnnn xxxy

The following implementation is not reentrant because it references and up-
dates the global variables z0 and z1. Even in a non-preemptive environment,
this function is not reentrant; it is not possible to use this function to operate
on more than one data stream since it retains state for a particular data stream
in two fixed variables (z0 and z1).

int z0 = 0, z1 = 0; /* previous input values */

void PRE_filter(int input[], int length)
{
 int i, tmp;

 for (i = 0; i < length; i++) {
 tmp = input[i] – z0 + (13 * z1 + 16) / 32;
 z1 = z0;
 z0 = input[i];
 input[i] = tmp;
 }
}

Threads and Reentrancy

2-7General Programming Guidelines

We can make this function reentrant by requiring the caller to supply previous
values as arguments to the function. This way, PRE_filter1 no longer refer-
ences any global data and can be used, therefore, on any number of distinct
input data streams.

void PRE_filter1(int input[], int length, int *z)
{
 int i, tmp;

 for (i = 0; i < length; i++) {
 tmp = input[i] – z[0] + (13 * z[1] + 16) / 32;
 z[1] = z[0];
 z[0] = input[i];
 input[i] = tmp;
 }
}

This technique of replacing references to global data with references to pa-
rameters illustrates a general technique that can be used to make virtually any
code reentrant. One simply defines a “state object” that contains all of the state
necessary for the algorithm and a pointer to this state is passed to the algo-
rithm (along with the input and output data).

typedef struct PRE_Obj { /* state obj for pre-emphasis alg */
 int z0;
 int z1;
} PRE_Obj;

void PRE_filter2(PRE_Obj *pre, int input[], int length)
{
 int i, tmp;

 for (i = 0; i < length; i++) {
 tmp = input[i] – pre->z0 + (13 * pre->z1 + 16) / 32;
 pre->z1 = pre->z0;
 pre->z0 = input[i];
 input[i] = tmp;
 }
}

Although the C code looks more complicated than our original implementation,
its performance is comparable, it is fully reentrant, and its performance can be
configured on a “per data object” basis. Since each state object can be placed
in any data memory, it is possible to place some objects in on-chip memory and
others in external memory. The pointer to the state object is, in effect, the func-
tion’s private “data page pointer”; all of the function’s data can be efficiently ac-
cessed by a constant offset from this pointer.

Notice that while performance is comparable to our original implementation,
it is slightly larger and slower because of the state object redirection; directly
referencing global data is often more efficient than referencing data via an ad-

Threads and Reentrancy

 2-8

dress register. On the other hand, the decrease in efficiency can usually be fac-
tored out of the time critical loop and into the loop setup code. Thus, the incre-
mental performance cost is minimal and the benefit is that this same code can
be used in virtually any system—independent of whether the system must
support a single channel or multiple channels, or whether it is preemptive or
non-preemptive.

“We should forget about small efficiencies, say about 97% of the time: prema-
ture optimization is the root of all evil” —Donald Knuth “Structured Program-
ming with go to Statements,” Computing Surveys, Vol. 6, No. 4, December,
1974, page 268.

Data Memory

2-9General Programming Guidelines

2.3 Data Memory

The large performance difference between on-chip data memory and off-chip
memory (even 0 wait-state SRAM) is so large that every algorithm vendor de-
signs their code to operate as much as possible within the on-chip memory.
Since the performance gap is expected to increase dramatically in the next 3-5
years, this trend will continue for the foreseeable future. The TMS320C6000
series, for example, incurs a 25 wait state penalty for external SDRAM data
memory access and future processors may see this penalty increase to 80 or
even 100 wait states!

While the amount of on-chip data memory may be adequate for each algorithm
in isolation, the increased number of MIPS available on modern DSPs encour-
ages systems to perform multiple algorithms concurrently with a single chip.
Thus, some mechanism must be provided to efficiently share this precious
resource among algorithm components from one or more third parties.

2.3.1 Memory Spaces

In an ideal DSP, there would be an unlimited amount of on-chip memory and
algorithms would simply always use this memory. In practice, however, the
amount of on-chip memory is very limited and there are even two common
types of on-chip memory with very different performance characteristics: dual-
access memory which allows simultaneous read and write operations in a
single instruction cycle, and single access memory that only allows a single
access per instruction cycle.

Because of these practical considerations, most DSP algorithms are designed
to operate with a combination of on-chip and external memory. This works well
when there is sufficient on-chip memory for all the algorithms that need to oper-
ate concurrently; the system developer simply dedicates portions of on-chip
memory to each algorithm. It is important, however, that no algorithm assume
specific region of on-chip memory or contain any “hard coded” addresses;
otherwise the system developer will not be able to optimally allocate the on-
chip memory among all algorithms.

Rule 3

Algorithm data references must be fully reloatable (subject to alignment re-
quirements). That is, there must be no “hard-coded” data memory locations.

Note that algorithms can directly access data contained in a static data struc-
ture located by the linker. This rule only requires that all such references be
done symbolically; i.e., via a relocatable label rather than a fixed numerical ad-
dress.

Data Memory

 2-10

In systems where the set of algorithms is not known in advance or when there
is insufficient on-chip memory for the worst case working set of algorithms,
more sophisticated management of this precious resource is required. In par-
ticular, we need to describe how the on-chip memory can be shared at run-time
among an arbitrary number of algorithms.

2.3.2 Scratch verses Persistent

In this section, we develop a general model for sharing regions of memory
among algorithms. This model is used to share the on-chip memory of a DSP,
for example. This model is essentially a generalization of the technique com-
monly used by compilers to share CPU registers among functions. Compilers
often partition the CPU registers into two groups: “scratch” and “preserve”.
Scratch registers can be freely used by a function without having to preserve
their value upon return from the function. Preserve registers, on the other
hand, must be saved prior to being modified and restored prior to returning
from the function. By partitioning the register set in this way, significant opti-
mizations are possible; functions do not need to save and restore scratch reg-
isters and callers do not need to save preserve registers prior to calling a func-
tion and restore them after the return.

Consider the program execution trace of an application that calls two distinct
functions, say a() and b().

Void main()
{
 ... /* use scratch registers r1 and r2 */

 /* call function a() */
 a() {
 ... /* use scratch registers r0, r1, and r2 */
 }

 /* call function b() */
 b() {
 ... /* use scratch registers r0 and r1*/
 }
}

Notice that both a() and b() freely use some of the same scratch registers and
no saving and restoring of these registers is necessary. This is possible be-
cause both functions, a() and b(), agree on the set of scratch registers and that
values in these registers are indeterminate at the beginning of each function.

By analogy, we partition all memory into two groups: scratch and persistent.

� Scratch memory is memory that is freely used by an algorithm without re-
gard to its prior contents, i.e., no assumptions about the content can be
made by the algorithm and the algorithm is free to leave it in any state.

Data Memory

2-11General Programming Guidelines

� Persistent memory is used to store state information while an algorithm
instance is not executing.

Persistent memory is any area of memory that an algorithm can write to as-
sume that the contents are unchanged between successive invocations of the
algorithm within an application. All physical memory has this behavior, but ap-
plications that share memory among multiple algorithms may opt to overwrite
some regions of memory (e.g., on-chip DARAM). The importance of making
a distinction between scratch memory and persistent memory is illustrated in
the following figure.

Figure 2–1. Scratch vs Persistent Memory Allocation

ScratchAlgorithm A

ScratchAlgorithm B

Persistent CScratchAlgorithm C

Scratch
Physical
Memory

Persistent B

Persistent A

Persistent A Persistent B Persistent C

0000 FFFF

All algorithm scratch memory can be “overlaid” on the same physical memory.
Without the distinction between scratch and persistent memory, it would be
necessary to strictly partition memory among algorithms making the total
memory requirement the sum of all algorithms’ memory requirements. On the
other hand, by making the distinction, the total memory requirement for a
collection of algorithms is the sum of each algorithms persistent memory plus
the maximum scratch memory requirement of any of these algorithms.

Guideline 1

Algorithms should minimize their persistent data memory requirements in fa-
vor of scratch memory.

In addition to the types of memory described above, there are often several
memory spaces provided by a DSP to algorithms.

� Dual-access memory (DARAM) is on-chip memory that allows two simul-
taneous accesses in a single instruction cycle.

Data Memory

 2-12

� Single-access memory (SARAM) is on-chip memory that allows only a
single access per instruction cycle.

� External memory is memory that is external to the DSP and may require
more than zero wait states per access.

These memory spaces are often treated very differently by algorithm imple-
mentations; in order to optimize performance, frequently accessed data is
placed in on-chip memory, for example. The scratch verses persistent attribute
of a block of memory is independent of the memory space. Thus, there are six
distinct memory classes; scratch and persistent for each of the three memory
spaces described above.

2.3.3 Algorithm verses Application

Other than a memory block’s size, alignment, and memory space, three inde-
pendent questions must be answered before a client can properly manage a
block of an algorithm’s data memory.

� Is the block of memory treated as scratch or persistent by the algorithm?

� Is the block of memory shared by more than one algorithm?

� Do the algorithms that share the block preempt one another?

The first question is determined by the implementation of the algorithm; the al-
gorithm must be written with assumptions about the contents of certain
memory buffers. We’ve argued that there is significant benefit to distinguish
between scratch memory and persistent memory, but it is up to the algorithm
implementation to trade the benefits of increasing scratch and decreasing per-
sistent memory against the potential performance overhead incurred by re-
computing intermediate results.

The second two questions, regarding sharing and preemption, can only be an-
swered by the client of an standard-compliant algorithm. The client decides
whether preemption is required for the system and the client allocates all
memory. Thus, only the client “knows” whether memory is shared among algo-
rithms. Some frameworks, for example, never share any allocated memory
among algorithms whereas others always share scratch memory.

There is a special type of persistent memory managed by clients of algorithms
that is worth distinguishing: shadow memory is unshared persistent memory
that is used to “shadow” or save the contents of shared registers and memory
in a system. Shadow memory is not used by algorithms; it is used by their cli-
ents to save the memory regions shared by various algorithms.

The following figure illustrates the relationship between the various types of
memory.

Data Memory

2-13General Programming Guidelines

Figure 2–2. Data Memory Types

Persistent

Scratch

Shared Private

Shadow

Program Memory

 2-14

2.4 Program Memory

Like the data memory requirements described in the previous section, it is im-
portant that all standard-compliant algorithms are fully relocatable; i.e., there
should never be any assumption about the specific placement of an algorithm
at a particular address. Alignment on a specified page size is permitted, how-
ever.

Rule 4

All algorithm code must be fully relocatable. That is, there can be no “hard
coded” program memory locations.

As with the data memory requirements, this rule only requires that code be re-
located via a linker. For example, it is not necessary to always use PC-relative
branches. This requirement allows the system developer to optimally allocate
program space to the various algorithms in the system.

Algorithm modules sometimes require initialization code that must be execut-
ed prior to any other algorithm method being used by a client. Often this code
is only run once during the lifetime of an application. This code is effectively
“dead” once it has been run at startup. The space allocated for this code can
be reused in many systems by placing the “run-once” code in data memory and
using the data memory during algorithm operation.

A similar situation occurs in “finalization” code. Debug versions of algorithms,
for example, sometimes implement functions that when called when a system
exits can provide valuable debug information; e.g., the existence of objects or
objects that have not been properly deleted. Since many systems are de-
signed to never exit (i.e., exit by power-off), finalization code should be placed
in a separate object module. This allows the system integrator to avoid includ-
ing code that can never be executed.

Guideline 2

Each initialization and finalization function should be defined in a separate
object module; these modules must not contain any other code.

In some cases, it is awkward to place each function in a separate file. Doing
so may require making some identifiers globally visible or require significant
changes to an existing code base. The TI C compiler supports a pragma direc-
tive that allows one to place specified functions in distinct COFF output sec-
tions. This pragma directive may be used in lieu of placing functions in sepa-
rate files. The table below summarizes recommended section names and their
purpose.

Program Memory

2-15General Programming Guidelines

Section
Name

Purpose

.text:init Run-once initialization code

.text:exit Run-once finalization code

.text:create Run-time object creation

.text:delete Run-time object deletion

ROM-ability

 2-16

2.5 ROM-ability

There are several “addressing modes” used by algorithms to access data
memory. Sometimes the data is referenced by a pointer to a buffer passed to
the algorithm and sometimes an algorithm simply references global variables
directly. When an algorithm references global data directly, the instruction that
operates on the data often contains the address of the data (rather than an off-
set from a data page register, for example). Thus, this code cannot be placed
in a ROM without also requiring that the referenced data be placed in a fixed
location in a system. If a module has configuration parameters that result in
variable length data structures and these structures are directly referenced,
such code is not considered ROM-able; the offsets in the code are fixed and
the relative positions of the data references may change.

Alternatively, algorithm code can be structured to always use offsets from a
“data page” for all fixed length references and place a pointer in this page to
any variable length structures. In this case, it is possible to configure and locate
the data anywhere in the system provided the data page is appropriately set.

Rule 5

Algorithms must characterize their ROM-ability; i.e., state whether they are
ROM-able or not.

Obviously, self-modifying code is also not ROM-able. Note that we do not re-
quire that no algorithm employ self-modifying code; we only require documen-
tation of the ROM-ability of an algorithm. It is also worth pointing out that if self-
modifying code is used, it must be done “atomically”, i.e. with all interrupts dis-
abled; otherwise this code would fail to be reentrant.

Use of Peripherals

2-17General Programming Guidelines

2.6 Use of Peripherals

In order to ensure the interoperability of standard-compliant algorithms, it is
important that no algorithm ever directly access any peripheral device.

Rule 6

Algorithms must never directly access any peripheral device. This includes
but is not limited to on-chip DMAs, timers, I/O devices, and cache control reg-
isters. Note, however, algorithms can utilize the DMA resource by imple-
menting the IDMA interface. See Chapter 6 for details.

In order for an algorithm to be framework independent, it is important that no
algorithm directly call any device interface to read or write data. All data pro-
duced or consumed by an algorithm must be explicitly passed to the algorithm
by the client. For example, no algorithm should call a device independent I/O
library function to get data; this is the responsibility of the client or framework.

3-1

Algorithm Component Model

In this chapter, we develop additional guidelines that apply to all algorithms on
all DSP architectures regardless of application area.

Topic Page

3.1 Interfaces and Modules 3-2.

3.2 Algorithms 3-14.

3.3 Testing and Diagnostics 3-16.

3.4 Packaging 3-17.

These guidelines enable many of the benefits normally associated with object-
oriented and component-based programming but with little or no overhead.
More importantly, these guidelines are necessary to enable two different algo-
rithms to be integrated into a single application without modifying the source
code of the algorithms. The rules include naming conventions to prevent dupli-
cate external name conflicts, a uniform method for initializing algorithms, and
specification of a uniform data memory management mechanism.

Chapter 3

Interfaces and Modules

 3-2

3.1 Interfaces and Modules

This section describes the general structure of the most basic software com-
ponent of the TMS320 DSP Algorithm Standard application—the module.
Since all standard-compliant algorithms are implemented as modules, this
section describes the design elements common to all of them. This structure
is designed to encourage both modular coding practices and reentrant imple-
mentations.

A module is an implementation of one (or more) interfaces. An interface is sim-
ply a collection of related type definitions, functions, constants, and variables.
In the C language, an interface is typically specified by a header file. It is impor-
tant to note that not all modules implement algorithms, but all algorithm imple-
mentations must be modules. For example, the DSP/BIOS is a collection of
modules and none of these are standard-compliant algorithms.

Following the conventions of the DSP/BIOS APIs, all modules:

� Provide a single header that defines the entire interface to the module

� Implement a module initialization and finalization method

� Optionally manage one or more “instance” objects of a single type

� Optionally declare a “Config” structure defining module-wide configura-
tion options

Suppose we create a module called FIR, which consists of a collection of func-
tions that create and apply finite impulse response filters to a data stream. The
interface to this module is declared in the single C header file fir.h; any applica-
tion that wants to use the functions provided by the FIR module must include
the header fir.h. Although the interface is declared as a C header file, the mod-
ule may be implemented entirely in assembly language (or a mix of both C and
assembly).

Interfaces and Modules

3-3Algorithm Component Model

Figure 3–1. Module Interface and Implementation

client.c

#include <fir.h>

[

FIR_apply();
}

fir.h

typedefstructFIR_obj *FIR_Handle;
extern voidFIR_init();
extern voidFIR_exit();
externFIR_HandleFIR_create();

fir_apply.asm

FIR_apply:
.globalFIR_apply

fir_create.c

FIR_HandleFIR_create() {

Includes

Interface

Implementation

Since interfaces may build atop other interfaces, it is important that all header
files allow for the possibility that they might be included more than once by a
client.

Rule 7

All header files must support multiple inclusions within a single source file.

The general technique for insuring this behavior for C header files is illustrated
in the code below.
/*
 * ======== fir.h ========
 */
#ifndef FIR_
#define FIR_

0

#endif /* FIR_ */

Interfaces and Modules

 3-4

A similar technique should be employed for assembly language headers.
;
; ======== fir.h54 ========
;
 .if ($isdefed(”FIR_”) = 0)
FIR_ .set 1

0

 .endif

3.1.1 External Identifiers

Since multiple algorithms and system control code are often integrated into a
single executable, the only external identifiers defined by an algorithm imple-
mentation (i.e., symbols in the object code) should be those specified by the
algorithm API definition. Unfortunately, due to limitations of traditional linkers,
it is sometimes necessary for an identifier to have external scope even though
this identifier is not part of the algorithm API. Thus, in order to avoid name-
space collisions, it is important that vendor selected names do not conflict.

Rule 8

All external definitions must be either API identifiers or API and vendor pre-
fixed.

All external identifiers defined by a module’s implementation must be prefixed
by “<module>_<vendor>_”, where

<module> is the name of the module (containing characters from the
set [A-Z0-9]),

<vendor> is the name of the vendor (containing characters from the
set [A-Z0-9]).

For example, TI’s implementation of the FIR module must only contain exter-
nal identifiers of the form FIR_TI_[a-zA-Z0-9]*. On the other hand, external
identifiers that are common to all implementations do not have the “vendor”
component of the name. For example, if the FIR module interface defined a
constant structure that is used by all implementations, its name simply has the
form FIR_[A-Z0-9]*.

In addition to the symbols defined by a module, we must also standardize the
symbols referenced by all modules.

Rule 9

All undefined references must refer either to the operations specified in
Appendix B (a subset of C runtime support library functions and the DSP/
BIOS) or other eXpressDSP-compliant modules.

Interfaces and Modules

3-5Algorithm Component Model

3.1.2 Naming Conventions

In order to simplify the way standard-compliant client code is written, it is valu-
able to maintain a single consistent naming convention. Since the TMS320
DSP Algorithm Standard is intended to be used in systems that incorporate
DSP/BIOS, it is required that, in addition to being properly prefixed (Rule 8),
all external declarations disclose to the user must first conform to the naming
conventions of DSP/BIOS.

Rule 10

All modules must follow the naming conventions of DSP/BIOS for those ex-
ternal declarations disclosed to the client.

Note that the naming conventions only apply to external identifiers. Internal
names and existing code need not change unless an identifier is externally vis-
ible to a client application. The DSP/BIOS naming conventions are summa-
rized in the table below.

Convention Description Example

Variables and
functions

Variables and functions begin with
lowercase (after the prefix).

LOG_printf()

Constants Constants are all uppercase
G729_FRAME-
LEN

Types
Data types are in title case (after the
prefix)

LOG_Obj

Structure fields Structure fields begin with lowercase buffer

macros
Macros follow the conventions of
constants or functions as appropri-
ate

LOG_getbuf()

In addition to these conventions, it is important that multi-word identifiers never
use the ‘_’ character to separate the words. To improve readability use title
case; for example, LOG_getBuffer() should be used in lieu of
LOG_get_buffer(). This avoids ambiguity when parsing module and vendor
prefixes.

3.1.3 Module Initialization and Finalization

Before a module can be used by an application, it must first be “initialized”; i.e.,
the module’s init() method must be run. Similarly, when an application termi-
nates, any module that was initialized must be “finalized”; i.e., its exit() method
must be executed. Initialization methods are often use to initialize global data

Interfaces and Modules

 3-6

used by the module that, due to limitations of the C language, cannot be stati-
cally initialized. Finalization methods are often used to perform run-time debug
assertions; for example, it might check for objects that were created but never
deleted. The finalization method of a non-debug version of a module is often
the empty function.

Although some modules have no need for initialization or finalization, it is easi-
er for the clients of modules to assume that all modules have them. This allows
frameworks to easily implement well-defined startup and shutdown se-
quences, for example.

Rule 11

All modules must supply an initialization and finalization method.

3.1.4 Module Instance Objects

Modules optionally manage instance objects. All TMS320 DSP Algorithm
Standard modules manage instance objects. Objects simply encapsulate the
persistent state that is manipulated by the other functions or methods provided
by the module.

A module manages only one type of object. Thus, a module that manages ob-
jects roughly corresponds to a C++ class that follows a standard naming con-
vention for its configuration parameters, interface header, and all external
identifiers.

Figure 3–2. Module Object Creation

FIR_Config FIR;
FIR_init();
FIR_exit();
FIR_create();

FIR
firObject

Creates firObject

Figure 3–3 illustrates an object appropriate for a finite impulse response filter
implemented by a module named FIR.

Interfaces and Modules

3-7Algorithm Component Model

Figure 3–3. Example Module Object

FIR

FIR_create();

Creates
firObject

Int length;
Int coeff[];
Int delay[];

Read-only
coefficient array

Filetr input
history buffer

3.1.5 Design-time Object Creation

Many embedded systems are very static in nature; memory, MIPS, and I/O pe-
ripherals are statically partitioned among a fixed set of functions that operate
continuously until power is removed. Static systems admit a number of perfor-
mance optimizations that simply are not possible in dynamic systems. For ex-
ample, there is no need for a memory manager in a static system and general
data structures, such as linked lists, can be often replaced with much simpler
and more efficient structures, such as fixed length arrays. These optimizations
not only reduce the system’s code size requirements; they may also have a
significant effect on the execution performance of the system.

When designing a system that is very cost sensitive, must operate with limited
power, or has limited MIPS, designers look for portions of the system that can
be fixed at design time (i.e., made static). Even if the entire system cannot be
static, often certain sub-systems can be fixed at design time. It is important,
therefore, that all modules efficiently support static system designs.

Guideline 3

All modules that support object creation should support design-time object
creation.

In practice, this simply means that all functions that are only required for run-
time object creation be placed either in separate compilation units or separate
COFF output sections that can be manipulated by the linker. Ideally, every
function should be in a separate compilation unit. This allows the system inte-
grator to eliminate run-time support that is unnecessary for a static system.

Interfaces and Modules

 3-8

3.1.6 Run-time Object Creation and Deletion

Modules may optionally support run-time object creation and deletion. In some
applications, run-time creation and deletion is a requirement. Without the abili-
ty to remove unneeded objects and reuse memory, the physical constraints of
the system make it impossible to create rich multi-function applications, for ex-
ample.

Run-time creation of objects is valuable even in systems that do not support
or require run-time deletion of these objects. The precise nature of the objects,
the number of objects, and even the type of objects created may be a function
of parameters that are only available at run-time. For example, one may want
to create a single program that works in a variety of hardware platforms that
differ in the amount of memory available and this amount is determinable at
run-time.

Guideline 4

All modules that support object creation should support run-time object cre-
ation.

Note that the standard-compliant algorithms are a special type of module.
When we define algorithms below, we will see how algorithms support run-
time object creation. The guideline above is intended to cover modules such
as those that make up the Core Run-time Support as well as the standard-
compliant algorithms.

3.1.7 Module Configuration

In an ideal world, a module that implements an API can be used in any system
that requires the API. As a practical matter, however, every module imple-
mentation must make trade-offs among a variety of performance metrics; pro-
gram size, data size, MIPS, and a variety of application specific metrics such
as recognition accuracy, perceived audio quality, and throughput, for example.
Thus, a single implementation of an API is unlikely to make the right set of
tradeoffs for all applications.

It is important, therefore, that multiple implementations of the same API be well
supported by any TMS320DSP Algorithm Standard development framework.
In addition, each module has one or more “global configuration” parameters
that can be set at design time by the system integrator to adjust the behavior
of the module to be optimal for its execution environment.

Suppose for example, that one created a module that implements digital filters.
There are several special cases for digital filters that have significant perfor-

Interfaces and Modules

3-9Algorithm Component Model

mance differences; all-pole, all-zero, and pole-zero filters. Moreover, for TI ar-
chitectures, if one assumes that the filter’s data buffers are aligned on certain
boundaries the implementation can take advantage of special data addressing
modes and significantly reduce the time required to complete the computation.
A filter module may include a global configuration parameter that specifies that
the system will only use all-zero filters with aligned data. By making this a de-
sign-time global configuration parameter, systems that are willing to accept
constraints in their use of the API are rewarded by smaller faster operation of
the module that implements the API.

Modules that have one or more “global” configuration parameters should
group them together into a C structure, called XYZ_Config, and declare this
structure in the module’s header. In addition, the module should declare a stat-
ic constant structure named XYZ of type XYZ_Config that contains the mod-
ule’s current configuration parameters.

3.1.8 Example Module

This section develops a very simple module to illustrate the concept of mod-
ules and how they might be implemented in the C language. This module im-
plements a simple FIR filter.

The first two operations that must be supported by all modules are the init() and
exit() functions. The init() function is called during system startup while the
exit() function is called during system shutdown. These entry points exist to
allow the module to perform any run-time initialization necessary for the mod-
ule as a whole. More often than not, these functions have nothing to do and
are simply empty functions.

void FIR_init(void)
{
}

void FIR_exit(void)
{
}

The create entry point creates and initializes an object; i.e., a C structure. The
object encapsulates all the state necessary for the other functions to do their
work. All of the other module entry points are passed a pointer to this object
as their first argument. If the functions only reference data that is part of the

Interfaces and Modules

 3-10

object (or referenced within the object), the functions will naturally be
reentrant.
typedef FIR_Params { /* FIR_Obj creation parameters */
 int frameLen; /* input/output frame length */
 int *coeff; /* pointer to filter coefficients */
} FIR_Params;

FIR_Params FIR_PARAMS = { 64, NULL }; /* default parameters */

typedef struct FIR_Obj { /* FIR_Obj definition */
 int hist[16]; /* previous input value */
 int frameLen; /* input frame length */
 int *coeff;
} FIR_Obj;

FIR_Handle FIR_create(FIR_Obj *fir, const FIR_Params *params)
{
 if (fir != NULL) {
 if (params == NULL) { /* use defaults if params is NULL
*/
 params = &FIR_PARAMS;
 }
 fir->frameLen = params->frameLen;
 fir->coeff = params->coeff;
 memset(fir->hist, 0, sizeof (fir->hist));
 }

 return (fir);
}

The delete entry point should release any resource held by the object being
deleted and should gracefully handle the deletion of partially constructed ob-
jects; the delete entry point may be called by the create operation. In this case,
there is nothing to do.

void FIR_delete(FIR_Handle fir)
{
}

Finally, the FIR module must provide a method for filtering a signal. This is ac-
complished via the apply operation shown below.

void FIR_apply(FIR_Handle fir, int in[], int out[])
{
 int i;

 /* filter data using coefficients fir->coeff and
 history fir->hist */
 for (i = 0; i < fir->frameLen; i++) {
 out[i] = filter(in[i], fir->coeff, fir->hist);
 }
}

Of course, in a real FIR module, the filter operation would be implemented in
assembly language. However, because the state necessary to compute the

Interfaces and Modules

3-11Algorithm Component Model

algorithm is entirely contained in the object pointed to by fir, this algorithm is
reentrant. Thus, it is easy to use this module in multichannel applications or
in single-channel applications which require more than one FIR filter.

3.1.9 Multiple Interface Support

Modern component programming models support the ability of a single com-
ponent to implement more than one interface. This allows a single component
to be used concurrently by a variety of different applications. For example, in
addition to a component’s concrete interface (defined by its header) a compo-
nent might also support a debug interface that allows debuggers to inquire
about the existence and extent of the component’s debug capabilities. If all de-
buggable components implement a common abstract debug interface, debug-
gers can be written that can uniformly debug arbitrary components.

Support for multiple interfaces is generally incorporated into the development
environment (via code wizards), the programming language itself, or both.
Since this standard is intended to only require the C language, the ability of a
module to support multiple interfaces is at best awkward.

However, several significant benefits make this approach worthwhile. A ven-
dor may opt to not implement certain interfaces for some components, new in-
terfaces can be defined without affecting existing components, multiple imple-
mentations of the same interface may be present in a single system, and parti-
tioning a large interface into multiple simpler interfaces makes it easier to un-
derstand the component as a whole.

As stated before, interfaces are defined by header files; each header defines
a single interface. A module’s header file defines a concrete interface; the
functions defined in the header uniquely identify a specific (or concrete) imple-
mentation within a system. A special type of interface header is used to define
abstract interfaces; abstract interfaces define functions that are implemented
by more than one module in a system. An abstract interface header is identical
to a normal module interface header except that it declares a structure of func-
tion pointers named XYZ_Fxns. A module ABC is said to implement an ab-
stract interface XYZ if it declares and initializes a static structure of type
XYZ_Fxns named ABC_XYZ.

The TMS320 DSP Algorithm Standard API Reference contains all of the ab-
stract interface definitions for standard-compliant algorithms. All standard-
compliant algorithm modules, for example, must implement the IALG inter-
face. Appendix A of the TMS320 DSP Algorithm Standard API Reference doc-
ument contains an example of a module that implements the IALG interface.

By convention, all abstract interface headers begin with the letter ‘i’. Where
there is no chance for confusion, we drop the adjective “concrete” and “ab-
stract” when referring to a module’s interfaces.

Interfaces and Modules

 3-12

3.1.10 Interface Inheritance

Although all standard-compliant algorithms implement the IALG interface, it is
important to note that almost all of the TMS320 DSP Algorithm Standard mod-
ules must implement a more specific algorithm interface; i.e., they must imple-
ment all of the IALG functions as well as methods specific to the algorithm. For
example, a G.729 encoder algorithm must not only implement IALG but it must
also implement an “encode” function that is specific to the G.729 algorithm.

In this common case—where we want to define a new interface that requires
additional methods beyond those defined by IALG—we define a new interface
that “derives from” or “inherits from” the IALG interface. Interface inheritance
is implemented by simply defining the new interface’s “Fxns” structure so that
its first field is the “Fxns” structure from which the interface is inherited. Thus,
any pointer to the new interface’s “Fxns” structure can be treated as a pointer
to the inherited interface’s “Fxns” structure.

In the case of the G.729 encoder algorithm, this simply means that the first field
of the G729E_Fxns structure is an IALG_Fxns structure. This ensures that any
G.729 encoder implementation can be treated as a “generic” standard-com-
pliant algorithm.

All interfaces, including those not currently part of the TMS320DSP Algorithm
Standard, that extend IALG should employ the same technique. The abstract
IFIR interface example defined in the TMS320 DSP Algorithm Standard API
Reference illustrates this technique.

3.1.11 Summary

The previous sections described the structure shared by all modules. Recall
that modules are the most basic software component of a standard-compliant
system. The following table summarizes the common design elements for a
module named XYZ.

Element Description Required

XYZ_init()
XYZ_exit()

Module initialization and
finalization functions

yes

xyz.h Module’s interface definition yes

XYZ_Config
Structure type of all module
configuration parameters.

Only if module has global
configuration parameters

XYZ
Constant structure of all mod-
ule configuration parameters.

Only if module has global
configuration parameters

XYZ_Fxns
Structure type defining all
functions necessary to
implement the XYZ interface.

Only if the interface is an
abstract interface defini-
tion

Interfaces and Modules

3-13Algorithm Component Model

The next table summarizes the common elements of all modules that manage
one or more instance objects.

Element Description Required

struct XYZ_Obj
Module’s object definition; normally not
defined in the module’s header.

yes

XYZ_Handle
Handle to an instance object; synonym
for struct XYZ_Obj *

yes

XYZ_Params
Structure type of all module object
creation parameters

yes

XYZ_PARAMS
Constant structure of all default object
creation parameters

yes

XYZ_create()
Run-time creation and initialization of a
module’s object

no

XYZ_delete() Run-time deletion of a module’s object no

Algorithms

 3-14

3.2 Algorithms

TMS320 DSP Algorithm Standard algorithms are modules that implement the
abstract interface IALG. By this, we mean that the module must declare and
initialize a structure of type IALG_Fxns, the structure must have global scope,
and its name must be XYZ_IALG, where XYZ is the unique module-vendor
prefix described above. The IALG interface allows algorithms to define their
memory resource requirements and thereby enable the efficient use of on-chip
data memories by client applications. The IALG interface is described in detail
in Chapter 1 of the TMS320 DSP Algorithm Standard API Reference.

Not every mathematical function should be cast as a standard-compliant algo-
rithm. In particular, many “traditional” math library operations such as FFT or
dot product, which do not maintain state between consecutive operations and
do not require internal workspaces to perform their computation, are not good
TMS320 DSP Algorithm Standard candidates. These algorithms encapsulate
larger computations that require internal working memory and typically oper-
ate on (conceptually) infinite data streams.

Figure 3–4. Example Implementation of IALG Interface

IALG

IALG_Fxns
FIR_Config FIR;

FIR_init();

FIR_exit();

FIR_Fxcs FIR_IALG;

FIR
Implements

The IALG interface defines a “protocol” between the client and the algorithm
used to create an algorithm instance object at run-time. The IALG interface is
designed to enable clients to use the algorithm in virtually any execution envi-
ronment; i.e., preemptive and non-preemptive, static and dynamic systems.
Thus, it is important that standard-compliant algorithms never use any
memory allocation routines (including those provided in the standard C run-
time support libraries). All memory allocation must be performed by the client.

Rule 12

All algorithms must implement the IALG interface.

Since all standard-compliant algorithm implementations are modules that sup-
port object creation and all such modules should support design-time object
creation, all standard-compliant algorithms support both run-time and design-
time creation of algorithm objects. In order to ensure support for design-time

Algorithms

3-15Algorithm Component Model

object creation, it is important that all methods defined by the IALG interface
be independently relocatable.

Rule 13

Each of the IALG methods implemented by an algorithm must be indepen-
dently relocatable.

In practice, this simply means that each method should either be implemented
in a separate file or placed in a separate COFF output section. By placing each
of these methods in a separate file or output section, the linker can be used
to eliminate those methods that are unnecessary in systems that do not re-
quire run-time object creation.

In some cases, it is awkward to place each function in a separate file. Doing
so may require making some identifiers globally visible or require significant
changes to an existing code base, for example. The TI C compiler supports
a pragma directive that allows one to place specified functions in distinct COFF
output sections. This pragma directive may be used in lieu of placing functions
in separate files. The table below summarizes recommended section names
and their purpose.

Section Name Purpose

.text:algActivate Implementation of the IALG algActivate method

.text:algAlloc Implementation of the IALG algAlloc method

.text:<name> Implementation of the IALG <name> method

In other words, an algorithm’s implementation of the IALG method <name>
should be placed in a COFF section named “.text:<name>”.

Since the IALG interface does not define methods that can be used to actually
run an algorithm, it is important that each abstract algorithm interface extend
(or “derive”) from the IALG interface. Thus, every algorithm has considerable
flexibility to define the methods that are appropriate for the algorithm. By deriv-
ing from IALG, we can ensure that all implementations of any algorithm imple-
ment the IALG interface.

Rule 14

All abstract algorithm interfaces must derive from the IALG interface.

Testing and Diagnostics

 3-16

3.3 Testing and Diagnostics

To improve both the system integration efforts as well as enhance in-field diag-
nostics, all algorithms should implement the trace and diagnostic interface
IRTC.

Guideline 5

All algorithms should implement the trace interface IRTC.

All standard-complaint algorithms must implement the IALG interface. Algo-
rithms may also optionally implement the trace interface, IRTC.

Packaging

3-17Algorithm Component Model

3.4 Packaging

In this section, we cover the details necessary for a developer to bundle a mod-
ule into a form that can be delivered into any TMS320DSP Algorithm Standard
development system. It is important to recall that a module’s implementation
may consist of many object files and at least one C header file. By following
these conventions, algorithm developers can be sure that their components
can be seamlessly integrated into any TMS320DSP Algorithm Standard de-
velopment environment. Moreover, these conventions are designed to enable
TMS320DSP Algorithm Standard development environments to easily man-
age an arbitrary collection of standard-compliant components.

In many cases, the TMS320DSP Algorithm Standard requirements simply
amount to file naming conventions. In order to ensure that a single component
can be used in both UNIX and Windows development environments, it is nec-
essary to

� Never create two files whose names only differ in case, and

� Always treat file names as being case-sensitive.

3.4.1 Object Code

Rule 15

Each eXpressDSP-compliant algorithm must be packaged in an archive
which has a name that follows a uniform naming convention.

All of the object code files for a module should be archived into a library with
the following name:

<module><vers>_<vendor>.1<arch>

where

<module > is the name of the module (containing characters from the
set [a-z0-9]),

<vers > is an optional version number of the form v<num> where
num consists of characters from the set [0-9],

<vendor > is the name of the vendor (containing characters from the
set [a-z0-9]),

<arch > is an identifier indicating the DSP architecture (from the set
30, 40, 50, 54, 54f, 54m, 62, 62e, 67, 67e) These identifiers
have the following meanings:

Packaging

 3-18

30 – TMS320C30 object files

40 – TMS320C40 object files

50 – TMS320C50 object files

54 – TMS320C5400 near call/return object files

54f – TMS320C5400 far call/return object files

54m – TMS320C5400 mixed call/return object files

62 – TMS320C6200 little endian object files

62e – TMS320C6200 big endian object files

67 – TMS320C6700 little endian object files

67e – TMS320C6700 big endian object files

3.4.2 Header Files

Rule 16

Each eXpressDSP-compliant algorithm header must follow a uniform nam-
ing convention.

In addition to the object code implementation of the algorithm, each TMS320
DSP Algorithm Standard module includes one or more interface headers. In
order to ensure that no name conflicts occur, we must adopt a naming conven-
tion for all header files. C language headers should be named as follows:

<module><vers>_<vendor>.h

Assembly language headers should be named as follows:

<module><vers>_<vendor>.h<arch>

3.4.3 Debug Verses Release

A single vendor may produce more than one implementation of an algorithm.
For example, a “debug” version may include function parameter checking that
incurs undesirable overhead in a “release” version. A vendor may even decide
to provide multiple debug or release versions of a single algorithm. Each ver-
sion may make different tradeoffs between time and space overhead, for ex-
ample.

In order to easily manage the common case of debug and release versions of
the same algorithm within an TMS320DSP Algorithm Standard development
environment, it is important to adopt a naming convention that makes it easy

Packaging

3-19Algorithm Component Model

to ensure that a TMS320 DSP Algorithm Standard application is built from a
uniform set of components. For example, it should be easy to ensure that an
application is built entirely from release versions of TMS320 DSP Algorithm
Standard components.

Rule 17

Different versions of a standard-compliant algorithm from the same vendor
must follow a uniform naming convention.

If multiple versions of the same component are provided by a single vendor,
the different versions must be in different libraries (as described above) and
these libraries must be named as follows:

<module><vers>_<vendor>_<variant>.1<arch>

where <variant> is the name of the variant of the module (containing charac-
ters from the set[a-z0-9]).

Debug variants should have variant names that begin with the characters “de-
bug.” If there is only one release version of a component from a vendor, there
is no need to add a variant suffix to the library name. Suppose, for example,
that TI supplies one debug and one release version of the FIR module for the
C62xx architecture. In this case, the library file names would be “fir_ti_de-
bug.162” and “fir_ti.162”.

In order to avoid having to make changes to source code, only one header file
must suffice for all variants supplied by a vendor. Since different algorithm im-
plementations can be interchanged without re-compilation of client programs,
it should not be necessary to have different “debug” versus “release” defini-
tions in a module’s header. However, a vendor may elect to include vendor
specific extensions that do require recompilation. In this case, the header
should assume that the symbol _DEBUG is defined for debug compilations
and not defined for release compilations.

Rule 18

If a module’s header includes definitions specific to a “debug” variant, it must
use the symbol _DEBUG to select the appropriate definitions. _DEBUG is
defined for debug compilations and only for debug compilations.

4-1

Algorithm Performance Characterization

In this chapter, we examine what performance information should be provided
by algorithm components to enable system integrators to assemble combina-
tions of algorithms into reliable products.

Topic Page

4.1 Data Memory 4-2.

4.2 Program Memory 4-6.

4.3 Interrupt Latency 4-7.

4.4 Execution Time 4-8.

The only resources consumed by standard-compliant algorithms are MIPS
and memory. All I/O, peripheral control, device management, and scheduling
is managed by the application — not the algorithm. Thus, we need to charac-
terize code and data memory requirements and worst-case execution time.

There is one important addition, however. It is possible for an algorithm to inad-
vertently disrupt the scheduling of threads in a system by disabling interrupts
for extended periods. Since it is not possible for a scheduler to get control of
the CPU while interrupts are disabled, it is important that algorithms minimize
the duration of these periods and document the worst-case duration. It is im-
portant to realize that, due to the pipeline of modern DSPs, there are many situ-
ations where interrupts are implicitly disabled; e.g., in some zero-overhead
loops. Thus, even if an algorithm does not explicitly disable interrupts, it may
cause interrupts to be disabled for extended periods.

Chapter 4

Data Memory

 4-2

4.1 Data Memory

All data memory for an algorithm falls into one of three categories:

� Heap memory – data memory that is potentially (re)allocated at run-time;

� Stack memory – the C run-time stack; and

� Static data – data that is fixed at program build time.

Heap memory is bulk memory that is used by a function to perform its computa-
tions. From the function’s point of view, the location and contents of this
memory may persist across functions calls, may be (re)allocated at run-time,
and different buffers may be in physically distinct memories. Stack memory,
on the other hand, is scratch memory whose location may vary between con-
secutive function calls, is allocated and freed at run-time, and is managed us-
ing a LIFO (Last In First Out) allocation policy. Finally, static data is any data
that allocated at design-time (i.e., program-build time) and whose location is
fixed during run-time.

In the remainder of this section, we define performance metrics that describe
an algorithm’s data memory requirements.

4.1.1 Heap Memory

Heap memory is run-time (re)allocable bulk memory that is used by a function
to perform its computations. From a function’s point of view, the location and
contents of this memory may persist across functions calls, may be (re)allo-
cated at run-time, and different buffers may be in physically distinct memories.

It is important to note that heap memory can be allocated at design-time and
avoid the code space overhead of run-time memory management. The only
requirement is that all functions that access this memory must assume that it
may be allocated at run-time. Thus, these functions must reference this
memory via a pointer rather than a direct reference to a named buffer.

Rule 19

All algorithms must characterize their worst-case heap data memory require-
ments (including alignment).

All algorithms must characterize their worst-case data memory requirements
by filling out the table below. Each entry should contain a pair of numbers cor-
responding to the size (in 8-bit bytes) required and an alignment (in 8-bit by-
tes). If no special alignment is required, the alignment number should be set
to zero. Note that the numbers supplied may represent aggregate totals. For

Data Memory

4-3Algorithm Performance Characterization

example, if an algorithm requires two unaligned External data buffers, it may
report the sum of the sizes of these buffers.

DARAM SARAM External

Size Align Size Align Size Align

Scratch 0 0 1920 0 0 0

Persistent 0 0 0 0 1440 0

In the example above, the algorithm requires 960 16-bit words of single-ac-
cess on-chip memory, 720 16-bit words of external persistent memory, and
there are no special alignment requirements for this memory. Note that the en-
tries in this table are not required to be constants; they may be functions of al-
gorithm instance creation parameters.

4.1.2 Stack Memory

In addition to bulk “heap” memory, algorithms often make use of the stack for
very efficient allocation of temporary storage. For most real-time systems, the
total amount of stack memory for a thread is set once (either when the program
is built or when the thread is created) and never changes during execution of
the thread. This is done to ensure deterministic execution of the thread. It is
important, therefore, that the system integrator know the worst-case stack
space requirements for every algorithm.

Rule 20

All algorithms must characterize their worst-case stack space memory re-
quirements (including alignment).

Stack space requirements for an algorithm must be characterized using a
table such as that shown below.

Size Align

Stack Space 400 0

Both the size and alignment fields should be expressed in units of 8-bit bytes.
If no special alignment is required, the alignment number should be set to zero.

In the example above, the algorithm requires 200 16-bit words of stack
memory and there is no special alignment requirement for this memory. Note
that the entry in this table are not required to be a constant; it may be function
of the algorithm’s instance creation parameters.

Data Memory

 4-4

One way to achieve reentrancy in a function is to declare all scratch data ob-
jects on the local stack. If the stack is in on-chip memory this provides easy
access to fast scratch memory.

The problem with this approach to reentrancy is that, if carried too far, it may
require a very large stack. While this is not a problem for single threaded ap-
plications, traditional multi-threaded applications must allocate a separate
stack for each thread. It is unlikely that more than a few these stacks will fit in
on-chip memory. Moreover, even in a single threaded environment, an algo-
rithm has no control over the placement of the system stack; it may end up with
easy access to very slow memory.

These problems can be avoided by algorithms taking advantage of the IALG
interface to declare their scratch data memory requirements. This gives the
application the chance to decide whether to allocate the memory from the
stack or the heap, which ever is best for the system overall.

Guideline 6

Algorithms should keep stack size requirements to a minimum.

4.1.3 Static Local and Global Data Memory

Static data memory is any data memory that is allocated and placed when the
program is built and remains fixed during program execution. In many DSP ar-
chitectures, there are special instructions that can be used to access static
data very efficiently by encoding the address of the data in the instruction’s op-
code. Therefore, once the program is built, this memory cannot be moved.

Rule 21

Algorithms must characterize their static data memory requirements.

Algorithms must characterize their static data memory requirements by filling
out a table such as that illustrated below. Each row represents the require-
ments for an individual object file that is part of the algorithm’s implementation.
Each named COFF section (that contains data) in the algorithm’s object files
is represented by a column. Each entry should contain the size (in 8-bit bytes)
required by the algorithm, any alignment requirements, whether the data is
read-only or read-write, and whether the data is scratch memory or not. If no
special alignment is required, the alignment number should be set to zero.

Data Memory

4-5Algorithm Performance Characterization

.data .bss

Object files Size Align Read/Write Scratch Size Align Read/Write Scratch

a.obj 12 0 R no 32 0 R no

b.obj 0 0 R no 0 0 R no

Static data in an algorithm forces the system integrator to dedicate a region
of the system’s memory to a single specific purpose. While this may be desir-
able in some systems, it is rarely the right decision for all systems. Moreover,
modifiable static data usually indicates that the algorithm is not reentrant. Un-
less special precautions are taken, it is not possible for a reentrant function to
modify static data.

Guideline 7

Algorithms should minimize their static memory requirements.

With the exception of initialized data, it is possible to virtually eliminate all static
data in an algorithm using the standard-compliant IALG interface. The imple-
mentation of interfaces is described in Section 3.2 and a detailed description
of the IALG interface is provided in the TMS320 DSP Algorithm Standard API
Reference.

Guideline 8

Algorithms should never have any scratch static memory.

Program Memory

 4-6

4.2 Program Memory

Algorithm code can often be partitioned into two distinct types: frequently ac-
cessed code and infrequently accessed code. Obviously, inner loops of algo-
rithms are frequently accessed. However, like most application code, it is often
the case that a few functions account for most of the MIPS required by an ap-
plication.

Guideline 9

Algorithm code should be partitioned into distinct sections and each section
should be characterized by the average number of instructions executed per
input sample.

Characterizing the number of instructions per sample for each algorithm al-
lows system integrators to optimally assign on-chip program memory to the
appropriate algorithms. It also allows one to perform a quantitative cost/benefit
analysis of simple on-chip program overlay policies, for example.

Rule 22

All algorithms must characterize their program memory requirements.

All algorithms must characterize their program memory requirements by filling
out a table such as that shown below. Each entry should contain the size (in
8-bit bytes) required by the algorithm and any alignment requirements. If no
special alignment is required, the alignment number should be set to zero.

Code

Code Sections Size Align

a.obj(.text) 768 0

b.obj(.text) 125 32

Interrupt Latency

4-7Algorithm Performance Characterization

4.3 Interrupt Latency

In most DSP systems, algorithms are started by the arrival of data and the ar-
rival of data is signaled by an interrupt. It is very important, therefore, that inter-
rupts occur in as timely a fashion as possible. In particular, algorithms should
minimize the time that interrupts are disabled. Ideally, algorithms would never
disable interrupts. In some DSP architectures, however, zero overhead loops
implicitly disable interrupts and, consequently, optimal algorithm efficiency
often requires some interrupt latency.

Guideline 10

Interrupt latency should never exceed 10µs.

Rule 23

All algorithms must characterize their worst-case interrupt latency for every
operation.

All algorithms must characterize their interrupt latency by filling out a table
such as that shown below. The interrupt latency must be expressed in units
of instruction cycles. Note that the entry in this table is not required to be a
constant; it may be function of the algorithm’s instance creation parameters.
Each row of the table corresponds to a method of the algorithm.

Operation Worst-case Latency (Instruction Cycles)

process() 300

In practice, the interrupt latency may also depend on the type of memory allo-
cated to an algorithm instance. Since this relationship can be extremely com-
plex, interrupt latency should be measured for a single fixed configuration.
Thus, this number must be the latency imposed by an algorithm instance using
the same memory configuration used to specify worst-case MIPS and memory
requirements.

Execution Time

 4-8

4.4 Execution Time

In this section, we examine what execution time information should be pro-
vided by algorithm components to enable system integrators to assemble
combinations of algorithms into reliable products. We first point out the chal-
lenges and then describe a simple model that, while not perfect, will significant-
ly improve our ability to integrate algorithms into a system.

4.4.1 MIPS Is Not Enough

It is important to realize that a simple MIPS calculation is far from sufficient
when combining multiple algorithms. It is possible, for example, for two algo-
rithms to be “unschedulable” even though only 84% of the available MIPS are
required. In the worst case, it is possible for a set of algorithms to be unsche-
dulable although only 70% of the available MIPS are required!

Suppose, for example, that a system consists of two tasks A and B with periods
of 2 ms and 3 ms respectively. Suppose that task A requires 1 ms of the CPU
to complete its processing and task B also requires 1 ms of the CPU. The total
percentage of the CPU required by these two tasks is approximately 83.3%;
50% for task A plus 33.3% for task B.

Figure 4–1. Execution Timeline for Two Periodic Tasks

3 ms 3 ms 3 ms 3 ms

A

B

idle

In this case, both task A and B meet their deadlines and we have more than
18% (1 ms every 6 ms) of the CPU idle.

Suppose we now increase the amount of processing that task B must perform
very slightly, say to 1.0000001 ms every 3 ms. Notice that task B will miss its
first deadline because task A consumes 2 ms of the available 3 ms of task B’s
period. This leaves only 1 ms for B but B needs just a bit more than 1 ms to
complete its work. If we make task B higher priority than task A, task A will miss
its deadline line because task B will consume more than 1 ms of task A’s 2 ms
period.

Execution Time

4-9Algorithm Performance Characterization

In this example, we have a system that has over 18% of the CPU MIPS unused
but we cannot complete both task A and B within their real-time deadlines.
Moreover, the situation gets worse if you add more tasks to the system. Liu and
Layland proved that in the worst case you may have a system that is idle slight-
ly more than 30% of the time that still can’t meet its real-time deadlines!

The good news is that this worst-case situation does not occur very often in
practice. The bad news is that we can’t rely on this not happening in the general
situation. It is relatively easy to determine if a particular task set will meet its
real-time deadlines if the period of each task is known and its CPU require-
ments during this period are also known. It is important to realize, however, that
this determination is based on a mathematical model of the software and, as
with any model, it may not correspond 100% with reality. Moreover, the model
is dependent on each component accurately characterizing its performance;
if a component underestimates its CPU requirements by even 1 clock cycle,
it is possible for the system to fail.

Finally, designing with worst-case CPU requirements often prevents one from
creating viable combinations of components. If the average case CPU require-
ment for a component differs significantly from its worst case, considerable
CPU bandwidth may be wasted.

4.4.2 Execution Time Model

In this section, we describe a simple execution time model that applies to all
standard-compliant algorithms. The purpose of this model is to enable system
integrators to quickly assess the viability of certain algorithm combinations, ra-
tionally compare different algorithm implementations, and enable the creation
of automatic design tools that optimize CPU utilization. While far from perfect,
the model described below significantly improves our ability to integrate algo-
rithms into a system.

All algorithms must be characterized as periodic execution of one or more
functions. For example, a voice encoder may be implemented to operate on
a frame of data that represents 22.5 ms of voice data. In this case, the period
is 22.5 ms (because every 22.5 ms a new frame of data is available for proc-
essing) and the deadline is also 22.5 ms (because there is no need to complete
the processing ahead of the time that the next frame of data is available.)

Rule 24

All algorithms must characterize the typical period and worst-case execution
time for each operation.

Execution time should be expressed in instruction cycles whereas the period
expressed in microseconds. Worst-case execution time must be accompa-

Execution Time

 4-10

nied with a precise description of the run-time assumptions required to repro-
duce this upper bound. For example, placement of code and data in internal
or external memory, placement of specified buffers in dual-access or single ac-
cess on-chip memory, etc. In particular, the worst-case execution time must
be accompanied by a table of memory requirements (described above) neces-
sary to achieve the quoted execution time. Note that the entries in this table
are not required to be constants; they may be functions of the algorithm’s
instance creation parameters.

Operation Period Worst-case Cycles/Period

process() 22500 µs 198000

In some cases, an algorithm’s worst-case execution time is a periodic function
of the frame number. Suppose, for example, that an audio encoder consumes
10 milliseconds frames of data at a time but only outputs encoded data on ev-
ery 20 milliseconds. In this case, the encoder’s worst-case execution time on
even frames will differ (perhaps significantly) from the worst-case execution
time for odd numbered frames; the output of data only occurs on odd frames.
In these situations, it is important to characterize the worst-case execution
time for each frame; otherwise, system integrators may (falsely) conclude that
an algorithm will not be able to be combined with others.

All such algorithms must characterize their periodic execution time require-
ments by filling in the table below; the number of Cycles/Period columns can
be any finite number M. The worst-case number in the Cycles/PeriodN column
must be the worst-case number of cycles that can occur on frame number k
* M + N, where k is any positive integer.

Operation Period Cycles/Period 0 Cycles/Period 1

process() 22500 µs 59000 198000

5-1

DSP-Specific Guidelines

This chapter provides guidelines for creating standard-compliant algorithms
for various DSP families.

Topic Page

5.1 CPU Register Types 5-2.

5.2 Use of Floating Point 5-4.

5.3 TMS320C6xxx Guidelines 5-4.

5.4 TMS320C54xx Guidelines 5-8.

5.5 TMS320C55x Rules and Guidelines 5-12.

5.6 TMS320C24xx Guidelines 5-18.

DSP algorithms are often written in assembly language and, as a result, they
will take full advantage of the instruction set. Unfortunately for the system inte-
grator, this often means that multiple algorithms cannot be integrated into a
single system because of incompatible assumptions about the use of specific
features of the DSP; e.g., use of overflow mode, use of dedicated registers.
This chapter covers those guidelines that are specific to a particular DSP in-
struction set. They are designed to maximize the flexibility of the algorithm im-
plementers while at the same time ensure that multiple algorithms can be inte-
grated into a single system.

Chapter 5

CPU Register Types

 5-2

5.1 CPU Register Types

For the purpose of the guidelines below, we define several categories of regis-
ter types.

� Scratch register – these registers can be freely used by an algorithm, can-
not be assumed to contain any particular value upon entry to an algorithm
function, and can be left in any state after exiting a function.

� Preserve registers – these registers may be used by an algorithm, cannot
be assumed to contain any particular value upon entry to an algorithm
function, but must be restored upon exit from an algorithm to the value it
had at entry.

� Initialized register – these registers may be used by an algorithm, contain
a specified initial value upon entry to an algorithm function (as stated next
to the register), and must be restored upon exit from the algorithm.

� Read-only register – these registers may be read but must not be modified
by an algorithm.

In addition to the categories defined above, all registers can be further classi-
fied as being either local or global. Local registers are thread specific; i.e., ev-
ery thread maintains its own copy of this register and it is active whenever this
thread is running. Global registers, on the other hand, are shared by all threads
in the system; i.e., if one thread changes a global register then all threads will
see the change.

Figure 5–1 below depicts the relationship among the various register types de-
fined above.

CPU Register Types

5-3DSP-Specific Guidelines

Figure 5–1. Register Types

Read–only Scratch Preserve

Init

Global

Local

Read–write

In preemptive systems, global registers can change at any point that preemp-
tion may occur. Local registers, on the other hand, can only be modified by the
current executing thread. Thus, application code that depends exclusively on
local registers will be unaffected by other preempting threads. Conversely, ap-
plication code that depends on global registers must prevent preemption
around those sections that have this dependence.

Guideline 11

Algorithms should avoid the use of global registers.

It is important to note that the use of global registers by algorithms is permitted.
However, like self-modifying code, their use must be invisible to clients; this
can be accomplished by either never modifying global registers or by disabling
interrupts around those sections that modify and restore global registers.

Use of Floating Point

 5-4

5.2 Use of Floating Point

Referencing the float data type in an algorithm on a fixed point DSP causes
a large floating point support library to be included in any application that uses
the algorithm.

Guideline 12

Algorithms should avoid the use of the float data type.

5.3 TMS320C6xxx Guidelines

This section describes the rules and guidelines that are specific to the
TMS320C6000 family of DSPs.

5.3.1 Endian Byte Ordering

The C6x family supports both big and little endian data formats. This support
takes the form of “boot time” configuration; i.e., the DSP is configured at boot
time to access memory either as big endian or little endian and this setting re-
mains fixed for the lifetime of the application.

The choice of which data format to use is often decided based on the presence
of other processors in the system; the data format of the other processors
(which may not be configurable) determines the setting of the C6x data format.
Thus, it is not possible to simply choose a single data format for all standard-
compliant algorithms.

Rule 25

All C6x algorithms must be supplied in little endian format.

Guideline 13

All C6x algorithms should be supplied in both little and big endian formats.

5.3.2 Data Models

The C6x C compiler supports a variety of data models; one small model and
multiple large model modes. Fortunately, it is relatively easy to mix the various
data memory models in a single application

Programs will achieve optimal performance using small model compilation.
This model limits, however, the total size of the directly accessed data in an

Use of Floating Point / TMS320C6xxx Guidelines

TMS320C6xxx Guidelines

5-5DSP-Specific Guidelines

application to 32K bytes (in the worst case). Since algorithms are intended for
use in very large applications, all data references should be far references.

Rule 26

All C6x algorithms must access all static and global data as far data.

5.3.3 Program Model

Rule 27

C6x algorithms must never assume placement in on-chip program memory;
i.e., they must properly operate with program memory operated in cache
mode.

In addition, no algorithm may ever directly manipulate the cache control regis-
ters. It is important to realize that standard-compliant algorithms may be
placed in on-chip program memory by the system developer. The rule above
simply states that algorithms must not require placement in on-chip memory.

5.3.4 Register Conventions

This section describes the rules and guidelines that apply to the use of the
TMS320C6xxx on-chip registers. As described above, there are several differ-
ent register types. Note that any register that is not described here must not
be accessed by an algorithm.

The table below describes all of the registers that may be accessed by an
algorithm.

TMS320C6xxx Guidelines

 5-6

Register Use Type

AMR=0 Address mode register Init (local)

A0-A9 General purpose Scratch (local)

A10-A14 General purpose Preserve (local)

A15 Frame Pointer Preserve (local)

A16-A31 C64x General putpose Scratch (local)

B0-B9 General purpose Scratch (local)

B10-B13 General purpose Preserve (local)

B14 Data Page pointer Preserve (local)

B15 Stack Pointer Preserve (local)

B16-B31 C64x General purpose Scratch (local)

CSR Control and Status Register Preserve

ICR Interrupt clear register Not accessible (global)

IER Interrupt enable register Read-only (global)

IFR Interrupt flag register Read-only (global)

IRP* Interrupt return pointer Scratch (global)

ISR Interrupt set register Not accessible (global)

ISTP Interrupt service table pointer Read-only (global)

NRP Non-maskable Interrupt return pointer Read-only (global)

PCE1 Program counter Read-only (local)

FADCR C67xx Floating point Control register Preserve (local)

FAUCR C67xx Floating point Control register Preserve (local)

FMCR C67xx Floating point Control register Preserve (local)

* IRP may be used as a scratch-pad register if interrupts are disabled.

5.3.5 Status Register

The C6xxx contains a status register, CSR. This status register is further divid-
ed into several distinct fields. Although each field is often thought of as a sepa-
rate register, it is not possible to access these fields individually; e.g., in order
to set one field it is necessary to set all fields in the same status register. There-
fore, it is necessary to treat the status registers with special care; if any field
of a status register is of type Preserve or Read-only, the entire register must
be treated as a Preserve register, for example.

TMS320C6xxx Guidelines

5-7DSP-Specific Guidelines

CSR Field Use Type

SAT Saturation bit Scratch (local)

CPUID Identifies CPU Read-only (global)

RevId Identifies CPU revision Read-only (global)

GIE Global interrupt enable bit Read-only (global)

PGIE Previous GIE value. Read-only (global)

EN Current CPU endian mode. Read-only (global)

PWRD Power-Down modes Not accessible (global)

PCC Program Cache Control Not accessible (global)

DCC Data Cache Control. Not accessible (global)

Note that the GIE and PGIE are read-only registers. Algorithms that need to
create non-interruptible sections must use the DSP/BIOS operations
HWI_disable() and HWI_restore(). They must never directly manipulate the
GIE or PGIE bits.

5.3.6 Interrupt Latency

Although there are no additional rules for C6x algorithms that deal with inter-
rupt latency, it is important to note that all instructions in the delay slots of
branches are non-interruptible; i.e., once fetched, interrupts are blocked until
the branch completes. Since these delay slots may contain other branch in-
structions, care must be taken to avoid long chains of non-interruptible instruc-
tions. In particular, tightly coded loops often result in unacceptably long non-
interruptible sequences.

Note that the C compiler has options to limit the duration of loops. Even if this
option is used, one must be careful to limit the length of loops whose length
is not a simple constant.

TMS320C54xx Guidelines

 5-8

5.4 TMS320C54xx Guidelines

This section describes the rules and guidelines that are specific to the
TMS320C5400 family of DSPs.

5.4.1 Data Models

The C54x has just one data model, so no special data memory requirements
for this processor.

5.4.2 Program Models

Some variants of the TMS320C54xx support an extended program address
space. Since code can be compiled for either standard or extended (near or
far) addresses, it is possible to have incompatible mixtures of code.

We need to ensure that calls made from the algorithm to support functions will
be compatible, and that calls made from the application to the algorithm will
be compatible.

Rule 28

On processors that support large program model compilation, all core run-
time support functions must be accessed as far function; for example, on the
C54x, the calling function must push both the XPC and the current PC.

Rule 29

On processors that support large program model compilation, all algorithm
functions must be declared as far function; for example, on the C54x, callers
must push both the XPC and the current PC and the algorithm functions must
perform a far return.

This requires that the top-level interface to the algorithm functions be declared
as ”far”. Note that function calls within the algorithm may be near calls. Still,
calls within the algorithm to independently relocatable object modules must be
far calls, since any relocatable object module may be loaded in a ’far’ page of
memory.

What about existing applications that do not support far calls to algorithms?
Note that it is possible for an existing application to do a near call into a far algo-
rithm; create a small ”near stub” that the application calls using a near call, the
stub then does the appropriate far call and a near return to the application.

There are, of course, cases where it would be desirable that the core run-time
support is accessible with near calls.

TMS320C54xx Guidelines

5-9DSP-Specific Guidelines

Guideline 14

On processors that support large program model compilations, a version of
the algorithm should be supplied that accessed all core run-time support
functions as near functions and all algorithms as far functions (mixed model).

When extended program memory allows overlays, the usable program space
on each page is reduced. To ensure algorithm usability, the code size for each
loadable object must be limited.

Rule 30

On processors that support an extended program address space (paged
memory), the code size of any object file should never exceed the code
space available on a page when overlays are enabled.

Note here that the algorithm can be larger than this limit, but any one object
module must not exceed the limit. For the C54xx the code size limit is 32K
words.

5.4.3 Register Conventions

This section describes the rules and guidelines that apply to the use of the
TMS320C54xx on-chip registers. As described above, there are several differ-
ent register types. Note that any register that is not described here must not
be accessed by an algorithm; e.g., BSCR, IFR, IMR, and peripheral control
and status registers.

The table below describes all of the registers that may be accessed by an
algorithm.

TMS320C54xx Guidelines

 5-10

Register Use Type

AR0, AR2-AR5 C compiler expression registers Scratch (local)

AR7 C compiler frame pointer Preserve (local)

AR1, AR6 C compiler register variables Preserve (local)

AL, AH, AG
Return value from C function, first pa-
rameter to function

Scratch (local)

BL, BH, BG C compiler expression registers Scratch (local)

BK Circular-buffer size register Scratch (local)

BRC Block repeat counter Scratch (local)

IFR, IMR Interrupt flag and mask register Read-only (global)

PMST Processor mode register Preserve

RSA, REA Block repeat start and end register Scratch (local)

SP Stack pointer Preserve (local)

ST0, ST1 Status registers Preserve

T Multiply and shift operand Scratch (local)

TRN Viterbi transition register Scratch (local)

XPC Extended Program Counter Scratch (local)

5.4.4 Status Registers

The C54xx contains three status registers; ST0, ST1, and PMST. Each status
register is further divided into several distinct fields. Although each field is often
thought of as a separate register, it is not possible to access these fields indi-
vidually; e.g., in order to set one field it is necessary to set all fields in the same
status register. Therefore, it is necessary to treat the status registers with spe-
cial care; if any field of a status register is of type Preserve, the entire register
must be treated as a Preserve register, for example.

ST0 Field Name Use Type

ARP Auxiliary register pointer Init (local)

C Carry bit Scratch (local)

DP Data page pointer Scratch (local)

OVA Overflow flag for accumulator A Scratch (local)

OVB Overflow flag for accumulator B Scratch (local)

TC Test/Control flag Scratch (local)

The ST1 register is of type Init.

TMS320C54xx Guidelines

5-11DSP-Specific Guidelines

ST1 Field Name Use Type

ASM Accumulator shift mode Scratch (local)

BRAF Block repeat active bit Preserve (local)

C16 Dual 16-bit math bit Init (local)

CMPT Compatibility mode bit Init (local)

CPL Compiler mode bit Init (local)

FRCT Fractional mode bit Init (local)

HM Hold mode bit Preserve (local)

INTM Interrupt mask Preserve(global)

OVM Overflow mode bit Preserve (local)

SXM Fractional mode bit Scratch (local)

XF External Flag Scratch (global)

The PMST register is used to control the processor mode and is of type Init.

PMST Field
Name Use Type

AVIS Address Visibility bit Read-only (global)

CLKOFF CLKOUT disable bit Read-only (global)

DROM Map ROM into data space Read-only (local)

IPTR Interrupt Vector Table Pointer Read-only (global)

MP/MC
Microprocessor/microcomputer
mode bit

Read-only (global)

OVLY RAM Overlay bit Read-only (local)

SMUL Saturation on multiply bit Init (local)

SST Saturation on store Init (local)

5.4.5 Interrupt Latency

Although there are no additional rules for C54x algorithms that deal with inter-
rupt latency, it is important to note that all RPT and RPTZ loops are non-inter-
ruptible; i.e., once started, interrupts are blocked until the entire loop com-
pletes. Thus, the length of these loops can have a significant effect on the
worst case interrupt latency of an algorithm.

TMS320C55x Rules and Guidelines

 5-12

5.5 TMS320C55x Rules and Guidelines

This document presents the C55X ISA specific rules and guidelines.

5.5.1 Stack Architecture

The C55X CPU supports different stack configurations and the stack configu-
ration register (4 bits) selects the stack architecture. The selection of the stack
architecture can be done only on a hardware or software reset. To facilitate in-
tegration, each algorithm must publish the stack configuration that it uses.

Rule 31

All C55x algorithms must document the content of the stack configuration
register that they follow.

Guideline 15

All C55x algorithms should not assume any specific stack configuration and
should work under all the three stack modes.

5.5.2 Data Models

The C55X compiler supports a small memory model and a large memory mod-
el. These memory models affect how data is placed in memory and accessed.
The use of small memory model results in code and data sizes that are slightly
smaller than when using the large memory model. However, this imposes cer-
tain constraints on the size and memory placement. In the small memory mod-
el, the total size of the directly accessed data in an application must all fit within
a single page of memory that is 64K words in size. Since algorithms are agnos-
tic of where they are going to be instanced; all global and static data references
should be far references.

Rule 32

All C55x algorithms must access all static and global data as far data; also,
the algorithms should be instantiable in a large memory model.

5.5.3 Program Models

Only large memory model is supported for the program memory. So no special
program memory requirements for this processor. Just to reemphasize the
point, all the program code must be completely relocatable and must not nec-
essarily, require placement in on-chip memory.

TMS320C55x Rules and Guidelines

5-13DSP-Specific Guidelines

Rule 33

C55x algorithms must never assume placement in on-chip program
memory; i.e., they must properly operate with program memory operated in
instruction cache mode.

The above rule can be interpreted as to the algorithm code must not have any
assumptions on the timing information to guarantee the functionality.

5.5.4 Relocatability

Some of the C55X devices have a constraint that the data accessed with the
B-bus (coefficient addressing) must come from on-chip memory. The data that
is accessed by B-bus can be static-data or heap-data. All C55x algorithms that
access data (static or heap) with the B-bus must adhere to the following rule.

Rule 34

All C55x algorithms that access data by B-bus must document:

� the instance number of the IALG_MemRec structure that is accessed by
the B-bus (heap-data), and

� the data-section name that is accessed by the B-bus (static-data).

Example 1

Int algAlloc(IALG_Params *algParams,

IALG_Fxns **p,

IALG_MemRec memTab[])

{

EncoderParams *params = (EncoderParams *)algParams;

If (params == NULL) {

Params = &ENCODERATTRS;

}

memTab[0].size = sizeof (EncoderObj);

…

memTab[1].size = params–>frameDuration * 8 * sizeof(int);

…

memTab[3].size = params–>sizeInBytes;

…

return (2);

}

TMS320C55x Rules and Guidelines

 5-14

Suppose, in the above example, the memTab[1] and memTab[3] are accessed
by the B-bus. Then this must be documented as per the Rule 37 as follows:

Number of memTab blocks tht are accessed by B-bus Block numbers

2 1,3

If the algorithm does not use B-bus, then the first column must be zero. If there
is more than one block that is accessed by the B-bus, then all the block num-
bers must be specified in the second column as shown in the above example.

Example 2 :

Any static-data that is accessed by the B-bus must be documented as per the
Rule 37 as follows:

Data section names that are accessed by the B-bus

.data

.coefwords

This way, the client will know which of the memory blocks and data-sections
that must be placed in on-chip memory for the correct execution of the algo-
rithm.

5.5.5 Register Conventions

This section describes the rules and guidelines that apply to the use of the
TMS320C55x on-chip registers. Note that an algorithm must not access any
register that is not described here.

The table below describes all of the registers that may be accessed by an algo-
rithm. Please refer to TMS320C55x Optimizing C/C++ Compiler User’s Guide
(SPRU281B), Runtime Environment chapter, for more details about the run-
time conventions followed by the compiler.

TMS320C55x Rules and Guidelines

5-15DSP-Specific Guidelines

Register Use Type

(X)AR0, (X)AR1, (X)AR2, (X)AR3,
(X)AR4

Function arguments: data pointers
(16- or 23-bit) or data values
(16-bit)

Scratch (local)

(X)AR5, (X)AR6, (X)AR7 C compiler register variables Preserve (local)

AC0, AC1, AC2, AC3 16-bit, 32-bit and 40-bit data or
24-bit code pointers

Scratch (local)

T0, T1 Function arguments: 16-bit data
values

Scratch (local)

T2, T3 C compiler expression registers Preserve (local)

SSP System Stack Pointer Preserve (local)

SP Stack Pointer Preserve (local)

ST0, ST1, ST2, ST3 Status registers Preserve (local)

IFR0, IMR0, IFR1, IMR1 Interrupt flag and mask register Read-only (global)

TRN0, TRN1 Transition registers Scratch (local)

BK03, BK47, BKC Circular Buffer Offset registers Scratch (local)

BRC0, BRC1 Block Repeat Counter registers Scratch (local)

RSA0, REA0, RSA1, REA1 Block repeat start and end
address registers

Scratch (local)

CDP Coefficient Data Pointer Scratch (local)

XDP Extended Data page pointer Scratch (local)

DP Memory data page start address Scratch (local)

PDP Peripheral Data page start ad-
dress

Scratch (local)

BOF01, BOF23, BOF45,
BOF67, BOFC

Circular buffer offset registers Scratch (local)

BIOS Data page pointer storage Read-only (global)

BRS0, BRS1 Block repeat save registers Scratch (local)

CSR Computed Single Repeat Scratch (local)

RPTC Repeat Single Counter Scratch (local)

XSP Extended data Stack pointer Preserve (local)

XCDP Extended coeff page pointer Scratch (local)

IVPD Interrupt vector pointer DSP Read-only (global)

IVPH Interrupt vector pointer host Read-only (global)

TMS320C55x Rules and Guidelines

 5-16

5.5.6 Status Bits

The C55xx contains four status registers: ST0, ST1, ST2 and ST3.

ST0 Field name Use Type

ACOV2 Overflow flag for AC2 Scratch (local)

ACOV3 Overflow flag for AC3 Scratch (local)

TC1, TC2 Test control flag Scratch (local)

C Carry bit Scratch (local)

ACOV0 Overflow flag for AC0 Scratch (local)

ACOV1 Overflow flag for AC1 Scratch (local)

DP bits (15 to 7) Data page pointer Scratch (local)

The following table gives the attributes for the ST1 register fields.

ST1 Field name Use Type

BRAF Block repeat active flag Preserve (local)

CPL=1 Compiler mode bit Init (local)

XF External flag Scratch (local)

HM Host mode bit Preserve (local)

INTM Interrupt Mask Preserve (global)

M40 = 0 40/32-bit computation control for
the D-unit

Init (local)

SATD = 0 Saturation control for D-unit Init (local)

SXMD = 1 Sign extension mode bit for D-unit Init (local)

C16 = 0 Dual 16-bit math bit Init (local)

FRCT = 0 Fractional mode bit Init (local)

LEAD = 0 Lead bit Init (local)

T2 bits (0 to 4) Accumulator shift mode Scratch (local)

The following table describes the attributes for the ST2 register

TMS320C55x Rules and Guidelines

5-17DSP-Specific Guidelines

ST2 Field Name Use Type

ARMS=0 AR Modifier Switch Init (local)

XCNA Conditional Execute Control –
Address

Read-only (local)

XCND Conditional Execute Control –
Data

Read-only (local)

DBGM Debug enable mask bit Read-only (global)

EALLOW Emulation access enable bit Read-only (global)

RDM=0 Rounding Mode Init (local)

CDPLC Linear/Circular configuration
for the CDP pointer

Preserve (local)

AR7LC to AR0LC Linear/Circular configuration
for the AR7 to AR0 pointer

Preserve (local)

The following table describes the attributes for the ST3 register

ST3 Field Name Use Type

CAFRZ Cache Freeze Read-only (global)

CAEN Cache Enable Read-only (global)

CACLR Cache Clear Read-only (global)

HINT Host Interrupt Read-only (global)

HOMY Host only access mode Read-only (global)

HOMX Host only access mode Read-only (global)

HOMR Shared access mode Read-only (global)

HOMP Host only access mode –
peripherals

Read-only (global)

CBERR CPU bus error Read-only (global)

MPNMC Microprocessor / Microcomputer
mode

Read-only (global)

SATA=0 Saturation control bit for A-unit Init (local)

AVIS Address visibility bit Read-only (global)

CLKOFF CLKOUT disable bit Read-only (global)

SMUL=0 Saturation on multiply bit Init (local)

SST Saturation on store Init (local)

TMS320C24xx Guidelines

 5-18

5.6 TMS320C24xx Guidelines

This section describes the rules and guidelines that are specific to the
TMS320C24xx family of Digital Signal Processors(DSPs). Note that 24xx here
refers to the following DSPs: x240, x241, x242, x243, and x240x.

5.6.1 General

As per all other standard-eXpressDSP-compliant algorithms, C24xx eX-
pressDSP-compliant algorithms (also referred to as DCS Components) must
also fully adhere to the rules and guidelines as described within this TMS320
DSP Algorithm Standard and the TMS320 DSP Algorithm Standard API
Reference.

TMS320 DSP Standard Algorithms vs. DCS Modules The C24xx family
of DSPs are classified as DSP controllers, and consequently are mainly
focused on the “Digital Control Space.” From an algorithm standpoint, the
control space is characterized by systems built up from many smaller and
reusable software blocks or modules, for example: PID controllers, coordi-
nate transformations, trigonometric transformations, signal generators,
etc. In addition the C24xx DSP controllers are offered in numerous
memory configurations, with lower cost devices having 4kwords of pro-
gram memory. This imposes some restrictions on how much overhead
can be wrapped on each one of these smaller modules when creating it’s
interface, or API

In order to address the mentioned sensitivities within the control space,
the Digital Control Systems group (DCS) at TI has created smaller and re-
usable blocks of modular software known as DCS modules. These mod-
ules are not standard-compliant algorithms. However, they can be re-
garded as being standard ready, providing the benefit of allowing software
designers to use them in order to quickly and efficiently build up standard
algorithms without jeopardizing the algorithm’s compliance to the stan-
dard.

Please refer to the application note, SPRA701, A Software Modularity
Strategy for Digital Control Systems, for further information on DCS
modules.

5.6.2 Data Models

The C24xx has just one data model, so there are no special data memory re-
quirementsfor this processor.

TMS320C24xx Guidelines

5-19DSP-Specific Guidelines

5.6.3 Program Models

The C24xx C compiler supports only the one standard 64K word reach pro-
gram model, so there are no special program memory requirements for this
processor.

5.6.4 Register Conventions

This section describes the rules and guidelines that apply to the use of the
TMS320C24xx on-chip registers. As described previously, there are several
different register types. Note that any register that is not described here must
not be accessed by an algorithm; e.g. IFR, IMR, status and control registers
(SCSR1, SCSR2, WSGR), and peripheral control registers. The table below
describes all of the registers that may be accessed by an algorithm.

Register Use Type

AR0 C compiler Frame pointer Preserve(local)

AR1 C compiler Stack pointer Preserve

AR2 C compiler Local variable pointer Scratch(local)

AR2 – AR5 C compiler Expression analysis Scratch(local)

AR6 – AR7 C compiler Register variables Yes

Accumulator Expression analysis/ return values from a
C function

Preserve(local)

P Resulting Product from a Multiply Scratch(local)

T Multiply and shift operand Scratch(local)

5.6.5 Status Registers

The C24xx contains two status registers; ST0 and ST1. Each status register
is further divided into several distinct fields. Although each field is often thought
of as a separate register, it is not possible to access these fields individually;
e.g., in order to set one field it is necessary to set all fields in the same status
register. Therefore, it is necessary to treat the status registers with special
care; if any fields of a status register is of type Preserve, the entire register
must be treated as a Preserve register, for example.

TMS320C24xx Guidelines

 5-20

ST0 Field Name Use Type

ARP Auxiliary-register pointer Init (local)

OV Overflow flag Scratch(local)

OVM Overflow mode Init(local)

INTM Interrupt mode Preserve (global)

DP Data page Scratch(local)

ST1 Field Name Use Type

ARB Auxiliary-register pointer buffer Init (local)

CNF On-chip DARAM configuration Read-only(global)

TC Test/control flag Scratch(local)

SXM Sign-extension mode Scratch(local)

C Carry Scratch(local)

XF XF pin status Read-only (global)

PM Product shift mode Init (local)

5.6.6 Interrupt Latency

The C24xx CPU has only one non-interruptible loop instruction, namely RPT.
Once started the RPT instruction blocks interrupts until the entire number of
repeats are completed. Thus, the length of these loops can have a significant
effect on the worst case interrupt latency of an algorithm.

6-1

Use of the DMA Resource

In this chapter, we develop additional rules and guidelines for creating
eXpress-compliant algorithms that utilize the DMA resource.

Topic Page

6.1 Overview 6-2.

6.2 Algorithm and Framework 6-2.

6.3 Requirements for the Use of the DMA Resource 6-3.

6.4 DMA Controller 6-4.

6.5 Logical Channel 6-5.

6.6 Data Transfer Synchronization 6-6.

6.7 Inter-algorithm Synchronization 6-7.

6.8 Abstract interface 6-12.

6.9 Resource Characterization 6-13.

6.10 Runtime APIs 6-15.

Rule 6 states: Algorithms must never directly accesss any peripheral device.
This includes but is not limited to on-chip DMAs, timer, I/O devices, and cache
control registers.

The fact is that some algorithms require some means of moving data in the
background of CPU operations. This is particularly important for algorithms
which process and move large blocks of data, for example, imaging and video
algorithms. The DMA is designed for this exact purpose and algorithms need
to gain access to this resource for performance reasons.

The purpose of this chapter is to outline a model to facilitate the use of the DMA
resource for algorithms compliant to the standard.

This chapter references runtime APIs (ACPY) that algorithms call to access
the DMA resource. A detailed description of these APIs can be found in the
TMS320 DSP Algorithm Standard API Reference (SPRU360).

Chapter 6

Overview

 6-2

6.1 Overview

This chapter specifies rules and guidelines to facilitate the use of the DMA re-
source for algorithms. For an algorithm to utilize the DMA resources, the rules
outlined in this chapter must be followed in order to be considered
eXpressDSP-compliant. These guidelines are strongly suggested recommen-
dations.

6.2 Algorithm and Framework

The algorithm standard looks upon algorithms as pure “data transducers.”
They are, among other things, not allowed to perform any operations that can
affect scheduling or memory management. All these operations must be con-
trolled by the framework to ensure easy integration of algorithms, possibly
from different vendors. In general, the framework must be in command of man-
aging the system resources, including the DMA resource.

Algorithms cannot access the DMA registers directly, nor can they be written
to work with a particular physical DMA channel only. The framework must have
the freedom to assign any available channel, and possibly share DMA chan-
nels, when granting an algorithm a DMA resource.

Overview / Algorithm and Framework

Requirements for the Use of the DMA Resource

6-3Use of the DMA Resource

6.3 Requirements for the Use of the DMA Resource

Below is a list of requirements for DMA usage in compliant algorithms. These
requirements will help clarify the intent of the stated rules and guidelines in this
chapter.

1) The DMA device must be controlled by the client of the algorithm and not
the algorithm itself.

2) Algorithms must access the DMA resource through a handle using the
specified ACPY APIs.

3) A mechanism must be provided so that algorithms can ensure completion
of data transfer(s).

4) The DMA scheme must work within a preemptive environment.

5) It must be possible for an algorithm to request multiframe data transfers
(2-dimensional data transfers).

6) The application must be able to obtain the worst-case DMA resource re-
quirement at algorithm initialization time.

7) The DMA scheme must be flexible enough to fit within static and dynamic
systems, and systems with a mix of static and dynamic features.

8) All DMA operations must complete prior to return to caller. The algorithm
must synchronzie all DMA operations before return to the caller from a
framework-callable operation.

9) It must be possible to for several algorithms to share a physical DMA
channel.

DMA Controller

 6-4

6.4 DMA Controller

Each DMA device contains a set of registers that are used to control each
physical DMA channel independently. The bit fields in each register can be di-
vided into two categories:

1) Initialization
These fields are used to set up the DMA channel at system initialization.
They are also used, among other things, to control interrupts, priorities,
and frame synchronization.

2) Runtime
These bit fields are used to actually accomplish a data transfer. They are,
among other things, used to set the source and destination addresses and
the transfer element size.

The framework controls the DMA resource management and the initialization
bit fields. The runtime bit fields may change for each DMA transfer, and the
algorithm initiates the input to these fields. It is important, however, to notice
that an algorithm still cannot write to these registers directly. The algorithm will
pass these values to the framework through the specified ACPY APIs. The
framework’s implementation of the ACPY APIs is responsible for writing these
values to their appropriate register.

Logical Channel

6-5Use of the DMA Resource

6.5 Logical Channel

DSP algorithms, depending on the type of algorithm and the execution flow of
the algorithm, might schedule the use of the DMA resource in different ways.
For example:

� An algorithm might need to do a DMA transfer based on results after de-
coding an encoded bit stream. The results from these calculations deter-
mine the source, destination, and configuration of a DMA data transfer. All
this information must be passed to the DMA device to start the data trans-
fer. This type of data transfer is data dependent, and its configuration must
therefore be determined on-the-fly.

� An algorithm might schedule a fixed number of DMA data transfers into its
program flow and the configuration of these transfers might be the same.
It is only necessary to provide the source and destination information to
execute these data transfers, since the configuration is fixed. This type of
data transfer is not data dependent; its configuration can be predeter-
mined.

� Some algorithms might have a mixture of the above scenarios. These al-
gorithms have some predetermined data transfers and some data depen-
dent data transfers.

The term “logical channel” denotes “how” or “the type of configuration” used
to accomplish a DMA data transfer. The configuration determines, for exam-
ple, the size of the elements and the number of frames in multiframe transfers.
A data transfer description is complete when the source and destination infor-
mation and the frame length is added to the logical channel’s configuration.

The logical channel concept can be used intelligently by the algorithm design-
er to optimize the algorithm’s performance. For example, algorithms with data
transfers using the same configuration may request one logical channel for all
these transfers. This logical channel does not need to be configured for each
transfer. Furthermore, the algorithm may request another logical channel for
the data-dependent transfers. This logical channel must be configured for
each transfer.

The ACPY APIs are called by algorithms to configure, request, and synchro-
nize the data transfers. The first argument to these APIs is a handle. This han-
dle is granted to the algorithm by the framework during initialization and is used
to indicate a logical channel.

Some systems might map each logical channel to a physical channel, while
in other systems, several logical channels map to the same physical channel.
This mapping is dependent on the particular system and the number of avail-
able physical DMA channels. The important point to be made is that these vari-
ables are transparent from the algorithm’s point of view when working with log-
ical channels.

Data Transfer Synchronization

 6-6

6.6 Data Transfer Synchronization

A DMA data transfer is accomplished independent of CPU operations. For
maximum performance, the algorithm should schedule those CPU operations
that execute in parallel with the data transfers, to complete after the data trans-
fer completes.

IDMA Guideline 1

The data transfer should complete before the CPU operations executing in
parallel.

However, we can never guarantee that the data transfers are complete before
data are accessed by the CPU, even if the algorithm is designed in such a way
(e.g., future increase in CPU speed and not DMA transfer rate). However,
since it is important that the data transfer completes before accessing the data
to ensure accurate execution of the algorithm, we have provided two ways to
synchronize the methods of transfer and data access.

� The algorithm can call the ACPY_complete() runtime API to check if all
data transfers on a particular logical channel have completed.

� The algorithm can call the ACPY_wait() runtime API to wait for all data
transfers on a particular logical channel to complete.

After an algorithm returns to the caller from a framework callable function, the
client of the algorithm is free to move all its memory to a different location and
share its scratch memory following the rules in the IALG interface. It is impor-
tant that data transfers do not occur across functions that can be called by the
client to avoid a situation where the DMA is transferring data and the frame-
work is moving the locations of the buffers at the same time.

IDMA Rule 1

All data transfer must be completed before return to caller.

The algorithm must ensure that all data transfers have completed, either by
use of the ACPY_complete() or ACPY_wait() APIs, before returning to
caller.

For example, an algorithm can not start a data transfer in algActivate()
by calling ACPY_start() and then check for completion of the data transfer
in the algorithm’s “process” function by calling ACPY_complete() , or wait for
the completion by calling ACPY_wait() . The algorithm must ensure the data
transfer is complete in algActivate() by using either the ACPY_com-
plete() or the ACPY_wait() API.

Inter-algorithm Synchronization

6-7Use of the DMA Resource

6.7 Inter-algorithm Synchronization

An ideal system with unlimited DMA resources would assign a physical DMA
channel to each logical channel requested by the algorithms comprising the
system. Unfortunately, the DMA resource is limited and some of the physical
DMA channels may be used for other system functions such as servicing serial
ports etc. As such, a variety of application scenarios are possible with regards
to sharing physical DMA channels. Let’s consider two scenarios to illustrate
how this can be dealt with: a non-preemptive system and a preemptive system.

6.7.1 Non-preemptive System

Assume a system with one physical DMA channel that has been assigned to
be used by two algorithms. The algorithms require one logical channel each.
The algorithms do not preempt each other.

We know from IDMA Rule 1 that upon return from the algorithm functions, the
DMA is not active. The system can easily share this single DMA channel
among the two algorithms, since they will run sequentially and use the DMA
channel sequentially. See Figure 6–1.

Figure 6–1. Sharing of Physical DMA Channel in a Non-preemptive System

ÍÍÍ
ÍÍÍ

DMA/CPU idle

ÍÍCPU context switch

CPU/DMA active

Algorithm A
active

Algorithm B
active

CPU context
(timeline)

DMA context
(timeline)

1 2 3 4 5

Events

1) Algorithm A requests a data transfer by calling ACPY_start() . The
framework executes this request immediately since the DMA channel is
free.

2) Algorithm A calls ACPY_wait() to wait for the data transfer to complete.
The framework checks to see that the data are still being transferred.

Inter-algorithm Synchronization

 6-8

3) The data transfer is complete and the framework returns control to Algo-
rithm A so it can process the transferred data.

4) Algorithm B requests a data transfer by calling ACPY_start() .The
framework executes this request immediately since the DMA channel is
free.

5) Algorithm B calls ACPY_complete() to check if the data transfer has
completed. The framework checks to see that the data has been trans-
ferred. Algorithm B can process the transferred data.

Notice that algorithm A must wait for the transfer to complete because the par-
allel CPU processing takes less time than the data transfer, whereas algorithm
B’s data transfer has completed at the time of synchronization.

In summary, we can see from Figure 6–1 that sharing a physical DMA channel
between several algorithms is trivial as long as the algorithms don’t preempt
each other.

6.7.2 Preemptive System

Sharing a physical DMA channel among two algorithms in a preemptive sys-
tem requires some procedure to manage the shared resource. The system
must have a policy for handling the situation where one algorithm preempts
another algorithm while the shared physical DMA channel is currently being
used.

Let’s assume that the framework preempts algorithm A in order to run algo-
rithm B.

� Scenario 1: The system policy is to abort the current DMA transfer to free-
up the DMA device to the higher priority algorithm. See Figure 6–2.

Inter-algorithm Synchronization

6-9Use of the DMA Resource

Figure 6–2. Sharing of a Physical DMA Channel in a Preemptive System

ÍÍÍ
ÍÍÍ

ÍÍÍ
ÍÍÍ

DMA/CPU idle
ÍÍ
ÍÍ

CPU context switch

CPU/DMA activ

Algorithm A
active

Algorithm B
active active

Algorithm A

CPU context
(timeline)

DMA context
(timeline)

1 2 3 4 5 6 7

The system’s policy is to abort the current DMA transfer when context switch-
ing to a higher priority algorithm.

Events

1) Algorithm A requests a data transfer by calling ACPY_start() . The
framework executes this request immediately since the DMA channel is
free.

2) The framework preempts Algorithm A to run algorithm B. Algorithm A’s
data transfer is aborted to free the DMA channel to Algorithm B.

3) Algorithm B requests a data transfer by calling ACPY_start() . The
framework executes this request immediately since the DMA channel is
free.

4) Algorithm B calls ACPY_complete() to check if the data transfer has
completed. The framework checks to see that the data has been trans-
ferred. Algorithm B can process the transferred data.

5) The framework returns control to Algorithm A and also restarts the data
transfer that was aborted in 2.

6) Algorithm A calls ACPY_wait() to wait for the data transfer to complete.
The framework checks to see that data is still being transferred.

7) The data transfer is complete and the framework returns control to Algo-
rithm A so it can process the transferred data.

Scenario 1 can result in algorithm A waiting for the DMA transfer to complete
longer than necessary because of the abort/restart policy. However, in this

Inter-algorithm Synchronization

 6-10

scenario it is more important to grant the DMA channel to the higher priority
algorithm.

� Scenario 2: The system policy is to let the current DMA transfer issued by
the lower priority algorithm finish before starting a DMA transfer issued by
the higher priority algorithm. See Figure 6–3.

Figure 6–3. Sharing of a Physical DMA Channel in a Preemptive System

The system’s policy is to let the lower priority algorithm’s DMA transfer com-
plete when context switching to a higher priority algorithm.

ÍÍÍ
ÍÍÍ

ÍÍÍ
ÍÍÍ

DMA/CPU idle

ÍÍÍ
ÍÍÍ

CPU context switch

CPU/DMA active

Algorithm A
active

Algorithm B
active active

Algorithm A

CPU context
(timeline)

DMA context
(timeline)

1 2 3 4 5 6

Events

1) Algorithm A requests a data transfer by calling ACPY_start() . The
framework executes this request immediately since the DMA channel is
free.

2) Algorithm B requests a data transfer by calling ACPY_start() . Note that
the framework has preempted Algorithm A to run algorithm B. Algorithm
A’s data transfer is still in progress, so algorithm B’s transfer will be
delayed.

3) Algorithm A’s data transfer has completed and Algorithm B’s data trans-
ferred request can be executed.

4) Algorithm B calls ACPY_complete() to check if the data transfer has
completed. The framework checks to see that data is still being trans-
ferred.

5) Algorithm B calls ACPY_complete() to check if the data transfer has
completed. The framework checks to see that data transfer has com-
pleted. Algorithm B can process the transferred data.

Inter-algorithm Synchronization

6-11Use of the DMA Resource

6) Algorithm A calls ACPY_wait() to wait for the data transfer to complete.
The framework checks to see that data transfer has completed. The
framework returns control to Algorithm A so it can process the transferred
data.

Scenario 2 can result in a delay of the data transfer for algorithm B since the
transfer for algorithm A might still be active.

It is important to notice that preemptive systems might have groups of algo-
rithms that execute with the same priority. A well-designed DMA manager
would assign the same physical channels to algorithms at the same priority
level to avoid the scenarios described in Figure 6–2 and Figure 6–3. This, of
course, requires at least one physical channel for each priority level, which
might not always be the case.

In summary, sharing a DMA device among algorithms at different priorities can
be accomplished in several different ways. In the end, it is the system integra-
tor’s choice based on its available resources.

Abstract Interface

 6-12

6.8 Abstract Interface

Algorithms compliant to the standard are modules that implement the abstract
interface IALG. Compliant algorithms that want to utilize the DMA resource
must implement the abstract interface IDMA. This means that the module must
declare and initialize a structure of type IDMA_Fxns, the structure must have
a global scope, its name must follow the uniform naming conventions and the
structure must be declared in the header file included with the module’s library.

The algorithm producer implements the IDMA interface to declare the algo-
rithm’s DMA resource requirement. The algorithm’s client calls this interface
to get the resource requirement, grant resources, and change resources at
runtime.

IDMA Rule 2

All algorithms using the DMA resource must implement the IDMA interface.

All compliant algorithms support both run-time and design-time creation of
algorithm objects. To optimize with regards to code space for design-time ob-
ject creation, it is important that all methods defined by the IDMA interface are
independently relocatable.

IDMA Rule 3

Each of the IDMA methods implemented by an algorithm must be indepen-
dently relocateable.

The pragma directive must be used to place each method in appropriate sub-
sections to enable independent relocatability of the methods by the system in-
tegrator. The table below summarizes the section names and their purpose.

Section Name Purpose

.text:dmaGetChannels Implementation of the IDMA dmaGetChannels method

.text:<name> Implementation of the IDMA <name> method

In other words, an algorithm’s implementation of the IDMA method <name>
should be placed in a COFF section named “.text:<name>”.

Resource Characterization

6-13Use of the DMA Resource

6.9 Resource Characterization

The resources consumed by algorithms implementing the IALG interface are
restricted to MIPS and memory. These resources must be documented ac-
cording to the rules defined in Chapter 4. Algorithms implementing the IDMA
interface will consume an additional system resource. This resource must also
be documented.

Some DMA managers use software queuing for DMA jobs. These systems
need to know how many DMA transfers are queued up so that it can set aside
memory to hold the information for all the transfers. It is important that the sys-
tem integrator knows the worst-case depth of the queue of DMA jobs (number
of concurrent transfers) on each logical channel.

IDMA Rule 4

All algorithms must state the maximum number of concurrent DMA transfers
for each logical channel.

This can be accomplished by filling out a table such as that shown below.

Logical channel
number

Number of concurrent
transfers (depth of queue)

0 3

1 1

In the example above, that algorithm requires two DMA logical channels;
channel 0 will not issue more than three concurrent DMA transfers, and chan-
nel 1 will not issue more that one concurrent DMA transfer. Note that the num-
ber of concurrent transfers is indicated by the depth field in the
IDMA_ChannelRec structure in the IDMA interface.

It is important that system integrators be able to wisely optimize the assign-
ments of DMA resources among algorithms. For example, if a system integra-
tor chooses to share a physical DMA channel between algorithms in a preemp-
tive system, the frequency of the data transfers and the size of the data trans-
fers might affect this assignment.

IDMA Rule 5

All agorithms must characterize the average and maximum size of the data
transfers per logical channel for each operation. Also, all algorithms must
characterize the average and maximum frequency of data transfers per log-
ical channel for each operation.

Resource Characterization

 6-14

This can be accomplished by filling out a table such as that shown below.

Logical
Channel

Data Transfers (bytes) Frequency

Operation
Channel
Number Average Maximum Average Maximum

algActivate() 0 512 512 1 1

process() 0 768 1024 5 7

process() 1 64 128 8 8

For example, in the table above, the “process” operation is using two logical
channels. On logical channel 0, it performs on average 5 data transfers and
a maximum of 7 data transfers. The average number of bytes for each transfer
is 768, and the maximum number of bytes is 1024.

Runtime APIs

6-15Use of the DMA Resource

6.10 Runtime APIs

The IDMA interface is used to request and grant an algorithm DMA resources,
and also change these resources in real-time. We also need to define runtime
APIs that are actually called from within the algorithm to configure the logical
channel, start a data transfer and synchronize the data transfer(s).

The following APIs are allowed to be called from within an algorithm that has
implemented the IDMA interface; ACPY_complete() ,
ACPY_configure() , Acpy_start () and ACPY_wait() .

It is important to notice that the algorithm’s client is free to implement these
APIs as appropriate, granted that they satisfy their semantics in the TMS320
DSP Algorithm Standard, API reference (SPRU360).

A-1

Appendix A

Rules and Guidelines

This appendix gathers together all rules and guidelines into one compact
reference.

Topic Page

A.1 General Rules A-2.

A.2 Guidelines A-4.

A.3 Performance Characterization Rules A-5.

A.4 IDMA Rules A-6.

Recall that rules must be followed in order for software to be standard-com-
pliant. Guidelines, on the other hand, are strongly suggested guidelines that
should be obeyed but may be violated by eXpressDSP-compliant software.

The rules and are partitioned into three distinct sections. The first two sections
enumerate all of the rules and guidelines that must be obeyed by the algo-
rithms and the third section gathers all performance characterization rules.

Appendix A

General Rules

 A-2

A.1 General Rules
Rule 1 All algorithms must follow the run-time conventions imposed by TI’s imple-

mentation of the C programming language. (See page 2-2)

Rule 2 All algorithms must be reentrant within a preemptive environment (including
time-sliced preemption). (See page 2-6)

Rule 3 All algorithm data references must be fully relocatable (subject to alignment
requirements). That is, there must be no “hard coded” data memory locations.
(See page 2-9)

Rule 4 All algorithm code must be fully relocatable. That is, there can be no hard
coded program memory locations. (See page 2-14)

Rule 5 Algorithms must characterize their ROM-ability; i.e., state whether they are
ROM-able or not. (See page 2-16)

Rule 6 Algorithms must never directly access any peripheral device. This includes but
is not limited to on-chip DMAs, timers, I/O devices, and cache control registers.
(See page 2-17)

Rule 7 All header files must support multiple inclusions within a single source file.
(See page 3-3)

Rule 8 All external definitions must be either API identifiers or API and vendor pre-
fixed. (See page 3-4)

Rule 9 All undefined references must refer either to the operations specified in
Appendix B (a subset of C runtime support library functions and the DSP/
BIOS) or other eXpressDSP-compliant modules. (See page 3-4)

Rule 10 All modules must follow the naming conventions of the DSP/BIOS for those
external declarations disclosed to the client. (See page 3-5)

Rule 11 All modules must supply an initialization and finalization method. (See page
3-6)

Rule 12 All algorithms must implement the IALG interface. (See page 3-14)

Rule 13 Each of the IALG methods implemented by an algorithm must be independent-
ly relocatable. (See page 3-15)

Rule 14 All abstract algorithm interfaces must derive from the IALG interface. (See
page 3-15)

Rule 15 Each eXpressDSP-compliant algorithm must be packaged in an archive which
has a name that follows a uniform naming convention. (See page 3-17)

Rule 16 Each eXpressDSP-compliant algorithm header must follow a uniform naming
convention. (See page 3-18)

Rule 17 Different versions of an standard-compliant algorithm from the same vendor
must follow a uniform naming convention. (See page 3-19)

General Rules

A-3Rules and Guidelines

Rule 18 If a module’s header includes definitions specific to a “debug” variant, it must
use the symbol _DEBUG to select the appropriate definitions; _DEBUG is de-
fined for debug compilations and only for debug compilations. (See page 3-19)

Rule 25 All C6x algorithms must be supplied in little endian format. (See page 5-4)

Rule 26 All C6x algorithms must access all static and global data as far data. (See
page 5-5)

Rule 27 C6x algorithms must never assume placement in on-chip program memory;
i.e., they must properly operate with program memory operated in cache
mode. (See page 5-5)

Rule 28 On processors that support large program model compilation, all core run-time
support functions must be accessed as far functions; for example, on the
C54x, the calling function must push both the XPC and the current PC. (See
page 5-8)

Rule 29 On processors that support large program model compilation, all algorithm
functions must be declared as far functions; for example, on the C54x, callers
must push both the XPC and the current PC and the algorithm functions must
perform a far return. (See page 5-8)

Rule 30 On processors that support an extended program address space (paged
memory), the code size of any object file should never exceed the code space
available on a page when overlays are enabled. (See page 5-9)

Rule 31 All C55x algorithms must document the content of the stack configuration reg-
ister that they follow. (See page 5-12)

Rule 32 All C55x algorithms must access all static and global data as far data; also the
algorithms should be instantiable in a large memory model. (See page 5-12)

Rule 33 C55x algorithms must never assume placement in on-chip program memory;
i.e., they must properly operate with program memory operated in instruction
cache mode. (See page 5-13)

Rule 34 All C55x algorithms that access data by B-bus must document: the instance
number of the IALG_MemRec structure that is accessed by the B-bus (heap-
data), and the data-section name that is accessed by the B-bus (static-data).
(See page 5-13)

Guidelines

 A-4

A.2 Guidelines

Guideline 1 Algorithms should minimize their persistent data memory requirements in fa-
vor of scratch memory. (See page 2-11)

Guideline 2 Each initialization and finalization function should be defined in a separate ob-
ject module; these modules must not contain any other code. (See page 2-14)

Guideline 3 All modules that support object creation should support design-time object
creation. (See page 3-7)

Guideline 4 All modules that support object creation should support run-time object cre-
ation. (See page 3-8)

Guideline 5 All algorithms should implement the trace interface IRTC. (See page 3-16)

Guideline 6 Algorithms should keep stack size requirements to a minimum. (See page 4-4)

Guideline 7 Algorithms should minimize their static memory requirements. (See page 4-5)

Guideline 8 Algorithms should never have any scratch static memory. (See page 4-5)

Guideline 9 Algorithm code should be partitioned into distinct sections and each section
should be characterized by the average number of instructions executed per
input sample. (See page 4-6)

Guideline 10 Interrupt latency should never exceed 10 µs. (See page 4-7)

Guideline 11 Algorithms should avoid the use of global registers. (See page 5-3)

Guideline 12 Algorithms should avoid the use of the float data type. (See page 5-4)

Guideline 13 All C6x algorithms should be supplied in both little and big endian formats.
(See page 5-4)

Guideline 14 On processors that support large program model compilations, a version of the
algorithm should be supplied that accesses all core run-time support functions
as near functions and all algorithms as far functions (mixed model). (See
page 5-9)

Guideline 15 All C55x algorithms should not assume any specific stack configuration and
should work under all the three stack modes. (See page 5-12)

IDMA
Guideline 1 The data transfer should complete before the CPU operations executing in

parallel (IDMA guideline). (See page 6-6)

Performance Characterization Rules

A-5Rules and Guidelines

A.3 Performance Characterization Rules

Rule 19 All algorithms must characterize their worst-case heap data memory require-
ments (including alignment). (See page 4-2)

Rule 20 All algorithms must characterize their worst-case stack space memory re-
quirements (including alignment). (See page 4-3)

Rule 21 Algorithms must characterize their static data memory requirements. (See
page 4-4)

Rule 22 All algorithms must characterize their program memory requirements. (See
page 4-6)

Rule 23 All algorithms must characterize their worst-case interrupt latency for every
operation. (See page 4-7)

Rule 24 All algorithms must characterize the typical period and worst-case execution
time for each operation. (See page 4-9)

IDMA Rules

 A-6

A.4 IDMA Rules

IDMA Rule 1 All data transfer must be completed before return to caller. (See page 6-6)

IDMA Rule 2 All algorithms using the DMA resource must implement the IDMA interface.
(See page 6-12)

IDMA Rule 3 Each of the IDMA methods implemented by an algorithm must be indepen-
dently relocateable. (See page 6-12)

IDMA Rule 4 All algorithms must state the maximum number of concurrent DMA transfers
for each logical channel. (See page 6-13)

IDMA Rule 5 All agorithms must characterize the average and maximum size of the data
transfers per logical channel for each operation. Also, all algorithms must char-
acterize the average and maximum frequency of data transfers per logical
channel for each operation. (See page 6-13)

B-1

Appendix A

Core Run-Time APIs

This appendix enumerates all acceptable Core Run-time APIs that may be ref-
erenced by an standard-compliant algorithm.

Topic Page

B.1 TI C-Language Run-time Support Library B-2.

B.2 DSP/BIOS Run-time Support Library B-3.

Recall that only a subset of the DSP/BIOS and the TI C Run-time Support Li-
brary functions are allowed to be referenced from an standard-compliant algo-
rithm.

Appendix B

TI C-Language Run-time Support Library

 B-2

B.1 TI C-Language Run-time Support Library

In the future, this list of allowable APIs will grow to include a rich set of DSP
math function calls; e.g., functions for computing a DCT, FFT, dot product, etc.

The following table summarizes the TI C-Language Run-time Support Library
functions that may be referenced by eXpressDSP-compliant algorithms.

Allowed or
disallowed Category Typical functions in category Notes

allowed String functions strcpy, strchr, etc 1

allowed
Memory-moving
functions

memcpy, memmove, memset, etc. 2

allowed Integer math support _divi, _divu, _remi, _remu, etc. 2

allowed Floating point support
_addf, _subf, _mpyf, _divf, _addd,
_subd, _mpyd, _divd, log10, cosh, etc.

2, 3

allowed Conversion functions atoi, ftoi, itof, etc. 2

disallowed Heap management functions malloc, free, realloc, alloc, … 5

disallowed I/O functions printf, open, read, write, etc 4

disallowed misc. non-reentrant functions printf, sprintf, ctime, etc. 5, 6

Notes:

1) Exceptions: strtok is not reentrant, and strdup allocates memory with mal-
loc.

2) Some of these are issued by the compiler automatically for certain C oper-
ators.

3) The errno paradigm isn’t reentrant. Thus, errno must not be used by eX-
pressDSP-compliant algorithms.

4) Algorithms are not allowed to perform I/O (except via DSP/BIOS APIs)

5) Algorithms must not allocate memory

6) Algorithms must be reentrant and must, therefore, only reference reen-
trant functions.

DSP/BIOS Run-time Support Library

B-3Core Run-Time APIs

B.2 DSP/BIOS Run-time Support Library

The following table describes which DSP/BIOS operations are callable from
eXpressDSP-compliant algorithms. For details about the DSP/BIOS API, see
the DSP/BIOS Application Programming Interface (API) Reference Guide for
your DSP platform.

Allowed or
disallowed Module Typical functions in category Notes

allowed ATM ATM_andi, ATM_decu 1
disallowed C62, C64

C54, C55
C62_disableIER,
C54_enableIMR, C64_plug

–

allowed CLK CLK_gethtime, CLK_getltime 1
disallowed DEV DEV_match, Dxx_issue (device-specific) –
alowed HST HST_getpipe 2
allowed HWI HWI_disable, HWI_enable, HWI_restore 3
disallowed HWI HWI_enter, HWI_exit –
disallowed IDL IDL_run –
disallowed LCK LCK_create, LCK_pend, LCK_post –
allowed LOG LOG_event, LOG_printf, LOG_error 1
disallowed MBX MBX_create, MBX_pend, MBX_post –
disallowed MEM MEM_alloc, MEM_free –
allowed PIP PIP_alloc, PIP_get, PIP_put, PIP_free 2
allowed PRD PRD_getticks –
disallowed PRD PRD_start, PRD_tick –
most allowed QUE QUE_new, QUE_enqueue, QUE_next 4
allowed RTDX RTDX_read, RTDX_write 5
disallowed SEM SEM_pend, SEM_count, SEM_reset –
disallowed SIO SIO_get, SIO_put, SIO_bufsize –
allowed STS STS_add, STS_delta, STS_set 1
disallowed SWI SWI_andn, SWI_raisepri, SWI_enable –
most allowed SYS SYS_abort, SYS_error, SYS_printf 6
allowed TRC TRC_disable, TRC_enable, TRC_query 7
disallowed TSK TSK_sleep, TSK_exit, TSK_stat –

DSP/BIOS Run-time Support Library

 B-4

Notes:

1) All operations provided by this module are callable by algorithms.

2) Algorithms are allowed to use HST objects and the HST_getpipe only to
instrument intermediate data streams. The PIP module API functions may
be used to manage the pipe for such HST objects. HST and PIP objects
cannot be used for other purposes by an eXpressDSP-compliant
algorithm.

3) The HWI_disable, HWI_enable, and HWI_restore operations are the only
way to create critical sections within an algorithm and provide a processor-
independent way of controlling preemption.

4) QUE_create and QUE_delete are disallowed. All other QUE module func-
tions are allowed.

5) Algorithms are allowed to use RTDX to instrument intermediate data
streams. RTDX cannot be used for other purposes by an
eXpress-DSP-compliant algorithm.

6) All the functions that perform actions similar to printf are allowed:
SYS_printf(), SYS_sprintf(), SYS_vprintf(), SYS_vsprintf(),
SYS_putchar(). All other SYS module functions are disallowed.

7) TRC_enable and TRC_disable take a mask that should be configurable; i.e.,
hard constants should not be used.

It is important to realize that none of the LOG, TRC, or STS operations has any
semantic effect on the execution of an algorithm. In other words, it is possible
to implement all of these operations as aliases to a function that simply returns
and the operation of the algorithm will be unaffected.

C-1

Appendix A

Bibliography

This appendix lists sources for additional information.

C.1 Books

Dialogic, Media Stream Processing Unit; Developer’s Guide, 05-1221-001-01
September 1998.

ISO/IEC JTC1/SC22 N 2388 dated January 1997, Request for SC22 Working
Groups to Review DIS 2382-07.

Intermetrics, Mwave Developer’s Toolkit, DSP Toolkit User’s Guide, 1993.

Liu, C.L.; Layland, J.W. “Scheduling Algorithms for Multi-Programming in a
Hard Real-Time Environment”, JACM 20, 1, (January 1973): 40-61.

Massey, Tim and Iyer, Ramesh, DSP Solutions for Telephony and Data/Facimile
Modems, 1997, SPRA073

TI, TMS320C54x Optimizing C Compiler User’s Guide, SPRU103C, 1998

TI, TMS320C6x Optimizing C Compiler User’s Guide, SPRU187C, 1998

TI, TMS320C62xx CPU and Instruction Set, SPRU189B, 1997

C.2 URLS

http://www.faqs.org/faqs/threads-faq/part1/

Appendix C

D-1

Appendix A

Glossary

D.1 Glossary of Terms

Abstract Interface An interface defined by a C header whose functions are specified by a
structure of function pointers. By convention these interface headers begin
with the letter ‘i’ and the interface name begins with ‘I’. Such an interface is
“abstract” because, in general, many modules in a system implement the
same abstract interface; i.e., the interface defines abstract operations
supported by many modules.

Algorithm Technically, an algorithm is a sequence of operations, each chosen from a
finite set of well-defined operations (e.g. computer instructions), that halts in
a finite time, and computes a mathematical function. In the context of this
specification, however, we allow algorithms to employ heuristics and do not
require that they always produce a correct answer.

API Acronym for Application Programming Interface i.e., a specific set of
constants, types, variables, and functions used to programmatically interact
with a piece of software

Asynchronous

System Calls Most system calls block (or “suspend”) the calling thread until they complete,
and continue its execution immediately following the call. Some systems also
provide asynchronous (or non-blocking) forms of these calls; the kernel
notifies the caller through some kind of out-of-band method when such a
system call has completed.

Asynchronous system calls are generally much harder for the programmer to
deal with than blocking calls. This complexity is often outweighed by the
performance benefits for real-time compute intensive applications.

Client The term client is often used to denote any piece of software that uses a
function, module, or interface; for example, if the function a() calls the
function b(), a() is a client of b(). Similarly, if an application App uses module
MOD, App is a client of MOD.

COFF Common Output File Format. The file format of the files produced by the TI
compiler, assembler, and linker.

Appendix D

Glossary of Terms

 D-2

Concrete Interface An interface defined by a C header whose functions are implemented by a
single module within a system. This is in contrast to an abstract interface
where multiple modules in a system may implement the same abstract
interface. The header for every module defines a concrete interface.

Context Switch A context switch is the action of switching a CPU between one thread and
another (or transferring control between them). This may involve crossing
one or more protection boundaries.

Critical Section A critical section of code is one in which data that may be accessed by other
threads are inconsistent. At a higher level, a critical section can be viewed as
a section of code in which a guarantee you make to other threads about the
state of some data may not be true.

If other threads can access these data during a critical section, your program
may not behave correctly. This may cause it to crash, lock up, produce
incorrect results, or do just about any other unpleasant thing you care to
imagine.

Other threads are generally denied access to inconsistent data during a critical
section (usually through use of locks). If some of your critical sections are too
long, however, it may result in your code performing poorly.

Endian Refers to which bytes are most significant in multi-byte data types. In
big-endian architectures, the leftmost bytes (those with a lower address) are
most significant. In little-endian architectures, the rightmost bytes are most
significant.

HP, IBM, Motorola 68000, and SPARC systems store multi-byte values in
big-endian order, while Intel 80x86, DEC VAX, and DEC Alpha systems store
them in little-endian order. Internet standard byte ordering is also big-endian.
The TMS320C6000 is bi-endian because it supports both systems.

Frame Algorithms often process multiple samples of data at a time. This set of
samples is sometimes referred to as a frame. In addition to improving
performance, some algorithms require specific minimum frame sizes to
properly operate.

Framework A framework is that part of an application that has been designed to remain
invariant while selected software components are added, removed, or
modified. Very general frameworks are sometimes described as application
specific operating systems.

Instance The specific data allocated in an application that defines a particular object.

Interface A set of related functions, types, constants, and variables. An interface is
often specified via a C header file.

Interrupt Latency The maximum time between when an interrupt occurs and its corresponding
Interrupt Service Routine (ISR) starts executing.

Glossary of Terms

D-3Glossary

Interrupt Service

 Routine (ISR) An ISR is a function called in response to an interrupt detected by a CPU.

Method The term method is a synonym for a function that can be applied to an object
defined by an interface.

Module A module is an implementation of one (or more) interfaces. In addition, all
modules follow certain design elements that are common to all
standard-compliant software components. Roughly speaking, a module is a
C language implementation of a C++ class. Since a module is an
implementation of an interface, it may consist of many distinct object files.

Multithreading Multithreading is the management of multiple concurrent uses of the same
program. Most operating systems and modern computer languages also
support multithreading.

Preemptive A property of a scheduler that allows one task to asynchronously interrupt the
execution of the currently executing task and switch to another task; the
interrupted task is not required to call any scheduler functions to enable the
switch.

Protection Boundary A protection boundary protects one software subsystem on a computer from
another, in such a way that only data that is explicitly shared across such a
boundary is accessible to the entities on both sides. In general, all code
within a protection boundary will have access to all data within that boundary.

The canonical example of a protection boundary on most modern systems is
that between processes and the kernel. The kernel is protected from
processes, so that they can only examine or change its internal state in certain
strictly defined ways.

Protection boundaries also exist between individual processes on most
modern systems. This prevents one buggy or malicious process from
wreaking havoc on others.

Why are protection boundaries interesting? Because transferring control
across them is often expensive; it takes a lot of time and work. Most DSPs have
no support for protection boundaries.

Reentrant Pertaining to a program or a part of a program in its executable version, that
may be entered repeatedly, or may be entered before previous executions
have been completed, and each execution of such a program is independent
of all other executions.

Run to Completion A thread execution model in which all threads run to completion without ever
synchronously suspending execution. Note that this attribute is completely
independent of whether threads are preemptively scheduled. Run to
completion threads may be preempt on another (e.g., ISRs) and
non-preemptive systems may allow threads to synchronously suspend

Glossary of Terms

 D-4

execution. Note that only one run-time stack is required for all run to
completion threads in a system.

Scheduling The process of deciding what thread should execute next on a particular
CPU. It is usually also taken as involving the context switch to that thread.

Scheduling Latency The maximum time that a “ready” thread can be delayed by a lower priority
thread.

Scratch Memory Memory that can be overwritten without loss; i.e., prior contents need not be
saved and restored after each use.

Scratch Register A register that can be overwritten without loss; i.e., prior contents need not be
saved and restored after each use.

Thread The program state managed by the operating system that defines a logically
independent sequence of program instructions. This state may be as little as
the Program Counter (PC) value but often includes a large portion of the
CPU’s register set.

Index

Index-1

Index

A
abstract interface 3-11, 3-15, D-1

addressing mode 2-16

algorithms 1-9, 3-14, D-1
vs. application 2-12

API D-1

application 2-12

architecture of system 1-8

archive name 3-17

assembly language 2-2

asynchronous system calls D-1

B
bibliography C-1

big endian 5-4

binary form 1-4

C
C language

callable from 1-9, 2-2
run-time conventions 2-2
run-time support library B-2

c54x DSPs 5-8

c54x/c6x migration issues 1-5

c6x DSPs 5-4

channels
multiple 2-3

client D-1

COFF D-1

component-based programming 3-1

concrete interface D-2

configuration of modules 3-8
constants

naming 3-5
context switch D-2
control flow 2-3
core run-time support 1-10
CPU requirements 4-8
create entry point 3-9
creating objects 3-7
critical section D-2
CSR register 5-6

D
data memory 2-9
data models

c54x 5-8
c6x 5-4

data types
naming 3-5

debug version 3-18
delete entry point 3-10
deleting objects 3-8
design-time object creation 3-7
diagnostics 3-16
digital signatures 1-7
disabling interrupts 4-7
distribution 1-4, 3-17
documentation standards 1-7
DSP migration issues 1-5
DSP/BIOS

modules B-3
dual-access memory 2-11
dynamic environment 1-4
dynamic object creation 3-8

Index

Index-2

E
encryption standards 1-7

endian byte ordering 5-4, D-2

example 2-6
exit() function 3-9
init() function 3-9
non-reentrant code 2-6
reentrant code 2-7

execution time 4-8

exit() function 3-6
example 3-9

extended program address space 5-8

external memory 2-12

F
far references

c6x 5-5

file naming 3-17

finalization code 2-14, 3-6

flow of control 2-3

frame D-2

framework 1-8, D-2

framework
multiple 1-4

functions
naming 3-5

Fxns structure 3-12

G
GIE register 5-7

global data memory 4-4

global register 5-2

glossary D-1

goals 1-5

guidelines 1-3

H
header file 3-2

naming 3-18

heap memory 4-2

I
IALG interface 3-14
inheritance 3-12
init() function 3-6

example 3-9
initialization code 2-14, 3-6
initialized register 5-2
installation 1-7
instances 3-6, D-2

deletion 3-8
dynamic creation 3-8
static creation 3-7

instruction cycles 4-9
instructions per sample 4-6
intellectual property 1-7
interface 3-2, D-2

IALG 3-14
inheritance 3-12
IRTC 3-16

interrupt latency D-2
c54x 5-11
c6x 5-7

interrupt service routine D-3
IRTC interface 3-16
ISR D-3

L
latency D-2, D-4
levels of the standard 1-2
licensing standards 1-7
little endian 5-4
local register 5-2
loop duration limits 5-7

M
macros

naming 3-5
memory

data 2-9
external 2-12
heap 4-2
private 2-12
program 2-14, 4-6
shadow 2-12

Index

Index-3

memory (continued)
shared 2-12
single-access 2-12
stack 4-3
static data 4-4

method D-3
MIPS calculation 4-8
modal code 2-5
module 3-2, D-3

configuration 3-8
finalization 3-6
initialization 3-6
objects 3-6

multitasking 2-3
multithreading 2-3, D-3

N
naming conventions 3-5

abstract interface headers 3-11
archive 3-17
external identifiers 3-4
files 3-17
header files 3-18
variants 3-19

non-preemptive 2-3

O
object-oriented programming 3-1
objects 3-6

deletion 3-8
dynamic creation 3-8
static creation 3-7

omissions 1-7
on-chip memory 2-9

P
packaging 3-17
performance 2-7, 4-8

characterization 4-1
periodic execution 4-9
peripheral device 2-17
persistent memory 2-10
PGIE register 5-7

ports
multiple 2-3

pragma directive 2-14
preemptive 2-3, D-3
preserve register 5-2
private memory 2-12
program memory 2-14, 4-6
program model

c54x 5-8
protection boundary D-3

R
read-only register 5-2
reentrant 1-9, 2-5, D-3

example of non-reentrant code 2-6
example of reentrant code 2-7

registers
c54x conventions 5-9
c6x conventions 5-5
types 5-2

release version 3-18
required elements 1-4
rules 1-3
run to completion D-3
run-time object creation 3-8
run-time support 1-10

S
scheduling D-4
scheduling latency D-4
scratch memory 2-10, D-4

static 4-5
scratch register D-4
section names 2-14, 3-15
self-modifying code 2-6, 2-16
shadow memory 2-12
shared memory 2-12
single-access memory 2-12
single-threaded 2-3
small model compilation 5-4
stack memory 4-3
startup code 2-14
state information 2-5

Index

Index-4

static data memory 4-4
static environment 1-4
static object creation 3-7
status register

c54x 5-10
c6x 5-6

structure fields
naming 3-5

symbols 3-19
system architecture 1-8

T
testing 3-16
thread 2-3, D-4
TMS320C5400 DSPs 5-8
TMS320C6000 DSPs 5-4
tracing 3-16
types

naming 3-5

U
underscore 3-5
unschedulable combinations 4-8

V
variables

naming 3-5
variants 3-19
vendors

multiple 1-4
verification 1-5
version control

debug vs. release 3-18
standards 1-7

Y
yielding 2-3

	IMPORTANT NOTICE
	Read This First
	Intended Audience
	Document Overview
	Additional Documents
	Text Conventions

	Contents
	Figures
	Overview
	Scope of the Standard
	Rules and Guidelines

	Requirements of the Standard
	Goals of the Standard
	Intentional Omissions
	System Architecture
	Frameworks
	Algorithms
	Core Run-Time Support

	GeneralProgrammingGuidelines
	Use of C Language
	Threads and Reentrancy
	Threads
	Preemptive vs. Non-preemptive Multitasking
	Reentrancy
	Example

	Data Memory
	Memory Spaces
	Scratch verses Persistent
	Algorithm verses Application

	Program Memory
	ROM-ability
	Use of Peripherals

	AlgorithmComponentModel
	Interfaces and Modules
	External Identifiers
	Naming Conventions
	Module Initialization and Finalization
	Module Instance Objects
	Design-time Object Creation
	Run-time Object Creation and Deletion
	Module Configuration
	Example Module
	Multiple Interface Support
	Interface Inheritance
	Summary

	Algorithms
	Testing and Diagnostics
	Packaging
	Object Code
	Header Files
	Debug Verses Release

	Algorithm Performance Characterization
	Data Memory
	Heap Memory
	Stack Memory
	Static Local and Global Data Memory

	Program Memory
	Interrupt Latency
	Execution Time
	MIPS Is Not Enough
	Execution Time Model

	DSP-SpecificGuidelines
	CPU Register Types
	Use of Floating Point
	TMS320C6xxx Guidelines
	Endian Byte Ordering
	Data Models
	Program Model
	Register Conventions
	Status Register
	Interrupt Latency

	TMS320C54xx Guidelines
	Data Models
	Program Models
	Register Conventions
	Status Registers
	Interrupt Latency

	TMS320C55x Rules and Guidelines
	Stack Architecture
	Data Models
	Program Models
	Relocatability
	Register Conventions
	Status Bits

	TMS320C24xx Guidelines
	General
	Data Models
	Program Models
	Register Conventions
	Status Registers
	Interrupt Latency

	Use of the DMA Resource
	Overview
	Algorithm and Framework
	Requirements for the Use of the DMA Resource
	DMA Controller
	Logical Channel
	Data Transfer Synchronization
	Inter-algorithm Synchronization
	Non-preemptive System
	Preemptive System

	Abstract Interface
	Resource Characterization
	Runtime APIs

	Rules and Guidelines
	General Rules
	Guidelines
	Performance Characterization Rules
	IDMA Rules

	Core Run-Time APIs
	TI C-Language Run-time Support Library
	DSP/BIOS Run-time Support Library

	Bibliography
	Books
	URLS

	Glossary
	Glossary of Terms

	Index

