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Preface

Read This First

About This Manual

This manual describes ways to optimize C and assembly code for the
TMS320C55x  DSPs and recommends ways to write TMS320C55x code for
specific applications.

Notational Conventions

This document uses the following conventions.

� The device number TMS320C55x is often abbreviated as C55x.

� Program listings, program examples, and interactive displays are shown
in a special typeface  similar to a typewriter’s. Examples use a bold
version  of the special typeface for emphasis; interactive displays use a
bold version  of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011  0005  0001         .field    1, 2
0012  0005  0003         .field    3, 4
0013  0005  0006         .field    6, 3
0014  0006               .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface  font and parameters are in an italic typeface. Portions of a syntax
that are in bold  should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.asect ” section name”,  address

.asect is the directive. This directive has two parameters, indicated by sec-
tion name and address. When you use .asect, the first parameter must be
an actual section name, enclosed in double quotes; the second parameter
must be an address.
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� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this di-
rective is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

� In most cases, hexadecimal numbers are shown with the suffix h. For ex-
ample, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers usually are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

� Bits are sometimes referenced with the following notation:

Notation Description Example

Register(n–m) Bits n through m of Register AC0(15–0) represents the 16
least significant bits of the regis-
ter AC0.
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Related Documentation From Texas Instruments

The following books describe the TMS320C55x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320C55x Technical Overview (SPRU393). This overview is an
introduction to the TMS320C55x digital signal processor (DSP). The
TMS320C55x is the latest generation of fixed-point DSPs in the
TMS320C5000 DSP platform.  Like the previous generations, this proc-
essor is optimized for high performance and low-power operation. This
book describes the CPU architecture, low-power enhancements, and
embedded emulation features of the TMS320C55x.

TMS320C55x DSP CPU Reference Guide  (literature number SPRU371)
describes the architecture, registers, and operation of the CPU. This
book also describes how to make individual portions of the DSP inactive
to save power.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide  (literature
number SPRU374) describes the mnemonic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the algebraic instruction set.

TMS320C55x DSP Algebraic Instruction Set Reference Guide  (literature
number SPRU375) describes the algebraic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the mnemonic instruction set.

TMS320C55x Optimizing C Compiler User’s Guide  (literature number
SPRU281) describes the ’C55x C compiler. This C compiler accepts
ANSI standard C source code and produces assembly language source
code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User’s Guide  (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

The CPU, the registers, and the instruction sets are also described in online
documentation contained in Code Composer Studio .
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Trademarks

Code Composer Studio, TMS320C54x, C54x, TMS320C55x, and C55x are
trademarks of Texas Instruments.
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Introduction

This chapter lists some of the key features of the TMS320C55x   (C55x )
DSP architecture and shows a recommended process for creating code that
runs efficiently.
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1.1 TMS320C55x Architecture

The TMS320C55x device is a fixed-point digital signal processor (DSP). The
main block of the DSP is the central processing unit (CPU), which has the fol-
lowing characteristics:

� A unified program/data memory map. In program space, the map contains
16M bytes that are accessible at 24-bit addresses. In data space, the map
contains 8M words that are accessible at 23-bit addresses.

� An input/output (I/O) space of 64K words for communication with peripher-
als.

� Software stacks that support 16-bit and 32-bit push and pop operations.
You can use these stack for data storage and retreival. The CPU uses
these stacks for automatic context saving (in response to a call or inter-
rupt) and restoring (when returning to the calling or interrupted code se-
quence).

� A large number of data and address buses, to provide a high level of paral-
lelism. One 32-bit data bus and one 24-bit address bus support instruction
fetching. Three 16-bit data buses and three 24-bit address buses are used
to transport data to the CPU. Two 16-bit data buses and two 24-bit address
buses are used to transport data from the CPU.

� An instruction buffer and a separate fetch mechanism, so that instruction
fetching is decoupled from other CPU activities.

� The following computation blocks: one 40-bit arithmetic logic unit (ALU),
one 16-bit ALU, one 40-bit shifter, and two multiply-and-accumulate units
(MACs). In a single cycle, each MAC can perform a 17-bit by 17-bit multi-
plication (fractional or integer) and a 40-bit addition or subtraction with op-
tional 32-/40-bit saturation.

� An instruction pipeline that is protected. The pipeline protection mecha-
nism inserts delay cycles as necessary to prevent read operations and
write operations from happening out of the intended order.

� Data address generation units that support linear, circular, and bit-reverse
addressing.

� Interrupt-control logic that can block (or mask) certain interrupts known as
the maskable interrupts.

� A TMS320C54x-compatible mode to support code originally written for a
TMS320C54x  DSP.
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1.2 Code Development Flow for Best Performance

The following flow chart shows how to achieve the best performance and code-
generation efficiency from your code. After the chart, there is a table that de-
scribes the phases of the flow.

Figure 1–1. Code Development Flow
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Figure 1–1. Code Development Flow (Continued)
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Step Goal

1 Write C Code:  You can develop your code in C using the ANSI-
compliant C55x C compiler without any knowledge of the C55x DSP.
Use Code Composer Studio to identify any inefficient areas that you
might have in your C code. After making your code functional, you
can improve its performance by selecting higher-level optimization
compiler options. If your code is still not as efficient as you would like
it to be, proceed to step 2.

2 Optimize C Code:  Explore potential modifications to your C code
to achieve better performance. Some of the techniques you can ap-
ply include (see Chapter 3):

� Use specific types (register, volatile, const).
� Modify the C code to better suit the C55x architecture.
� Use an ETSI intrinsic when applicable.
� Use C55x compiler intrinsics.

After modifying your code, use the C55x profiling tools again, to
check its performance. If your code is still not as efficient as you
would like it to be, proceed to step 3.

3 Write Assembly Code:  Identify the time-critical portions of your C
code and rewrite them as C-callable assembly-language functions.
Again, profile your code, and if it is still not as efficient as you would
like it to be, proceed to step 4.

4 Optimize Assembly Code:  After making your assembly code func-
tional, try to optimize the assembly-language functions by using
some of the techniques described in Chapter 4, Optimizing Your As-
sembly Code. The techniques include:

� Place instructions in parallel.
� Rewrite or reorganize code to avoid pipeline protection delays.
� Minimize stalls in instruction fetching.
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Tutorial

This tutorial walks you through the code development flow introduced in Chap-
ter 1, and introduces you to basic concepts of TMS320C55x  (C55x ) DSP
programming. It uses step-by-step instructions and code examples to show
you how to use the software development tools integrated under Code Com-
poser Studio (CCS).

Installing CCS before beginning the tutorial allows you to edit, build, and debug
DSP target programs. For more informatiopn about CCS features, see the
CCS Tutorial. You can access the CCS Tutorial within CCS by choosing
Help�Tutorial�CCS Tutorial.

The examples in this tutorial were run on the CCS v1.2 software development
tools, the most recent version available as of the publication of this book. Be-
cause the tools are being continuously improved, you may get different results
if you are using a more recent version of the tools. The examples use instruc-
tions from the algebraic instruction set, but the concepts apply equally for the
mnemonic instruction set.
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2.1 Introduction

This tutorial presents a simple assembly code example that adds four num-
bers together (y = x0 + x3 + x1 + x2). This example helps you become familiar
with the basics of C55x programming.

After completing the tutorial, you should know:

� The four common C55x addressing modes and when to use them.

� The basic C55x tools required to develop and test your software.

This tutorial does not replace the information presented in other C55x docu-
mentation and is not intended to cover all the topics required to program the
C55x efficiently.

Refer to the related documentation listed in the preface of this book for more
information about programming the C55x DSP. Much of this information has
been consolidated as part of the C55x Code Composer Studio online help.

For your convenience, all the files required to run this example can be down-
loaded with the .PDF version of the TMS320C55x Programmer’s Guide
(SPRU376) from http://www.ti.com/sc/docs/schome.htm.
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2.2 Writing Assembly Code

Writing your assembly code involves the following steps:

� Allocate sections for code, constants, and variables.

� Initialize the processor mode.

� Set up addressing modes and add the following values: x0 + x1 + x2 + x3.

The following rules should be considered when writing C55x assembly code:

� Labels

The first character of a label must be a letter or an underscore ( _ ) fol-
lowed by a letter, and must begin in the first column of the text file. Labels
can contain up to 32 alphanumeric characters.

� Comments

When preceded by a semicolon ( ; ), a comment may begin in any column.
When preceded by an asterisk ( * ), a comment must begin in the first col-
umn.

The final assembly code product of this tutorial is displayed in Example 2–1,
Final Assembly Code of test.asm. This code performs the addition of the ele-
ments in vector x. Sections of this code are highlighted in the three steps used
to create this example.

For more information about assembly syntax, see the TMS320C55x Assembly
Language Tools User’s Guide.
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Example 2–1. Final Assembly Code of test.asm

* Step 1: section allocation
* ––––––

.def x,y,init
x .usect ”vars”,4 ; reserve 4 uninitalized 16-bit locations for x
y .usect ”vars”,1 ; reserve 1 uninitialized 16-bit location for y

.sect ”table” ; create initialized section ”table” to
init .int 1,2,3,4 ; contain initialization values for x

.text ; create code section (default is .text)

.def start ; define label to the start of the code
start

* Step 2: Processor mode initialization
* ––––––

bit(ST1, #ST1_C54CM) = #0 ; set processor to ’55x native mode instead of
 ’54x compatibility mode (reset value)

bit(ST2, #ST2_AR0LC) = #0 ; set AR0 register in linear mode
bit(ST2, #ST2_AR6LC) = #0 ; set AR6 register in linear mode

* Step 3a: copy initialization values to vector x using indirect addressing
* –––––––
copy

XAR0 = #x ; XAR0 pointing to variable x
XAR6 = #init ; XAR6 pointing to initialization table

*AR0+ = *AR6+ ; copy starts from ”init” to ”x”
*AR0+ = *AR6+
*AR0+ = *AR6+
*AR0  = *AR6

* Step 3b: add values of vector x elements using direct addressing
* –––––––
add

XDP = #x ; XDP pointing to variable x
.dp  x ; and the assembler is notified

AC0 = @x
AC0 += @(x+3)
AC0 += @(x+1)
AC0 += @(x+2)

* Step 3c. write the result to y using absolute addressing
* –––––––

*(#y) = AC0

end
nop
goto  end
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2.2.1 Allocate Sections for Code, Constants, and Variables

The first step in writing this assembly code is to allocate memory space for the
different sections of your program.

Sections are modules consisting of code, constants, or variables needed to
successfully run your application. These modules are defined in the source file
using assembler directives. The following basic assembler directives are used
to create sections and initialize values in the example code.

� .sect “section_name” creates initialized name section for code/data. Ini-
tialized sections are sections defining their initial values.

� .usect “section_name”, size creates uninitialized named section for data.
Uninitialized sections declare only their size in 16-bit words, but do not de-
fine their initial values.

� .int value reserves a 16-bit word in memory and defines the initialization
value

� .def symbol makes a symbol global, known to external files, and indicates
that the symbol is defined in the current file. External files can access the
symbol by using the .ref directive. A symbol can be a label or a variable.

As shown in Example 2–2 and Figure 2–1, the example file test.asm contains
three sections:

� vars, containing five uninitialized memory locations.

� The first four are reserved for vector x (the input vector to add).

� The last location, y, will be used to store the result of the addition.

� table, to hold the initialization values for x. The init label points to the begin-
ning of section table.

� text, which contains the assembly code.

Example 2–2 shows the partial assembly code used for allocating sections.
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Example 2–2. Partial Assembly Code of test.asm (Step 1)

* Step 1: section allocation
* ––––––

.def x,y,init
x .usect ”vars”,4 ; reserve 4 uninitalized locations for var x
y .usect ”vars”,1 ; reserve 1 uninitialized location for result y

.sect ”table” ; create initialized section ”table” to
init .int 1,2,3,4 ; contain initialization values for x

.text ; create code section (default is .text)

.def start ; make the start label global
start ; define label to the start of the code

Figure 2–1. Section Allocation
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2.2.2 Processor Mode Initialization

The second step is to make sure the status registers (ST0_55, ST1_55,
ST2_55, and ST3_55) are set to configure your processor. You will either need
to set these values or use the default values. Default values are placed in the
registers after processor reset. You can locate the default register values after
reset in the TMS320C55x DSP CPU Reference Guide (SPRU371).

As shown in Example 2–3:

� The AR0 and AR6 registers are set to linear addressing (instead of circular
addressing) using bit addressing mode to modify the status register bits.
The syntax for bit addressing mode is:

bit (register, #register_bitname)=#0 or #1

� The processor has been set in C55x native mode instead of C54x-compat-
ible mode.

Example 2–3. Partial Assembly Code of test.asm (Step 2)

* Step 2: Processor mode initialization
* ––––––

bit(ST1, #ST1_C54CM) = #0 ; set processor to ’55x native mode instead of
 ’54x compatibility mode (reset value)

bit(ST2, #ST2_AR0LC) = #0 ; set AR0 register in linear mode (reset value)
bit(ST2, #ST2_AR6LC) = #0 ; set AR6 register in linear mode (reset value)
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2.2.3 Setting up Addressing Modes

Four of the most common C55x addressing modes are used in this code:

� ARn Indirect addressing (identified by *), in which you use auxiliary regis-
ters (ARx) as pointers.

� DP direct addressing (identified by @), which provides a positive offset ad-
dressing from a base address specified by the DP register. The offset is
calculated by the assembler and defined by a 7-bit value embedded in the
instruction.

� k23 absolute addressing (identified by #), which allows you to specify the
entire 23-bit data address with a label.

� Bit addressing (identified by the bit instruction), which allows you to modify
a single bit of a memory location or MMR register.

For further details on these addressing modes, refer to the TMS320C55x DSP
CPU Reference Guide (SPRU371). Example 2–4 demonstrates the use of the
addressing modes discussed in this section.

In Step 3a, initialization values from the table section are copied to vector x (the
vector to perform the addition) using indirect addressing. Figure 2–2 illustrates
the structure of the extended auxiliar registers (XARn). The XARn register is
used only during register initialization. Subsequent operations use ARn be-
cause only the lower 16 bits are affected (ARn operations are restricted to a
64k main data page). AR6 is used to hold the address of table, and AR0 is used
to hold the address of x.

In Step 3b, direct addressing is used to add the four values. Notice that the
XDP register was initialized to point to variable x. The .dp assembler directive
is used to define the value of XDP, so the correct offset can be computed by
the assembler at compile time.

Finally, in Step 3c, the result was stored in the y vector using absolute address-
ing. Absolute addressing provides an easy way to access a memory location
without having to make XDP changes, but at the expense of an increased code
size.
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Example 2–4. Partial Assembly Code of test.asm (Part3)

* Step 3a: copy initialization values to vector x using indirect addressing
* –––––––
copy

XAR0 = #x ; XAR0 pointing to startn of x array
XAR6 = #init ; XAR6 pointing to start of init array

*AR0+ = *AR6+ ; copy from source ”init” to destination ”x”
*AR0+ = *AR6+
*AR0+ = *AR6+
*AR0  = *AR6

* Step 3b: add values of vector x elements using direct addressing
* –––––––
add

XDP = #x ; XDP pointing to variable x
.dp  x ; and the assembler is notified

AC0 = @x
AC0 += @(x+3)
AC0 += @(x+1)
AC0 += @(x+2)

* Step 3c. write the result to y using absolute addressing
* –––––––

*(#y) = AC0

end
nop
goto  end

Figure 2–2. Extended Auxiliary Registers Structure (XARn)
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16-bit offset to the 7-bit main data page to form a 23-bit address.
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2.3 Understanding the Linking Process

The linker (lnk55.exe) assigns the final addresses to your code and data sec-
tions. This is necessary for your code to execute.

The file that instructs the linker to assign the addresses is called the linker com-
mand file (test.cmd) and is shown in Example 2–5. The linker command file
syntax is covered in detail in the TMS320C55x Assembly Language Tools
User’s Guide (SPRU280).

� All addresses and lengths given in the linker command file uses byte ad-
dresses and byte lengths. This is in contrast to a TMS320C54x  linker
command file that uses 16-bit word addresses and word lengths.

� The MEMORY linker directive declares all the physical memory available
in your system (For example, a DARAM memory block at location 0x100
of length 0x8000 bytes). Memory blocks cannot overlap.

� The SECTIONS linker directive lists all the sections contained in your input
files and where you want the linker to allocate them.

� The following linker options are used in Example 2–5:

� -o filename: names the executable file

� -m: creates a map file

� -e entry_label: provides the entry point for the code

When you build your project in Section 2.4, this code produces two files,
test.out and a test.map. Review the test.map file, Example 2–6, to verify the
addresses for x, y, and table. Notice that the linker reports byte addresses for
program labels such as start and text, and 16-bit word addresses for data la-
bels like x, y, and table. The C55x DSP uses byte addressing to acces variable
length instructions. Instructions can be 1-6 bytes long.
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Example 2–5. Linker command file (test.cmd)

test.obj /* input files */
–o test.out /* output file */
–m test.map /* map file */
–e start /* entry point for the code */

MEMORY /* byte address, byte len */
{

DARAM: org= 000100h, len = 8000h
SARAM: org= 010000h, len = 8000h

}

SECTIONS /* byte address, byte len */
{

vars :> DARAM
table: > SARAM
.text:> SARAM

}



Understanding the Linking Process

 2-12

Example 2–6. Linker map file (test.map)

******************************************************************************
TMS320C55xx COFF Linker           Version 1.03B                  
******************************************************************************
>> Linked Mon Feb 14 14:52:21 2000

OUTPUT FILE NAME:   <test.out>
ENTRY POINT SYMBOL: ”start”  address: 00010008

MEMORY CONFIGURATION

        name      org (bytes)  len (bytes)  used (bytes)  attributes  fill
        ––––      –––––––––––  –––––––––––  ––––––––––––  ––––––––––  ––––
         DARAM     00000100     000008000    0000000a      RWIX    
         SARAM     00010000     000008000    00000040      RWIX    

SECTION ALLOCATION MAP

output                                                          attributes/
section   page  orgn(bytes) orgn(words) len(bytes) len(words)   input sections
––––––––  ––––  ––––––––––– ––––––––––– –––––––––– ––––––––––   ––––––––––––––
vars         0              00000080               00000005     UNINITIALIZED
                               00000080              00000005   test.obj (vars)

table        0              00008000               00000004     
                               00008000              00000004   test.obj
(table)

.text        0  00010008                00000038                
                   00010008               00000037              test.obj
(.text)
                   0001003f               00000001              ––HOLE–– [fill
= 2020]

.data        0              00000000               00000000     UNINITIALIZED
                               00000000              00000000   test.obj
(.data)

.bss         0              00000000               00000000     UNINITIALIZED
                               00000000              00000000   test.obj (.bss)
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Example 2–6. Linker map file (test.map), (Continued)

GLOBAL SYMBOLS: SORTED ALPHABETICALLY BY Name 

abs. value/
byte addr   word addr   name
–––––––––   –––––––––   ––––
            00000000    .bss
            00000000    .data
00010008                .text
            00000000    ___bss__
            00000000    ___data__
            00000000    ___edata__
            00000000    ___end__
00010040                ___etext__
00010008                ___text__
            00000000    edata
            00000000    end
00010040                etext
            00008000    init
00010008                start
            00000080    x
            00000084    y

GLOBAL SYMBOLS: SORTED BY Symbol Address 

abs. value/
byte addr   word addr   name
–––––––––   –––––––––   ––––
            00000000    ___end__
            00000000    ___edata__
            00000000    end
            00000000    edata
            00000000    ___data__
            00000000    .data
            00000000    .bss
            00000000    ___bss__
            00000080    x
            00000084    y
            00008000    init
00010008                start
00010008                .text
00010008                ___text__
00010040                ___etext__
00010040                etext

[16 symbols]
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2.4 Building Your Program

At this point, you should have already successfully installed CCS and selected
the C55x Simulator as the CCS configuration file to be used. You can select
a configuration file to be used in CCS Setup.

Before building your program, you must set up your work environment and
create a .mak file. Setting up your work environment involves the following
tasks:

� Creating a project

� Adding files to the work space

� Modifying the build options

� Building your program

2.4.1 Creating a Project

First, create a new project called test.mak.

1) From the Project menu, choose New.

2) Navigate to c:\ti\myprojects\55x_examples\55x_prog.

3) Create the folder named 55x_prog if needed.

4) In the File Name field, Type tutor.mak and select Save.

5) You have now created a project named tutor.mak and saved it in c:\ti\my-
projects\55x_examples\55x_prog

2.4.2 Adding Files to the Work space

Copy the tutorial files (test.asm and test.cmd) to the project directory.

1) Navigate to the directory where the tutorial files are located.

2) Copy the tutorial files and paste them into the project directory you created
earlier: c:\ti\myprojects\55x_examples\55x_prog

As an alternative, you can create your own source files by choosing
File�New�Source File and typing the source code from the examples in this
book.
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2.4.3 Modifying Build Options

Open the options dialog box and modify the Assebler and Linker options

1) From the Project menu, choose Options.

2) Select the Assembler tab.

3) Select Algebraic as the Assembler Type.

4) Select the Linker tab.

5) In the Map Filename field, type test.map.

6) In the Autoinitialization Model field, select No Autoinitialization.

2.4.4 Build the Program

From the Project menu, choose Rebuild All

When you build your project, CCS compiles, assembles, and links your code
in one step. The assembler reads the assembly source file and converts C55x
instructions to their corresponding binary encoding. The results of the assem-
bly processes are an object file, test.obj, in industry standard COFF binary for-
mat. The object file contains all of your code and variables, but the addresses
for the different sections of code are not assigned. This assignment takes
place during the linking process.

Because there is no c code in your project, no compiler options were used.

The following basic assembler options were used to build the program:

� -as: Include symbols, make all symbols global

� -g: Enables assembly source debug

� -mg: Defines the assembler type as Algebraic

The following basic linker options were used to build the program:

� -m: Map filename

� -o: Output filename

� -x: Exaustively Read Libraries
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2.5 Testing your code

To test your code, inspect its execution using the C55x Simulator.

Load test.out

1) From the File menu, choose Load program.

2) Navigate to and select test.out, then choose Open.

CCS now displays the test.asm source code at the beginning of the start label
because of the entry symbol defined in the linker command file (-e start).
Otherwise, it would have shown the location pointed to by the reset vector. You
can also define the start location under the Project Options Linker tab.

Display arrays  x, y, and init  by setting Memory Window options

1) From the View menu, chose Memory.

2) In the Title field, type x.

3) In the Address field, type x.

4) Repeat 1–3 for y.

5) Display the init array by selecting View→ Memory.

6) In the Title field, type Table.

7) In the Address field, type init.

8) Display AC0 by selecting View→CPU Registers→CPU Registers.

The labels x, y, and init are visible to the simulator (using View→ Memory) be-
cause they were exported as symbols (using the .def directive in test.asm).
The -g option was used to enable assembly source debugging.

Now, single-step through the code to the end label by selecting Debug→Step
Into. Examine the X Memory window to verify that the table values populate
x and that y gets the value 0xa (1 + 2 + 3 + 4 = 10 =  0xa), as shown in
Example 2–7.
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Example 2–7. x Memory window
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2.6 Benchmarking your code

After verifying the correct functional operation of your code, you can use CCS
to calculate the number of cycles your code takes to execute.

Reload your code

From the File menu, choose Reload Program.

Enable clock for profiling

1) From the Profiler menu, choose Enable clock.

2) From the Profiler menu, choose View Clock.

Set breakpoints

1) Select the test.asm window.

2) Set one breakpoint at the beginning of the code you want to benchmark:
Right-click on the instruction next to the copy label and choose Toggle
Breakpoint.

3) Set one breakpoint marking the end: Right-click on the instruction next to
the end label and choose Toggle Breakpoint.

Benchmark your code

1) Run to the first breakpoint by selecting Debug→ Run.

2) Double-click in the Clock window to clear the cycle count.

3) Run to the second breakpoint by selecting Debug→ Run.

4) The Clock window displays the number of cycles the code took to execute
between the breakpoints, which was 15.
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Optimizing C Code

You can maximize C performance by using compiler options, intrinsics, and
code transformations. The assembly-language examples in this chapter use
instructions from the algebraic instruction set, but the concepts apply equally
for the mnemonic instruction set.
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3.1 The Compiler and Its Options

The TMS320C55x  (C55x ) C Compiler provides a wide range of options.
Some of these options affect how your C source code is parsed (analyzed for
syntactic and semantic conformance to ANSI C standards), others may select
debug capabilities, such as generation of listing files (–pl), or insertion of sym-
bolic debugging directives for runtime debug with Code Composer Studio (–g).
This section focuses on that subset of compiler options which affect the com-
piler optimization phase. These options enable techniques that the compiler
uses to generate more efficient assembly language than it does when no opti-
mizations are selected.

Compiler Options

Options control the operation of the compiler. They can significantly affect the
efficiency of the assembly source code generated by the compiler when trans-
lating your C source. The following subset of available compiler options pro-
vide the overall best performance boost in terms of cycle count and code size
reduction in the translated assembly.

Table 3–1. Compiler Options Summary

Option Description

–x2 Enable inlining of inline functions

–on n = 0
(default)

Simplifies control flow

Allocates variables to registers

Performs loop rotation

Eliminates unused code

Simplifies expressions and statements

Expands calls to inline functions

n = 1 Same features as n=0 option PLUS:

Performs local copy/constant propagation

Removes unused assignments

Eliminates local common expressions

n = 2 Same features as n=1 option PLUS:

Performs loop optimizations

Eliminates global common sub–expressions

Eliminates global unused assignments

Performs loop unrolling
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Table 3–1. Compiler Options Summary (Continued)

Option Description

n = 3 Same features as n=2 option PLUS:

Removes all functions that are never called.

Simplifies functions with return values that are nev-
er used.

Inlines calls to small functions (regardless to decla-
ration).

Reorders functions so that the attributes of a called
function are known when the caller is optimized.

Identifies file–level variable characteristics.

–oisize Enables inlining of functions based on a maximum
size. Size here is internally determined by the opti-
mizer and does not correspond to bytes or any
known standard unit . Use –onx to check sizes of
individual functions.

–onx x= 0 Disables optimizer information file (default).

x= 1 Produces optimizer information file.

x= 2 Produces verbose optimizer information file.

–opn n = 0 Specifies that the code contains functions and vari-
ables which may be accessed by code outside of
the source provided to the compiler and that the
compiler should not remove them.

n = 1 Specifies that the source code contains variables
that are modified outside the module, but does not
call any functions from outside the current source.
The compiler should should not remove those vari-
ables.

n = 2
(default)

Opposite to –op0. Specifies that the source code
contains no functions or variables that are called or
modified outside the source provided to the compil-
er.  Therefore, the compiler is authorized to remove
any ”unused”  functions and variables.

n = 3 Opposite to –op1. Specifies that the module calls
functions declared outside the current source, but
does not use variables modified outside current
source to the compiler. Therefore, the compiler is
authorized to remove any ”unused”  variables.
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Table 3–1. Compiler Options Summary (Continued)

Option Description

–pm Program mode option, tells the compiler to com-
bine the individual C source programs  included
with this shell invocation. This option is best used
in conjunction with –o3 option to take advantage of
global and file level optimizations provided with
level 3 optimization.

–mn Re–enables optimizations disabled when using –g
option (–g enables generation of symbolic debug
information).

–ml Selects large memory model.

–mr Prevents generation of hardware block repeat, lo-
cal repeat, and repeat instructions to reduce con-
text save/restore for interrupts.

–ms Optimizes for code space (default is to optimize for
code speed).
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3.2 Using Program-level Optimization

You can specify program-level optimization by using the –pm option with the
–o3 option. With program-level optimization, all your source files are compiled
into one intermediate file called a module. The module moves to the optimiza-
tion and code generation phases of the compiler. Because the compiler has
access to the entire program, it performs several optimizations that are rarely
applied during file-level optimization:

� If a particular argument in a function always has the same value, the com-
piler replaces the argument with the value and passes the value instead
of the argument.

� If a return value of a function is never used, the compiler deletes the return
code in the function.

� If a function is not called, directly or indirectly, the compiler removes the
code in the function.

Also, using the –pm option can lead to better optimization for your loops. If the
number of iterations of a loop is determined by a value passed into the function,
and the compiler can determine what the value is from the caller, then the com-
piler will have more information about the minimum iterations on the loop, re-
sulting in more efficient loop code.

Program-level optimization increases compilation time because the compiler
performs more complex optimizations on a larger amount of code. For this rea-
son you may want to optimize in stages. Using –o3 option and –oi options first.
And then in the last stage of code development, introduce the –pm option to
further reduce code size and cycle time.

Example 3–1 and Example 3–2 show the content of two files. One file contains
the source for the main function and the second file contains source for a small
function called sum.
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Example 3–1. Main Function File

extern int sum(const short *a, unsigned int n);

short a[10] = {1,2,3,4,5,6,7,8,9,10};

short b[10] = {11,12,13,14,15,16,17,18,19,20};

int sum1, sum2;

void main(void)

{

   sum1 = sum(a,9);

   sum2 = sum(b,9);

}

Example 3–2. Sum Function File

int sum(const short *a, unsigned int n)

{

   int sum = 0;

   unsigned int i;

   for(i=0; i<=n; i++)

   {

      sum += a[i];

   }

  return sum;

}

When compiled with –o3 and –pm options the optimizer has enough informa-
tion about the calls to sum to determine that the same loop count is used for
both calls. It therefore eliminates the argument n from the call to the function
and explicitly uses the count in the repeat code generated as is shown in
Example 3–3:
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Example 3–3. Assembly Code Generated With –o3 and –pm Options

_sum:
        SP = SP – #1
                                        ; End Prolog Code

;**Parameter deleted: n == 9u;
        T0 = #0   ; |3| 
        repeat(#9)
                                        ; loop starts ; |3| 
        T0 = T0 + *AR0+ ; |8| 
                                        ; loop ends
L1:    
                                        ; Begin Epilog Code
        SP = SP + #1 ; |11| 
        return    ; |11| 
                                        ; return occurs ; |11| 

main:
        SP = SP – #1
                                        ; End Prolog Code
        AR0 = #_a ; |10| 
        call #_sum ; |10| 
                                        ; call occurs [#_sum] ; |10| 
        *abs16(#_sum1) = T0 ; |10| 
        AR0 = #_b ; |11| 
        call #_sum ; |11| 
                                        ; call occurs [#_sum] ; |11| 
        *abs16(#_sum2) = T0 ; |11| 
                                        ; Begin Epilog Code
        SP = SP + #1
        return
                                        ; return occurs
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Considerations when mixing C and assembly

If you have any assembly functions in your program, exercise caution when
using the –pm option. The compiler recognizes only the C source code and not
any assembly code that might be present. Because the compiler does not rec-
ognize the assembly code calls and variable modifications to C functions, the
–pm option optimizes out those C functions. To keep these functions, you can
use 2 methods:

� place the FUNC_EXT_CALLED pragma before any declaration or refer-
ence to a function that you want to keep.

� Use the –opn option with the –pm and –o3 options (see Controlling Pro-
gram–Level Optimization ).

In general, you achieve the best results through judicious use of the
FUNC_EXT_CALLED pragma in combination with –pm –o3 and –op1 or –
op2.

If any of the following situations apply to your application, use the suggested
solution:

Situation 1.  
Your application consists of C source code that calls assembly functions.
Those assembly functions do not call any C functions or modify any C vari-
ables.

Solution
Compile with –pm –o3 –op2 to tell the compiler that outside functions do not
call C functions or modify C variables.

If you compile with the –pm –o3 options only, the compiler reverts from the de-
fault optimization level (–op2) to –op0. The compiler uses –op0 because it pre-
sumes that the calls to the assembly language functions that have a definition
in C can call other C functions or modify C variables.

Situation 2.
Your application consists of C source code that calls assembly functions. The
assembly language functions do not call C functions, but they modify C vari-
ables.

Solution
Try both of these solutions, and choose the one that works best with your code:

� Compile with –pm –o3 –op1.

� Add the volatile keyword to those variables that may be modified by the
assembly functions, and compile with –pm –o3 –op2. The volatile keyword
instructs the compiler that the variable may be changed by other code/pro-
cesses that are not visible to it in the current compilation.
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Situation 3.
Your application consists of C source code and assembly source code. The
assembly functions are interrupt service routines that call C functions; the C
functions that the assembly functions call are never called from C. These C
functions act like main: they function as entry points into C.

Solution
You must add the volatile keyword to the C variables that can be modified by
the interrupts. Then you can optimize your code in one of these ways:

� You achieve the best optimization by applying the FUNC_EXT_CALLED
pragma to all of the entry-point functions called from the assembly lan-
guage interrupts and then compiling with –pm –o3 –op2. Be sure that you
use the pragma with all of the entry–point functions. If you do not, the com-
piler removes the entry-point functions that are not preceded by the
FUNC_EXT_CALL pragma.

� Compile with –pm –o3 –op3. Because you do not use the
FUNC_EXT_CALL pragma, you must use the –op3 option, which is less
aggressive than the –op2 option, and your optimization may not be as ef-
fective.

Keep in mind that if you use –pm –o3 without additional options, the compiler
removes the C functions that the assembly functions call. Use the
FUNC_EXT_CALLED pragma to keep these functions.
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3.3 Using Function Inlining

You can have 2 modes of function inlining:

� Inlining controlled by the “inline” function declaration.  To enable this  mode
use the –x2 and –o0 compiler options.

� Automatic inlining of small functions even if they are not declared as “in-
line”. To enable this mode use the –o3 and –oi<size> compiler options.

3.3.1 Using –oi< size> option

The –oi<size> option may be used to specify automatic inlining of small func-
tions even if they have not been declared with inline keyword and inlining has
not been explicitly enabled using –x2 option.

Example 3–4 shows the resulting assembly when the same code in
Example 3–1 is compiled with –o3 –pm and –oi50 options
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Example 3–4. Assembly Generated Using –o3 –pm and –oi50

_sum:
       SP = SP – #1
                                        ; End Prolog Code
;** Parameter deleted: n == 9u;
        T0 = #0   ; |3| 
        repeat(#9)
                                        ; loop starts ; |3| 
        T0 = T0 + *AR0+ ; |8| 
                                        ; loop ends
L1:    
                                        ; Begin Epilog Code
        SP = SP + #1 ; |11| 
        return    ; |11| 
                                        ; return occurs ; |11|
 
_main:
        SP = SP – #1
                                        ; End Prolog Code
; >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ENTERING sum()
        AR3 = #_a
        AR1 = #0  ; |10| 
        repeat(#9)
                                        ; loop starts ; |10| 
        AR1 = AR1 + *AR3+ ; |10| 
                                        ; loop ends
L2:    
; <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< LEAVING sum()
        *abs16(#_sum1) = AR1 ; |10| 
; >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> ENTERING sum()
        AR3 = #_b ; |10| 
        AR1 = #0  ; |11| 
        repeat(#9)
                                        ; loop starts ; |11| 
        AR1 = AR1 + *AR3+ ; |11| 
                                        ; loop ends
L3:    
; <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< LEAVING sum()
        *abs16(#_sum2) = AR1 ; |11| 
                                        ; Begin Epilog Code
        SP = SP + #1
        return
                                        ; return occurs

In main, the function calls to sum have been inlined. However, code for the
body of function sum has still been generated. The compiler must generate
this code because it does not have enough information to eliminate the possi-
bility that the function sum may be called by some other externally defined
function or process.
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3.4 Using Intrinsics

The C55x compiler provides intrinsics, special functions that map directly to
inlined C55x instructions, to optimize your C code quickly. Intrinsics are speci-
fied with a leading underscore ( _ ) and are accessed by calling them as you
would call a function.

For example, saturated addition can only be expressed in C code by writing
a multicycle function, such as the one in Example 3–5.

Example 3–5. Implementing Saturated Addition in C

int sadd(int a, int b)
{
  int result;

  result = a + b;

  // Check to see if ’a’ and ’b’ have the same sign

  if (((a^b) & 0x8000) == 0)           
  {
    // If ’a’ and ’b’ have the same sign, check for underflow
    // or overflow

    if ((result ^ a) & 0x8000)
    {
       // If the result has a different sign than ’a’
       // then underflow or overflow has occurred.
       // if ’a’ is negative, set result to max negative
       // If ’a’ is positive, set result to max  positive 
       // value

       result = ( a < 0) ? 0x8000 : 0x7FFF;
    }
  }
  return result;

Example 3–6 shows the resultant assembly language code generated by the
compiler.
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Example 3–6. Assembly Code Generated by C Implementation of Saturated Addition

_sadd:
        SP = SP – #1
                                        ; End Prolog Code
        AR1 = T1  ; |5| 
        AR1 = AR1 + T0 ; |5| 
        T1 = T1 ^ T0 ; |7| 
        AR2 = T1 & #0x8000 ; |7| 
        if (AR2!=#0) goto L2 ; |7| 
                                        ; branch occurs ; |7| 
        AR2 = T0  ; |7| 
        AR2 = AR2 ^ AR1 ; |7| 
        AR2 = AR2 & #0x8000 ; |7| 
        if (AR2==#0) goto L2 ; |7| 
                                        ; branch occurs ; |7| 
        if (T0<#0) goto L1 ; |11| 
                                        ; branch occurs ; |11| 
        T0 = #32767 ; |11| 
        goto L3   ; |11| 
                                        ; branch occurs ; |11| 
L1:    
        AR1 = #–32768 ; |11| 
L2:    
        T0 = AR1  ; |14| 
L3:    
                                        ; Begin Epilog Code
        SP = SP + #1 ; |14| 
        return    ; |14| 
                                        ; return occurs ; |14|

The code for the C simulated saturated addition can be replaced by a single
call to the _sadd intrinsic as is shown in Example 3–7:

Example 3–7. Single Call to _sadd Intrinsic

int sadd(int a, int b)

{

   return _sadd(a,b);

}

The assembly code generated for this C source is shown in Example 3–8:
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Example 3–8. Assembly code Generated When Using Compiler Intrinsic for Saturated Add

_sadd:

        SP = SP – #1

                                        ; End Prolog Code

        bit(ST3, #ST3_SATA) = #1

        T0 = T0 + T1 ; |3|

                                        ; Begin Epilog Code

        SP = SP + #1 ; |3|

        bit(ST3, #ST3_SATA) = #0

        return    ; |3|

                                        ; return occurs ; |3|

Table 3–2 Lists the intrinsics supported by the C55x compiler. For more infor-
mation on using intrinisics, please refer to the TMS320C55x Optimizing C
Compiler User’s Guide.

Table 3–2. TMS320C55x C Compiler Intrinsics  

Intrinsic C Compiler Intrinsic Description

int _sadd(int src1, int src2); Adds two 16–bit integers, with SATA set, producing a saturated 16–bit
result

long _lsadd(long src1, long src2); Adds two 32–bit integers, with SATD set, producing saturated 32–bit
result

int _ssub(int src1, int src2); Subtracts src2 from src1 with SATA set, producing a saturated 16–bit
result.

long _lssub(long src1, long src2); Subtracts src2 from src1 with SATD set, producing a saturated 32–bit
result.

int _smpy(int src1, int src2); Multiplies src1 and src2, and shifts the result left by 1. Produces a satu-
rated 16–bit result. (SATD and FRCT set)

long _lsmpy(int src1, int src2); Multiplies src1 and src2, and shifts the result left by 1. Produces a satu-
rated 32–bit result.(SATD and FRCT set)

long _smac(long src, int op1, int
op2);

Multiplies op1 and op2, shifts the result left by 1, and adds it to src. Pro-
duces a saturated 32–bit result. (SATD , SMUL and FRCT set)

long _smas(long src, int op1, int
op2);

Multiplies op1 and op2, shifts the result left by 1, and subtracts it from
src. Produces a 32–bit result. (SATD, SMUL and FRCT set)

int _abss(int src); Creates a saturated 16–bit absolute value. _abss(0x8000) => 0x7FFF
(SATA set)
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Table 3–2. TMS320C55x C Compiler Intrinsics  (Continued)

Intrinsic C Compiler Intrinsic Description

long _labss(long src); Creates a saturated 32-bit absolute value._labss(0x8000000) =>
0x7FFFFFFF (SATD set)

int _sneg(int src); Negates the 16-bit value with saturation._sneg(0xffff8000) =>
0x00007FFF

long _lsneg(long src); Negates the 32-bit value with saturation._lsneg(0x80000000) =>
0x7FFFFFFF

int _smpyr(int src1, int src2); Multiplies src1 and src2, shifts the result left by 1, and rounds by adding
2 15 to the result. (SATD and FRCT set)

int _smacr(long src, int op1, int
op2);

Multiplies op1 and op2, shifts the result left by 1, adds the result to src,
and then rounds the result by adding 2 15. (SATD , SMUL and FRCT
set)

int _smasr(long src, int op1, int
op2);

Multiplies op1 and op2, shifts the result left by 1, subtracts the result
from src, and then rounds the result by adding 2 15 . (SATD , SMUL and
FRCT set)

int _norm(int src); Produces the number of left shifts needed to normalize src.

int _lnorm(long src); Produces the number of left shifts needed to normalize src.

int _rnd(long src); Rounds src by adding 2 15 . Produces a 16-bit saturated result. (SATD
set)

int _sshl(int src1, int src2); Shifts src1 left by src2 and produces a 16-bit result. The result is satu-
rated if src2 is less than or equal to 8. (SATD set)

long _lsshl(long src1, int src2); Shifts src1 left by src2 and produces a 32-bit result. The result is satu-
rated if src2 is less than or equal to 8. (SATD set)

int _shrs(int src1, int src2); Shifts src1 right by src2 and produces a 16-bit result. Produces a satu-
rated 16–bit result. (SATD set)

long _lshrs(long src1, int src2); Shifts src1 right by src2 and produces a 32-bit result. Produces a satu-
rated 32–bit result. (SATD set)

int _addc(int src1, int src2); Adds src1, src2, and Carry bit and  produces a 16-bit result.

long _laddc(long src1, int src2); Adds src1, src2, and Carry bit and produces a 32-bit result.

int _subc(long src1, int src2); Subtracts src2 and logical inverse of sign bit from src1, and produces a
16-bit result.

long _lsubc(long src1, int src2); Subtracts src2 and logical inverse of sign bit from src1, and produces a
32-bit result.
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3.5 Using Long Data Accesses for 16-Bit Data

The primary use of treating short data as long, is in the transfer of data from
one memory location to another. Since long accesses also can occur in single
cycle this could reduce the data movement time in half. The only limitation is
that the data must be aligned on a long boundary (i.e. even word boundary).
The code is even simpler if an additional requirement is that the number of
items copied is a multiple of 2.

Example 3–9. Block Copy Using Long Data Access

void copy(const short *a, const short *b, unsigned short n)

{

   unsigned short i;

   unsigned short na;

   long *src, *dst;

// This code assumes that the number of elements to transfer ’n’
// is a multiple of 2. Divide the number of 1 word transfers
// by 2 to get the number of double word transfers.

na = (n>>1) –1;

// Set beginning address of SRC and DST for long transfer.

src = (long *)a;
dst = (long *)b;

for (i=0; i<= na; i++)

   {

     *dst++ = *src++;

   }

}
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3.6 Generating Efficient Loop Code

You can realize substantial gains from the performance of your C loop code
by refining your code in the following areas:

� Avoid function calls within the body of repeated loops. This enables com-
piler use of block and local repeat.

� Keep loop code small to enable compiler use of local repeat

� Analyzing trip count issues

� Using the _nassert  intrinsic

� Use –o3 and –pm Compiler Options

3.6.1 Avoid function calls in repeated loops

Whenever possible avoid using function calls within repeated loops. Because
repeat labels and counts would have to be preserved across calls, the compiler
opts to never generate block repeat or local repeat when function calls are
present in a loop.

3.6.2 Keep loops small to enable local repeat

Keeping loop code small enables the compiler to make use of the native local
repeat instruction. The compiler will generate local repeat for small loops that
do not contain any control flow structures other than forward conditionals.

Example 3–10. Simple Loop that Allows Use of Local Repeat

void vecsum(const short *a, const short *b, short *c, unsigned int n)

{

   unsigned short i;

 

   for (i=0; i<= n–1; i++)

   {

     *c++ = *a++ + *b++;

   }

 

}

Example 3–11 displays the assembly code generated by the compiler.
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Example 3–11. Assembly Code for Local Repeat Generated by the Compiler

_vecsum:

        SP = SP – #1

                                        ; End Prolog Code

        AR3 = T0 – #1 ; |2|

        BRC0 = AR3 ; |2|

        localrepeat { ; |2|

                                        ; loop starts ; |2|

L1:

        AR3 = *AR1+ ; |7|

        AR3 = AR3 + *AR0+ ; |7|

        *AR2+ = AR3 ; |7|

        }                               ; loop ends ; |8|

L2:

                                        ; Begin Epilog Code

        SP = SP + #1

        return

                                        ; return occurs

3.6.3 Trip Count Issues

A trip count is the number of times that a loop executes; the trip counter is the
variable used to count each iteration. When the trip counter reaches the limit
equal to the trip count, the loop terminates. Maximum performance for loop
code is gained when the compiler can determine the exact minimum and maxi-
mum for the trip count. To this end , when invoking the compiler, use the follow-
ing options to convey trip count information to the compiler:

� Use unsigned integer type for trip counter variable, whenever possible.

� Use <= comparison for loop termination, whenever possible.

� Use the –o3 –pm compiler options to allow optimizer to access the whole
program or large parts of it and to characterize the behavior of loop trip
counts.

� Use the _nassert intrinsic to help reduce code size by preventing the gen-
eration of  a redundant loop or by allowing the compiler to software pipeline
the innermost loop.
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3.6.4 Using Unsigned Integer Types for Trip Counter

Using unsigned integer types for the trip counter, and trip maximum can re-
duce the amount of redundant code needed to check the loop entrance and
termination conditions.

In Example 3–12, consider this simple for loop:

   for(i = 0; i<n;i++)

If i has been declared an integer and the loop maximum, n, has been declared
an integer, it is possible that the value of n could be negative. Even though the
initial value for i is zero, this value could still be greater than the value of  a neg-
ative n. Therefore the compiler is forced to generate code to test for this condi-
tion prior to entering the loop.

Example 3–12. Inefficient Loop Code for Loop Variable and Constraints (C)

int sum(const short *a, int n)

{

   int sum = 0;

   int i;

   for(i=0; i<n; i++)

   {

      sum += a[i];

   }

  return sum;

}

Example 3–13 displays the resulting assembly code.
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Example 3–13. Inefficient Loop Code for Variable and Constraints(Assembly)

_sum:

        SP = SP – #1

                                        ; End Prolog Code

        AR2 = #0  ; |3|

        if (T0<=#0) goto L1 ; |6|       ;== Note this compare

                                        ; branch occurs ; |6|

        AR1 = T0 – #1 ; |6|             ;== Note effect of using <

        CSR = AR1

        repeat(CSR)

                                        ; loop starts ; |6|

        AR2 = AR2 + *AR0+ ; |8|

                                        ; loop ends

L1:

        T0 = AR2  ; |11|

                                        ; Begin Epilog Code

        SP = SP + #1 ; |11|

        return    ; |11|

                                        ; return occurs ; |11|

Notice the comparison to skip around the loop code if n is negative. If the code
uses simple counting loops, it is better to use unsigned types, as
Example 3–14 and Example 3–15 illustrate:

Example 3–14. Using Unsigned Data Types

int sum(const short *a, unsigned int n)

{

   int sum = 0;

   unsigned int i;

   for(i=0; i<=n; i++)

   {

      sum += a[i];

   }

  return sum;

}
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Example 3–15. Assembly Code Generated for Unsigned Data Type

_sum:

        SP = SP – #1

                                        ; End Prolog Code

        AR1 = #0  ; |3|

        CSR = T0

        repeat(CSR)

                                        ; loop starts ; |3|

        AR1 = AR1 + *AR0+ ; |8|

                                        ; loop ends

L1:

        T0 = AR1  ; |11|

                                        ; Begin Epilog Code

        SP = SP + #1 ; |11|

        return    ; |11|

                                        ; return occurs ; |11|

3.6.5 Use _nassert Intrinsic

The _nassert intrinsic may be used to convey the same kinds of information
that were communicated by coding changes or compilation option selection:

For example , we could have used _nassert to specify that the loop counter
variable was always positive rather than declare the type as unsigned
(Example 3–12 through Example 3–15):
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Example 3–16. Using _nassert Directive

int sum(const short *a, int n)

{

 

   int sum = 0;

   int i;

   _nassert(n > 0);

   for(i=0; i<=n; i++)

   {

      sum += a[i];

   }

  return sum;

}

Example 3–17 shows that the _nassert gives the compiler enough information
about the loop maximum to eliminate the unnecessary check for loop maxi-
mum less than 0.

Example 3–17. Assembly Code Generated With _nassert Directive

_sum:

        SP = SP – #1

                                        ; End Prolog Code

        AR1 = #0  ; |4|

        CSR = T0

        repeat(CSR)

                                        ; loop starts ; |4|

        AR1 = AR1 + *AR0+ ; |11|

                                        ; loop ends

L1:

        T0 = AR1  ; |14|

                                        ; Begin Epilog Code

        SP = SP + #1 ; |14|

        return    ; |14|

                                        ; return occurs ; |14|
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_nassert may be used to communicate many things about the trip counter.

� It can convey that the trip count will be greater than some minimum value
or smaller than some maximum value.

/* This loop will always execute at least 30 times */

_nassert( x  >= 30);

for(j=0; j<x; j++)

� It can convey that the trip count is always divisible by a value.

/* The trip count will execute some multiple of 4 times
*/

_nassert ( (x % 4) == 0);

for (j=0; j< x; j++)

� It can convey information about alignment of pointers and arrays.

void  vecsum(short *a, short *b, const short *c)

{

   _nassert(((int) a & 0x3) == 0);

   _nassert(((int) b & 0x3) == 0);

   _nassert(((int) c & 0x3) == 0);

  …
}

Several conditions may be combined within a single _nassert statement:

_nassert((x >= 8) && ( x<= 48) && (( x % 8) == 0));

for(j=0; j< x; j++)

The compiler knows that the loop will execute some multiple of 8 times (be-
tween 8 and 48) times. This information is useful in providing more information
about unrolling a loop or the ability to perform word accesses on a loop.
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3.6.6 Use –o3 and –pm Compiler Options

The –o3 and –pm options may be used to communicate to the optimizer the
value of loop maximum/minimum.

The following code shows the effect of using the –o3 and –pm options. The
main program in Example 3–18 shows two calls to the sum function previously
defined in Example 3–14.

Example 3–18. Main Function Calling sum

extern int sum(const short *a, unsigned int n);

short a[10] = {1,2,3,4,5,6,7,8,9,10};

short b[10] = {11,12,13,14,15,16,17,18,19,20};

int sum1, sum2;

void main(void)

{

   sum1 = sum(a,9);

   sum2 = sum(b,9);

}

Example 3–19 shows the assembly output by the compiler when the ’main’
function is compiled with just –o3 option.
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Example 3–19. Assembly Code Generated With Main Calling sum

                                        ; End Prolog Code

        AR0 = #_a ; |10|

        T0 = #9   ; |10|

        call #_sum ; |10|

                                        ; call occurs [#_sum] ; |10|

        *abs16(#_sum1) = T0 ; |10|

        AR0 = #_b ; |11|

        T0 = #9   ; |11|

        call #_sum ; |11|

                                        ; call occurs [#_sum] ; |11|

        *abs16(#_sum2) = T0 ; |11|

                                        ; Begin Epilog Code

        SP = SP + #1

        return

                                        ; return occurs

_main:

        SP = SP – #1

Example 3–20 shows the code generated when using both –o3 and –pm op-
tions, because the source code is merged into a single compilation unit, the
code for both functions appears in the same assembly source file. The loop
in the sum function explicitly uses the loop count as an immediate value. This
optimization is possible because the optimizer can directly determine the loop
counter value. Note that the loop count is no longer passed as a parameter to
the sum function when it is called in main.
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Example 3–20. Assembly Source Output Using –o3 and –pm Options

_sum:

        SP = SP – #1

                                        ; End Prolog Code

;** Parameter deleted: n == 9u;

        T0 = #0   ; |3|

        repeat(#9)                     ; Note explicit use of count

                                        ; loop starts ; |3|

        T0 = T0 + *AR0+ ; |8|

                                        ; loop ends

L1:

                                        ; Begin Epilog Code

        SP = SP + #1 ; |11|

        return    ; |11|

                                        ; return occurs ; |11|

_main:

        SP = SP – #1

                                        ; End Prolog Code

        AR0 = #_a ; |10|

        call #_sum ; |10|

                                        ; call occurs [#_sum] ; |10|

        *abs16(#_sum1) = T0 ; |10|

        AR0 = #_b ; |11|

        call #_sum ; |11|

                                        ; call occurs [#_sum] ; |11|

        *abs16(#_sum2) = T0 ; |11|

                                        ; Begin Epilog Code

        SP = SP + #1

        return

                                        ; return occurs
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3.7 Generating Efficient Control Code

The compiler generates similar constructs when implementing nested if-then-
else and switch/case constructs when the number of case labels is less than
eight. Because the first true condition is executed with the least amount of
branching, it is best to allocate the most often executed conditional first. When
the number of case labels exceeds eight, the compiler generates a .switch la-
bel section. In this case, it is still optimal to place the most often executed code
at the first case label.
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3.8 Efficient Math Operations

3.8.1 Use 16-bit Data Types Whenever Possible

Although memory accesses to long data types can occur in single cycle, arith-
metic on long data types such as multiply, division, modulo, may require addi-
tional instructions and cycles to implement. Many long operations result in
calls to run-time library routines that perform the indicated operation. There-
fore, it is best to use a 16-bit data type whenever possible.

3.8.2 Special Considerations When Using MAC Constructs

The compiler can generate single repeat MAC operations. To facilitate the
generation of single repeat MACs, use local rather than global variables for the
summation. If a global variable is used, the compiler is obligated to perform an
intervening store to the global object. This prevents it from generating a single
repeat.

Example 3–21. Use Local Rather Than Global Summation Variables

Not Recommended:

 int gsum = 0;

void dotp1(const  short *x, const short *y, unsigned short n)

{

   unsigned int i;

  for(i=0; i<=n; i++)

    gsum += x[i] * y[i];

}

Recommended:

 

int dotp2(const  short *x, const short *y, unsigned short n)

{

   unsigned int i;

   int lsum = 0;

  for(i=0; i<=n; i++)

    lsum += x[i] * y[i];

 return lsum;

}
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In the case where Q15 arithmetic is being simulated, the result of the MAC op-
eration may be accumulated into a long object. The result may then be shifted
and truncated before return.

Example 3–22. Returning Q15 Result for Multiply Accumulate

int dotp (const short *x, const short *y, unsigned short n)

{

  unsigned int i;

  long sum = 0;

  for (i=0; i<=n; i++)

  {

         sum += x[i]*y[i];

  }

return (int)((sum >> 15) & 0x0000FFFFu);

}

3.8.3 Avoid Using Modulus Operator When Simulating Circular Addressing in C

When simulating circular addressing in C avoid using the modulus operator.
This can take several cycles to implement and may even result in a call to run-
time library routines for modulus. Instead use code similar to that in
Example 3–23.
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Example 3–23. Simulating Circular Addressing in C

#define CIRC_UPDATE(arr,idx,inc,size)\

    (\

      idx = (idx+inc) & (size),\

      arr[idx]\

    )

long circ(const short *a, const short *h, short *r, short nh, short na)

{

   unsigned short i;

   unsigned long sum;

   short x = 0, nx = nh–1;

 

   sum = 0;

   for(i=0; i<na–1; i++)

   {

      sum += a[i] * CIRC_UPDATE(h,x,1,nx);

   }

 return sum;

}

Example 3–24 displays the resulting assembly generated by the compiler.
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Example 3–24. Assembly Output for Circular Addressing C Code

_circ:

        SP = SP – #1

                                        ; End Prolog Code

        AR2 = T0  ; |9|

        T0 = AR1  ; |9|

        AR2 = AR2 – #1 ; |12|

        AR1 = T1 – #1 ; |15|

        AC0 = #0  ; |14|

        if (AR1==#0) goto L2 ; |15|

                                        ; branch occurs ;

|15|

        AR1 = AR1 – #1 ; |15|

        AR3 = #0  ; |12|

        BRC0 = AR1 ; |12|

        localrepeat { ; |12|

                                        ; loop starts ; |12|

L1:

        AR3 = AR3 + #1 ; |17|

        AR3 = AR3 & AR2 ; |17|

        T1 = *AR3(T0) ; |17|

        AC0 = AC0 + (T1 * *AR0+) ; |17|

        }                               ; loop ends ; |18|

L2:

                                        ; Begin Epilog Code

        SP = SP + #1 ; |19|

        return    ; |19|

                                        ; return occurs ;

|19|
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Example 3–25. Circular Addressing Using Modulus Operator

long modulo(const short *a, const short *h, short *r, short nh, short na)

{

   unsigned short i;

   unsigned long sum;

   short x = 0;

 

   sum = 0;

   for(i=0; i<na–1; i++)

   {

      ++x;

      sum += a[i] * h[x % nh];

    }

 

    return sum;

}

The resulting assembly code is displayed in Example 3–26:
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Example 3–26. Assembly Output for Circular Addressing Using Modulo

_modulo:
        push(T2)
        push(AR5,T3) ; 
        push(AR7,AR6) ; 
        SP = SP – #2
                                        ; End Prolog Code
        T2 = T0   ; |2| 
        AR5 = AR0 ; |2| 
        T3 = AR1  ; |2| 
        AR6 = T1 – #1 ; |9| 
        AC0 = #0  ; |7| 
        dbl(*SP(#0)) = AC0 ; |7| 
        if (AR6==#0) goto L2 ; |9| 
                                        ; branch occurs ; |9| 
        AR7 = #0  ; |5| 
L1:    
        AR7 = AR7 + #1 ; |12| 
        T0 = AR7  ; |12| 
        T1 = T2   ; |12| 
        call #I$$MOD ; |12| 
                                        ; call occurs [#I$$MOD] ; |12| 
        AR3 = T0  ; |12| 
        T0 = T3   ; |12| 
        T1 = *AR3(T0) ; |12| 
        AC0 = dbl(*SP(#0)) ; |12| 
        AC0 = AC0 + (T1 * *AR5+) ; |12| 
        dbl(*SP(#0)) = AC0 ; |12| 
        AR6 = AR6 – #1 ; |13| 
        if (AR6!=#0) goto L1 ; |13| 
                                        ; branch occurs ; |13| 
L2:    
        AC0 = dbl(*SP(#0))
                                        ; Begin Epilog Code
        SP = SP + #2 ; |15| 
        AR7 = pop() ; |15| 
        AR6,AR5 = pop() ; 
        T3,T2 = pop() ; 
        return    ; |15| 
                                        ; return occurs ; |15|
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3.9 Memory Management

This section provides a brief discussion on managing memory. Memory usage
and subsequent code speed may be affected by a number of factors. The dis-
cussion in this chapter will focus on the following areas that affect memory
usage:

� Avoiding holes caused by data alignment

� Local vs. global symbol declarations

� Stack configuration

� Allocating code and data in the C55x memory map

3.9.1 Avoiding Holes Caused by Data Alignment

The compiler requires that all long data be stored on an even word boundary.
When declaring data objects (such as structures) that may contain a mixture
of multi-word and single word elements, place the long data items in the struc-
ture definition first to avoid holes in memory. The compiler automatically aligns
structure objects on an even word boundary. Placing these items first takes
advantage of this default alignment.

Example 3–27. Considerations for Long Data Objects in Structures

Not recommended:

typedef struct _abc{

   int a;

   long b;

   int c;

} ABC;

Recommended:

typedef struct _abc{

    long a;

    int b,c;

}ABC;
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3.9.2 Local vs Global Symbol Declarations

Locally declared symbols (symbols declared within a C function), are allocated
space by the compiler on the software stack. Globally declared symbols (sym-
bols declared at file level) are allocated space in the compiler generated .bss
section by default. The C operating environment created by the C boot routine,
_c_int00, places the C55x DSP in CPL mode. CPL mode enables stack based
offset addressing and disables DP offset addressing. The compile accesses
Global objects  via absolute addressing modes. Because the full address of
the global object is encoded as part of the instruction in absolute addressing
modes, this can lead to larger code size and potentially slower code. CPL
mode favors the use of locally declared objects, since it takes advantage of
stack offset addressing. Therefore, if at all possible, it is better to declare and
manipulate local objects rather than global objects. When function code re-
quires multiple use of a non-volatile global object, it is better to declare a local
object and assign it the appropriate value:

extern int Xflag;
int function(void) 

{
  int lflag = Xflag;

   .
   x = lflag ? lfag & 0xfffe : lfag;
   .
    .
   return x;
}

3.9.3 Stack Configuration

The C55x has dual software stacks: the data stack pointer (SP) and the system
stack pointer (SSP). These stacks can be indexed independently or simulta-
neously depending on the chosen operating mode. There are three possible
operating modes for the stack:

� Dual 16-bit stack with fast return

� Dual 16-bit stack with slow return

� 32-bit stack with slow return.

The default mode is 32-bit stack with slow return. In this mode the SSP is in-
cremented whenever SP is incremented. The primary use of SSP is to hold the
upper 8 bits of the return address for context save. It is not used for data ac-
cesses. Because the C compiler allocates space on the data stack for all local-
ly declared objects, operating in this mode doubles the space allocated for
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each local object. This can rapidly increase memory usage. In dual 16-bit
modes, the SSP is only incremented for context save (function calls, interrupt
handling). Allocation of memory for local objects does not affect the system
stack when either of the dual 16-bit modes is used.

Additionally, the selection of fast return mode enables use of the RETA and
CFCT registers to effect return from functions. This potentially increases exe-
cution speed since it reduces the number of cycles required to return from a
function. It is recommended to use dual 16-bit fast return mode to reduce
memory space requirements and increase execution speed. The stack operat-
ing mode is selected by setting bits 28 and 29 of the reset vector address to
the appropriate values. Dual 16-bit fast return mode may be selected by using
the .ivec assembler directive when creating the address for the reset vector.
For example:

     .ivec      reset_isr_addr , USE_RETA

The assembler will automatically set the correct value for bits 28 and 29 when
encoding the reset vector address.

3.9.4 Allocating Code and Data in the TMS320C55x Memory Map

The compiler groups generated code and data into logical units called sec-
tions. Sections are the building blocks of the common object file format (COFF)
files created by the assembler. They are the logical units operated on by the
linker when allocating space for code and data in the C55x memory map.

The compiler/assembler can create any of the following sections:

Table 3–3. Section Descriptions

Section Description

.cinit Initialization record table for global and static C variables

.const Explicitly initialized global and static const symbols

.text Executable code and constants

.bss Global and static variables

.ioport Uninitialized global and static variables of type ioport

.stack Data stack (local variables, lower 16 bits of return address, etc.)

.sysstack System stack (upper 8 bits of 24 bit return address)

.sysmem Memory for dynamic allocation functions

.switch Labels for switch/case

.cio For CIO Strings and  buffers
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These sections are encoded in the COFF object file produced by the assem-
bler. When linking the COFF objects, it is important to pay attention to where
these sections are linked in memory to avoid as many memory conflicts as
possible.  Following are some recommendations:

� Allocate .stack and .sysstack in DARAM:  the .stack and .sysstack sec-
tions are often accessed at the same time when a function call/return oc-
curs. If these sections are allocated in the same SARAM block, then a
memory conflict will occur adding additional cycles to the call/return opera-
tion. If they are allocated in DARAM or separate SARAM blocks, this will
avoid such conflict.

� The location assigned to .stack and .sysstack sections are used to initial-
ize the CPU data stack (SP) and system stack (SSP) registers, respective-
ly. Because these two registers share a common data page pointer regis-
ter (SPH) these sections must be allocated on the same 64k memory
page.

� Similarly, local variable space is allocated on the stack, it is possible that
there may be conflicts when global variables, whose allocation is in .bss
section are accessed within the same instruction as a locally declared vari-
able. Therefore, it may be best to allocate .bss and .stack in a single
DARAM  or separate SARAM memory spaces.

� Use the DATA_SECTION pragma: If an algorithm uses a set of coefficients
that is applied to a known data array, use the DATA_SECTION pragma to
place these variables in their own named section. Then explicitly allocate
these sections in separate memory blocks to avoid conflicts.
Example 3–28 shows sample C source for using the DATA_SECTION
pragma to place variables in a user defined section.

Example 3–28. Declaration Using DATA_SECTION Pragma

#pragma DATA_SECTION(h, ”coeffs”)

short h[10];

#pragma DATA_SECTION(x, ”mydata”)

short x[10];

Most of the memory allocation recommendations are based on the assump-
tion that the typical operation accesses at most two operands. Table 3–4
shows the possible operand combinations:
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Table 3–4.  Possible Operand Combinations

Operand 1 Operand 2 Comment

Local var (stack) Local var (stack) If stack is in DARAM then no memory conflict will
occur

Local var(stack) Global var(.bss) If stack is in separate SARAM block or is in same
DARAM block, then no conflict will occur

Local var(stack) Const symbol (.const) If .const is located in separate SARAM or same
DARAM no conflict will occur

Global var(.bss) Global var(.bss) If .bss is allocated in DARAM, then no conflict will
occur

Global var(.bss) Const symbol(.const) If .const and .bss are located in separate SARAM or
same DARAM block, then no conflict will occur

When compiling with small memory model (compiler default) allocate all data
sections, .bss, .stack, .sysmem, .sysstack, and .const on the first 64K page of
memory (Page 0).

Example 3–29 contains a sample linker command file:
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Example 3–29. Sample Linker Command File

/*********************************************************
         LINKER command file for LEAD3 memory map.
         Small memory model
**********************************************************/
MEMORY
{
    PAGE 0:
        MMR     : origin = 0000000h, length = 00000c0h 
        SPRAM   : origin = 00000c0h, length = 0000040
        DARAM0  : origin = 0000100h, length = 0003F00h
        DARAM1  : origin = 0004000h, length = 0004000h
        DARAM2  : origin = 0008000h, length = 0004000h
        DARAM3  : origin = 000c000h, length = 0004000h
        SARAM0  : origin = 0010000h, length = 0002000h
        SARAM1  : origin = 0012000h, length = 0006000h
        SARAM2  : origin = 0018000h, length = 0004000h
        SARAM3  : origin = 001c000h, length = 0004000h
        SARAM4  : origin = 0020000h, length = 0004000h
        SARAM5  : origin = 0024000h, length = 0004000h
        SARAM6  : origin = 0028000h, length = 0004000h
        SARAM7  : origin = 002c000h, length = 0004000h
        SARAM8  : origin = 0030000h, length = 0004000h
        SARAM9  : origin = 0034000h, length = 0004000h
        SARAM10 : origin = 0038000h, length = 0004000h
        SARAM11 : origin = 003c000h, length = 0004000h
        SARAM12 : origin = 0040000h, length = 0004000h
        SARAM13 : origin = 0044000h, length = 0004000h
        SARAM14 : origin = 0048000h, length = 0004000h
        SARAM15 : origin = 004c000h, length = 0004000h
        CE0     : origin = 0050000h, length = 03b0000h 
        CE1     : origin = 0400000h, length = 0400000h
        CE2     : origin = 0800000h, length = 0400000h
        CE3     : origin = 0c00000h, length = 03f8000h
        PDROM   : origin = 0ff8000h, length = 07f00h
        VECS    : origin = 0ffff00h, length = 00100h  /* reset vector */
}
SECTIONS
{

.vectors : {} > VECS   PAGE 0 /* interrupt vector table */

.cinit   : {} > SARAM0 PAGE 0 /* C initialization table */

.text    : {} > SARAM1 PAGE 0 /* Code                   */

.stack   : {} > DARAM0 PAGE 0 /* Data Stack             */

.sysstack: {} > DARAM0 PAGE 0 /* System Stack           */

.sysmem  : {} > DARAM1 PAGE 0 /* Dynamic Memory Allocation (heap)*/

.data    : {} > DARAM1 PAGE 0 /* Assembly data section  */

.bss     : {} > DARAM1 PAGE 0 /* C global and static variables */

.const   : {} > DARAM1 PAGE 0 /* Explicitly declared C const symbols */
}
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3.10 Allocating Function Code to Different Sections

The compiler provides a pragma to allow the placement of a function’s code
into a separate user defined section. The pragma is useful if it is necessary to
have some granularity in the placement of code in memory.

Example 3–30. Allocation of Functions Using CODE_SECTION Pragma

#pragma CODE_SECTION(myfunction, ”myfunc”)

void my function(void)

{

  .

  .

}

The pragma in Example 3–30, defines a new section called .myfunc. The code
for the function myfunc will be placed by the compiler into this newly defined
section. The section name can then be used within the SECTIONS directive
of a linker command file to explicitly allocate memory for this function. For de-
tails on how to use the SECTIONS directive, see the TMS320C55x Assembly
Language Tools User’s Guide.
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Optimizing Assembly Code

This chapter offers recommendations for producing TMS320C55x  (C55x )
assembly code that:

� Makes good use of special architectural features, like the dual multiply-
and-accumulate (MAC) hardware, parallelism, and looping hardware.

� Produces no pipeline conflicts, memory conflicts, or instruction-fetch stalls
that would delay CPU operations.

This chapter shows ways you can optimize TMS320C55x assembly code, so
that you have highly-efficient code in time-critical portions of your programs.
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4.1 Efficient Use of the Dual-MAC Hardware

This section describes methods that help you develop assembly language
code to efficiently use the dual multiply-and-accumulate (dual-MAC)
hardware.

The two MAC units on the C55x DSP are economically fed data via three inde-
pendent data buses: BB (the B bus), CB (the C bus), and DB (the D bus). Dur-
ing a dual-MAC operation, each MAC unit requires two data operands from
memory (four operands total). However, the three data buses are capable of
providing at most three independent operands. To obtain the required fourth
operand, the data value on the B bus is used by both MAC units. This is illus-
trated in Figure 4–1. With this structure, the fourth data operand is not inde-
pendent, but rather is dependent on one of the other three operands.

Figure 4–1. Data Bus Usage During a Dual-MAC Operation

MAC unit #1 MAC unit #2

D bus

C bus

B bus

In the most general case of two multiplications, one would expect a require-
ment of four fully independent data operands. While this is true on the surface,
in most cases one can get by with only three independent operands and avoid
degrading performance by specially structuring the DSP code at either the al-
gorithm or application level. The special structuring can be categorized as fol-
lows:

� Multi-channel applications
� Multi-algorithm applications
� Implicit algorithm symmetry
� Loop unrolling

The specifics of each category are discussed in sections 4.1.2 through 4.1.5.
Section 4.1.1 provides background information about the data-memory point-
ers used in dual-MAC operations.
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4.1.1 Data Memory Pointer Usage

Nine different registers on the C55x DSP provide address sourcing for data
memory operations using indirect addressing (pointer addressing). These reg-
isters are XAR0 through XAR7, and the XCDP register. During dual-MAC op-
erations, addressing for the C bus and the D bus comes from two of XAR0
through XAR7, while the addressing for the B bus is provided only by the XCDP
register. It should be noted that the B bus cannot be used to access external
memory. Therefore, any data variable or array addressed using the XCDP reg-
ister must be located in internal DSP memory. Refer to the specific device da-
tasheet for memory map information.

4.1.2 Multi-Channel Applications

In multi-channel applications, the same signal processing is often done on two
or more independent data streams. Depending on the specific type of process-
ing being performed, it may be possible to process two channels of data in par-
allel, one channel in each MAC unit. In this way, a common set of constant co-
efficients can be shared.

An application example readily amenable to this approach is non-adaptive fil-
tering where the same filter is being applied to two different data streams. Both
channels are processed in parallel, one channel in each of the two MAC units.
For example, the same FIR filter applied to two different data streams can be
represented mathematically by the following expressions:
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where

N = Number of filter taps
aj = Element in the coefficient array
xi() = Element in the ith vector of input values
yi() = Element in the ith vector of output values
k = Time index

The value aj is common to both calculations. The two calculations can there-
fore be performed in parallel, with the common aj delivered to the dual-MAC
units using the B bus and using XCDP as the pointer. The C bus and the D bus
are used along with two XARx registers to access the independent input ele-
ments x1(k – j) and x2(k – j).
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A second example is the correlation computation between multiple incoming
data streams and a fixed data vector. Suppose it is desired to compute the cor-
relation between the vectors X1 and Y, and also between the vectors X2 and
Y. One would need to compute the following for each element in the correlation
vectors R1 and R2:

������
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������ ������� ������
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The element y(k) is common to both calculations. The two calculations can
therefore be performed in parallel, with the common data y(k) delivered to the
dual-MAC units via the B bus with XCDP as the address pointer. The C bus
and the D bus are used along with two XARx registers to access the indepen-
dent elements x1(k + j) and x2(k + j).

4.1.3 Multi-Algorithm Applications

When two or more different processing algorithms are applied to the same
data stream, it may be possible to process two such algorithms in parallel. For
example, consider a statistical application that computes the autocorrelation
of a vector X, and also the correlation between vector X and vector Y. One
would need to compute the following for each element in the correlation vec-
tors Rxx and Rxy:
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The element x(k + j) is common to both calculations. The two calculations can
therefore be made in parallel, with the common data x(k + j) delivered to the
dual-MAC units using the B bus and using XCDP as the pointer. The C bus and
the D bus are used along with two XARx registers to access the independent
elements x(k) and y(k).
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4.1.4 Implicit Algorithm Symmetry

When an algorithm has internal symmetry, it can sometimes be exploited for
efficient dual-MAC implementation. One such example is a symmetric FIR fil-
ter. This filter has coefficients that are symmetrical with respect to delayed val-
ues of the input signal. The mathematical expression for a symmetric FIR filter
can be described by the following discrete-time difference equation:

	��� � �
�

�
����
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where

N = Number of filter taps (even)
x() = Element in the vector of input values
y() = Element in the vector of output values
k = Time index

Similar in form to the symmetrical FIR filter is the anti-symmetrical FIR filter:

	��� � �
�

�
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Both the symmetrical and anti-symmetrical FIR filters can be implemented
using a dual-MAC approach because only three data values need be fetched
per inner loop cycle: aj, x(k – j), and x(k + j – N + 1). The coefficient aj is deliv-
ered to the dual-MAC units using the B bus and using XCDP as the pointer.
The C bus and the D bus are used along with two XARx registers to access
the independent elements x(k – j) and x(k + j – N + 1).
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A second example of an algorithm with implicit symmetry is a complex vector
multiplication. Let j be the imaginary unit value (that is, square root of –1). The
mathematical expression for the algorithm is given by

��� � ���	
��� ���

where {A}, {B}, and {C} are complex vectors of length N and {A}T is the trans-
pose of {A}. The components of {A} and {B} can be expressed as
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and the expression for each element in {C} can be computed as
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The required four multiplications in the above expression can be implemented
with two dual-MAC instructions by grouping the multiplications as follows:

1st multiplication group: 
��

 ����


  and 
��

 ����




2nd multiplication group: 
��

 ����


  and 
��

 ����




Each dual-multiply grouping requires only three independent operands. An as-
sembly code example for the complex vector multiply is given in Example 4–1
(part (a) shows algebraic instructions and part (b) shows mnemonic instruc-
tions). Note that this particular code assumes the following arrangement in
memory for a complex vector:

Lowest memory address����

����

����

����

In addition, the code stores both portions of the complex result to memory at
the same time. This requires that the results vector be long-word aligned in me-
mory. One way to achieve this is through use of the alignment flag option with
the .bss directive, as was done with this code example. Alternatively, one could
place the results array in a separate uninitialized named section using a .usect
directive, and then use the linker command file to force long-word alignment
of that section.
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Example 4–1. Complex Vector Multiplication Code

(a) Mnemonic Instructions

N .set 3 ; Length of each complex vector

.data
A .int 1,2,3,4,5,6 ; Complex input vector #1
B .int 7,8,9,10,11,12 ; Complex input vector #2

;Results are: 0xfff7, 0x0016, 0xfff3, 0x0042, 0xffef, 0x007e

.bss C, 2*N, ,1 ; Results vector, long–word aligned

.text
BCLR ARMS ; Clear ARMS bit (select DSP mode)
.arms_off ; Tell assembler ARMS = 0

cplxmul:
AMOV #A, XAR0 ; Pointer to A vector
AMOV #B, XCDP ; Pointer to B vector
AMOV #C, XAR1 ; Pointer to C vector
MOV #(N–1), BRC0 ; Load loop counter
MOV #1, T0 ; Pointer offset
MOV #2, T1 ; Pointer increment

RPTBLOCAL endloop ; Start the loop

MPY *AR0, *CDP+, AC0
:: MPY *AR0(T0), *CDP+, AC1

MAS *AR0(T0), *CDP+, AC0
:: MAC *(AR0+T1), *CDP+, AC1

endloop:
MOV pair(LO(AC0)), dbl(*AR1+) ; Store complex result

; End of loop
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Example 4–1.Complex Vector Multiplication Code (Continued)

(b) Algebraic Instructions

N .set 3 ; Length of each complex vector

.data
A .int 1,2,3,4,5,6 ; Complex input vector #1
B .int 7,8,9,10,11,12 ; Complex input vector #2

;Results are: 0xfff7, 0x0016, 0xfff3, 0x0042, 0xffef, 0x007e

.bss C, 2*N, ,1 ; Results vector, long–word aligned

.text
bit(ST2,#ST2_ARMS) = #0 ; Clear ARMS bit (select DSP mode)
.arms_off ; Tell assembler ARMS = 0

cplxmul:
XAR0 = #A ; Pointer to A vector
XCDP = #B ; Pointer to B vector
XAR1 = #C ; Pointer to C vector
BRC0 = #(N–1) ; Load loop counter
T0 = #1 ; Pointer offset
T1 = #2 ; Pointer increment

localrepeat { ; Start the loop

AC0 = *AR0 * coef(*CDP+),
AC1 = *AR0(T0) * coef(*CDP+)

AC0 = AC0 – (*AR0(T0) * coef(*CDP+)),
AC1 = AC1 + (*(AR0+T1) * coef(*CDP+))

*AR1+ = pair(LO(AC0)) ; Store complex result
} ; End of loop
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4.1.5 Loop Unrolling

Loop unrolling involves structuring computations to exploit the reuse of data
among different time or geometric iterations of the algorithm. Many algorithms
can be structured computationally to provide for such reuse and allow a dual-
MAC implementation.

In filtering, input and/or output data is commonly stored in a delay chain buffer.
Each time the filter is invoked on a new data point, the oldest value in the delay
chain is discarded from the bottom of the chain, while the new data value is
added to the top of the chain. A value in the chain will get reused (for example,
multiplied by a coefficient) in the computations over and over again as succes-
sive time-step outputs are computed. The reuse will continue until such a time
that the data value becomes the oldest value in the chain and is discarded.
Dual-MAC implementation of filtering should therefore employ a time-based
loop unrolling approach to exploit the reuse of the data. This scenario is pre-
sented in sections 4.1.5.1 and 4.1.5.2.

An application amenable to geometric based loop unrolling is matrix computa-
tions. In this application, successive rows in a matrix get multiplied and accu-
mulated with the columns in another matrix. In order to obtain data reuse within
the loop kernel, the computations using two different rows of data should be
handled in parallel. This will be presented in section 4.1.5.3.

4.1.5.1 Temporal Loop Unrolling: Block FIR Filter

To efficiently implement a block FIR filter with the two MAC units, loop unrolling
must be applied so that two time-based iterations of the algorithm are com-
puted in parallel. This allows reuse of the coefficients.

Figure 2 illustrates the coefficient reuse for a 4-tap block FIR filter with
constant, real-value coefficients. The implementation computes two sequen-
tial filter outputs in parallel so that only a single coefficient, ai, is used by both
MAC units. Consider, for example, the computation of outputs y(k) and
y(k – 1). For the first term in each of these two rows, one MAC unit computes
a0x(k), while the second MAC unit computes a0x(k – 1). These two computa-
tions combined require only three different values from memory: a0, x(k), and
x(k – 1). Proceeding to the second term in each row, a1x(k – 1) and a1x(k – 2)
are computed similarly, and so on with the remaining terms. After fully comput-
ing the outputs y(k) and y(k – 1), the next two outputs, y(k – 2) and y(k – 3),
are computed in parallel. Again, the computation begins with the first two terms
in each of these rows. In this way, DSP performance is maintained at two MAC
operations per clock cycle.
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Figure 4–2. Computation Groupings for a Block FIR (4-Tap Filter Shown)
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Note that filters with either an even or odd number of taps are handled equally
well by this method. However, this approach does require one to compute an
even number of outputs y(). In cases where an odd number of outputs is de-
sired, one can always zero-pad the input vector x() with one additional zero
element, and then discard the corresponding additional output.

Note also that not all of the input data must be available in advance. Rather,
only two new input samples are required for each iteration through the algo-
rithm, thereby producing two new output values.

A non-optimized assembly code example for the block FIR filter is shown in
Example 4–2 (part (a) shows algebraic instructions and part (b) shows mne-
monic instructions). An optimized version of the same code is found in
Example 4–3 (part (a) shows algebraic instructions and part (b) shows mne-
monic instructions). The following optimizations have been made in
Example 4–3:

� The first filter tap was peeled out of the inner loop and implemented using
a dual-multiply instruction (as opposed to a dual-multiply-and-accumulate
instruction). This eliminated the need to clear AC0 and AC1 prior to enter-
ing the inner loop each time.

� The last filter tap was peeled out of the inner loop. This allows for the use
of different pointer adjustments than in the inner loop, and eliminates the
need to explicitly rewind the CDP, AR0, and AR1 pointers.

The combination of these first two optimizations results in a requirement
that N_TAPS be a minimum of 3.
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� Both results are now written to memory at the same time using a double
store instruction. Note that this requires the results array (OUT_DATA) to
be long-word aligned. One way to achieve this is through use of the align-
ment flag option with the .bss directive, as was done in with this code ex-
ample. As an alternative, you could place the results array in a separate
uninitialized named section using a .usect directive, and then use the link-
er command file to force long-word alignment of that section.

� The outer loop start instruction (RPTBLOCAL in mnemonic syntax,
localrepeat() in algebraic syntax) has been put in parallel with the instruc-
tion that preceded it.
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Example 4–2. Block FIR Filter Code (Not Optimized)

(a) Mnemonic Instructions

N_TAPS .set  4 ; Number of filter taps
N_DATA .set  11 ; Number of input values

.data
COEFFS .int 1,2,3,4 ; Coefficients
IN_DATA .int 1,2,3,4,5,6,7,8,9,10,11 ; Input vector

;Results are: 0x0014, 0x001E, 0x0028, 0x0032,
; 0x003C, 0x0046, 0x0050, 0x005A

.bss OUT_DATA, N_DATA – N_TAPS + 1 ; Output vector

.text
BCLR ARMS ; Clear ARMS bit (select DSP mode)
.arms_off ; Tell assembler ARMS = 0

bfir:
AMOV #COEFFS, XCDP ; Pointer to coefficient array
AMOV #(IN_DATA + N_TAPS – 1), XAR0 ; Pointer to input vector
AMOV #(IN_DATA + N_TAPS), XAR1 ; 2nd pointer to input vector
AMOV #OUT_DATA, XAR2 ; Pointer to output vector
MOV  #((N_DATA – N_TAPS + 1)/2 – 1), BRC0

; Load outer loop counter
MOV  #(N_TAPS – 1), CSR ; Load inner loop counter

RPTBLOCAL endloop ; Start the outer loop

MOV #0, AC0 ; Clear AC0
MOV #0, AC1 ; Clear AC1

RPT CSR ; Start the inner loop
MAC *AR0–, *CDP+, AC0 ; All taps
:: MAC *AR1–, *CDP+, AC1

MOV AC0, *AR2+ ; Write 1st result
MOV AC1, *AR2+ ; Write 2nd result
MOV #COEFFS, CDP ; Rewind coefficient pointer
ADD #(N_TAPS + 2), AR0 ; Adjust 1st input vector

;   pointer
endloop:

ADD #(N_TAPS + 2), AR1 ; Adjust 2nd input vector
;   pointer
; End of outer loop
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Example 4–2.Block FIR Filter Code (Not Optimized) (Continued)

(b) Algebraic Instructions

N_TAPS .set 4 ; Number of filter taps
N_DATA .set 11 ; Number of input values

.data
COEFFS .int 1,2,3,4 ; Coefficients
IN_DATA .int 1,2,3,4,5,6,7,8,9,10,11 ; Input vector

;Results are: 0x0014, 0x001E, 0x0028, 0x0032,
; 0x003C, 0x0046, 0x0050, 0x005A

.bss  OUT_DATA, N_DATA – N_TAPS + 1 ; Output vector

.text
bit(ST2,#ST2_ARMS) = #0 ; Clear ARMS bit (select DSP mode)
.arms_off ; Tell assembler ARMS = 0

bfir:
XCDP = #COEFFS ; Pointer to coefficient array
XAR0 = #(IN_DATA + N_TAPS – 1) ; Pointer to input vector
XAR1 = #(IN_DATA + N_TAPS) ; 2nd pointer to input vector
XAR2 = #OUT_DATA ; Pointer to output vector
BRC0 = #((N_DATA – N_TAPS + 1)/2 – 1) ; Load outer loop counter
CSR = #(N_TAPS – 1) ; Load inner loop counter

localrepeat { ; Start the outer loop

AC0 = #0 ; Clear AC0
AC1 = #0 ; Clear AC1

repeat(CSR) ; Start the inner loop
AC0 = AC0 + ( *AR0– * coef(*CDP+) ), ; All taps
AC1 = AC1 + ( *AR1– * coef(*CDP+) )

*AR2+ = AC0 ; Write 1st result
*AR2+ = AC1 ; Write 2nd result

CDP = #COEFFS ; Rewind coefficient pointer
AR0 = AR0 + #(N_TAPS + 2) ; Adjust 1st input vector

;   pointer
AR1 = AR1 + #(N_TAPS + 2) ; Adjust 2nd input vector

;   pointer

} ; End of outer loop
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Example 4–3. Block FIR Filter Code (Optimized)

(a) Mnemonic Instructions

N_TAPS .set 4 ; Number of filter taps
N_DATA .set 11 ; Number of input values

.data
COEFFS .int 1,2,3,4 ; Coefficients
IN_DATA .int 1,2,3,4,5,6,7,8,9,10,11 ; Input vector

;Results are: 0x0014, 0x001E, 0x0028, 0x0032,
; 0x003C, 0x0046, 0x0050, 0x005A

.bss OUT_DATA, N_DATA – N_TAPS + 1, ,1
; Output vector, long word

aligned

.text
BCLR ARMS ; Clear ARMS bit (select DSP mode)
.arms_off ; Tell assembler ARMS = 0

bfir:
AMOV #COEFFS, XCDP ; Pointer to coefficient array
AMOV #(IN_DATA + N_TAPS – 1), XAR0 ; Pointer to input vector
AMOV #(IN_DATA + N_TAPS), XAR1 ; 2nd pointer to input vector
AMOV #OUT_DATA, XAR2 ; Pointer to output vector
MOV  #((N_DATA – N_TAPS + 1)/2 – 1), BRC0

; Load outer loop counter
MOV  #(N_TAPS – 3), CSR ; Load inner loop counter
MOV  #(–(N_TAPS – 1)), T0 ; CDP rewind increment

MOV  #(N_TAPS + 1), T1 ; ARx rewind increment
||RPTBLOCAL endloop ; Start the outer loop

MPY *AR0–, *CDP+, AC0 ; 1st tap
:: MPY *AR1–, *CDP+, AC1

RPT CSR ; Start the inner loop
MAC *AR0–, *CDP+, AC0 ; Inner taps
:: MAC *AR1–, *CDP+, AC1

MAC *(AR0+T1), *(CDP+T0), AC0 ; Last tap
:: MAC *(AR1+T1), *(CDP+T0), AC1

endloop:
MOV pair(LO(AC0)), dbl(*AR2+) ; Store both results

; End of outer loop
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Example 4–3.Block FIR Filter Code (Optimized) (Continued)

(b) Algebraic Instructions

N_TAPS .set 4 ; Number of filter taps
N_DATA .set 11 ; Number of input values

.data
COEFFS .int 1,2,3,4 ; Coefficients
IN_DATA .int 1,2,3,4,5,6,7,8,9,10,11 ; Input vector

;Results are: 0x0014, 0x001E, 0x0028, 0x0032,
; 0x003C, 0x0046, 0x0050, 0x005A

.bss OUT_DATA, N_DATA – N_TAPS + 1, ,1
; Output vector, long–word
;   aligned

.text
bit(ST2,#ST2_ARMS) = #0 ; Clear ARMS bit (select DSP mode)
.arms_off ; Tell assembler ARMS = 0

bfir:
XCDP = #COEFFS ; Pointer to coefficient array
XAR0 = #(IN_DATA + N_TAPS – 1) ; Pointer to input vector
XAR1 = #(IN_DATA + N_TAPS) ; 2nd pointer to input vector
XAR2 = #OUT_DATA ; Pointer to output vector
BRC0 = #((N_DATA – N_TAPS + 1)/2 – 1)

; Load outer loop counter
CSR = #(N_TAPS – 3) ; Load inner loop counter
T0 = #(–(N_TAPS – 1)) ; CDP rewind increment

T1 = #(N_TAPS + 1) ; ARx rewind increment
||localrepeat { ; Start the outer loop

AC0 = *AR0– * coef(*CDP+), ; 1st tap
AC1 = *AR1– * coef(*CDP+)

repeat(CSR) ; Start the inner loop
AC0 = AC0 + ( *AR0– * coef(*CDP+) ), ; Inner taps
AC1 = AC1 + ( *AR1– * coef(*CDP+) )

AC0 = AC0 + ( *(AR0+T1) * coef(*(CDP+T0)) ), ; Last tap
AC1 = AC1 + ( *(AR1+T1) * coef(*(CDP+T0)) )

*AR2+ = pair(LO(AC0)) ; Store both results

} ; End of outer loop
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4.1.5.2 Temporal Loop Unrolling: Single-Sample FIR Filter

The temporally unrolled block FIR filter described in section 4.1.5.1 maintains
dual-MAC throughput by sharing a common coefficient between the two MAC
units. In some algorithms, the loop unrolling needs to be performed so that a
common data variable is shared instead. The single-sample FIR filter is an ex-
ample of such an algorithm. In the single-sample FIR filter, the calculations for
the current sample period are interlaced with those of the next sample period
in order to achieve a net performance of two MAC operations per cycle.

Figure 4–3 shows the needed computation groupings for a 4-tap FIR filter. At
any given time step, one multiplies and accumulates every other partial prod-
uct in the corresponding row, beginning with the first partial product in the row.
In addition, one also multiplies and accumulates every other term in the next
row (that is, the row above the current row) in advance of that time step, begin-
ning with the second partial product in the next row. In this way, each row is
fully computed over the course of two sample periods.

For example, at time step k, it is desired to compute y(k). The first term in the
y(k) row is a0x(k), which is computed using one of the two MAC units. In addi-
tion, the second MAC unit is used to compute the second term in the y(k+1)
row, a1x(k), in advance of time step k + 1. These two computations combined
require only three different values from memory: a0, a1, and x(k). Note that the
term x(k) is not available until time k. This is why calculations at each time step
must begin with the first term in the corresponding row.

The second term in the y(k) row is a1x(k + 1). However, this would have been
already computed during the first computation at time step k – 1 (similar to how
a1x(k) was just pre-computed for time step k+1) , so it can be skipped here.
The third term in the y(k) row, a2x(k – 2), is computed next, and at the same
time, the term a3x(k – 2) is computed in the y(k + 1) row in advance of time
step k+1.
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Figure 4–3. Computation Groupings for a Single-Sample FIR With an
Even Number of TAPS (4-Tap Filter Shown)
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Notice that two separate running sums are maintained, one with partial prod-
ucts for the current time step, the other with pre-computed terms for the next
time step. At the next time step, the pre-computed running sum becomes the
current running sum, and a new pre-computed running sum is started from
zero. At the end of each sample period, the current running sum contains the
current filter output, which can be dispatched as required by the application.

The above approach is not limited to the 4-tap filter illustrated in Figure 4–3.
Any other filter with an even number of taps is a straightforward extension. For
filters with an odd number of taps, the computation groupings become prob-
lematic, in that the last grouping in each row is missing the pre-calculation term
in the row above it.

Figure 4–4 depicts this problem for a 5-tap filter. To overcome this problem,
one should pad the filter to the next higher even number of taps by using a zero
coefficient for the additional term. For example, the five tap filter is augmented
to

���� � �������� ������� ��� ������� ��� ������� ��� ������� ��� �	���� ��


In this way, any filter with an odd number of taps can be implemented as a filter
with an even number of taps but retain the frequency response of the original
odd-number-tap filter.
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Figure 4–4. Computation Groupings for a Single-Sample FIR With an
Odd Number of TAPS (5-Tap Filter Shown)

a0x(k+2) a1x(k+1)

a0x(k+1)

a2x(k)

a1x(k)

a0x(k)

a3x(k–1)

a2x(k–1)

a1x(k–1)

a0x(k–1)

a4x(k–3)

a3x(k–3)

a2x(k–3)

a4x(k–4)

a3x(k–4) a4x(k–5)

y(k+2)

y(k+1)

y(k)

y(k–1)

=

=

=

=

a4x(k–6)a1x(k–3) a2x(k–4) a3x(k–5)y(k–2)

a4x(k–2)

a2x(k–2)

a1x(k–2)

a3x(k–2)

a0x(k–2)

Incomplete
groupings

4.1.5.3 Geometric Loop Unrolling: Matrix Mathematics

Matrix mathematics typically involves considerable data reuse. Consider the
general case of multiplying two matrices:

��� � ���� ���

where

[A] = m × n matrix
[B] = n × p matrix
[C] = m × p matrix
m ≥ 1, n ≥ 1, p ≥ 1

The expression for each element in matrix C is given by:
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where the conventional notation xi,j is being used to represent the element of
matrix X in the ith row and jth column. There are basically two different options
for efficient dual-MAC implementation. First, one could compute ci,j and ci,j + 1
in parallel. The computations made are:
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The element ai,k is common to both expressions. The computations can there-
fore be made in parallel, with the common data ai,k delivered to the dual-MAC
units using the B bus and using XCDP as the pointer. The C bus and the D bus
are used along with two XARx registers to access the independent elements
bk,j and bk,j+1.



Efficient Use of the Dual-MAC Hardware

4-19Optimizing Assembly Code

Alternatively, one could compute ci,j and ci+1,j in parallel. The computations
made are then:
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In this case, the element bk,j is common to both expressions. They can there-
fore be made in parallel, with the common data bk,j delivered to the dual-MAC
units using the B bus and using XCDP as the pointer. The C bus and the D bus
are used along with two XARx registers to access the independent elements
ai,k and ai+1,k.

The values of m and p determine which approach one should take. Because
the inner loop will compute two elements in matrix C each iteration, clearly it
is most efficient if an even number of elements can be computed. Therefore,
if p is even, one should implement the first approach: compute ci,j and ci,j+1 in
parallel. Alternatively, if m is even, the second approach is more efficient: com-
pute ci,j and ci+1,j in parallel. If both m and p are even, either approach is ap-
propriate. Finally, if neither m nor p is even, there will be an extra element c that
will need to be computed individually each time through the inner loop. One
could add additional single-MAC code to handle the final element in the inner
loop. Alternatively, one could pad either matrix A or matrix B with a row or col-
umn or zeros (as appropriate) to make either m or p even. The elements in ma-
trix C computed using the pad row or column should then be discarded after
computation.
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4.2 Using Parallel Execution Features

The C55x architecture allows programmers to place two operations or instruc-
tions in parallel to reduce the total execution time. There are two types of paral-
lelism: Built-in parallelism within a single instruction and user-defined parallel-
ism between two instructions. Built-in parallelism (see section 4.2.1) is auto-
matic; as soon as you write the instruction, it is put in place. User-defined paral-
lelism is optional and requires decision-making. Sections 4.2.2 through 4.2.8
present the rules and restrictions associated with the use of user-defined par-
allelism, and give examples of using it.

4.2.1 Built-In Parallelism

Instructions that have built-in parallelism perform two different operations in
parallel. In the algebraic syntax, they can be identified by the comma that sepa-
rates the two operations, as in the following example:

AC0 = *AR0 * coef(*CDP), ; The data referenced by AR0 is multiplied by
AC1 = *AR1 * coef(*CDP) ; a coefficient referenced by CDP. At the same time

; the data referenced by AR1 is multiplied by the
; same coefficient.

In the mnemonic syntax, they can be identified by a double colon (::) that sepa-
rates the two operations. The preceding example in the mnemonic syntax is:

MPY *AR0, *CDP, AC0 ; The data referenced by AR0 is multiplied by
:: MPY *AR1, *CDP, AC1 ; a coefficient referenced by CDP. At the same time

; the data referenced by AR1 is multiplied by the
; same coefficient.

4.2.2 User-Defined Parallelism

Two instructions may be placed in parallel to have them both execute in a
single cycle. The two instructions are separated by the || separator. One of the
two instructions may have built-in parallelism. The following algebraic code ex-
ample shows a user-defined parallel instruction pair. One of the instructions
in the pair also features built-in parallelism.

AC0 = AC0 + (*AR3+ * coef(*CDP+)), ; 1st instruction (has built–in parallelism)
AC1 = AC1 + (*AR4+ * coef(*CDP+))
|| repeat(CSR) ; 2nd instruction

The equivalent mnemonic code example is:

MPY *AR3+, *CDP+, AC0 ; 1st instruction (has built–in parallelism)
:: MPY *AR4+, *CDP+, AC1
|| RPT CSR ; 2nd instruction
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4.2.3 Architectural Features Supporting Parallelism

The C55x architecture provides three main, independent computation units
that are controlled by the instruction buffer unit (I unit):

� Program flow unit (P unit)
� Address-data flow Unit (A unit)
� Data computation unit (D unit)

The C55x instructions make use of dedicated operative resources (or opera-
tors) within each of the units. In total, there are 14 operators available across
the three computation units, and the parallelism rules enable the use of two
independent operators in parallel within the same cycle. If all other rules are
observed, two instructions that independently use any two of the independent
operators may be placed in parallel.

Figure 4–5 shows a matrix that reflects the 14 operators mentioned and the
possible operator combinations that may be used in placing instructions in par-
allel. The operators are ordered from rows 1 through 14 as well as columns
1 though 14. A blank cell in any given position (row I, column J) in the matrix
indicates that operator I may be placed in parallel with operator J, and an X in
any given position indicates that the two operators cannot be placed in parallel.
For example, a D-Unit MAC operation (row 7) may be placed in parallel with
a P-Unit Load operation (column 13) but cannot be placed in parallel with a
D-Unit ALU operation (column 5).
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Figure 4–5. Matrix to Find Operators That Can Be Used in Parallel
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

A-unit ALU 1 X

A-unit Swap 2 X

A-unit Load 3

A-unit Store 4

D-unit ALU 5 X X X

D-unit Shifter 6 X X X X

D-unit MAC 7 X X X

D-unit Load 8

D-unit Store 9

D-unit Shift, Store 10 X X

D-unit Swap 11 X

P-unit Control 12 X

P-unit Load 13

P-unit Store 14

Note: X in a table cell indicates that the operator in that row and the operator in that
column cannot be used in parallel with each other. A blank table cell indicates
that the operators can be used in parallel.
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Bus resources also play an important part in determining whether two instruc-

tions may be placed in parallel. Typically, programmers should be concerned

with the data buses and the constant buses. Table 4–1 lists and describes the

main CPU buses of interest and gives examples of instructions that use the

different buses. These may also be seen pictorially in Figure 4–6. Figure 4–6

also shows all CPU buses and the registers/operators in each of the three

functional units.

Table 4–1. CPU Data Buses and Constant Buses 

Bus Type Bus(es) Description of Bus(es)
Example:
Instruction That Uses The Bus(es)

Data BB Special coefficient read bus AC0 = (*AR1+) *  coef(*CDP+),
AC1  = (*AR3+) * coef(*CDP+)

The operand referenced by CDP is car-
ried to the CPU on BB.

CB, DB Data-read buses AC0 = *AR3+

The operand referenced by AR3 is car-
ried to the CPU on DB.

EB, FB Data-write buses *AR3– = LO(AC0)

The low half of AC0 is carried on EB to
the location referenced by AR3.

Constant KAB Constant bus used in the address
stage of the pipeline to carry ad-
dresses:

� The P unit uses KAB to gener-
ate program-memory ad-
dresses.

� The A unit uses KAB to gener-
ate data-memory addresses.

P-unit use:

Goto #Routine2

The constant Routine2 is carried on KPB
to the P unit, where it is used for a pro-
gram-memory address.

A-unit use:

BRC0 = *SP(#7)

The immediate offset (7) is carried to the
data-address generation unit (DAGEN)
on KAB.

KDB Constant bus used by the A unit or
D unit for computations. This bus is
used in the execute stage of the in-
struction pipeline.

AC0 = AC0 + #1234h

The constant 1234h is carried on KDB to
the D-unit ALU, where it is used in the
addition.
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Figure 4–6. CPU Operators and Buses
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4.2.4 User-Defined Parallelism Rules

This section describes the rules that a programmer must follow to place two
instructions in parallel. It is essential to note here that all the rules must be ob-
served for the parallelism to be valid. However, this section begins with a set
of four basic rules (Table 4–2) that a programmer may use when implementing
user-defined parallelism. If these are not sufficient, the set of advanced rules
(Table 4–3) needs to be considered.
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Table 4–2. Basic Parallelism Rules  

Consideration Rule

Hardware resource conflicts Two instructions in parallel cannot compete for operators
(see Figure 4–5, page 4-22) or buses (see Table 4–1, page
4-23).

Maximum instruction length The combined length of the instruction pair cannot exceed 6
bytes.

Parallel enable bit
OR
Soft dual encoding

If either of the following cases is true, the instructions can be
placed in parallel:

� Parallel enable bit is present:  At least one of two instruc-
tions in parallel must have a parallel enable bit in its instruc-
tion code. The instruction set reference guides (see Re-
lated Documentation from Texas Instruments in the pref-
ace) indicate whether a given instruction has a parallel en-
able bit.

� Soft dual encoding is present:  For parallel instructions
that use Smem or Lmem operands, each instruction must
use one of the indirect operands allowed for the dual AR in-
direct addressing mode:

*ARn
*ARn+
*ARn–
*(ARn + T0) (Available if C54CM bit = 0)
*(ARn + AR0) (Available if C54CM bit = 1)
*(ARn – T0) (Available if C54CM bit = 0)
*(ARn – AR0) (Available if C54CM bit = 1)
*ARn(T0) (Available if C54CM bit = 0)
*ARn(AR0) (Available if C54CM bit = 1)
*(ARn + T1)
*(ARn – T1)
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Table 4–3. Advanced Parallelism Rules  

Consideration Rule

Byte extensions for constants An instruction that uses one of the following addressing-
mode operands cannot be placed in parallel with another
instruction. The constant (following the # symbol) adds 2 or 3
bytes to the instruction.

*abs16(#k16)
*port(#k16) (algebraic syntax)
port(#k16) (mnemonic syntax)
*(#k23)
*ARn(#K16)
*+ARn(#K16)
*CDP(#K16)
*+CDP(#K16)

mmap() and port() qualifiers An instruction that uses the mmap() qualifier to indicate an
access to a memory-mapped register or registers cannot be
placed in parallel with another instruction. The use of the
mmap() qualifier is a form of parallelism already.

Likewise an instruction that uses a port() qualifier to indicate
an access to I/O space cannot be placed in parallel with
another instruction. The use of a port() qualifier is a form of
parallelism already.

Parallelism among A unit, D unit, and P unit Parallelism among the three computational units is allowed
without restriction (see Figure 4–5).

An operation executed within a single computational unit can
be placed in parallel with a second operation executed in one
of the other two computational units.

Parallelism within the P unit Two program-control instructions cannot be placed in parallel.
However, other parallelism among the operators of the P unit
is allowed.

Parallelism within the D unit Certain restrictions apply to using operators of the D unit in
parallel (see Figure 4–5).

Parallelism within the A unit Two A-unit ALU operations or two A-unit swap operations
cannot be performed in parallel. However, other parallelism
among the operators of the A unit is allowed.

4.2.5 Process for Implementing User-Defined Parallelism

This section presents a process that may be used to simplify the process of
using user-defined parallelism to produce optimized assembly language code.
Figure 4–7 is a flow chart outlining this process, and the steps are also de-
scribed in Table 4–4.
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Figure 4–7. Process for Applying User-Defined Parallelism
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Table 4–4. Steps in Process for Applying User-Defined Parallelism 

Step Description

1 Write assembly code without the use of user-defined parallelism, and verify the functionality of the code.
Note that in this step, you may take advantage of instructions with built-in parallelism.

2 Identify potential user-defined parallel instruction pairs in your code, and, using the basic rules outlined
in Table 4–2 as guidelines, place instructions in parallel. Start by focusing on heavily used kernels of
the code.

3 Run the optimized code through the assembler to see if the parallel instruction pairs are valid. The as-
sembler will indicate any invalid parallel instruction pairs. If you have invalid pairs, go to step 4; otherwise
go to step 5.

4 Refer to the set of parallelism rules in section 4.2.4 to determine why failing parallel pairs may be invalid.
Make necessary changes and return to step 3.

5 Once all your parallel pairs are valid, make sure your code still functions correctly.
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4.2.6 Parallelism Tips

As you try to optimize your code with user-defined parallelism, you might find
the following tips helpful (these tips use algebraic instructions, but the con-
cepts apply equally for the mnemonic instruction set):

� Place all load and store instructions in parallel. For example:

AC1 = *AR2 ; Load AC1
||*AR3 = BRC0 ; Store BRC0

� The A-Unit ALU can handle (un)saturated 16-bit processing in parallel 
with the D-Unit ALU, MAC, and shift operators. For example:

; Modify AR1 in A unit, and perform an accumulator
;  shift, saturate, and-store operation in the D unit.
AR1 = AR1 + T0
||*AR2 = HI(saturate(uns(rnd(AC1 << #1))))

� Accumulator shift, saturate, and store operations can be placed in parallel
with D-Unit ALU or MAC operations. For example:

; Shift, saturate, and store AC1 while
;  modifying AC2.
*AR2 = HI(saturate(uns(rnd(AC1 << #1))))
||AC2 = AC2 + AC1

� Control operations can be placed in parallel with DSP operations. For ex-
ample:

; Switch control to a block-repeat loop, and
;  Perform the first computation of the loop.
BLOCKREPEAT {
|| AC0 = rnd(AC0 + (*AR1+ * *AR3))

� Instructions with built-in parallelism increase the bandwidth of instructions
paired by user-defined parallelism. For example:

; Place parallel accumulator load operations
;  in parallel with an auxiliary register store
; operation.
HI(AC1) = HI(*AR2) + HI(AC0),
LO(AC1) = LO(*AR2) + LO(AC0)
||dbl(*AR6)=AC2

� You can fill a buffer with a constant value efficiently. For example:

AC0 = #0 ; Clear AC0.
||REPEAT(#9) ; Switch control to repeat loop.
DBL(*AR1+) = AC0 ; Store 32–bit constant to buffer,

;  and increment pointer.

� Instructions to be executed conditionally can be placed in parallel with the
if instruction. For example:

if (T0 == 0) execute(AD_unit) ; If T0 contains 0, ...
|| AR0 = #0 ; ... Load AR0 with 0.
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4.2.7 Examples of Parallel Optimization Within CPU Functional Units

This section provides examples to show how to make code more efficient by
using parallelism within the A unit, the P unit, and D unit. (The examples in this
section use instructions from the algebraic instruction set, but the concepts ap-
ply equally for the mnemonic instruction set.)

4.2.7.1 A-Unit Example of Parallel Optimization

Example 4–4 shows a simple Host-DSP application in which a host sends a
single command to tell the DSP which set of coefficients to use for a multiply-
and-accumulate (MAC) operation. The DSP calls a COMPUTE function to per-
form the computation and returns the result to the host. The communication
is based on a very simple handshaking, with the host and DSP exchanging
flags (codes). The code in Example 4–4 does not use parallelism.
Example 4–5 shows the code optimized through the use of parallel instruction
pairs.
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Example 4–4. A-Unit Code With No User-Defined Parallelism

; Variables
.data

    
COEFF1 .word 0x0123  ; First set of coefficients

.word 0x1234

.word 0x2345

.word 0x3456

.word 0x4567
         
COEFF2 .word 0x7654  ; Second set of coefficients

.word 0x6543

.word 0x5432

.word 0x4321

.word 0x3210

HST_FLAG .set 0x2000  ; Host Flag Address
HST_DATA .set 0x2001  ; Host Data Address

CHANGE .set 0x0000  ; ”Change coefficients” command from host
READY .set 0x0000  ; ”READY” Flag from Host
BUSY .set 0x1111  ; ”BUSY” Flag set by DSP

.global start_a1

.text

start_a1:
AR0 = #HST_FLAG  ; AR0 points to Host Flag
AR2 = #HST_DATA  ; AR2 points to Host Data
AR1 = #COEFF1  ; AR1 points to COEFF1 buffer initially
AR3 = #COEFF2  ; AR3 points to COEFF2 buffer initially
CSR = #4  ; Set CSR = 4 for repeat in COMPUTE
BIT(ST1, #ST1_FRCT) = #1  ; Set fractional mode bit
BIT(ST1, #ST1_SXMD) = #1  ; Set sign–extension mode bit
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Example 4–4. A-Unit Code With No User-Defined Parallelism (Continued)

LOOP:
T0 = *AR0  ; T0 = Host Flag
if (T0 == #READY) GOTO PROCESS ; If Host Flag is ”READY”, continue
GOTO LOOP  ; process – else poll Host Flag again

PROCESS:
T0 = *AR2  ; T0 = Host Data

if (T0 == #CHANGE) EXECUTE(AD_UNIT)
 ; The choice of either set of 
 ; coefficients is based on the value
 ; of T0. COMPUTE uses AR3 for
 ; computation, so we need to
 ; load AR3 correctly here.

SWAP(AR1, AR3)  ; Host message was ”CHANGE”, so we
 ; need to swap the two coefficient 
 ; pointers.

    
CALL COMPUTE  ; Compute subroutine

    
*AR2 = AR4  ; Write result to Host Data
*AR0 = #BUSY  ; Set Host Flag to Busy
GOTO LOOP  ; Infinite loop continues

END

COMPUTE:
AC1 = #0  ; Initialize AC1 to 0
REPEAT(CSR)  ; CSR has a value of 4
 AC1 = AC1 + (*AR2 * *AR3+) ; This MAC operation is performed

  ; 5 times
AR4 = AC1  ; Result is in AR4

RETURN

HALT:
GOTO HALT
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As mentioned, Example 4–5 shows the optimized code for Example 4–4. In
Example 4–5, the parallel instruction pairs are highlighted. Notice the follow-
ing points:

� The first four instructions (ARn loads) are immediate loads and cannot be
placed in parallel due to constant bus conflicts and total instruction sizes.

� The first parallel pair shows an immediate load of CSR through the bus
called KDB. This load is executed in parallel with the setting of the SXMD
mode bit, which is handled by the A-unit ALU.

� The second parallel pair is a SWAP instruction in parallel with an if instruc-
tion. Despite the fact that the SWAP instruction is executed conditionally,
it is valid to place it in parallel with the if instruction.

� The third parallel pair stores AR4 to memory via the D bus (DB), and stores
a constant (BUSY) to memory via the bus called KDB.

� The fourth parallel pair loads AC1 with a constant that is carried on the bus
called KDB and, in parallel, switches program control to a single-repeat
loop.

� The last parallel pair stores AC1 to AR4 via a cross-unit bus and, in paral-
lel, returns from the COMPUTE function.



Using Parallel Execution Features

4-33Optimizing Assembly Code

Example 4–5. A-Unit Code in Example 4–4 Modified to Take Advantage of Parallelism

; Variables
.data

    
COEFF1 .word 0x0123  ; First set of coefficients

.word 0x1234

.word 0x2345

.word 0x3456

.word 0x4567
         
COEFF2 .word 0x7654  ; Second set of coefficients

.word 0x6543

.word 0x5432

.word 0x4321

.word 0x3210

HST_FLAG .set 0x2000  ; Host Flag Address
HST_DATA .set 0x2001  ; Host Data Address

CHANGE .set 0x0000  ; ”Change coefficients” command from host
READY .set 0x0000  ; ”READY” Flag from Host
BUSY .set 0x1111  ; ”BUSY” Flag set by DSP

.global start_a2

.text

start_a2:

AR0 = #HST_FLAG  ; AR0 points to Host Flag
AR2 = #HST_DATA  ; AR2 points to Host Data
AR1 = #COEFF1  ; AR1 points to COEFF1 buffer initially
AR3 = #COEFF2  ; AR3 points to COEFF2 buffer initially

CSR = #4  ; Set CSR = 4 for repeat in COMPUTE
|| BIT(ST1, #ST1_FRCT) = #1 ; Set fractional mode bit

BIT(ST1, #ST1_SXMD) = #1  ; Set sign–extension mode bit

LOOP:
T0 = *AR0  ; T0 = Host Flag
if (T0 == #READY) GOTO PROCESS ; If Host Flag is ”READY”, continue
GOTO LOOP  ; process – else poll Host Flag again
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Example 4–5. A-Unit Code in Example 4–4 Modified to Take Advantage of Parallelism
(Continued)

PROCESS:
T0 = *AR2  ; T0 = Host Data

if (T0 == #CHANGE) EXECUTE(AD_UNIT)
 ; The choice of either set of 
 ; coefficients is based on the value
 ; of T0. COMPUTE uses AR3 for
 ; computation, so we need to 
 ; load AR3 correctly here.

|| SWAP(AR1, AR3)  ; Host message was ”CHANGE”, so we 
 ; need to swap the two coefficient 
 ; pointers.

CALL COMPUTE  ; Compute subroutine

*AR2 = AR4  ; Write result to Host Data
|| *AR0 = #BUSY  ; Set Host Flag to Busy

GOTO LOOP  ; Infinite loop continues

END

COMPUTE:
AC1 = #0  ; Initialize AC1 to 0
|| REPEAT(CSR)  ; CSR has a value of 4
 AC1 = AC1 + (*AR2 * *AR3+) ; This MAC operation is performed

  ; 5 times
AR4 = AC1  ; Result is in AR4
|| RETURN

HALT:
GOTO HALT
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4.2.7.2 P-Unit Example of Parallel Optimization

Example 4–6 demonstrates a very simple nested loop and some simple con-
trol operations with the use of P-unit registers. This example shows the unopti-
mized code, and Example 4–7 shows the code optimized through the use of
the P-unit parallel instruction pairs (parallel instruction pairs are highlighted).

Example 4–6. P-Unit Code With No User-Defined Parallelism

.CPL_off ; Tell assembler that CPL bit is 0
; (Direct addressing is done with DP)

; Variables
.data

var1 .word 0x0004
var2 .word 0x0000

.global start_p1

.text

start_p1:
XDP = #var1
AR3 = #var2

BRC0 = #0007h ; BRC0 loaded using KPB
BRC1 = *AR3 ; BRC1 loaded using DB

AC2 = #0006h

BLOCKREPEAT {
AC1 = AC2
AR1 = #8000h
LOCALREPEAT {

AC1 = AC1 – #1
*AR1+ = AC1

}
AC2 = AC2 + #1

}
@(AC0_L) = BRC0 ; AC0_L loaded using EB
@(AC1_L) = BRC1 ; AC1_L loaded using EB

if (AC0 >= #0) goto start_p1:
if (AC1 >= #0) goto start_p1:

end_p1
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Notice the following about Example 4–7:

� The first three register loads are immediate loads using the same constant
bus and, therefore, cannot be placed in parallel.

� The fourth register load (loading BRC0) can be placed in parallel with the
next load (loading BRC1), which does not use the constant bus, but the
data bus DB to perform the load.

� The next instruction, which is a control instruction (blockrepeat) is placed
in parallel with the load of AC2. There are no conflicts and this pair is valid.
The loading of AC2 is not part of the blockrepeat structure.

� The final parallel pair is a control instruction (localrepeat) and a load of
AR1. The loading of AR1 is not part of the localrepeat structure but is part
of the outer blockrepeat structure.
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Example 4–7. P-Unit Code in Example 4–6 Modified to Take Advantage of Parallelism

.CPL_off ; Tell assembler that CPL bit is 0
; (Direct addressing is done with DP)

; Variables
.data

var1 .word 0x0004
var2 .word 0x0000

.global start_p2

.text

start_p2:
XDP = #var1
AR3 = #var2

BRC0 = #0007h ; BRC0 loaded using KPB
|| BRC1 = *AR3 ; BRC1 loaded using DB

AC2 = #0006h
|| BLOCKREPEAT {

AC1 = AC2
AR1 = #8000h
|| LOCALREPEAT {

AC1 = AC1 – #1
*AR1+ = AC1

}
AC2 = AC2 + #1

}
@(AC0_L) = BRC0 ; AC0_L loaded using EB
@(AC1_L) = AR1 ; AC1_L loaded using EB

if (AC0 >= #0) goto start_p2
if (AC1 >= #0) goto start_p2

end_p2

4.2.7.3 D-Unit Example of Parallel Optimization

Example 4–8 demonstrates a very simple load, multiply, and store function
with the use of D-unit registers. Example 4–9 shows this code modified to take
advantage of user-defined parallelism (parallel instruction pairs are high-
lighted).
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Example 4–8. D-Unit Code With No User-Defined Parallelism

; Variables
.data

var1 .word 0x8000
var2 .word 0x0004

.global start_d1

.text

start_d1:
AR3 = #var1
AR4 = #var2

AC0 = #0004h ; AC0 loaded using KDB
AC2 = *AR3 ; AC2 loaded using DB

T0 = #5A5Ah ; T0 loaded with constant, 0x5A5A

AC2 = AC2 + (AC0 * T0) ; MAC
AC1 = AC1 + (AC2 * T0) ; MAC
SWAP(AC0, AC2) ; SWAP

    
*AR3 = HI(AC1) ; Store result in AC1
*AR4 = HI(AC0) ; Store result in AC0

end_d1

The following information determined the optimizations made in Example 4–9:

� As in the P-unit example on page 4-37, we cannot place the immediate
register loads in parallel due to constant-bus conflicts.

� The instructions that load AC0 and AC2 have been placed in parallel be-
cause they are not both immediate loads and as such, there are no
constant-bus conflicts.

� It is not possible to place the two single-MAC instructions in parallel since
the same operator is required for both and as such a conflict arises. How-
ever, placing the second MAC instruction in parallel with the SWAP in-
struction is valid.

� The two 16-bit store operations at the end of the code are placed in parallel
because there are two 16-bit write buses available (EB and FB).
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Example 4–9. D-Unit Code in Example 4–8 Modified to Take Advantage of Parallelism

; Variables
.data

var1 .word 0x8000
var2 .word 0x0004

.global start_d2

.text

start_d2:
AR3 = #var1
AR4 = #var2

AC0 = #0004h ; AC0 loaded using KDB
|| AC2 = *AR3 ; AC2 loaded using DB

T0 = #5A5Ah ; T0 loaded with constant, 0x5A5A

AC2 = AC2 + (AC0 * T0) ; MAC
AC1 = AC1 + (AC2 * T0) ; MAC
||SWAP(AC0, AC2) ; SWAP

    
*AR3 = HI(AC1) ; Store result in AC1
|| *AR4 = HI(AC0) ; Store result in AC0

end_d2

4.2.8 Example of Parallel Optimization Across the A-Unit, P-Unit, and D-Unit

Example 4–10 shows unoptimized code for an FIR (finite impulse response)
filter. Example 4–11 is the result of applying user-defined parallelism to the
same code. It is important to notice that the order of instructions has been al-
tered in a number of cases to allow certain instruction pairs to be placed in par-
allel. The use of parallelism in this case has saved about 50% of the cycles
outside the inner loop.
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Example 4–10. Code That Uses Multiple CPU Units But No User-Defined Parallelism

.CPL_ON ; Tell assembler that CPL bit is 1
; (SP direct addressing like *SP(0) is enabled)

; Register usage
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

.asg AR0, X_ptr ; AR0 is pointer to input buffer – X_ptr

.asg AR1, H_ptr ; AR1 is pointer to coefficients – H_ptr

.asg AR2, R_ptr ; AR2 is pointer to result buffer – R_ptr

.asg AR3, DB_ptr ; AR3 is pointer to delay buffer – DB_ptr

FRAME_SZ .set 2

.global _fir

.text

;**********************************************************************

_fir

; Create local frame for temp values
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SP = SP – #FRAME_SZ

; Turn on fractional mode
; Turn on sign–extension mode
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

BIT(ST1, #ST1_FRCT) = #1 ; Set fractional mode bit
BIT(ST1, #ST1_SXMD) = #1 ; Set sign–extension mode bit

; Set outer loop count by subtracting 1 from nx and storing into
; block–repeat counter
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

AC1 = T1 – #1 ; AC1 = number of samples (nx) – 1
*SP(0) = AC1 ; Top of stack = nx – 1
BRC0 = *SP(0) ; BRC0 = nx – 1 (outer loop counter)
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Example 4–10. Code That Uses Multiple CPU Units But No User-Defined Parallelism
(Continued)

; Store length of coefficient vector/delay buffer in BK register
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

BIT(ST2, #ST2_AR1LC) = #1 ; Enable AR1 circular configuration
BSA01 = *(#0011h) ; Set buffer (filter) start address

; AR1 used as filter pointer

BIT(ST2, #ST2_AR3LC) = #1 ; Enable AR3 circular configuration
*SP(1) = DB_ptr ; Save pointer to delay buffer pointer
AC1 = *DB_ptr ; AC1 = delay buffer pointer
DB_ptr = AC1 ; AR3 (DB_ptr) = delay buffer pointer
BSA23 = *(#0013h) ; Set buffer (delay buffer) start address

; AR3 used as filter pointer
    

*SP(0) = T0 ; Save filter length, nh – used as buffer 
; size

BK03 = *SP(0) ; Set circular buffer size – size passed
; in T0

    
AC1 = T0 – #3 ; AC1 = nh – 3
*SP(0) = AC1
CSR = *SP(0) ; Set inner loop count to nh – 3

H_ptr = #0 ; Initialize index of filter to 0
DB_ptr = #0 ; Initialize index of delay buffer to 0

; Begin outer loop on nx samples
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

BLOCKREPEAT {

; Move next input sample into delay buffer
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*DB_ptr = *X_ptr+

; Sum h * x for next y value
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

AC0 = *H_ptr+ * *DB_ptr+

REPEAT (CSR)
AC0 = AC0 + (*H_ptr+ * *DB_ptr+)

AC0 = rnd(AC0 + (*H_ptr+ * *DB_ptr)) ; Round result
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Example 4–10. Code That Uses Multiple CPU Units But No User-Defined Parallelism
(Continued)

; Store result
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*R_ptr+ = HI(AC0)
}

; Clear FRCT bit to restore normal C operating environment 
; Return overflow condition of AC0 (shown in ACOV0) in T0
; Restore stack to previous value, FRAME, etc..
; Update current index of delay buffer pointer
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

END_FUNCTION:

AR0 = *SP(1) ; AR0 = pointer to delay buffer pointer
SP = SP + #FRAME_SZ ; Remove local stack frame
*AR0 = DB_ptr ; Update delay buffer pointer with current

; index
    

BIT(ST1, #ST1_FRCT) = #0 ; Clear fractional mode bit
    

T0 = #0 ; Make T0 = 0 for no overflow (return value)
if(overflow(AC0)) execute(AD_unit)
T0 = #1 ; Make T0 = 1 for overflow (return value)

RETURN
;********************************************************************

In Example 4–11, parallel pairs that were successful are shown in bold  type;
potential parallel pairs that failed are shown in italic type. The first failed due
to a constant bus conflict, and the second failed due to the fact that the com-
bined size is greater than 6 bytes. The third pair failed for the same reason,
as well as being an invalid soft-dual encoding instruction. The last pair in italics
failed because neither instruction has a parallel enable bit. Some of the load/
store operations that are not in parallel were made parallel in the first pass opti-
mization process; however, the parallelism failed due to bus conflicts and had
to be removed.
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Note:

Example 4–11 shows optimization only with the use of the parallelism fea-
tures. Further optimization of this FIR function is possible by employing other
optimizations.

Example 4–11. Code in Example 4–10 Modified to Take Advantage of Parallelism

.CPL_ON ; Tell assembler that CPL bit is 1
; (SP direct addressing like *SP(0) is enabled)

; Register usage
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

.asg AR0, X_ptr ; AR0 is pointer to input buffer – X_ptr

.asg AR1, H_ptr ; AR1 is pointer to coefficients – H_ptr

.asg AR2, R_ptr ; AR2 is pointer to result buffer – R_ptr

.asg AR3, DB_ptr ; AR3 is pointer to delay buffer – DB_ptr

FRAME_SZ .set 2

.global _fir
    
.text

;**************************************************************************

_fir

; Create local frame for temp values
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

SP = SP – #FRAME_SZ ; (Attempt to put this in parallel with
;   the following AC1 modification failed)

; Set outer loop count by subtracting 1 from nx and storing into
; block–repeat counter
; Turn on fractional mode
; Turn on sign–extension mode
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

AC1 = T1 – #1 ; AC1 = number of samples (nx) – 1
    

BIT(ST1, #ST1_FRCT) = #1 ; Set fractional mode bit
|| *SP(0) = AC1 ; Top of stack = nx – 1

    
BRC0 = *SP(0) ; BRC0 = nx – 1 (outer loop counter) 
|| BIT(ST1, #ST1_SXMD) = #1 ; Set sign–extension mode bit
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Example 4–11. Code in Example 4–10 Modified to Take Advantage of Parallelism
(Continued)

; Store length of coefficient vector/ delay buffer in BK register
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

BIT(ST2, #ST2_AR1LC) = #1 ; Enable AR1 circular configuration
BSA01 = *(#0011h) ; Set buffer (filter) start address

; AR1 used as filter pointer

BIT(ST2, #ST2_AR3LC) = #1 ; Enable AR3 circular configuration
|| *SP(1) = DB_ptr ; Save pointer to delay buffer pointer

AC1 = *DB_ptr ; AC1 = delay buffer pointer
DB_ptr = AC1 ; AR3 (DB_ptr) = delay buffer pointer
|| *SP(0) = T0 ; Save filter length, nh – used as buffer

; size
BSA23 = *(#0013h) ; Set buffer (delay buffer) start address

; AR3 used as filter pointer

BK03 = *SP(0) ; Set circular buffer size – size passed 
; in T0

AC1 = T0 – #3 ; AC1 = nh – 3
*SP(0) = AC1

CSR = *SP(0) ; Set inner loop count to nh – 3
|| H_ptr = #0 ; Initialize index of filter to 0

DB_ptr = #0 ; Initialize index of delay buffer to 0
; (in parallel with BLOCKREPEAT below)

; Begin outer loop on nx samples
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

   ||BLOCKREPEAT {

; Move next input sample into delay buffer                   
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*DB_ptr = *X_ptr+
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Example 4–11. Code in Example 4–10 Modified to Take Advantage of Parallelism
(Continued)

; Sum h * x for next y value
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

AC0 = *H_ptr+ * *DB_ptr+
|| REPEAT (CSR)

AC0 = AC0 + (*H_ptr+ * *DB_ptr+)

AC0 = rnd(AC0 + (*H_ptr+ * *DB_ptr)) ; Round result

; Store result
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

*R_ptr+ = HI(AC0)
    }

; Clear FRCT bit to restore normal C operating environment 
; Return overflow condition of AC0 (shown in ACOV0) in T0
; Restore stack to previous value, FRAME, etc..
; Update current index of delay buffer pointer
; ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

END_FUNCTION:

AR0 = *SP(1) ; AR0 = pointer to delay buffer pointer
|| SP = SP + #FRAME_SZ ; Remove local stack frame

*AR0 = DB_ptr ; Update delay buffer pointer with current
; index

|| BIT(ST1, #ST1_FRCT) = #0 ; Clear fractional mode bit
    

T0 = #0 ; Make T0 = 0 for no overflow (return value)
|| if(overflow(AC0)) execute(AD_unit)
T0 = #1 ; Make T0 = 1 for overflow (return value)

|| RETURN
;********************************************************************
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4.3 Implementing Efficient Loops

There are four common methods to implement instruction looping in the C55x
DSP:

� Single repeat: repeat(CSR/k8/k16),[CSR += TA/k4]
� Local block repeat: localrepeat{}
� Block repeat: blockrepeat{}
� Branch on auxiliary register not zero: if (ARn_mod != 0) goto #loop_start

The selection of the looping method to use depends basically on the number
of instructions that need to be repeated and in the way you need to control the
loop counter parameter. The first three methods in the preceding list offer zero-
overhead looping and the fourth one offers a 5-cycle loop overhead.

Overall, the most efficient looping mechanisms are the repeat() and the
localrepeat{} mechanisms. The repeat() mechanism provides a way to repeat
a single instruction or a parallel pair of instructions in an interruptible way. re-
peat(CSR), in particular, allows you to compute the loop counter at runtime.
Refer to section 4.3.2, Efficient Use of repeat(CSR) Looping.

Note:

If you are migrating code from a TMS320C54x  DSP, be aware that a single-
repeat instruction is interruptible on a TMS320C55x DSP. On a
TMS320C54x DSP, a single-repeat instruction cannot be interrupted.

The localrepeat{} mechanism provides a way to repeat a block from the in-
struction buffer queue. Reusing code that has already been fetched and
placed in the queue brings the following advantages:

� Fewer program-memory access pipeline conflicts

� Overall lower power consumption

� No repetition of wait-state and access penalties when executing loop code
from external RAM

4.3.1 Nesting of Loops

You can create up to two levels of block-repeat loops without any cycle penalty.
You can have one block-repeat loop nested inside another, creating an inner
(level 1) loop and an outer (level0) loop. In addition, you can put any number
of single-repeat loops inside each block-repeat loop. Example 4–12 shows a
multi-level loop structure with two block-repeat loops and two single-repeat
loops. (The examples in this section use instructions from the algebraic in-
struction set, but the concepts apply equally for the mnemonic instruction set.)
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Example 4–12. Nested Loops

BRC0 = #(n0–1)
BRC1 = #(n1–1)

; ...
localrepeat{ ; Level 0 looping (could instead be blockrepeat):

; Loops n0 times
; ...

repeat(#(n2–1)
; ...

localrepeat{ ; Level 1 looping (could instead be blockrepeat):
; Loops n1 times

; ...
repeat(#(n3–1))

; ...
}

; ...
}

Example 4–12 shows one block-repeat loop nested inside another block-re-
peat loop. If you need more levels of multiple-instruction loops, use branch on
auxiliary register not zero constructs to create the remaining outer loops. In
Example 4–13 (page 4-48), a branch on auxiliary register not zero construct
(see the last instruction in the example) forms the outermost loop of a Fast
Fourier Transform algorithm. Inside that loop are two localrepeat{} loops. No-
tice that if you want the outermost loop to execute n times, you must initialize
AR0 to (n – 1) outside the loop.
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Example 4–13. Branch-On-Auxiliary-Register-Not-Zero Construct
(Shown in Complex FFT Loop Code)

_cfft:

radix_2_stages:
; ...
 
outer_loop: 
; ...

BRC0 = DR1
; ...      

BRC1 = DR1
; ...

AR4  = AR4 >> #1 ; outer loop counter
|| if (AR5 == #0) goto no_scale ; determine if scaling required

; ...
 
no_scale:

localrepeat{

AC0 = dbl(*AR3) ; load ar,ai

HI(AC2) = HI(*AR2) – HI(AC0), ; tr = ar – br
LO(AC2) = LO(*AR2) – LO(AC0) ; ti = ai – bi

localrepeat {

HI(AC1) = HI(*AR2) + HI(AC0), ; ar’ = ar + br
LO(AC1) = LO(*AR2) + LO(AC0) ; ai’ = ai + bi
|| dbl(*AR6)=AC2 ; store tr, ti

AC2 = *AR6 * coef(*CDP+), ; c*tr
AC3 = *AR7 * coef(*CDP+) ; c*ti

dbl(*AR2+) = AC1 ; store ar, ai
|| AC0 = dbl(*AR3(DR0)) ; * load ar,ai

AC3 = rnd(AC3 – (*AR6 * coef(*CDP–))), ; bi’ = c*ti – s*tr
AC2 = rnd(AC2 + (*AR7 * coef(*CDP–))) ; br’ = c*tr + s*ti

*AR3+ = pair(HI(AC2)) ; store br’, bi’
|| HI(AC2) = HI(*AR2) – HI(AC0), ; * tr = ar – br
LO(AC2) = LO(*AR2) – LO(AC0) ; * ti = ai – bi

}

Note: This example shows portions of the file cfft.asm in the TI C55x DSPLIB (introduced in Chapter 8)
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Example 4–13. Branch-On-Auxiliary-Register-Not-Zero Construct
(Shown in Complex FFT Loop Code) (Continued)

HI(AC1) = HI(*AR2) + HI(AC0), ; ar’ = ar + br
LO(AC1) = LO(*AR2) + LO(AC0) ; ai’ = ai + bi
|| dbl(*AR6)=AC2 ; store tr, ti

AC2 = *AR6 * coef(*CDP+), ; c*tr
AC3 = *AR7 * coef(*CDP+) ; c*ti

dbl(*(AR2+DR1)) = AC1 ; store ar, ai

AC3 = rnd(AC3 – (*AR6 * coef(*CDP+))), ; bi’ = c*ti – s*tr
AC2 = rnd(AC2 + (*AR7 * coef(*CDP+))) ; br’ = c*tr + s*ti

*(AR3+DR1) = pair(HI(AC2)) ; store br’, bi’

}

AR3 = AR3 << #1
|| CDP = #0 ; rewind coefficient pointer
DR3 = DR3 >> #1
|| if (AR4 != #0) goto outer_loop

Note: This example shows portions of the file cfft.asm in the TI C55x DSPLIB (introduced in Chapter 8)

To achieve an efficient nesting of loops, apply the following guidelines:

� Use a single-repeat instruction for the innermost loop if the loop contains
only a single instruction (or a pair of instructions that have been placed in
parallel).

� Use a local block-repeat instruction (localrepeat in the algebraic syntax)
for a loop containing more than a single instruction or instruction pair—
provided the loop contains no more than 56 bytes of code. If there are
more than 56 bytes but you would still like to use the local block-repeat in-
struction, consider the following possibilities:

� Split the existing loop into two smaller loops.

� Reduce the number of bytes in the loop. For example, you can reduce
the number of instructions that use embedded constants.

� Use a standard block-repeat instruction (blockrepeat in the algebraic syn-
tax) in cases where a local block-repeat instruction cannot be used. The
standard block-repeat mechanism always refetches the loop code from
memory.
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� When you nest a block-repeat loop inside another block-repeat loop, ini-
tialize the block-repeat counters (BRC0 and BRC1) in the code outside of
both loops. This technique is shown in Example 4–12 (page 4-47).

Neither counter needs to be re-initialized inside its loop; placing such init-
ializations inside the loops only adds extra cycles to the loops. The CPU
uses BRC0 for the outer (level 0) loop and BRC1 for the inner (level 1) loop.
BRC1 has a shadow register, BRS1, that preserves the initial value of
BRC1. Each time the level 1 loop must begin again, the CPU automatically
re-initializes BRC1 from BRS1.

4.3.2 Efficient Use of repeat(CSR)  Looping

The single-repeat instruction syntaxes allow you to specify the repeat count
as a constant (embedded in the repeat instruction) or as the content of the
computed single-repeat register (CSR). When CSR is used, it is not decrem-
ented during each iteration of the single-repeat loop. Before the first execution
of the instruction or instruction pair to be repeated, the content of CSR is cop-
ied into the single-repeat counter (RPTC). RPTC holds the active loop count
and is decremented during each iteration. Therefore, CSR needs to be initial-
ized only once. Initializing CSR outside the outer loop, rather than during every
iteration of the outer loop, saves cycles. There are advantages to using CSR
for the repeat count:

� The repeat count can be dynamically computed during runtime and stored
to CSR. For example, CSR can be used when the number of times an in-
struction must be repeated depends on the iteration number of a higher
loop structure.

� Using CSR saves outer loop cycles when the single-repeat loop is an inner
loop.

� An optional syntax extension enables the repeat instruction to modify the
CSR after copying the content of CSR to RPTC. When the single-repeat
loop is repeated in an outer loop, CSR contains a new count.

Example 4–14 (page 4-51) uses CSR for a single-repeat loop that is nested
inside a block-repeat loop. In the example, CSR is assigned the name
inner_cnt.



Implementing Efficient Loops

4-51Optimizing Assembly Code

Example 4–14. Use of CSR (Shown in Real Block FIR Loop Code)

; ...
.asg CSR, inner_cnt ;inner loop count
.asg BRC0, outer_cnt ;outer loop count

; ...
.asg AR0, x_ptr ;linear pointer
.asg AR1, db_ptr1 ;circular pointer
.asg AR2, r_ptr ;linear pointer
.asg AR3, db_ptr2 ;circular pointer
.asg CDP, h_ptr ;circular pointer

; ...

_fir2:

; ...
mar(*db_ptr2–) ;index of 2nd oldest db entry

;
; Setup loop counts
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

|| T0 = T0 >> #1 ;T0 = nx/2

T0 = T0 – #1 ;T0 = (nx/2 – 1)
outer_cnt = T0 ;outer loop executes nx/2 times
T0 = T1 – #3 ;T0 = nh–3
inner_cnt = T0 ;inner loop executes nh–2 times
T1 = T1 + #1 ;T1 = nh+1, adjustment for db_ptr1, db_ptr2

;
; Start of outer loop
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

||localrepeat { ;start the outer loop

*db_ptr1 = *x_ptr+ ;get 1st new input value
*db_ptr2 = *x_ptr+ ;get 2nd new input value (newest)

;1st iteration
AC0 = *db_ptr1+ * coef(*h_ptr+), ;part 1 of dual–MPY
AC1 = *db_ptr2+ * coef(*h_ptr+) ;part 2 of dual–MPY

;inner loop
||repeat(inner_cnt)
AC0 = AC0 + (*db_ptr1+ * coef(*h_ptr+)), ;part 1 of dual–MAC
AC1 = AC1 + (*db_ptr2+ * coef(*h_ptr+)) ;part 2 of dual–MAC

Note: This example shows portions of the file fir2.asm in the TI C55x DSPLIB (introduced in Chapter 8)
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Example 4–14. Use of CSR (Shown in Real Block FIR Loop Code) (Continued)

;last iteration has different pointer adjustment and rounding
AC0 = rnd(AC0 + (*(db_ptr1–T1) * coef(*h_ptr+))), ;part 1 of dual–MAC
AC1 = rnd(AC1 + (*(db_ptr2–T1) * coef(*h_ptr+))) ;part 2 of dual–MAC

;store result to memory
*r_ptr+ = HI(AC0) ;store 1st Q15 result to memory
*r_ptr+ = HI(AC1) ;store 2nd Q15 result to memory

} ;end of outer loop
; ...

Note: This example shows portions of the file fir2.asm in the TI C55x DSPLIB (introduced in Chapter 8)

4.3.3 Avoiding Pipeline Delays When Accessing Loop-Control Registers

Accesses to loop-control registers like CSR, BRC0, and BRC1 can cause de-
lays in the instruction pipeline if nearby instructions make competing ac-
cesses. For recommendations on avoiding this type of pipeline delay, see the
“Loop control” section of Table 4–6 (page 4-56) .
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4.4 Minimizing Instruction Pipeline Delays

The C55x instruction pipeline is a protected pipeline that has two, decoupled
segments. The first segment fetches instructions. The second segment, re-
ferred to as the execution pipeline, decodes instructions and performs data ac-
cesses and computations. The execution pipeline is illustrated in Figure 4–8
and described in Table 4–5. Because there are no potential data-access errors
in the first segment, this section of the Programmer’s Guide focuses entirely
on the second segment. For more details on the pipeline, refer to the CPU ref-
erence guide (see Related Documentation From Texas Instruments in the
preface).

Figure 4–8. Second Segment of the Pipeline (Execution Pipeline)

Time

Decode
(D)

Address
(AD)
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(AC1)

Access 2
(AC2)
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(R)

Execute
(X)

Write
(W)

Table 4–5. Descriptions of the Execution Pipeline Stages

Pipeline Stage Description

Decode (D) � Read up to six bytes from the instruction buffer queue.

� Decode an instruction pair or a single instruction.

� Dispatch instructions to the appropriate CPU functional
units.

Address (AD) � Compute data-space addresses in the data-address
generation unit (DAGEN).

� Modify pointers and repeat counters as required.

� Compute the program-space addresses for PC-relative
branching instructions.

Access 1 (AC1) Send addresses for read operands as required on the fol-
lowing buses: BAB, CAB, and DAB.

Access 2 (AC2) Allow one cycle for memories to respond to read accesses.
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Table 4–5. Descriptions of the Execution Pipeline Stages (Continued)

Pipeline Stage Description

Read (R) � Transfer an operand or operands to the CPU via the
data-read buses.

� Generate an address for each operand write, and send
the addresses on the data-write address buses.

� Evaluate conditional operators

Execute (X) � Execute data processing instructions that are executed
in the A unit and the D unit.

� Store results of computations into registers.

Write (W) Send data to memory, to I/O space,.or to registers ac-
cessed at their memory-mapped addresses.

Multiple instructions are executed simultaneously in the pipeline, and different
instructions perform modifications to memory, I/O space, and register values
during different stages of the pipeline. In an unprotected pipeline, this could
lead to data-access errors—reads and writes at the same location happening
out of the intended order. The pipeline-protection unit of the C55x DSP inserts
extra cycles to prevent these errors. If an instruction (say, instruction 3) must
access a location but a previous instruction (say, instruction 1) is not done with
the location, instruction 3 is halted in the pipeline until instruction 1 is done. To
minimize delays, you can take steps to prevent many of these pipeline-protec-
tion cycles.

The instruction set reference guides (see Related Documentation From Texas
Instruments in the preface) show how many cycles an instruction takes to exe-
cute when the pipeline is full and experiencing no delays. Pipeline-protection
cycles add to that best-case execution time. As it will be shown, most cases
of pipeline conflict can be solved with instruction rescheduling.

This section provides examples to help you to better understand the impact
of the pipeline structure on the way your code performs. It also provides you
with recommendations for coding style and instruction usage to minimize con-
flicts or pipeline stalls. This section does not cover all of the pipeline potential
conflicts, but some of the most common pipeline delays found when writing
C55x code.
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4.4.1 Process to Resolve Pipeline Conflicts

A pipeline conflict occurs when one instruction attempts to access a resource
before a previous instruction is done with that resource. The pipeline-protec-
tion unit adds extra cycles to delay the later instruction.The following process
is recommended for resolving pipeline conflicts that are causing delays. Try
to focus your pipeline optimization effort on your key, inner code kernels first,
to achieve a greater payback.

Step 1: Make your code functional.

Write your code first, without pipeline optimization in mind. In the
C55x DSP, the pipeline is protected. Code is executed in the order
in which it is written, and stalls are automatically inserted by the hard-
ware to prevent incorrect operation. This makes programming the
DSP easier and makes the code easier to debug than an open-pipe-
line device, in which the sequence of the code might not be the se-
quence of operation. There are only a few cases in which the C55x
pipeline is not fully protected and they will be described in this docu-
mentation.

Step 2: Determine where the pipeline conflicts exist.

If you are using the C55x simulator, take advantage of its pipeline-
conflict detection capabilities. Watch the clock variable when step-
ping through your code in the C55x simulator to view the intervention
of the pipeline protection unit. If the clock increments by more than
1, there might be a pipeline or memory conflict in the instruction you
just single stepped.

The C55x emulator/debugger does not support the clock variable,
and setting breakpoints before and after may not give you accurate
results for a single instruction due to the initial pipeline fill and the fi-
nal pipeline flush during single stepping. In this case, you should try
to benchmark small pieces of looped code.

Step 3: Apply the pipeline optimization coding recommendations sum-
marized in Table 4–6.

After step 2 or if you are not using the simulator but the emulator, you
should try to apply the recommendations directly.

Tip:  When suspecting a pipeline conflict between two instructions,
try to add NOP instructions in between. If the entire code cycle count
does not increase by adding NOPs, then you can try to rearrange
your code to replace those NOPs with useful instructions.
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Software solutions to apply for pipeline and memory conflicts include:

� Reschedule instructions.

� Reduce memory accesses by using CPU registers to hold data.

� Reduce memory accesses by using a local repeat instruction, an instruc-
tion that enables the CPU to repeated execute a block of code from the
instruction buffer queue.

� Relocate variables and data arrays in memory, or consider temporarily
copying arrays to other nonconflicting memory banks at run time.

4.4.2 Recommendations for Preventing Pipeline Delays

Table 4–6 lists recommendations for avoiding common causes for pipeline de-
lays. The rightmost column of the table directs you to the section that contains
the details behind each recommendation. (The examples in this section use
instructions from the algebraic instruction set, but the concepts apply equally
for the mnemonic instruction set.)

Table 4–6. Recommendations for Preventing Pipeline Delays 

Recommendation
Category Recommendation See ...

General � In the case of a conflict, the front runner wins. Section 4.4.2.1, page 4-57

� Avoid write/read or read/write sequences to
the same register.

Section 4.4.2.2, page 4-58

� Use MAR instructions when possible, but
avoid read/write sequences, and pay atten-
tion to instruction size.

Section 4.4.2.3, page 4-61

Pipeline-protection
granularity

� Pay attention to pipeline-protection granular-
ity when updating status register bit fields.

Section 4.4.2.4, page 4-64

� Pay attention to pipeline-protection granular-
ity when accessing MMRs in consecutive in-
structions.

Section 4.4.2.5, page 4-66

Loop control � Understand when the loop-control registers
are accessed in the pipeline

Section 4.4.2.6, page 4-68

� Avoid accessing the BRC register in the last
4 instructions of a block-repeat or local block-
repeat structure (to prevent a delay of the
BRC decrement or an unprotected pipeline
situation).

Section 4.4.2.7, page 4-68
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Table 4–6. Recommendations for Preventing Pipeline Delays (Continued)

Recommendation
Category See ...Recommendation

� Do not access loop-control registers RSAx,
REAx, and RPTC within the loop itself.

Section 4.4.2.8, page 4-71

� Initialize the BRCx or CSR register at least 4
cycles before the repeat instruction, or initial-
ize the register with an immediate value.

Section 4.4.2.9, page 4-71

Condition evaluation � Try to set conditions well in advance of the
time that the condition is tested.

Section 4.4.2.10, page 4-72

� When making an instruction execute condi-
tionally, use execute(AD_unit) instead of
execute(D_unit) to create fully protected
pipeline conditions, but be aware of potential
pipeline delays.

Section 4.4.2.11, page 4-73

� Understand the execute (D_unit) condition
evaluation exception.

Section 4.4.2.12, page 4-75

Memory usage � When working with dual MAC and FIR in-
structions, put the Cmem operand in a differ-
ent memory bank.

Section 4.4.3.1, page 4-80

� When working on data in the same memory
bank, pay attention to instruction sequences
that could generate memory conflicts.

Section 4.4.3.2, page 4-81

� Map program code to a dedicated SARAM
memory block to avoid conflicts with data ac-
cesses.

Section 4.4.3.3, page 4-82

� For 32-bit accesses (using an Lmem oper-
and), no performance hit is incurred if you
use SARAM (there is no need to use
DARAM).

Section 4.4.3.4, page 4-82

4.4.2.1 In the case of a conflict, the front runner wins.

A pipeline conflict arises when two instructions in different stages in the pipe-
line compete for the use of the same resource. The resource is granted to the
instruction that is ahead in terms of pipeline execution, to increase overall in-
struction throughput.



Minimizing Instruction Pipeline Delays

 4-58

4.4.2.2 Avoid write/read or read/write sequences to the same register.

All register accesses do not happen in the same pipeline stage. Registers are
typically read in the read stage and written in the execute stage of the pipeline
with the following notable exceptions:

� When using indirect addressing, AR0–7 and CDP registers are read and
updated (for example, incremented according to the modifier *AR2+) dur-
ing the AD stage.

� When using stack addressing or push, pop, call, and return instructions,
SP is updated in the AD stage.

� When using the MAR () instruction, ARx and Tx registers are written during
the AD stage.

� When using the swap () instruction, ARx and Tx registers are swapped
during the AD stage.

� When you load one of the following registers with an immediate value (us-
ing a specific-CPU-register-load instruction), the CPU moves the immedi-
ate value into the register in the AD stage: BK03, BK47, BKC, BRC0,
BRC1, CSR, DPH, PDP, BSA01, BSA23, BSA45, BSA67, BSAC, CDP,
DP, SP, SSP.

Because registers are not accessed in the same pipeline stage, pipeline con-
flicts can occur in write/read or read/write sequences to the same register. Fol-
lowing are 4 common register pipeline conflict cases and how to resolve them.

Case 1: ARx write followed by an indirect addressing ARx read/update

Example 4–15 shows an AR write followed by an indirect-addressing AR read
and update. In the example, I2  has a 4-cycle latency due to pipeline protec-
tion. I2  must wait in the AD stage until I1  finishes its X stage. I2  requires 5
cycles (minimum 1 cycle + 4 pipeline-protection cycles).
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Example 4–15. A-Unit Register Write/(Read in AD Stage) Sequence

I1: AR1 = #y16 ; Load AR1 with constant
;  (AR1 modified in X stage of I1)

I2: AC0 = *AR1+ ; Load AC0 with value pointed to by AR1
;  (AR1 read in AD stage of I2)
; Results: AC0 = content of memory at
; location #y16, AR1 = #y16 + 1

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 delayed 4 cycles

I2 I1 4

I2 I1 5

I2 I1 6 I1 writes to AR1

I2 I1 7 I2 reads AR1

I2 8

I2 9

I2 10

I2 11

I2 12

One solution is instruction rescheduling. Between I1  and I2  you can place 4
cycles worth of instructions from elsewhere.

I1: AR1 = #y16
nop                ; Replace NOPs with useful instructions
nop
nop
nop
I2: AC0 = *AR1+

Another solution is to use a MAR instruction to write to AR1:

I1: MAR(AR1 = #y16)
I2: AC0 = *AR1+

A MAR instruction modifies a register in the AD stage, preventing a pipeline
conflict. This solution is covered in more detail in section 4.4.2.3 (page 4-61).

Case 2: ARx read followed by an indirect addressing ARx read/update

Example 4–16 shows an AR read followed by an indirect addressing AR up-
date. In the example, I2  is delayed 2 cycles due to pipeline protection. I2  must
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wait in the AD stage until I1  finishes its R stage. I2 executes in 3 cycles (mini-
mum 1 cycle + 2 pipeline-protection cycles). Notice that AR1 is read by I1  and
is incremented by I2  in the same cycle (cycle 5). This is enabled by an A-unit
register prefetch mechanism activated in the R stage of the C55x DSP.

Example 4–16. A-Unit Register Read/(Write in AD Stage) Sequence

I1: AC1 = AR1 ; AR1 read in R stage
I2: AC0 = *AR1+ ; AR1 updated in AD stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 delayed 2 cycles

I2 I1 4

I2 I1 5 I1 reads AR1; I2 increments AR1

I2 I1 6

I2 I1 7

I2 8

I2 9

I2 10

To prevent 1 to 3 of the pipeline-protection cycles, you can reschedule instruc-
tions. If possible, take up to 3 cycles worth of instructions from elsewhere in
the program and place them between I1  and I2 .

AC1 = AR1
nop          ; Replace NOPs with useful instructions
nop
AC0 = *AR1+

One could consider that using a MAR for the ARx register update could also
be solution. However as Example 4–16 shows, using MAR can cause unnec-
essary pipeline conflicts. This is covered in detail in section 4.4.2.3.



Minimizing Instruction Pipeline Delays

4-61Optimizing Assembly Code

Case 3: ACx write followed by an ACx read

Accumulators and registers not associated with address generation are read
in the R stage and written at the end of the X stage.

The (write in X stage)/(read in R stage) sequence shown in Example 4–17
costs 1 cycle for pipeline protection. AC0 is updated in the X stage of I1 . AC0
must be read in the R stage of I2 , but I2  must wait until I1  has written to AC0.
The 1 cycle can be regained if you move a 1-cycle instruction between I1  and
I2 :

I1:AC0 = AC0 + #1
nop ; Replace NOP with useful instruction

I2:AC2 = @AC0_L || mmap()

Notice that

AC0 = AC0 + #1
AC2 = AC0

will not cause pipeline conflicts because it uses only internal buses (no
memory buses) to move data between registers. When AC0_L is accessed via
the memory map (@AC0_L || mmap()), it is treated as a memory access.

Example 4–17. Register (Write in X Stage)/(Read in R Stage) Sequence
I1: AC0 = AC0 + #1 ; AC0 updated in X stage
I2: AC2 = @AC0_L || mmap() ; AC0_L read in R stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 I1 6 I1 updates AC0; I2 delayed

I2 I1 7 I2 reads AC0

I2 8

I2 9

4.4.2.3 Use MAR instructions when possible, but avoid read/write sequences, and
pay attention to instruction size.

The MAR instruction uses independent hardware in the data-address genera-
tion unit (DAGEN) to update ARx and Tx registers in the AD stage of the pipe-
line. You can take advantage of this fact to avoid pipeline conflicts, as shown
in Example 4–18. Because AR1 is updated by the MAR instruction prior to be-
ing used by I2  for addressing generation, no cycle penalty is incurred.
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However, using a MAR instruction could increase instruction size. For exam-
ple, mar(AR1 = #y16) requires 4 bytes, while AR1 = #y16 instruction requires
3 bytes. You must consider the tradeoff between code size and speed.

Example 4–18. Good Use of MAR Instruction (Write/Read Sequence)

I1: mar(AR1 = #y16) ; AR1 updated in AD stage
I2: AC0 = *AR1+ ; AR1 read in AD stage

; (No cycle penalty)

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2 I1 updates AR1

I2 I1 3 I2 reads AR1

I2 I1 4

I2 I1 5

I2 I1 6

I2 I1 7

I2 8

Example 4–19 shows that sometimes, using a MAR instruction can cause
pipeline conflicts. The MAR instruction (I2 ) attempts to write to AR1 in the AD
stage, but due to pipeline protection, I2  must wait for AR1 to be read in the
R stage by I1 . This causes a 2-cycle latency. Notice that AR1 is read by I1
and is updated by I2  in the same cycle (cycle 5). This is enabled by an A-unit
register prefetch mechanism activated in the R stage of the C55x DSP.

One way to avoid the latency in Example 4–19 is to use the code in
Example 4–20:

I1: AC1 = AR1 + T1 ; AR1 read in R stage and
I2: AR1 = AR1 + T1 ; AR1 updated in X stage

; (No cycle penalty)
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Example 4–19. Bad Use of MAR Instruction (Read/Write Sequence)

I1: AC1 = AR1 + T1 ; AR1 read in R stage and
I2: mar(AR1 + T1) ; AR1 updated in AD stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 delayed 3 cycles

I2 I1 4

I2 I1 5 I1 reads AR1; I2 updates AR1

I2 I1 6

I2 I1 7

I2 8

I2 9

I2 10

Example 4–20. Solution for Bad Use of MAR Instruction (Read/Write Sequence)

I1: AC1 = AR1 + T1 ; AR1 read in R stage and
I2: AR1 = AR1 + T1 ; AR1 updated in X stage

; (No cycle penalty)

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5 I1 reads AR1

I2 I1 6

I2 I1 7 I2 updates AR1

I2 8



Minimizing Instruction Pipeline Delays

 4-64

4.4.2.4 Pay attention to pipeline-protection granularity when updating status register
bit fields.

The C55x pipeline-protection unit protects accesses to fields of the status reg-
isters (ST0_55–ST3_55) in different ways depending on the pipeline protec-
tion granularity allowed for a given instruction. The pipeline-protection unit can
protect accesses to the content of a status register as a whole entity (coarse
granularity) or as independent fields (fine granularity). The granularity options
for the status registers are summarized in Table 4–7. Fine granularity is ideal,
but its hardware implementation can be costly, and for this reason, fine granu-
larity is not available for all registers.

Table 4–7. Status Register Pipeline-Protection Granularity

Register Fine Granularity Used ... Coarse Granularity Used ...

ST0_55 If an instruction accesses a bit field in
ST0_55 but does not include a direct ref-
erence to ST0_55. Example:
TC1 = *AR2 & #1h

If an instruction includes a direct refer-
ence to ST0_55. Examples:
bit(ST0, #ST0_TC1) = #0
@ST0 _L= 0x0 || mmap()

ST1_55 If an instruction accesses a bit field in
ST1_55 but does not include a direct ref-
erence to ST1_55.

Exception: If the instruction uses one of
the following syntaxes, ST1_55 will have
fine granularity:
bit(ST1, k4) = #0
bit(ST1, k4) = #1

If an instruction includes a direct refer-
ence to ST1_55. Example:
push (@ST1_L) || mmap()

ST2_55 Never In all cases

ST3_55 Never In all cases where protection exists. If
you access one of these bits ...

CAFRZ
CAEN
CACLR
AVIS
MPNMC

... you must use one of these syntaxes to
have pipeline protection...

bit(ST3,k4) = #0
bit(ST3,k4) = #1

In the case of coarse granularity, conflicts can occur when different instructions
access two different register fields in a register. Example 4–21 shows a case
where two register fields (TC1 and TC2) in ST0_55 cannot be accessed with
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fine granularity. The TC1 access in I1  is protected as a write to all of ST0_55.
I2  cannot test a bit in ST0_55 until I1  has updated ST0_55.

Example 4–22 shows an instruction sequence that allows for fine granularity
during accesses to ST0_55. Because both instructions reference the bits di-
rectly rather than by a reference to ST0_55, the TC1 access and the TC2 ac-
cess can occur in the same cycle.

Example 4–21. ST0_55 Course Granularity

I1: bit (ST0, #ST0_TC1) = #0 ; TC1 changed in X stage
I2: if (TC2) goto #label ; TC2 read in R stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 I1 6 I1 updates TC1; I2 delayed

I2 I1 7 I2 tests TC2

I2 8

I2 9

Example 4–22. ST0_55 Fine Granularity

I1: TC1 = AR1 > AC1 ; TC1 changed in X stage
I2: if (TC2) goto #l 2 ; TC2 read in R

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 I1 6 I1 updates TC1; I2 tests TC2

I2 I1 7

I2 8
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4.4.2.5 Pay attention to pipeline-protection granularity when accessing MMRs
in consecutive instructions.

Memory-mapped registers (MMRs) can be viewed by the pipeline-protection
unit as individual registers or as part of the same MMR group.

A conflict can occur if MMRs belonging to the same group are accessed at the
same time. No conflict will occur if

� At least one of the MMRs is protected individually
� Or both MMRs belong to different group

Basically, we have coarse granularity within the groups and fine granularity (or
individual protection) among groups. This is shown in Table 4–8.

Table 4–8. MMR Pipeline-Protection Granularity

Pipeline-Protection Granularity Registers

Fine (individual protection) ST0_55, ST1_55, ST2_55, ST3_55, AR0,
AR1, AR2, AR3, AR4, AR5, AR6, AR7,
T0, T1, T2, T3, CDP, SSP, SP, CSR,
RPTC, IER0, IER1, DBIER0, DBIER1,
IFR0, IFR1, IVPD, IVPH

Coarse (group protection) Group 1: AC0L, AC0H, AC0G

Group 2: AC1L, AC0H, AC0G

Group 3: AC2L, AC2H, AC2G

Group 4: AC3L, AC3H, AC3G

Group 5: TRN0, TRN1

Group 6: BK03, BK47, BKC, BSA01,
BSA23, BSA45, BSA67, BSAC

Group 7: BRC0, BRC1, BRS1, RSA0,
RSA1, REA0, REA1

Example 4–23 shows a case of MMR coarse granularity. Even though BSA23
is not the same register as BSA01, they both belong to the same MMR group
(as shown in Table 4–8). For this reason, I2  waits for I1  to complete the write
to BSA23 (in the W stage) before proceeding with the read from BSA01 (in the
R stage). The result is a 2-cycle delay of I2 . The solution is to move instruc-
tions from elsewhere in the program such that sufficient space is between the
I1  and I2 .

Example 4–24 shows MMR fine granularity. Because the pipeline-protection
unit has fine granularity (individual protection) for CDP and AR1, it does not
delay I2 .
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Example 4–23. MMR Coarse Granularity

I1: @BSA23_L = AC0 || mmap() ; BSA23 written to in W stage
I2: AC1 = @BSA01_L || mmap() ; BSA01 read in R stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 delayed 4 cycles

I2 I1 4

I2 I1 5

I2 I1 6

I2 I1 7 I1 updates BSA23

I2 8 I2 reads BSA01

I2 9

I2 10

Example 4–24. MMR Fine Granularity

I1: @CDP = AC1 || mmap() ; CDP written to in X stage
I2: AC1 = *AR1 ; AR1 read in AD stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 reads AR1

I2 I1 4

I2 I1 5

I2 I1 6 I1 updates CDP

I2 I1 7

I2 8
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4.4.2.6 Understand when the loop-control registers are accessed in the pipeline

As in any register, the h/w loop controller registers (CSR, RPTC, RSA0, REA0,
RSA1, REA1, BRC0, BRC1, and BRS1) are read in R stage and written in X
stage. The exception is when being modified by the repeat instruction them-
selves. For example:

� During repeat() loop execution:

� CSR or an instruction constant is loaded into RPTC in the address
stage of the single repeat() instruction.

� RPTC is tested and decremented in the address stage of each re-
peated instruction.

� During blockrepeat{} and localrepeat{} loop execution:

� BRS1 is loaded into BRC1 in the address stage of the blockrepeat or
localrepeat instructions.

� RSAx and REAx are loaded in the address stage of the blockrepeat or
localrepeat instructions.

� BRCx is decremented in the decode stage of the last instruction of the
loop.

� RSAx and REAx are constantly read in the address stage of each loop
instruction.

4.4.2.7 Avoid accessing the BRC register in the last 4 instructions of a block-repeat
or local block-repeat structure (to prevent a delay of the BRC decrement or
an unprotected pipeline situation).

Reading BRC in one of the last three instructions of a block-repeat structure
could cause delay of the BRC automatic decrement inside the loop or cause
an unprotected pipeline situation. Similarly, writing to BRC in one of the last
four instructions of a block-repeat structure could cause an unprotected pipe-
line situation.

Example 4–25 shows the effect of reading BRC0 within the last three instruc-
tions of a block-repeat structure. I1  reads BRC0 in the R stage of the pipeline
(cycle 5), and the CPU must decrement BRC0 in the D stage of I2  (the last
instruction of a block-repeat structure). The pipeline-protection unit keeps the
proper sequence of these operations (read BRC0 and then decrement BRC0)
by delaying I2  in the D stage for 4 cycles.
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Example 4–25. Protected BRC Read

I1: T1 = BRC0 ; BRC0 read in R stage
I2: Inst 2 (last instruction of a

 block repeat structure) ; BRC0 decremented in D
; stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2 I2 delayed 4 cycles

I2 I1 3

I2 I1 4

I2 I1 5 I1 reads BRC0

I2 I1 6 I2 decrements BRC0

I2 I1 7

I2 8

I2 9

I2 10

I2 11

I2 12

Example 4–26 shows the effect of reading the BRC register in the last instruc-
tion of a block-repeat structure. BRC0 is to be read by I1  in the R stage of the
pipeline (cycle 5) while BRC0 is to be decremented in the AD stage of I2  (the
last instruction of a block-repeat structure). The pipeline-protection unit cannot
guarantee the sequence of these operations (read BRC0 and then write to
BRC0). BRC0 is decremented first, and then the decremented content of
BRC0 is read by I1 .
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Example 4–26. Unprotected BRC Read

I1: T2 = BRC0 ; Last instruction of block–repeat
} ; structure

I2: Inst 2

D AD AC1 AC2 R X W Cycle Comment

I1 1

I1 2 CPU decrements BRC0

I1 3

I1 4

I1 5 I1 reads decremented BRC0

I1 6

I1 7

BRC write accesses are not protected in the last 4 cycles of a block-repeat
structure. Do not write to BRC0 or BRC1 within those cycles.

In Example 4–27 BRC0 is to be written to by I1  in the W stage (cycle 7) ,while
BRC0 is decremented in the D stage of I2 . The pipeline-protection unit cannot
guarantee the proper sequence of these operations (write to BRC0 and then
decrement BRC0). BRC0 is decremented by I2  before BRC0 changed by I1 .

Example 4–27. Unprotected BRC Write

I1: @BRC0_L = BRC0_L + #1 ;BRC0 written in W stage
    || mmap()
I2: Inst2 ; Last instruction of a block–repeat loop

; BRC0 decremented in D stage of last
; instruction

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2 CPU decrements BRC0

I2 I1 3

I2 I1 4

I2 I1 5

I2 I1 6

I2 I1 7 I1 changes BRC0 late

I2 8
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4.4.2.8 Do not access loop-control registers RSAx, REAx, and RPTC within the loop itself.

Accesses to the register RSA0, RSA1, REA0, and REA1 are not protected
when the read or the write is performed within block repeat structures. Similar-
ly, RPTC register accesses are not protected when the accesses are per-
formed within a (conditional) single-instruction repeat loop. Do not access any
of these loop-control registers within the loop itself.

4.4.2.9 Initialize the BRCx or CSR register at least 4 cycles before the repeat instruction,
or initialize the register with an immediate value.

Whenever BRC1 is loaded, BRS1 is loaded with the same value. In
Example 4–28, BRC1 and BRS1 are to be loaded by I1  in X stage of the pipe-
line (cycle 6), while BRS1 is to be read by I2  in the AD stage (cycle 3) to initial-
ize BRC1. The pipeline-protection unit keeps the proper sequence of these op-
erations (write to BRS1 and then read BRS1) by delaying the completion of I2
by 4 cycles. Example 4–29 shows a similar situation with CSR.

Instruction rescheduling or initialization of BRC1/CSR with an immediate val-
ue will remove the pipeline conflict in Example 4–28. An instruction that loads
BRC1/CSR with an immediate value will do so in the AD stage of the instruc-
tion.

Example 4–28. BRC Initialization

I1: BRC1 = *AR1 ; BRC1 and BRS1 loaded in X stage
I2: blockrepeat { ; BRS1 is copied to BRC1 in AD stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 delayed 4 cycles

I2 I1 4

I2 I1 5

I2 I1 6 I1 loads BRS1

I2 I1 7 I2 copies BRS1 into BRC1

I2 8

I2 9

I2 10

I2 11

I2 12
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Example 4–29. CSR Initialization

I1: CSR = * AR1 ; CSR written in X stage
I2: repeat(CSR) ; CSR read in AD stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3 I2 delayed 4 cycles

I2 I1 4

I2 I1 5

I2 I1 6 I1 loads CSR

I2 I1 7 I2 reads CSR

I2 8

I2 9

I2 10

I2 11

I2 12

4.4.2.10 Try to set conditions well in advance of the time that the condition is tested.

Conditions are typically evaluated in the R stage of the pipeline with the follow-
ing exceptions:

� When the (AD_unit) keyword is used, the condition is evaluated in the AD
stage; for example:

if (cond) execute (AD_unit)

� When the (D_unit) keyword is used, the condition is evaluated in the X
stage; for example:

if (cond) execute (D_unit)

The exception is when the D_unit instruction conditions a write to memory.
In this case the condition is evaluated in the read stage; for example:

if (cond) execute (D_unit)

|| *ar1 += ac1

� When a condition is used to make a “forward” branch within a local block
repeat structure, the condition is evaluated in the AD stage; for example:

if (cond) goto #L16

Example 4–30 involves a condition evaluation preceded too closely by a write
to the register affecting the condition. AC1 is updated by I1  in the X stage,
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while I2  must read AC1 in the R stage to evaluate the condition (AC1 == #0).
The pipeline-protection unit ensures the proper sequence of these operations
(write to AC1 and then test AC1) by delaying the completion of I2  by 1 cycle.
The solution is to move I1  within the program, such that it updates AC1 at least
1 cycle sooner.

Example 4–30. Condition Evaluation Preceded by a X-stage Write to the Register
Affecting the Condition

I1: AC1 = AC1 + #1  ; AC1 update in X stage
I2: If (AC1 == #0) goto #subroutine ; AC1 test in R stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 I1 6 I1 updates AC1; I2 delayed

I2 I1 7 I2 tests AC1

I2 8

I2 9

4.4.2.11 When making an instruction execute conditionally, use execute(AD_unit)  instead of
execute(D_unit)  to create fully protected pipeline conditions, but be aware o
potential pipeline delays.

Example 4–31 shows a case where a register load operation (AC1 = *AR3+)
is made conditional with the if (condition) execute(AD-unit) instruction. When
the execute(AD_unit) keyword is used, the condition is evaluated in the AD
stage, and if the condition is true, the conditional instruction performs its opera-
tions in the AD through W stages. In Example 4–31, the AR3+ update in I3 de-
pends on whether AC0 > 0; therefore, the update is postponed until I1 updates
AC0. As a result, I3 is delayed by 4 cycles.

One solution to the latency problem in Example 4–31 is to move I1  such that
AC0 is updated 4 cycles earlier. Another solution is to replace the
execute(AD_unit) keyword with the execute(D_unit) keyword, as shown in
Example 4–32. When the execute(D_unit) keyword is used, the condition is
evaluated in the X stage, and if the condition is true, the conditional instruction
performs its X stage operation. Operations in the AD through R stages will hap-
pen unconditionally. In Example 4–32, AR3 is updated in the AD stage regard-
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less of the condition. Also, the memory read operation in I2  will always hap-
pen. However, the memory value will be written AC1 only if the condition is
true. Otherwise, the memory value is discarded. Overall, a zero-latency exe-
cution is achieved.

Notice that the advantage of using execute(AD_unit) is that it provides a 100%
pipeline protection environment. However, this comes at the expense of added
latency cycles.

Example 4–31. Making an Operation Conditional With execute(AD_unit)

I1: AC0 = AC0 + #1 ; AC0 updated in X stage
I2: If (AC0 > 0) execute (AD_Unit) ; AC0 tested in AD stage
I3: AC1 = *AR3+

; If AC0 > 0, increment AR3 in AD stage and load AC1
; in X stage

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I3 I2 I1 3 I2 and I3 delayed 4 cycles

I3 I2 I1 4

I3 I2 I1 5

I3 I2 I1 6 I1 updates AC0

I3 I2 I1 7 I2 tests AC0

I3 I2 8 If AC0 > 0, I3 updates AR3

I3 I2 9

I3 I2 10

I3 I2 11

I3 I2 12 If AC0 > 0, I3 updates AC1

I3 13
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Example 4–32. Making an Operation Conditional With execute(D_unit)

I1: AC0 = AC0 + #1 ; AC0 updated in X stage
I2: If (AC0 > 0) execute (D_Unit) ; AC0 tested in X stage
I3: AC1 = *AR3+

; If AC0 > 0, load AC1 in X stage. Update AR3 in AD
; stage regardless of the condition.

D AD AC1 AC2 R X W Cycle Comment

I1

I2 I1

I3 I2 I1

I3 I2 I1 I3 updates AR3 unconditionally

I3 I2 I1

I3 I2 I1 I1 updates AC0

I3 I2 I1 I2 tests AC0

I3 I2 If AC0 > 0, I3 updates AC1

I3

4.4.2.12 Understand the execute (D_unit)  condition evaluation exception.

Typically, the execute (D_unit) keyword causes the CPU to evaluate the condi-
tion in the execute (X) stage. The exception is when you make a memory write
operation dependent on a condition, in which case the condition is evaluated
in the read (R) stage.

In Example 4–33, AR3 is to be read by I1  in R stage to evaluate the condition,
while AR3 is to be modified by I3  in the AD stage. The pipeline-protection unit
keeps the proper sequence of these operations (read AR3 and then write to
AR3) by delaying the completion of I3  by 2 cycles. Notice that AR3 is tested
by I1  and is modified by I3  in the same cycle (cycle 5). This is enabled by an
A-unit register prefetch mechanism activated in the R stage of the C55x DSP.

To prevent the 2-cycle delay in Example 4–33, you can insert two other, non-
conflicting instructions between I2  and I3 .
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Example 4–33. Conditional Parallel Write Operation Followed by an
AD-Stage Write to the Register Affecting the Condition

I1: If (AR3 == #0) execute(D-Unit) ; AR3 tested in R stage
I2: || *AR1+ = AC1

; If AR3 contains 0, write to memory in W stage.
; Update AR1 regardless of condition.

I3: AC1 = *(AR3 + T0) ; AR3 updated in AD stage

D AD AC1 AC2 R X W Cycle Comment

I1
||I2

1

I3 I1
||I2

2 I2 updates AR1 unconditionally

I3 I1
||I2

3 I3 delayed 2 cycles

I3 I1
||I2

4

I3 I1
||I2

5 I1 tests AR3; I3 modifies AR3

I3 I1
||I2

6

I3 I1
||I2

7

I3 8

I3 9

I3 10
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4.4.3 Memory Accesses and the Pipeline

This section discusses the impact of the memory mapping of variables/array
on the execution of C55x instructions. The two factors to consider are the type
of memory (DARAM vs SARAM) and the memory bank allocation. DARAM
supports 2 accesses/cycle to the same memory bank. SARAM supports 1 ac-
cess/cycle to one memory bank.

Even though the same buses are used to access SARAM and DARAM
memory banks, the specifics of the accesses are different in the two cases.
Table 4–9 and Table 4–10 show bus activity by access type for DARAM and
SARAM, respectively. A shaded cell in the table indicates bus activity. Within
the shaded cells are references to the CPU memory buses being used:

Symbol Bus

B BB. This data-read data bus carries a 16-bit coefficient data val-
ue (Cmem) from data space to the CPU.

C, D CB, DB. Each of these data-read data buses carries a 16-bit
data value to the CPU. DB carries a value from data space or
from I/O-space. CB carries a second value in certain instances
when the CPU reads two data-space values at the same time.

E, F EB, FB. Each of these data-write data buses carries a 16-bit data
value from the CPU. EB carries a value to data space or to I/O-
space. FB carries a second value when the CPU writes two val-
ues to data space at the same time.



Minimizing Instruction Pipeline Delays

 4-78

Table 4–9. Half-Cycle Accesses to Dual-Access Memory (DARAM)

Access Type D AD AC1 AC2 R X W

Smem read
D

Smem write
E

Smem read/
modify/write

D E

Lmem read C

D

Lmem write E

F

Xmem read
|| Ymem read

D C

Xmem write
|| Ymem write

F E

Xmem read
|| Ymem read
|| Cmem read

D C

B

Xmem read
|| Ymem write

D E

Lmem read
|| Lmem write

C

D

E

F
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Table 4–10. One-Cycle Accesses to Single-Access Memory (SARAM)

Access Type D AD AC1 AC2 R X W

Smem read
D

Smem write
E

Smem read/
modify/write

D E

Lmem read C

D

Lmem write E

F

Xmem read
|| Ymem read

D

C

Xmem write
|| Ymem write

E

F

Xmem read
|| Ymem read
|| Cmem read

D

C

B

Xmem read
|| Ymem write

D E

Lmem read
|| Lmem write

C

D

E

F
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Ideally, we should allocate all data into DARAM due to its higher memory band-
width (2 cycles/access). However, DARAM is a limited resource and should be
used only when it is advantageous. Following are recommendations to guide
your memory mapping decisions.

� Reschedule instructions.

� Reduce memory accesses by using CPU registers to hold data.

� Reduce memory accesses by using a local repeat instruction, an instruc-
tion that enables the CPU to repeated execute a block of code from the
instruction buffer queue.

� Relocate variables and data arrays in memory, or consider temporarily
copying arrays to other nonconflicting memory banks at run time.

4.4.3.1 When working with dual MAC and FIR instructions, put the Cmem operand
in a different memory bank.

The only memory access type which can generate a conflict in a DARAM is the
execution of instructions requiring three data operands in 1 cycle: Xmem,
Ymem, and Cmem (coefficient operand). The instructions that use three data
operands are:

� Dual multiply-and-accumulate (MAC) instruction:

ACx = M40(rnd(ACx + uns(Xmem) * uns(Cmem)))),

ACy = M40(rnd(ACy + uns(Ymem) * uns(Cmem))))

� Finite impulse response filter instructions:

firs(Xmem,Ymem,Cmem,ACx,ACy)
firsn(Xmem,Ymem,Cmem,ACx,ACy)

This memory conflict can be solved by maintaining the Ymem and Xmem oper-
ands in the same DARAM memory bank but putting the Cmem operand into
a different memory bank (SARAM or DARAM).

When cycle intensive DSP kernels are developed, it’s extremely important to
identify and document software integration recommendations stating which
variables/arrays must not be mapped in the same DARAM memory block.

The software developer should also document the associated cycle cost when
the proposed optimized mapping is not performed. That information will pro-
vide the software integrator enough insight to make trade-offs.
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When cycle intensive DSP kernels are developed, it is extremely important to
identify and document s/w integration recommendations stating which vari-
ables/arrays must not be mapped in the same dual access memory. The soft-
ware developer should also document the associated cycle cost when the pro-
posed optimized mapping is not performed. That information will provide the
software integrator enough insight to make trade-offs. Table 4–11 provides an
example of such table: if the 3 arrays named “input.” “output,” and “coefficient”
are in the same DARAM, the subroutine named “filter” will have 200 cycle over-
head.

Table 4–11. Cross-Reference Table Documented By Software Developers to Help
Software Integrators Generate an Optional Application Mapping

Routine
Cycle

Weight

Array 1
Name

(Xmem) Size

Array 2
Name

(Ymem) Size

Array 3
Name

(Cmem) Size

Cycle
Cost per
Routine

filter 10% input 40 output 40 coefficient 10 10*20

… … … … … … … … …

4.4.3.2 When working on data in the same memory bank, pay attention to instruction
sequences that could generate memory conflicts.

Example 4–34 shows how instruction sequences can generate memory con-
flicts (2 accesses per cycle per bank) for a SARAM block. The code in the ex-
ample performs a memory write operation followed by a dual-operand read op-
eration within the next 2 cycles.

If an instruction performing a dual operand read access is 2 cycle away from
a single operand write instruction, a memory bank access conflict will occur
if the 3 accesses are performed in the same memory bank. This is shown in
Example 4–34. The solution is to use DARAM (0 cycle delay).
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Example 4–34. Write/Dual-Operand Read Sequence
(Assumes Xmem, Ymem, and Smem Are in the Same SARAM block)

I1: Smem = ACx
I2: NOP
I3: ACx = (Xmem << #16) + (Ymem << #16)

D AD AC1 AC2 R X W Cycle Comment

I1 1

I2 I1 2

I2 I1 3

I2 I1 4

I2 I1 5

I2 I1 6

I3 I2 I1 7 I1 writes to Smem; I3 delayed

I3 I2 8 I3 reads Xmem

I3 9 I3 reads Ymem

I3 10

I3 11

4.4.3.3 Map program code to a dedicated SARAM memory block to avoid conflicts with
data accesses

If a DARAM block maps both program and data spaces of the same routine,
a program code fetch will conflict with a dual(or triple) data operand read (or
write) access if they are performed in the same memory block. C55x DSP re-
solves the conflict by delaying the program code fetch by one cycle. It is there-
fore recommended to map the program code in a dedicated program memory
bank: generally a SARAM memory bank is preferred. This enables to avoid
conflicts with data variables mapped in the high bandwidth DARAM banks.

Another way to avoid memory conflicts is to use the 64-byte instruction buffer
to execute blocks of instructions without refetching code after the 1st iteration
(see localrepeat{} instruction). Conflict will only occur in the first loop iteration.

4.4.3.4 For 32-bit accesses (using an Lmem operand), no performance hit is
 incurred if you use SARAM (there is no need to use DARAM).

When a 32-bit memory access is performed with Lmem, only one address bus
(DAB or EAB) is used to specify the most and least significant words of the
32-bit value. Therefore, reading from or writing to a 32-bit memory location in
an SARAM bank occurs in 1 cycle.
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Fixed-Point Arithmetic

The TMS320C55x  (C55x ) DSP is a 16-bit, fixed-point processor. This
chapter explains important considerations for performing standard- and ex-
tended-precision fixed-point arithmetic with the DSP. Assembly-language
code examples are provided to demonstrate the concepts.
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5.1 Fixed-Point Arithmetic

Digital signal processors (DSPs) have been developed to process complex al-
gorithms that require heavy computations. DSPs can be divided into two
groups: floating-point DSPs and fixed-point DSPs.

Typically, floating-point DSPs use 32-bit words composed of a 24-bit mantissa
and an 8-bit exponent, which together provide a dynamic range from 2–127 to
2128(1 – 2–23). This vast dynamic range in floating-point devices means that
dynamic range limitations may be virtually ignored in a design. Floating-point
devices are usually more expensive and consume more power than fixed-
point devices.

Fixed-point DSPs, like the TMS320C55x DSP, typically use 16-bit words. They
use less silicon area than their floating-point counterparts, which translates
into cheaper prices and less power consumption. Due to the limited dynamic
range and the rules of fixed-point arithmetic, a designer must play a more ac-
tive role in the development of a fixed-point DSP system. The designer has to
decide whether the 16-bit words will be interpreted as integers or fractions, ap-
ply scale factors if required, and protect against possible register overflows.

5.1.1 2s-Complement Numbers

In binary form, a number can be represented as a signed magnitude, where
the left-most bit represents the sign and the remaining bits represent the mag-
nitude.

+52 = 0 011 0100b

–52 = 1 011 0100b

This representation is not used in a DSP architecture because the addition al-
gorithm would be different for numbers that have the same signs and for num-
bers that have different signs. The DSP uses the 2s-complement format, in
which a positive number is represented as a simple binary value and a nega-
tive value is represented by inverting all the bits of the corresponding positive
value and then adding 1.

Example 5–1 shows the decimal number 353 as a 16-bit signed binary num-
ber. Each bit position represents a power of 2, with 20 at the position of the least
significant bit and 215 at the position of the most significant bit. The 0s and 1s
of the binary number determine how these powers of 2 are weighted (times 0
or times 1) when summed to form 353. Because the number is signed, 215 is
given a negative sign. Example 5–2 shows how to compute the negative of a
2s-complement number.
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Example 5–1. Signed 2s-Complement Binary Number Expanded to Decimal Equivalent

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1

= (0 x (–215)) + (0 x 214) + (0 x 213) + (0 x 212) + (0 x 211) + (0 x 210) + (0 x 29) + (1 x 28) + (0 x 27)
+ (1 x 26) + (1 x 25) + (0 x 24) + (0 x 23) + (0 x 22) + (0 x 21) + (1 x 20)

= (1 x 28) + (1 x 26) + (1 x 25) + (1 x 20)

= 256 + 64 + 32 + 1 = 353

Example 5–2. Computing the Negative of a 2s-Complement Number

Begin with a positive binary number (353 decimal): 0000 0001 0110 0001

Invert all bits to get the 1s complement: 1111 1110 1001 1110

Add 1 to get the 2s complement: +                               1

Result: negative binary number (–353 decimal): 1111 1110 1001 1111

5.1.2 Integers Versus Fractions

The most common formats used in DSP programming are integers and frac-
tions. In signal processing, fractional representation is more common. A frac-
tion is defined as a ratio of two integers such that the absolute value of the ratio
is less than or equal to 1. When two fractions are multiplied together, the result
is also a fraction. Multiplicative overflow, therefore, never occurs. Note, how-
ever, that additive overflow can occur when fractions are added. Overflows are
discussed in section 5.5, beginning on page 5-31.

Figure 5–1 shows how you can interpret 2s-complement numbers as integers.
The most significant bit (MSB) is given a negative weight, and the integer is
the sum of all the applicable bit weights. If a bit is 1, its weight is included in
the sum; if the bit is 0, its weight is not applicable (the effective weight is 0). For
simplicity, the figure shows 4-bit binary values; however, the concept is easily
extended for larger binary values. Compare the 4-bit format in Figure 5–1 with
the 8-bit format in Figure 5–2. The LSB of a binary integer always has a bit
weight of 1, and the absolute values of the bit weights increase toward the
MSB. Adding bits to the left of a binary integer does not change the absolute
bit weights of the original bits.
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Figure 5–1. 4-Bit 2s-Complement Integer Representation

4-bit 2s-complement integer MSB LSB

Bit weights –23 = –8 22 = 4 21 = 2 20 = 1

Least positive value 0 0 0 1 = 0 + 0 + 0 + 1 = 1

Most positive value 0 1 1 1 = 0 + 4 + 2 + 1 = 7

Least negative value 1 1 1 1 = –8 + 4 + 2 + 1 = –1

Most negative value 1 0 0 0 = –8 + 0 + 0 + 0 = –8

Other examples: 0 1 0 1 = 0 + 4 + 0 + 1 = 5

1 1 0 1 = –8 + 4 + 0 + 1 = –3

Figure 5–2. 8-Bit 2s-Complement Integer Representation

MSB LSB

–27 = –128 26 = 64 25 = 32 24 = 16 23 = 8 22 = 4 21 = 2 20 = 1

Figure 5–3 shows how 2s-complement numbers can be interpreted as a frac-
tions. The concept is much the same as that in Figure 5–1, but the bit weights
are fractional, meaning that the number cannot have an absolute value larger
than 1. Compare the 4-bit format in Figure 5–3 with the 8-bit format in
Figure 5–4. The MSB of a binary fraction always has a bit weight of –1, and
the absolute values of the bit weights decrease toward the LSB. Unlike adding
bits to the left of a binary integer, adding bits to the left of a binary fraction
changes the bit weights of the original bits.
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Figure 5–3. 4-Bit 2s-Complement Fractional Representation

4-bit binary
fraction

MSB LSB

Bit weights –20 = –1 2–1 = 1/2 2–2 = 1/4 2–3 = 1/8

Least positive
value

0 0 0 1
= 0 + 0 + 0 +1/8
=  1/8

Most positive
value

0 1 1 1
= 0 + 1/2+ 1/4+ 1/8
=  7/8

Least negative
value

1 1 1 1
= –1 + 1/2 + 1/4 + 1/8
= –1/8

Most negative
value

1 0 0 0
= –1 + 0 + 0 + 0
= –1

Other examples: 0 1 0 1
= 0 + 1/2 + 0 + 1/8
=  5/8

1 1 0 1
= –1 + 1/2 + 0 + 1/8
= –3/8

Figure 5–4. 8-Bit 2s-Complement Fractional Representation

MSB LSB

–20 = –1 2–1 = 1/2 2–2 = 1/4 2–3 = 1/8 2–4 = 1/16 2–5 = 1/32 2–6 = 1/64 2–7 = 1/128

5.1.3 2s-Complement Arithmetic

An important advantage of the 2s-complement format is that addition is per-
formed with the same algorithm for all numbers. To become more familiar with
2s-complement binary arithmetic, refer to the examples in this section. You
may want to try a few examples yourself. It is important to understand how 2s-
complement arithmetic is performed by the DSP instructions, in order to effi-
ciently debug your program code.

Example 5–3 shows two 2s-complement additions. These binary operations
are completely independent of the convention the programmer uses to convert
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them into decimal numbers. To highlight this fact, an integer interpretation and
a fractional interpretation are shown for each addition. For simplicity, the ex-
amples use 8-bit binary values; however, the concept is easily extended for
larger binary values. For a better understanding of how the integer and frac-
tional interpretations were derived for the 8-bit binary numbers, see
Figure 5–2 (page 5-4) and Figure 5–4 (page 5-5), respectively.

Example 5–3. Addition With 2s-Complement Binary Numbers

2s-Complement Addition Integer Interpretation Fractional Interpretation

1 (carry)
0000 0101

+ 0000 0100
––––––––––––––

0000 1001

5
+ 4
––––

9

5/128
+ 4/128
–––––––

9/128

1 1 1 (carries)
0000 0101

+ 0000 1101
––––––––––––––

0001 0010

 5
+ 13
–––––

18

 5/128
+ 13/128
––––––––

18/128

Example 5–4 shows subtraction. As with the additions in Example 5–3, an in-
teger interpretation and a fractional interpretation are shown for each com-
putation. It is important to notice that 2s-complement subtraction is the same
as the addition of a positive number and a negative number. The first step is
to find the 2s-complement of the number to be subtracted. The second step
is to perform an addition using this negative number.
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Example 5–4. Subtraction With 2s-Complement Binary Numbers

2s-Complement Subtraction Integer Interpretation Fractional Interpretation

Original form:
0000 0101

– 0000 0100
––––––––––––––

2s complement of subtracted term:
11 (carries)

1111 1011
+ 1
––––––––––––––

1111 1100

Addition form:
11111 1 (carries)

0000 0101
+ 1111 1100
––––––––––––––

0000 0001
(final carry ignored)

5
– 4
––––

5
+ (–4)
––––––

1

5/128
– 4/128
–––––––

5/128
+ (–4/128)
–––––––––

1/128

Original form:
0000 0101

– 0000 1101
––––––––––––––

2s complement of subtracted term:
1111 0010

+ 1
––––––––––––––

1111 0011

Addition form:
111 (carries)

0000 0101
+ 1111 0011
––––––––––––––

1111 1000

 5
– 13
–––––

 5
+ (–13)
–––––––

–8

 5/128
– 13/128
––––––––

 5/128
+ (–13/128)
––––––––––

–8/128
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Example 5–5 shows 2s-complement multiplication. For simplicity, the exam-
ple uses a 4-bit by 4-bit multiplication and assumes an 8-bit accumulator for
the result. Notice that the 7-bit mathematical result is sign extended to fill the
accumulator. The C55x DSP sign extends multiplication results in this way, ex-
tending the result to either 32 bits or 40 bits. The effects of this type of sign ex-
tension can be seen in the integer and fractional interpretations of
Example 5–5. The integer is not changed by sign extension, but the fraction
can be misinterpreted. Sign extension adds an extra sign bit. If your program
assumes that the MSB of the result is the only sign bit, you must shift the result
left by 1 bit to remove the extra sign bit. In the C55x DSP, there is a control bit
called FRCT to automate this shift operation. When FRCT = 1, the DSP auto-
matically performs a left shift by 1 bit after a multiplication. You can clear and
set FRCT with the following instructions:

bit(ST1,#ST1_FRCT) = #0 ; Clear FRCT

bit(ST1,#ST1_FRCT) = #1 ; Set FRCT

Example 5–5. Multiplication With 2s-Complement Binary Numbers

2s-Complement Multiplication Integer Interpretation Fractional Interpretation

0100 Multiplicand
x 1101 Multiplier
–––––––

0000100
000000
00100
1100 (see Note )
–––––––––
1110100 7-bit mathematical result

11110100 8-bit sign-extended result
in accumulator

Note:  Because the MSB is a sign bit, the
final partial product is the 2s complement
negative of the multiplicand.

4
x (–3)
––––––

–12

–12

4/8
x (–3/8)
–––––––––

–12/64 (The MSB of the re-
sult is the only sign bit)

–12/64 if properly inter-
preted; –12/128 if incorrectly
interpreted. To remove extra
sign bit in MSB position, shift
result left by 1 bit.

5.1.4 Extended-Precision 2s-Complement Arithmetic

Numerical analysis, floating-point computations, and other operations may re-
quire arithmetic operations with more than 32 bits of precision. Because the
C55x device is a 16-/32-bit fixed-point processor, software is required for arith-
metic operations with extended precision. These arithmetic functions are per-
formed in parts, similar to the way in which longhand arithmetic is done.
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The DSP has several features that help make extended-precision calculations
more efficient. One of the features is the CARRY status bit, which is affected
by most arithmetic D-unit ALU instructions, as well as the rotate and shift op-
erations. CARRY depends on the M40 status bit. When M40 = 0, the carry/bor-
row is detected at bit position 31. When M40 = 1, the carry/borrow reflected
in CARRY is detected at bit position 39. Your code can also explicitly modify
CARRY by loading ST0_55 or by using a status bit clear/set instruction. For
proper extended-precision arithmetic, the saturation mode bit should be
cleared (SATD = 0) to prevent the accumulator from saturating during the
computations.

Two C55x data buses, CB and DB, allow some instructions to handle 32-bit
operands in a single cycle. The long-word load and double-precision add/sub-
tract instructions use 32-bit operands and can efficiently implement extended-
precision arithmetic.

The hardware multiplier can multiply signed/unsigned numbers, as well as
multiply two signed numbers and two unsigned numbers. This makes 32-bit
multiplication operations efficient.
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5.2 Extended-Precision Addition and Subtraction

The CARRY bit is set in status register 0 (ST0_55) if a carry is generated when
an accumulator value is added to:

� Another accumulator value
� A data-memory operand
� An immediate operand (embedded in the instruction)

A carry can also be generated when two data-memory operands are added
or when a data-memory operand is added to an immediate operand. If a com-
putation does not generate a carry, the CARRY bit is cleared.

The ADD instruction with a 16-bit shift (shown following this paragraph) is an
exception because it can only set the CARRY bit. If this instruction does not
generated a carry, the CARRY bit is left unchanged. This allows the D-unit ALU
to generate the appropriate carry when adding to the lower or upper half of the
accumulator causes a carry.

Mnemonic instruction: ADD Smem << #16, ACx, ACy
Algebraic instruction: ACy = ACx + (Smem << #16)

Figure 5–5 shows several 32-bit additions and their effects on the CARRY bit,
which is referred to as C in the figure.
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Figure 5–5. 32-Bit Addition

C  MSB               LSB       C  MSB               LSB
X  F F F F F F F F F F ACx     X  F F F F F F F F F F ACx
 _ +                 1            +F F F F F F F F F F
1  0 0 0 0 0 0 0 0 0 0         1  F F F F F F F F F E

C  MSB               LSB       C  MSB               LSB
X  0 0 7 F F F F F F F ACx     X  0 0 7 F F F F F F F ACx
 _ +                 1            +F F F F F F F F F F
0  0 0 8 0 0 0 0 0 0 0         1  0 0 7 F F F F F F E

C  MSB               LSB       C  MSB               LSB
X  F F 8 0 0 0 0 0 0 0 ACx     X  F F 8 0 0 0 0 0 0 0 ACx
  +                  1           _+F F F F F F F F F F
0  F F 8 0 0 0 0 0 0 1         1  F F 7 F F F F F F F

ACy = ACx + Smem + CARRY

C  MSB               LSB       C  MSB               LSB
1  0 0 0 0 0 0 0 0 0 0 ACx     1  F F F F F F F F F F ACx
  +                  0           _ +                 0 
0  0 0 0 0 0 0 0 0 0 1 ACy     1  0 0 0 0 0 0 0 0 0 0

ACy = ACx + (Smem <<16)

C  MSB               LSB       C  MSB               LSB
1  F F 8 0 0 0 F F F F ACx     1  F F 8 0 0 0 F F F F ACx
  +0 0 0 0 0 1 0 0 0 0            +0 0 7 F F F 0 0 0 0
1  F F 8 0 0 1 F F F F ACy     1  F F F F F F F F F F

The code in Example 5–6 adds two 64-bit numbers to obtain a 64-bit result.
The partial sum of the 64-bit addition is efficiently performed by the following
instructions, which handle 32-bit operands in a single cycle.

Mnemonic instructions: MOV40 dbl(Lmem), ACx
ADD dbl(Lmem), ACx

Algebraic instructions: ACx = dbl(Lmem)
ACx = ACx + dbl(Lmem)

For the upper half of a partial sum, the instruction that follows this paragraph
uses the carry bit generated in the lower 32-bit partial sum. Each partial sum
is stored in two memory locations using MOV ACx, dbl(Lmem) or
dbl(Lmem) = ACx.

Mnemonic instruction: ADD uns(Smem), CARRY, ACx
Algebraic instruction: ACx = ACx + uns(Smem) + CARRY
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Example 5–6. 64-Bit Addition

(a) Mnemonic Instructions

;*********************************************************************
; 64–Bit Addition Pointer assignments:
;
;   X3 X2 X1 X0 AR1 –> X3 (even address)
; + Y3 Y2 Y1 Y0 X2
; –––––––––––––– X1
;   W3 W2 W1 W0 X0
; AR2 –> Y3 (even address)
; Y2
; Y1
; Y0
; AR3 –> W3 (even address)
; W2
; W1
; W0
;
;*********************************************************************

MOV40 dbl(*AR1(#2)), AC0 ; AC0 = X1 X0
ADD dbl(*AR2(#2)), AC0 ; AC0 = X1 X0 + Y1 Y0
MOV AC0,dbl(*AR3(#2)) ; Store W1 W0.
MOV40 dbl(*AR1), AC0 ; AC0 = X3 X2
ADD uns(*AR2(#1)),CARRY,AC0 ; AC0 = X3 X2 + 00 Y2 + CARRY
ADD *AR2<< #16, AC0 ; AC0 = X3 X2 + Y3 Y2 + CARRY
MOV AC0, dbl(*AR3) ; Store W3 W2.
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Example 5–6. 64-Bit Addition (Continued)

(b) Algebraic Instructions

;*********************************************************************
; 64–Bit Addition Pointer assignments:
;
;   X3 X2 X1 X0 AR1 –> X3 (even address)
; + Y3 Y2 Y1 Y0 X2
; –––––––––––––– X1
;   W3 W2 W1 W0 X0
; AR2 –> Y3 (even address)
; Y2
; Y1
; Y0
; AR3 –> W3 (even address)
; W2
; W1
; W0
;
;*********************************************************************

AC0 = dbl(*AR1(#2)) ; AC0 = X1 X0
AC0 = AC0 + dbl(*AR2(#2)) ; AC0 = X1 X0 + Y1 Y0
dbl(*AR3(#2)) = AC0 ; Store W1 W0.
AC0 = dbl (*AR1) ; AC0 = X3 X2
AC0 = AC0 + uns(*AR2(#1))+ CARRY ; AC0 = X3 X2 + 00 Y2 + CARRY
AC0 = AC0 + (*AR2<< #16) ; AC0 = X3 X2 + Y3 Y2 + CARRY
dbl(*AR3) = AC0 ; Store W3 W2.

During subtraction, the effect on the CARRY bit is similar to that during addi-
tion. CARRY is cleared if a borrow is generated when an accumulator value
is subtracted from:

� Another accumulator
� A data-memory operand
� An immediate operand

A borrow can also be generated when two data-memory operands are sub-
tracted or when a data -memory operand is subtracted from a data-memory
operand. If a borrow is not generated, the CARRY is set.

The SUB instruction with a 16-bit shift (shown following this paragraph) is an
exception because it only resets the carry bit. This allows the D-unit ALU to
generate the appropriate carry when subtracting to the lower or upper half of
the accumulator causes a borrow.

Mnemonic instruction: SUB Smem << #16, ACx, ACy
Algebraic instruction: ACy = ACx – (Smem << #16)
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Figure 5–6 shows several 32-bit subtractions and their effects on the carry bit.

Figure 5–6. 32-Bit Subtraction

C  MSB               LSB      C  MSB               LSB
X  0 0 0 0 0 0 0 0 0 0 ACx    X  F F 0 0 0 0 0 0 0 0 ACx
  –                  1           –F F F F F F F F F F
0  F F F F F F F F F F        0  0 0 0 0 0 0 0 0 0 1

C  MSB               LSB      C  MSB               LSB
X  0 0 7 F F F F F F F ACx    X  0 0 7 F F F F F F F ACx
  –                  1           –F F F F F F F F F F
1  0 0 7 F F F F F F E        C  F F 8 0 0 0 0 0 0 0

C  MSB               LSB      C  MSB               LSB
X  F F 8 0 0 0 0 0 0 0 ACx    X  F F 8 0 0 0 0 0 0 0 ACx
  –                  1           –F F F F F F F F F F
1  F F 7 F F F F F F F        0  F F 8 0 0 0 0 0 0 1

ACy = ACx – Smem – BORROW

C  MSB               LSB      C  MSB               LSB
0  0 0 0 0 0 0 0 0 0 0 ACx    0  F F F F F F F F F F ACx
  –                  0           –                  0 
0  F F F F F F F F F F ACy    1  F F F F F F F F F E

ACy = ACx – (Smem << 16)

C  MSB               LSB      C  MSB               LSB
1  F F 8 0 0 0 F F F F ACx    0  F F 8 0 0 0 F F F F ACx
  –0 0 0 0 0 1 0 0 0 0           –F F F F F F 0 0 0 0
0  0 0 7 F F F F F F F ACy    0  F F 8 0 0 1 F F F F

Example 5–7 subtracts two 64-bit numbers to obtain a 64-bit result. The partial
remainder of the 64-bit subtraction is efficiently performed by the following in-
structions, which handle 32-bit operands in a single cycle.

Mnemonic instructions: MOV40 dbl(Lmem), ACx
SUB dbl(Lmem), ACx

Algebraic instructions: ACx = dbl(Lmem)
ACx = ACx – dbl(Lmem)

For the upper half of the partial remainder, the instruction that follows this para-
graph uses the borrow generated in the lower 32-bit partial remainder. The
borrow is not a physical bit in a status register; it is the logical inverse of
CARRY. Each partial sum is stored in two memory locations using
MOV ACx, dbl(Lmem) or dbl(Lmem) = ACx.

Mnemonic instruction: SUB uns(Smem), BORROW, ACx
Algebraic instruction: ACx = ACx – uns(Smem) – BORROW
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Example 5–7. 64-Bit Subtraction

(a) Mnemonic Instructions

;**********************************************************************
; 64–Bit Subtraction Pointer assignments:
;
;   X3 X2 X1 X0 AR1 –> X3 (even address)
; – Y3 Y2 Y1 Y0 X2
; –––––––––––––– X1
;   W3 W2 W1 W0 X0
; AR2 –> Y3 (even address)
; Y2
; Y1
; Y0
; AR3 –> W3 (even address)
; W2
; W1
; W0
;
;**********************************************************************

MOV40 dbl(*AR1(#2)), AC0 ; AC0 = X1 X0
SUB dbl(*AR2(#2)), AC0 ; AC0 = X1 X0 – Y1 Y0
MOV AC0, dbl(*AR3(#2)) ; Store W1 W0.
MOV40 dbl (*AR1), AC0 ; AC0 = X3 X2
SUB uns(*AR2(#1)), BORROW, AC0 ; AC0 = X3 X2 – 00 Y2 – BORROW
SUB *AR2 << #16, AC0 ; AC0 = X3 X2 – Y3 Y2 – BORROW
MOV AC0, dbl(*AR3) ; Store W3 W2.
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Example 5–7. 64-Bit Subtraction (Continued)

(b) Algebraic Instructions

;**********************************************************************
; 64–Bit Subtraction Pointer assignments:
;
;   X3 X2 X1 X0 AR1 –> X3 (even address)
; – Y3 Y2 Y1 Y0 X2
; –––––––––––––– X1
;   W3 W2 W1 W0 X0
; AR2 –> Y3 (even address)
; Y2
; Y1
; Y0
; AR3 –> W3 (even address)
; W2
; W1
; W0
;
;**********************************************************************

AC0 = dbl(*AR1(#2)) ; AC0 = X1 X0
AC0 = AC0 – dbl(*AR2(#2)) ; AC0 = X1 X0 – Y1 Y0
dbl(*AR3(#2)) = AC0 ; Store W1 W0.
AC0 = dbl (*AR1) ; AC0 = X3 X2
AC0 = AC0 – uns(*AR2(#1)) – BORROW ; AC0 = X3 X2 – 00 Y2 – BORROW
AC0 = AC0 – (*AR2<< #16) ; AC0 = X3 X2 – Y3 Y2 – BORROW
dbl(*AR3) = AC0 ; Store W3 W2.
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5.3 Extended-Precision Multiplication

Extended precision multiplication can be performed using basic C55x instruc-
tions. The C55x instruction set provides the user with a very flexible set of
16-bit multiply instructions that accept signed and unsigned operands and with
a very efficient set of multiply-and-accumulate instructions that shift the value
of the accumulator before adding it to the multiplication result. Figure 5–5
shows how two 32-bit numbers yield a 64-bit product.

Figure 5–7. 32-Bit Multiplication

X1 X0

Y1 Y0

X1 X0

Y1 Y0

X0 x Y0Unsigned multiplication

X1 x Y0Signed/unsigned multiplication

X0 x Y1Signed/unsigned multiplication

X1 x Y1Signed multiplication

W3 W2 W1 W0

+

Final 64-bit result

×

Example 5–8 shows that a multiplication of two 32-bit integer numbers re-
quires one multiplication, two multiply/accumulate/shift operations, and a mul-
tiply/accumulate operation. The product is a 64-bit integer number.
Example 5–9 shows a fractional multiplication. The operands are in Q31 for-
mat, while the product is in Q31 format.
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Example 5–8. 32-Bit Integer Multiplication

(a) Mnemonic Instructions

;****************************************************************
; This routine multiplies two 32–bit signed integers, giving a
; 64–bit result. The operands are fetched from data memory and the 
; result is written back to data memory.
;
; Data Storage: Pointer Assignments:
; X1 X0 32–bit operand AR0 –> X1
; Y1 Y0 32–bit operand X0
; W3 W2 W1 W0 64–bit product AR1 –> Y1
; Y0
; Entry Conditions: AR2 –> W0
; SXMD = 1 (sign extension on) W1
; SATD = 0 (no saturation) W2
; FRCT = 0 (fractional mode off) W3
;
; RESTRICTION: The delay chain and input array must be
; long-word aligned.
;***************************************************************

AMAR *AR0+ ; AR0 points to X0
|| AMAR *AR1+ ; AR1 points to Y0
MPYM uns(*AR0), uns(*AR1), AC0 ; ACO = X0*Y0
MOV AC0,*AR2+ ; Save W0
MACM *AR0+, uns(*AR1–), AC0 >> #16, AC0 ; AC0 = X0*Y0>>16 + X1*Y0
MACM uns(*AR0–), *AR1, AC0 ; AC0 = X0*Y0>>16 + X1*Y0 + X0*Y1
MOV AC0, *AR2+ ; Save W1
MACM *AR0, *AR1, AC0 >> #16, AC0 ; AC0 = AC0>>16 + X1*Y1
MOV AC0, *AR2+   ; Save W2
MOV HI(AC0), *AR2 ; Save W3
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Example 5–8. 32-Bit Integer Multiplication (Continued)

(b) Algebraic Instructions

;****************************************************************
; This routine multiplies two 32–bit signed integers, giving a
; 64–bit result. The operands are fetched from data memory and the 
; result is written back to data memory.
;
; Data Storage: Pointer Assignments:
; X1 X0 32–bit operand AR0 –> X1
; Y1 Y0 32–bit operand X0
; W3 W2 W1 W0 64–bit product AR1 –> Y1
; Y0
; Entry Conditions: AR2 –> W0
; SXMD = 1 (sign extension on) W1
; SATD = 0 (no saturation) W2
; FRCT = 0 (fractional mode off) W3
;
; RESTRICTION: The delay chain and input array must be
; long-word aligned.
;***************************************************************

mar(*AR0+) ; AR0 points to X0
|| mar(*AR1+) ; AR1 points to Y0
AC0 = uns(*AR0–)*uns(*AR1) ; ACO = X0*Y0
*AR2+ = AC0 ; Save W0
AC0 = (AC0 >> #16) + ((*AR0+)*uns(*AR1–)) ; AC0 = X0*Y0>>16 + X1*Y0
AC0 = AC0 + (uns(*AR0–)* (*AR1)) ; AC0 = X0*Y0>>16 + X1*Y0 + X0*Y1
*AR2+ = AC0 ; Save W1
AC0 = (AC0 >> #16) + ((*AR0)*(*AR1)) ; AC0 = AC0>>16 + X1*Y1
*AR2+ = AC0   ; Save W2
*AR2 = HI(AC0) ; Save W3
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Example 5–9. 32-Bit Fractional Multiplication

(a) Mnemonic Instructions

;**************************************************************************
; This routine multiplies two Q31 signed integers, resulting in a 
; Q31 result. The operands are fetched from data memory and the 
; result is written back to data memory. 
;
; Data Storage: Pointer Assignments:
; X1 X0 Q31 operand AR0 –> X1
; Y1 Y0 Q31 operand X0
; W1 W0 Q31 product AR1 –> Y1
; Y0
; Entry Conditions: AR2 –> W1 (even address)
; SXMD = 1 (sign extension on) W0
; SATD = 0 (no saturation)
; FRCT = 1 (shift result left by 1 bit)
;
; RESTRICTION: W1 W0 is aligned such that W1 is at an even address.
;***************************************************************************

AMAR *AR0+ ; AR0 points to X0
MPYM uns(*AR0), *AR1+, AC0 ; AC0 = X0*Y1
MACM *AR0, uns(*AR1–), AC0 ; AC0 =X0*Y1 + X1*Y0
MACM *AR0, *AR1, AC0 >> #16, AC0 ; AC0 = AC0>>16 + X1*Y1
MOV AC0, dbl(*AR2) ; Save W1 W0

(b) Algebraic Instructions

;**************************************************************************
; This routine multiplies two Q31 signed integers, resulting in a 
; Q31 result. The operands are fetched from data memory and the 
; result is written back to data memory. 
;
; Data Storage: Pointer Assignments:
; X1 X0 Q31 operand AR0 –> X1
; Y1 Y0 Q31 operand X0
; W1 W0 Q31 product AR1 –> Y1
; Y0
; Entry Conditions: AR2 –> W1 (even address)
; SXMD = 1 (sign extension on) W0
; SATD = 0 (no saturation)
; FRCT = 1 (shift result left by 1 bit)
;
; RESTRICTION: W1 W0 is aligned such that W1 is at an even address.
;***************************************************************************

mar(*AR0+) ; AR0 points to X0
AC0 = uns(*AR0–)*(*AR1+) ; AC0 = X0*Y1
AC0 = AC0 + ((*AR0)* uns(*AR1–)) ; AC0 =X0*Y1 + X1*Y0
AC0 = (AC0 >> #16) + ((*AR0)*(*AR1)) ; AC0 = AC0>>16 + X1*Y1
dbl(*AR2) = AC0 ; Save W1 W0
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5.4 Division

Binary division is the inverse of multiplication. Multiplication consists of a se-
ries of shift and add operations, while division can be broken into a series of
subtract and shift operations. On the C55x DSP you can implement this kind
of division by repeating a form of the conditional subtract (SUBC) instruction.

In a fixed-point processor, the range of the numbers we can use is limited by
the number of bits and the convention we use to represent these numbers. For
example, with a 16-bit unsigned representation, it is not possible to represent
a number larger than 216 – 1 (that is, 65 535). There can be problems with divi-
sion operations that require computing the inverse of a very small number.
Some digital signal processing algorithms may require integer or fractional di-
vision operations that support a large range of numbers. This kind of division
can be implemented with the conditional subtract (SUBC) instruction.

The difference between integers and fractional numbers is so great in a fixed
point architecture that it requires different algorithms to perform the division
operation. Section 5.4.1 shows how to implement signed and unsigned integer
division. Section 5.4.2 (page 5-30) describes fractional division.

5.4.1 Integer Division

To prepare for a SUBC integer division, place a 16-bit positive dividend in an
accumulator. Place a 16-bit positive divisor in memory. When you write the
SUBC instruction, make sure that the result will be in the same accumulator
that supplies the dividend; this creates a cumulative result in the accumulator
when the SUBC instruction is repeated. Repeating the SUBC instruction 16
times produces a 16-bit quotient in the low part of the accumulator (bits 15–0)
and a remainder in the high part of the accumulator (bits 31–16). During each
execution of the conditional subtract instruction:

1) The 16-bit divisor is shifted left by 15 bits and is subtracted from the value
in the accumulator.

2) If the result of the subtraction is greater than or equal to 0, the result is
shifted left by 1 bit, added to 1, and stored in the accumulator. If the result
of the subtraction is less than 0, the result is discarded and the value in the
accumulator is shifted left by 1 bit.

The following examples show the implementation of the signed/unsigned inte-
ger division using the SUBC instruction.
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5.4.1.1 Examples of Unsigned Integer Division

Example 5–10 shows how to use the SUBC instruction to implement unsigned
division with a 16-bit dividend and a 16-bit divisor.

Example 5–10. Unsigned, 16-Bit By 16-Bit Integer Division

(a) Mnemonic Instructions

;***************************************************************************
; Pointer assignments:  ___________
; AR0 –> Dividend Divisor ) Dividend
; AR1 –> Divisor
; AR2 –> Quotient
; AR3 –> Remainder
;
; Algorithm notes:
; – Unsigned division, 16–bit dividend, 16–bit divisor
; – Sign extension turned off. Dividend & divisor are positive numbers.
; – After division, quotient in AC0(15–0), remainder in AC0(31–16)
;***************************************************************************

BCLR SXMD ; Clear SXMD (sign extension off)
MOV *AR0, AC0 ; Put Dividend into AC0
RPT #(16 – 1) ; Execute subc 16 times

SUBC *AR1, AC0, AC0 ; AR1 points to Divisor
MOV AC0, *AR2 ; Store Quotient
MOV HI(AC0), *AR3 ; Store Remainder

(b) Algebraic Instructions

;***************************************************************************
; Pointer assignments:  ___________
; AR0 –> Dividend Divisor ) Dividend
; AR1 –> Divisor
; AR2 –> Quotient
; AR3 –> Remainder
;
; Algorithm notes:
; – Unsigned division, 16–bit dividend, 16–bit divisor
; – Sign extension turned off. Dividend & divisor are positive numbers.
; – After division, quotient in AC0(15–0), remainder in AC0(31–16)
;***************************************************************************

bit(ST1,#ST1_SXMD) = #0 ; Clear SXMD (sign extension off)
AC0 = *AR0 ; Put Dividend into AC0
repeat( #(16 – 1) ) ; Execute subc 16 times

subc( *AR1, AC0, AC0 ) ; AR1 points to Divisor
*AR2 = AC0 ; Store Quotient
*AR3 = HI(AC0) ; Store Remainder
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Example 5–11 shows how to implement unsigned division with a 32-bit divi-
dend and a 16-bit divisor. The code uses two stages of 16-bit by 16-bit integer
division. The first stage takes as inputs the high 16 bits of the 32-bit dividend
and the 16-bit divisor. The result in the low half of the accumulator is the high
16 bits of the quotient. The result in the high half of the accumulator is shifted
left by 16 bits and added to the lower 16 bits of the dividend. This sum and the
16-bit divisor are the inputs to the second stage of the division. The lower 16
bits of the resulting quotient is the final quotient and the resulting remainder
is the final remainder.

Example 5–11. Unsigned, 32-Bit By 16-Bit Integer Division

(a) Mnemonic Instructions

;***************************************************************************
; Pointer assignments:  ___________
; AR0 –> Dividend high half Divisor ) Dividend
; Dividend low half
; ...
; AR1 –> Divisor
; ...
; AR2 –> Quotient high half
; Quotient low half
; ...
; AR3 –> Remainder
;
; Algorithm notes:
; – Unsigned division, 32–bit dividend, 16–bit divisor
; – Sign extension turned off. Dividend & divisor are positive numbers.
; – Before 1st division: Put high half of dividend in AC0
; – After 1st division: High half of quotient in AC0(15–0)
; – Before 2nd division: Put low part of dividend in AC0
; – After 2nd division: Low half of quotient in AC0(15–0) and
; Remainder in AC0(31–16)
;***************************************************************************

BCLR SXMD ; Clear SXMD (sign extension off)
MOV *AR0+, AC0 ; Put high half of Dividend in AC0
||  RPT #(15 – 1) ; Execute subc 15 times

SUBC *AR1, AC0, AC0 ; AR1 points to Divisor
SUBC *AR1, AC0, AC0 ; Execute subc final time
|| MOV #8, AR4 ; Load AR4 with AC0_L memory address
MOV AC0, *AR2+ ; Store high half of Quotient
MOV *AR0+, *AR4 ; Put low half of Dividend in AC0_L
RPT #(16 – 1) ; Execute subc 16 times

SUBC *AR1, AC0, AC0
MOV AC0, *AR2+ ; Store low half of Quotient
MOV HI(AC0), *AR3) ; Store Remainder
BSET SXMD ; Set SXMD (sign extension on)
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Example 5–11. Unsigned, 32-Bit By 16-Bit Integer Division (Continued)

(b) Algebraic Instructions

;***************************************************************************
; Pointer assignments:  ___________
; AR0 –> Dividend high half Divisor ) Dividend
; Dividend low half
; ...
; AR1 –> Divisor
; ...
; AR2 –> Quotient high half
; Quotient low half
; ...
; AR3 –> Remainder
;
; Algorithm notes:
; – Unsigned division, 32–bit dividend, 16–bit divisor
; – Sign extension turned off. Dividend & divisor are positive numbers.
; – Before 1st division: Put high half of dividend in AC0
; – After 1st division: High half of quotient in AC0(15–0)
; – Before 2nd division: Put low part of dividend in AC0
; – After 2nd division: Low half of quotient in AC0(15–0) and
; Remainder in AC0(31–16)
;***************************************************************************

bit(ST1,#ST1_SXMD) = #0 ; Clear SXMD (sign extension off)
AC0 = *AR0+ ; Put high half of Dividend in AC0
|| repeat( #(15 – 1) ) ; Execute subc 15 times

subc( *AR1, AC0, AC0) ; AR1 points to Divisor
subc( *AR1, AC0, AC0) ; Execute subc final time
|| AR4 = #8 ; Load AR4 with AC0_L memory address
*AR2+ = AC0 ; Store high half of Quotient
*AR4 = *AR0+ ; Put low half of Dividend in AC0_L
repeat( #(16 – 1) ) ; Execute subc 16 times

subc( *AR1, AC0, AC0)
*AR2+ = AC0 ; Store low half of Quotient
*AR3 = HI(AC0) ; Store Remainder
bit(ST1,#ST1_SXMD) = #1 ; Set SXMD (sign extension on)
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5.4.1.2 Examples of Signed Integer Division

Some applications might require doing division with signed numbers instead
of unsigned numbers. The conditional subtract instruction works only with pos-
itive integers. The signed integer division algorithm computes the quotient as
follows:

1) The sign of the quotient is determined and preserved in AC0

2) The quotient of the absolute values of the dividend and the divisor is deter-
mined using repeated conditional subtract instructions

3) The negative of the result is computed if required, according to the sign
of AC0

Example 5–12 shows the implementation of division with a signed 16-bit divi-
dend and a 16-bit signed divisor, and Example 5–13 extends this algorithm to
handle a 32-bit dividend.
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Example 5–12. Signed, 16-Bit By 16-Bit Integer Division

(a) Mnemonic Instructions

;***************************************************************************
; Pointer assignments:  ___________
; AR0 –> Dividend Divisor ) Dividend
; AR1 –> Divisor
; AR2 –> Quotient
; AR3 –> Remainder
;
; Algorithm notes:
; – Signed division, 16–bit dividend, 16–bit divisor
; – Sign extension turned on. Dividend and divisor can be negative.
; – Expected quotient sign saved in AC0 before division
; – After division, quotient in AC1(15–0), remainder in AC1(31–16)
;***************************************************************************

BSET SXMD ; Set SXMD (sign extension on)
MPYM *AR0, *AR1, AC0 ; Sign of (Dividend x Divisor) should be

;   sign of Quotient
MOV *AR1, AC1 ; Put Divisor in AC1
ABS AC1, AC1 ; Find absolute value, |Divisor|
MOV AC1, *AR2 ; Store |Divisor| temporarily
MOV *AR0, AC1 ; Put Dividend in AC1
ABS AC1, AC1 ; Find absolute value, |Dividend|
RPT #(16 – 1) ; Execute subc 16 times

SUBC *AR2, AC1, AC1 ; AR2 –> |Divisor|
MOV HI(AC1), *AR3 ; Save Remainder
MOV AC1, *AR2 ; Save Quotient
SFTS AC1, #16 ; Shift quotient: Put MSB in sign position
NEG AC1, AC1 ; Negate quotient
XCCPART label, AC0 < #0 ; If sign of Quotient should be negative,
MOV HI(AC1), *AR2 ;   replace Quotient with negative version

label:
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Example 5–12. Signed, 16-Bit By 16-Bit Integer Division (Continued)

(b) Algebraic Instructions

;***************************************************************************
; Pointer assignments:  ___________
; AR0 –> Dividend Divisor ) Dividend
; AR1 –> Divisor
; AR2 –> Quotient
; AR3 –> Remainder
;
; Algorithm notes:
; – Signed division, 16–bit dividend, 16–bit divisor
; – Sign extension turned on. Dividend and divisor can be negative.
; – Expected quotient sign saved in AC0 before division
; – After division, quotient in AC1(15–0), remainder in AC1(31–16)
;***************************************************************************

bit(ST1,#ST1_SXMD) = #1 ; Set SXMD (sign extension on)
AC0 = (*AR0) * (*AR1) ; Sign of (Dividend x Divisor) should be

;   sign of Quotient
AC1 = *AR1 ; Put Divisor in AC1
AC1 = |AC1| ; Find absolute value, |Divisor|
*AR2 = AC1 ; Store |Divisor| temporarily
AC1 = *AR0 ; Put Dividend in AC1
AC1 = |AC1| ; Find absolute value, |Dividend|
repeat( #(16 – 1) ) ; Execute subc 16 times

subc( *AR2, AC1, AC1) ; AR2 –> |Divisor|
*AR3 = HI(AC1) ; Save Remainder
*AR2 = AC1 ; Save Quotient
AC1 = AC1 << #16 ; Shift quotient: Put MSB in sign position
AC1 = – AC1 ; Negate quotient
if(AC0 < #0) execute (D_unit) ; If sign of Quotient should be negative,
*AR2 = HI(AC1) ;   replace Quotient with negative version
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Example 5–13. Signed, 32-Bit By 16-Bit Integer Division

(a) Mnemonic Instructions

;***************************************************************************
; Pointer assignments: (Dividend and Quotient are long–word aligned)
; AR0 –> Dividend high half (NumH) (even address)
; Dividend low half (NumL)
; AR1 –> Divisor (Den)
; AR2 –> Quotient high half (QuotH) (even address)
; Quotient low half (QuotL)
; AR3 –> Remainder (Rem)
;
; Algorithm notes:
; – Signed division, 32–bit dividend, 16–bit divisor
; – Sign extension turned on. Dividend and divisor can be negative.
; – Expected quotient sign saved in AC0 before division
; – Before 1st division: Put high half of dividend in AC1
; – After 1st division: High half of quotient in AC1(15–0)
; – Before 2nd division: Put low part of dividend in AC1
; – After 2nd division: Low half of quotient in AC1(15–0) and
; Remainder in AC1(31–16)
;***************************************************************************

BSET SXMD ; Set SXMD (sign extension on)
MPYM  *AR0, *AR1, AC0 ; Sign( NumH x Den ) is sign of actual result
MOV *AR1, AC1 ; AC1 = Den
ABS AC1, AC1 ; AC1 = abs(Den)
MOV AC1, *AR3 ; Rem = abs(Den) temporarily
MOV40 dbl(*AR0), AC1 ; AC1 = NumH NumL
ABS AC1, AC1 ; AC1 = abs(Num)
MOV AC1, dbl(*AR2) ; QuotH = abs(NumH) temporarily

; QuotL = abs(NumL) temporarily

MOV *AR2, AC1 ; AC1 = QuotH
RPT #(15 – 1) ; Execute subc 15 times

SUBC *AR3, AC1, AC1
SUBC *AR3, AC1, AC1 ; Execute subc final time
|| MOV #11, AR4 ; Load AR4 with AC1_L memory address
MOV AC1, *AR2+ ; Save QuotH
MOV *AR2, *AR4 ; AC1_L = QuotH
RPT #(16 – 1) ; Execute subc 16 times

SUBC *AR3, AC1, AC1
MOV AC1, *AR2– ; Save QuotL
MOV HI(AC1), *AR3 ; Save Rem

BCC skip, AC0 >= #0 ; If actual result should be positive, goto skip.
MOV40 dbl(*AR2), AC1 ; Otherwise, negate Quotient.
NEG AC1, AC1
MOV AC1, dbl(*AR2)

skip:
RET
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Example 5–13. Signed, 32-Bit By 16-Bit Integer Division (Continued)

(b) Algebraic Instructions

;***************************************************************************
; Pointer assignments: (Dividend and Quotient are long–word aligned)
; AR0 –> Dividend high half (NumH) (even address)
; Dividend low half (NumL)
; AR1 –> Divisor (Den)
; AR2 –> Quotient high half (QuotH) (even address)
; Quotient low half (QuotL)
; AR3 –> Remainder (Rem)
;
; Algorithm notes:
; – Signed division, 32–bit dividend, 16–bit divisor
; – Sign extension turned on. Dividend and divisor can be negative.
; – Expected quotient sign saved in AC0 before division
; – Before 1st division: Put high half of dividend in AC1
; – After 1st division: High half of quotient in AC1(15–0)
; – Before 2nd division: Put low part of dividend in AC1
; – After 2nd division: Low half of quotient in AC1(15–0) and
; Remainder in AC1(31–16)
;***************************************************************************

bit(ST1,#ST1_SXMD) = #1 ; Set SXMD (sign extension on)
AC0 = (*AR0)* (*AR1) ; Sign( NumH x Den ) is sign of actual result
AC1 = *AR1 ; AC1 = Den
AC1 = |AC1| ; AC1 = abs(Den)
*AR3 = AC1 ; Rem = abs(Den) temporarily
AC1 = dbl(*AR0) ; AC1 = NumH NumL
AC1 = |AC1| ; AC1 = abs(Num)
dbl(*AR2) = AC1 ; QuotH = abs(NumH) temporarily

; QuotL = abs(NumL) temporarily

AC1 = *AR2 ; AC1 = QuotH
repeat( #(15 – 1) ) ; Execute subc 15 times
  subc( *AR3, AC1, AC1) 
subc( *AR3, AC1, AC1) ; Execute subc final time
||AR4 = #11 ; Load AR4 with AC1_L memory address
*AR2+ = AC1 ; Save QuotH
*AR4 = *AR2 ; AC1_L = QuotH
repeat( #(16 – 1) ) ; Execute subc 16 times
  subc( *AR3, AC1, AC1)
*AR2– = AC1 ; Save QuotL
*AR3 = HI(AC1) ; Save Rem

if (AC0 >= #0) goto skip ; If actual result should be positive, goto skip.
AC1  = dbl(*AR2) ; Otherwise, negate Quotient.
AC1 = – AC1
dbl(*AR2) = AC1

skip:
return
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5.4.2 Fractional Division

The algorithms that implement fractional division compute first an approxima-
tion of the inverse of the divisor (denominator) using different techniques such
as Taylor Series expansion, line of best fit, and successive approximation. The
result is then multiplied by the dividend (numerator). The C55x DSP function
library (see Chapter 8) implements this function under the name ldiv16.

To calculate the value of Ym this algorithm uses the successive approximation
method. The approximations are performed using the following equation:

���� � ���� � ��

�
������

If we start with an initial estimate of Ym, then the equation will converge to a
solution very rapidly (typically in three iterations for 16-bit resolution). The ini-
tial estimate can either be obtained from a look-up table, from choosing a mid-
point, or simply from linear interpolation. The ldiv16 algorithm uses linear inter-
polation. This is accomplished by taking the complement of the least signifi-
cant bits of the Xnorm value.
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5.5 Methods of Handling Overflows

An overflow occurs when the result of an arithmetical operation is larger than
the largest number that can be represented in the register that must hold the
result. Due to the 16-bit format, fixed-point DSPs provide a limited dynamic
range. You must manage the dynamic range of your application to avoid pos-
sible overflows. The overflow depends on the nature of the input signal and of
the algorithm in question.

5.5.1 Hardware features for overflow handling

The C55x DSP offers several hardware features for overflow handling:

� Guard bits:

Each of the C55x accumulators (AC0, AC1, AC2, and AC3) has eight
guard bits (bits 39–32), which allow up to 256 consecutive multiply-and-
accumulate operations before an accumulator overflow.

� Overflow flags:

Each C55x accumulator has an associated overflow flag (see the following
table). When an operation on an accumulator results in an overflow, the
corresponding overflow flag is set.

� Saturation mode bits:

The DSP has two saturation mode bits: SATD for operations in the D unit of
the CPU and SATA for operations in the A unit of the CPU. When the SATD
bit is set and an overflow occurs in the D unit, the CPU saturates the result.
Regardless of the value of SATD, the appropriate accumulator overflow
flag is set. Although no flags track overflows in the A unit, overflowing re-
sults in the A unit are saturated when the SATA bit is set.

Saturation replaces the overflowing result with the nearest range bound-
ary. Consider a 16-bit register which has range boundaries of 8000h (larg-
est negative number) and 7FFFh (largest positive number). If an operation
generates a result greater than 7FFFh, saturation can replace the result
with 7FFFh. If a result is less than 8000h, saturation can replace the result
with 8000h.

5.5.1.1 Overview of overflow handling techniques

There are a number of general methodologies to handle overflows. Among the
methodologies are saturation, input scaling, fixed scaling, and dynamic scal-
ing. We will give an overview of these methodologies and will see some exam-
ples illustrating their application.
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� Saturation:

One possible way to handle overflows is to use the hardware saturation
modes mentioned in section 5.5.1. However, saturation has the effect of
clipping the output signal, potentially causing data distortion and non-lin-
ear behavior in the system.

� Input scaling:

You can analyze the system that you want to implement and scale the in-
put signal, assuming worst conditions, to avoid overflow. However, this ap-
proach can greatly reduce the precision of the output.

� Fixed scaling:

You can scale the intermediate results, assuming worst conditions. This
method prevents overflow but also increases the system’s signal-to-noise
ratio.

� Dynamic scaling:

The intermediate results can be scaled only when needed. You can ac-
complish this by monitoring the range of the intermediate results. This
method prevents overflow but increases the computational requirements.

The next sections demonstrate these methodologies applied to FIR (finite im-
pulse response) filters, IIR (infinite impulse response) filters and FFTs (fast
Fourier transforms).

5.5.1.2 Scaling methods for FIR filters

The best way to handle overflow problems in FIR (finite impulse response) fil-
ters is to design the filters with a gain less than 1 to avoid having to scale the
input data. This method, combined with the guard bits available in each of the
accumulators, provides a robust way to handle overflows in the filters.

Fixed scaling and input scaling are not used due to their negative impact on
signal resolution (basically one bit per multiply-and-accumulate operation).
Dynamic scaling can be used for an FIR filter if the resulting increase in cycles
is not a concern. Saturation is also a common option for certain types of audio
signals.

5.5.1.3 Scaling methods for IIR filters

Fixed-point realization of an IIR (infinite impulse response) filter in cascaded
second-order stages is recommended to minimize the frequency response
sensitivity of high-order filters. In addition to round-off error due to filter coeffi-
cient quantization, overflow avoidance is critical due to the recursive nature of
the IIR filter.
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Overflow between stages can be avoided by maintaining the intermediate val-
ue in the processor accumulator. However, overflow can happen at the internal
filter state (delay buffer) inside each stage. To prevent overflow at stage k, the
filter unit-pulse response f(n) must be scaled (feed forward path) by a gain fac-
tor Gk given by

�
��	�� � �� ��
�

����� ����

or

�
��	��� � �� ��
�

������ ������
���

Option 1 prevents overflows, but at the expense of precision. Option 2 allows
occasional overflows but offers an improved precision. In general, these tech-
niques work well if the input signal does not have a large dynamic range.

Another method to handle overflow in IIR filters is to use dynamic scaling. In
this approach, the internal filter states are scaled down by half only if an over-
flow is detected at each stage. The result is a higher precision but at the ex-
pense of increased MIPS.

5.5.1.4 Scaling methods for FFTs

In FFT (Fast Fourier Transform) operations, data will grow an average of one
bit on the output of each butterfly. Input scaling will require shifting the data in-
put by log n (n = size of FFT) that will cause a 6(log n) dB loss even before com-
puting the FFT. In fixed scaling, the output of the butterfly will be scaled by 2
at each stage. This is probably the most common scaling approach for FFTs
because it is simple and has a better sound-to-noise ratio (SNR). However, for
larger FFTs this scaling may cause information loss.

Another option is to implement a dynamic scaling approach in which scaling
by 2 at each stage occurs only when bit growth occurs. In this case, an expo-
nent is assigned to the entire stage block (block floating-point method). When
scaling by 2 happens, the exponent is incremented by 1. At the end of the FFT,
the data are scaled up by the resulting exponent. Dynamic scaling provides
the best SNR but increases the FFT cycle count because you have to detect
bit growth and update the exponent accordingly.
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Bit-Reversed Addressing

This chapter introduces the concept and the syntax of bit-reverse addressing.
It then explains how bit-reverse addressing can help to speed up a Fast Fourier
Transform (FFT) algorithm. To find code that performs complex and real FFTs
(forward and reverse) and bit-reversing of FFT vectors, see Chapter 8, TI C55x
DSPLIB.
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6.1 Introduction to Bit-Reverse Addressing

Bit-reverse addressing is a special type of indirect addressing. It uses one of
the auxiliary registers (AR0–AR7) as a base pointer of an array and uses tem-
porary register 0 (T0) as an index register. When you add T0 to the auxiliary
register using bit-reverse addressing, the address is generated in a bit-re-
versed fashion, with the carry propagating from left to right instead of from right
to left.

Table 6–1 shows the syntaxes for each of the two bit-reversed addressing
modes supported by the TMS320C55x  (C55x ) DSP.

Table 6–1. Syntaxes for Bit-Reverse Addressing Modes

Operand
Syntax Function Description

*(ARx–T0B) address = ARx
ARx = (ARx – T0)

After access, T0 is subtracted from ARx with
reverse carry (rc) propagation.

*(ARx+T0B) address = ARx
ARx = (ARx + T0)

After access, T0 is added to ARx with reverse
carry (rc) propagation.

Assume that the auxiliary registers are 8 bits long, that AR2 represents the
base address of the data in memory (01100000b), and that T0 contains the
value 00001000b (decimal 8). Example 6–1 shows a sequence of modifica-
tions of AR2 and the resulting values of AR2.

Table 6–2 shows the relationship between a standard bit pattern that is repeat-
edly incremented by 1 and a bit-reversed pattern that is repeatedly increm-
ented by 1000b with reverse carry propagation. Compare the bit-reversed pat-
tern to the 4 LSBs of AR2 in Example 6–1.

Example 6–1. Sequence of Auxiliary Registers Modifications in Bit-Reversed Addressing

*(AR2+T0B) ;AR2 = 0110 0000 (0th value)
*(AR2+T0B) ,AR2 = 0110 1000 (1st value)
*(AR2+T0B) ;AR2 = 0110 0100 (2nd value)
*(AR2+T0B) ;AR2 = 0110 1100 (3rd value)
*(AR2+T0B) ;AR2 = 0110 0010 (4th value)
*(AR2+T0B) ;AR2 = 0110 1010 (5th value)
*(AR2+T0B) ;AR2 = 0110 0110 (6th value)
*(AR2+T0B) ;AR2 = 0110 1110 (7th value)
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Table 6–2. Bit-Reversed Addresses

Step Bit Pattern Bit-Reversed Pattern Bit-Reversed Step

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15
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6.2 Using Bit-Reverse Addressing In FFT Algorithms

Bit-reversed addressing enhances execution speed for Fast-Fourier Trans-
form (FFT) algorithms. Typical FFT algorithms either take an in-order vector
input and produce a bit-reversed vector output or take a bit-reversed vector
input and produce an in-order vector output. In either case, bit-reverse ad-
dressing can be used to resequence the vectors. Figure 6–1 shows a flow
graph of an 8-point decimation-in-frequency FFT algorithm with a bit-reversed
input and an in-order output.

Figure 6–1. FFT Flow Graph Showing Bit-Reversed Input and In-Order Output
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Consider a complex FFT of size N (that is, an FFT with an input vector that con-
tains N complex numbers). You can bit-reverse either the input or the output
vectors by executing the following steps:

1) Write 0 to the ARMS bit of status register 2 to select the DSP mode for AR
indirect addressing. (Bit-reverse addressing is not available in the control
mode of AR indirect addressing.) Then use the .arms_off directive to notify
the assembler of this selection.

2) Use Table 6–3 to determine how the base pointer of the input array must
be aligned to match the given vector format. Then load an auxiliary register
with the proper base address.

3) Consult Table 6–3 to properly load the index register, T0.

4) Ensure that the entire array fits within a 64K boundary (the largest possible
array addressable by the 16-bit auxiliary register).
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As an example of how to use Table 6–3, suppose you need to bit-reverse a
vector with N = 64 complex elements in the Re–Im–Re–Im format. The (n + 1)
least significant bits (LSBs) of the base address must be 0s, where

(n + 1) = (log2 N + 1) = (log2 64 + 1) = (6 + 1) = 7 LSBs

Therefore, AR0 must be loaded with a base address of this form (Xs are don’t
cares):

AR0 = XXXX XXXX X000 0000b

The index loaded into T0 is equal to the number of elements:

T0 = 2n = 26 = 64

Table 6–3. Typical Bit-Reverse Initialization Requirements

Vector Format in
Memory

T0 Initialization
Value

Alignment of
Vector Base Address

Re–Im–Re–Im.  The real
and imaginary parts of
each complex element are
stored at consecutive
memory locations. For ex-
ample:

Real
Imaginary
...
Real
Imaginary

2n

where n = log2 N

(n+1) LSBs must be 0s,

where n = log2 N

Re–Re...Im–Im.  The real
and imaginary data are
stored in separate arrays.
For example:

Real
Real
...
Imaginary
Imaginary

2(n–1)

where n = log2 N

n LSBs must be 0s,

where n = log2 N
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6.3 In-Place Versus Off-Place Bit-Reversing

You can have a bit-reversed array write over the original array (in-place
bit-reversing) or you can place the bit-reversed array in a separate place in
memory (off-place bit-reversing). Example 6–2 shows assembly language
code for an off-place bit-reverse operation. An input array of N complex ele-
ments pointed to by AR0 is bit-reversed into an output array pointed to by AR1.
The vector format for input and output vectors is assumed to be Re–Im–Re–
Im. Each element (Re–Im) of the input array is loaded into AC0. Then the ele-
ment is transferred to the output array using bit-reverse addressing. Each time
the index in T0 is added to the address in AR1, the addition is done with carries
propagating from left to right, instead of from right to left.

Although it requires twice the memory, off-place bit-reversing is faster than
in-place bit-reversing. Off-place bit-reversing requires 2 cycles per complex
data point, while in-place bit-reversing requires approximately 4 cycles per
complex data point.

The code shown in Example 6–2 (b) is from the cbrev() C-callable optimized
assembly function available in the C55x DSPLIB (see Chapter 8). The DSPLIB
cbrev() function supports both in-place and off-place bit-reversing and
DSPLIB is provided in source format to show how efficient in-place bit-revers-
ing can also be achieved.

Example 6–2. Off-Place Bit Reversing of a Vector Array (in Assembly)

(a) Mnemonic Instructions

;...
 BCLR ARMS ; reset ARMS bit to allow bit–reverse addressing
 .arms_off ; notify the assembler of ARMS bit = 0
;...
off_place:
 RPTBLOCAL{

MOV dbl(*AR0+), AC0 ; AR0 points to input array
MOV AC0, dbl(*(AR1+T0B)) ; AR1 points to output array

; T0 = NX = number of complex elements in
; array pointed to by AR0

}
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(b) Algebraic Instructions

;...
 bit (ST2, #ST2_ARMS) = #0 ; reset ARMS bit to allow bit–reverse addressing
 .arms_off ; notify the assembler of ARMS bit = 0
;...
off_place:
 localrepeat{

AC0 = dbl(*AR0+) ; AR0 points to input array
dbl(*(AR1+T0B)) = AC0 ; AR1 points to output array

; T0 = NX = number of complex elements in
; array pointed to by AR0

}

Note: This example shows portions of the file cbrev.asm in the TI C55x DSPLIB (introduced in Chapter 8)
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6.4 Using the C55x DSPLIB for FFTs and Bit-Reversing

The C55x DSP function library (DSPLIB) offers C-callable DSP assembly-opti-
mized routines. Among these are a bit-reversing routine (cbrev()) and complex
and real FFT routines.

Example 6–3 shows how you can invoke the cbrev() DSPLIB function from C
to do in-place bit-reversing. The function bit-reverses the position of in-order
elements in a complex vector x and then computes a complex FFT of the bit-re-
versed vector. The function uses in-place bit-reversing. See Chapter 8 for an
introduction to the C55x DSPLIB.

Example 6–3. Using DSPLIB cbrev() Routine to Bit Reverse a Vector Array (in C)

#define NX 64
short x[2*NX] ;
short scale = 1 ;

void main(void)
{
;...
cbrev(x,x,NX) // in–place bit–reversing on input data (Re–Im format)
cfft(x,NX,scale) // 64–point complex FFT on bit–reversed input data with

// scaling by 2 at each stage enabled
;...
}

Note: This example shows portions of the file cfft_t.c in the TI C55x DSPLIB (introduced in Chapter 8)
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Application-Specific Instructions

This chapter presents examples of efficient implementations of some common
signal processing and telecommunications functions. These examples illus-
trate the use of some application-specific instructions on the TMS320C55x
(C55x ) DSP. (Most of the examples in this chapter use instructions from the
algebraic instruction set, but the concepts apply equally for the mnemonic in-
struction set.)
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7.1 Symmetric and Asymmetric FIR Filtering (FIRS, FIRSN)

FIR (finite impulse response) filters are often used in telecommunications ap-
plications because they are unconditionally stable and they may be designed
to preserve important phase information in the processed signal. A linear
phase FIR provides a phase shift that varies in proportion to the input frequen-
cy and requires that the impulse response be symmetric : h(n) = h(N–n).

Another class of FIR filter is the antisymmetric  FIR: h(n) = –h(N–n). A com-
mon example is the Hilbert transformer, which shifts positive frequencies by
+90 degrees and negative frequencies by –90 degrees. Hilbert transformers
may be used in applications, such as modems, in which it is desired to cancel
lower sidebands of modulated signals.

Figure 7–1 gives examples of symmetric and antisymmetric filters, each with
eight coefficients (a0 through a7). Both symmetric and antisymmetric filters
may be of even or odd length. However, even-length symmetric filters lend
themselves to computational shortcuts which will be described in this section.
It is sometimes possible to reformulate an odd-length filter as a filter with one
more tap, to take advantage of these constructs.

Because (anti)symmetric filters have only N/2 distinct coefficients, they may
be folded and performed with N/2 additions (subtractions) and N/2 multiply-
and-accumulate operations. Folding means that pairs of elements in the delay
buffer which correspond to the same coefficient are pre-added(subtracted)
prior to multiplying and accumulating.

The C55x DSP offers two different ways to implement symmetric and asym-
metric filters. This section shows how to implement these filters using specific
instructions, FIRS and FIRSN. To see how to implement symmetric and asym-
metric filters using the dual-MAC hardware, see section 4.1.4, Implicit Algo-
rithm Symmetry, which begins on page 4-5. The firs/firsn implementation and
the dual-MAC implementation are equivalent from a throughput standpoint.
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Figure 7–1. Symmetric and Antisymmetric FIR Filters
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Definitions:
� = Filter coefficient � = Filter output
� = Sample index � = Filter input data value
� = Number of filter taps

7.1.1 Symmetric FIR Filtering With the firs  Instruction

The C55x instruction for symmetric FIR filtering is:

firs(Xmem,Ymem,Cmem,ACx,ACy)

This instruction performs two parallel operations: a multiply-and-accumulate
(MAC) operation, and an addition. The firs() instruction performs the following
parallel operations:

ACy = ACy + (ACx * Cmem),
ACx = (Xmem << #16) + (Ymem << #16)

The first operation performs a multiplication and an accumulation in a MAC unit
of the CPU. The input operands of the multiplier are the content of ACx(32–16)
and a data memory operand, which is addressed using the coefficient ad-
dressing mode and is sign extended to 17 bits. Table 7–1 explains the oper-
ands necessary for the operation.
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Table 7–1. Operands to the firs or firsn instruction

Operand(s) Description

Xmem and Ymem One of these operands points to the newest value in the
delay buffer. The other points to the oldest value in the
delay buffer.

Cmem This operand points to the filter coefficient.

ACx ACx is one of the four accumulators (AC0–AC3). It holds
the sum of the two delayed input values referenced by
Xmem and Ymem.

ACy ACy is one of the four accumulators (AC0–AC3) but is not
the same accumulator as ACx. ACy holds the output of
each filter tap. After all the filter taps have been performed,
ACy holds the final result.

7.1.2 Antisymmetric FIR Filtering With the firsn  Instruction

The antisymmetric FIR is the same as the symmetric FIR except that the pre-
addition of sample pairs is replaced with a pre-subtraction. The C55x instruc-
tion for antisymmetric FIR filtering is:

firsn(Xmem,Ymem,Cmem,ACx,ACy)

This instruction performs two parallel operations: a multiply-and-accumulate
(MAC) operation, and a subtraction. The firsn() instruction performs the follow-
ing parallel operations:

ACy = ACy + (ACx * Cmem),
ACx = (Xmem << #16) – (Ymem << #16)

The first operation performs a multiplication and an accumulation in a MAC unit
of the CPU. The input operands of the multiplier are the content of ACx(32–16)
and a data memory operand, which is addressed using the coefficient ad-
dressing mode and is sign extended to 17 bits. Table 7–1 (page 7-4) explains
the operands necessary for the operation.

7.1.3 Implementation of a Symmetric FIR Filter on the TMS320C55x DSP

The C55x DSPLIB features an efficient implementation of the Symmetric FIR
on the C55x device. Example 7–1 presents the kernel of that implementation
to illustrate the usage of the firs instruction.
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Example 7–1. Symmetric FIR Filter

;
; Start of outer loop
;––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

localrepeat { ; Start the outer loop

; Get next input value

*db_ptr1 = *x_ptr+ ; x_ptr: pointer to input data buffer
; db_ptr1: pointer to newest input value

; Clear AC0 and pre–load AC1 with the sum of the 1st and last inputs
||AC0 = #0;

; 1st and last inputs
AC1 = (*db_ptr1+ << #16) + (*db_ptr2– << #16)

; Inner loop
||repeat(inner_cnt)
firs(*db_ptr1+, *db_ptr2–, *h_ptr+, AC1, AC0)

; 2nd to last iteration has different pointer adjustment
firs(*(db_ptr1–T0), *(db_ptr2+T1), coef(*h_ptr+), AC1, AC0)

; Last iteration is a MAC with rounding
AC0 = rnd(AC0 + (*h_ptr+ * AC1))

; Store result to memory
*r_ptr+ = HI(AC0) ;store Q15 value to memory

} ;end of outer loop

Note: This example shows portions of the file firs.asm in the TI C55x DSPLIB (introduced in Chapter 8)
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7.2 Adaptive Filtering (LMS)

Some applications for adaptive FIR (finite impulse response) and IIR (infinite
impulse response) filtering include echo and acoustic noise cancellation. In
these applications, an adaptive filter tracks changing conditions in the environ-
ment. Although in theory, both FIR and IIR structures can be used as adaptive
filters, stability problems and the local optimum points of IIR filters makes them
less attractive for this use. Therefore, FIR filters are typically used for practical
adaptive filter applications. The least mean square (LMS), local block-repeat,
and parallel instructions on the C55x DSP can be used to efficiently implement
adaptive filters. The block diagram of an adaptive FIR filter is shown in
Figure 7–2.

Figure 7–2. Adaptive FIR Filter Implemented With the
Least-Mean-Squares (LMS) Algorithm

y(n)

x(n)
z–1 z–1 z–1

 

LMS
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Two common algorithms employed for least mean squares adaptation are the
non-delayed LMS and the delayed LMS algorithm. When compared to non-
delayed LMS, the more widely used delayed LMS algorithm has the advan-
tage of greater computational efficiency at the expense of slightly relaxed con-
vergence properties. Therefore, section 7.2.1 describes only the delayed LMS
algorithm.
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7.2.1 Delayed LMS Algorithm

In the delayed LMS, the convolution is performed to compute the output of the
adaptive filter:

���� ��
���

���

�������� ��

where

y = Filter output
n = Sample index
k = Delay index
N = Number of filter taps
bk = Adaptive coefficient
x = Filter input data value

The value of the error is computed and stored to be used in the next invocation:

���� � ����� ����

where

e = Error
d = Desired response
y = Actual response (filter output)

The coefficients are updated based on an error value computed in the previous
invocation of the algorithm (β is the conversion constant):

������ �� � ������� ��������� ������� �� ��

The delayed LMS algorithm can be implemented with the LMS instruction—
lms(Xmem, Ymem, ACx, ACy)—which performs a multiply-and-accumulate
(MAC) operation and, in parallel, an addition with rounding:

ACy = ACy + (Xmem * Ymem),
ACx = rnd(ACx + (Xmem << #16)
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The input operands of the multiplier are the content of data memory operand
Xmem, sign extended to 17 bits, and the content of data memory operand
Ymem, sign extended to 17 bits. One possible implementation would assign
the following roles to the operands of the LMS instruction:

Operand(s) Description

Xmem This operand points to the coefficient array.

Ymem This operand points to the data array.

ACx ACx is one of the four accumulators (AC0–AC3). ACx is used to
update the coefficients.

ACy ACy is one of the four accumulators (AC0–AC3) but is not the
same accumulator as ACx. ACy holds the output of the FIR filter.

An efficient implementation of the delayed LMS algorithm is available in the
C55x DSP function library (see Chapter 8). Example 7–2 shows the kernel of
this implementation.
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Example 7–2. Delayed LMS Implementation of an Adaptive Filter

; ar_data: index in the delay buffer
; ar_input: pointer to input vector
; ar_coef: pointer to coefficient vector

StartSample:

; Clear AC0 for initial error term
AC1 = #0
|| localrepeat {
*ar_data+ = *ar_input+ ;copy input –> state(0)

; Place error term in T3
T3 = HI(AC1)

;place first update term in AC0
;...while clearing FIR value

AC0 = T3 * *ar_data+
|| AC1 = #0

;AC0 = update coef
;AC1 = start of FIR output

LMS(*ar_coef, *ar_data, AC0, AC1)
|| localrepeat {
*ar_coef+ = HI(AC0)
|| AC0 = T3 * *ar_data+

;AC0 = update coef
;AC1 = update of FIR output

  LMS(*ar_coef, *ar_data, AC0, AC1)
 }

; Store Calculated Output
*ar_coef+ = HI(AC0)
|| *ar_output+ = HI(rnd(AC1))

; AC2 is error amount
; Point to oldest data sample

AC2 = (*ar_des+ << #16) – AC1
|| mar(*ar_data+)

; Place updated mu_error term in AC1
AC1 = rnd(T_step*AC2)
}

Note: This example shows portions of the file dlms.asm in the TI C55x DSPLIB (introduced in Chapter 8)
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7.3 Convolutional Encoding (BFXPA, BFXTR)

The goal in every telecommunication system is to achieve maximum data
transfer, using a minimum bandwidth, while maintaining an acceptable quality
of transmission. Convolutional codes are a forward error control (FEC) tech-
nique in which extra binary digits are added to the original information binary
digits prior to transmission to create a code structure which is resistant to er-
rors that may occur within the channel. A decoder at the receiver exploits the
code structure to correct any errors that may have occurred. The redundant
bits are formed by XORing the current bit with time-delayed bits within the past
K input sample history. This is effectively a 1-bit convolution sum; hence the
term convolutional encoder. The coefficients of the convolution sum are de-
scribed using polynomial notation. A convolutional code is defined by the fol-
lowing parameters:

n = Number of function generators
G0, G1, ... , Gn = Polynomials that define the convolutions of bit streams
K = Constraint length (number of delays plus 1)

The rate of the convolutional encoder is defined as R = 1/n. Figure 7–3 gives
an example of a convolutional encoder with K=5 and R = 1/2.

Figure 7–3. Example of a Convolutional Encoder

Z–1 Z–1 Z–1 Z–1
Input

bits �4

G0
bits

G1
bits

XOR

XOR

�0 �1 �2 �3

The C55x DSP creates the output streams (G0 and G1) by XORing the shifted
input stream (see Figure 7–4).
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Figure 7–4. Generation of an Output Stream G0

1 1 00 1 0 11 1 00 1 00 1 0

0

0 01 1 1 0 0 1 0 1 1 11 0 0 0

0 100111 0 001 1110 0

+

+

12 bits of G0

x(11) + x(14) + x(15) x(0) + x(3) + x(4)

x

123456789101112131415

x >> 3

 x >> 4

Example 7–3 shows an implementation of the output bit streams for the con-
volutional encoder of Figure 7–3.

Example 7–3. Generation of Output Streams G0 and G1

AR3 = #09H ; AC0_H
AR1 = #in_bit_stream

; Load 32 bits into the accumulators
AC0 = *AR1+
AC0 = AC0 + (*AR1 << #16)
AC1 = AC0

; Generate G0
AC0 = AC0 ^ (AC1 <<< #–1) ; A = A XOR B>>3
AC0 = AC0 ^ (AC1 <<< #–3) ; A = A XOR B>>4
T0 = AC0 ; Save G0

; Generate G1
AC0 = AC0 ^ (AC1 <<< #–1) ; A = A XOR B>>1
AC0 = AC0 ^ (AC1 <<< #–3) ; A = A XOR B>>3
AC0 = AC0 ^ (AC1 <<< #–4) ; A = A XOR B>>4 ––––> AC0_L = G1

*AR3 = T0 ; AC0_H = G0 ––––––––> AC0 = G0G1

7.3.1 Bit-Stream Multiplexing and Demultiplexing

After a bit stream is convolved by the various generating polynomials, the re-
dundant bits are typically multiplexed back into a single higher-rate bit stream.
The C55x DSP has dedicated instructions that allow the extraction or insertion
of a group of bits anywhere within a 32-bit accumulator. These instructions can
be used to greatly expedite the bit-stream multiplexing operation on convolu-
tional encoders.
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Figure 7–5 illustrates the concept of bit multiplexing.

Figure 7–5. Bit Stream Multiplexing Concept

Multiplexor G0G1
G0

G1

The C55x DSP has a dedicated instruction to perform the multiplexing of the
bit streams:

dst = field_expand(ACx,k16)

This instruction executes in 1 cycle according to the following algorithm:

1) Clear the destination register.

2) Reset to 0 the bit index pointing within the destination register:
index_in_dst.

3) Reset to 0 the bit index pointing within the source accumulator:
index_in_ACx.

4) Scan the bit field mask k16 from bit 0 to bit 15, testing each bit. For each
tested mask bit:

If the tested bit is 1:

a) Copy the bit pointed to by index_in_ACx to the bit pointed to by
index_in_dst.

b) Increment index_in_ACx.

c) Increment index_in_dst, and test the next mask bit.

If the tested bit is 0:

Increment index_in_dst, and test the next mask bit.

Example 7–4 demonstrates the use of the field_expand() instruction.
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Example 7–4. Multiplexing Two Bit Streams With the Field Expand Instruction

ÉÉ
ÉÉ
ÉÉ
ÉÉ

ÉÉÉ
ÉÉÉ

ÉÉ
ÉÉ

.asg AC0, G0 ; Assign G0 to register AC0.

.asg AC1, G1 ; Assign G1 to register AC1.

.asg AC2, Temp ; Assign Temp to register AC2.

.asg AC3, G0G1 ; Assign G0G1 to register AC3.

G0 = *get_G0 ; Load G0 stream.
G1 = *get_G1 ; Load G1 stream.
G0G1 = field_expand(G0, #5555h) ; Expand G0 stream.
Temp = G0G1 ; Temporarily store expanded G0 stream.
G0G1 = field_expand(G1, #AAAAh) ; Expand G1 stream
G0G1 = G0G1 | Temp ; Interleave expanded streams

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 15555h

0ÉÉ
ÉÉ

1 0ÉÉ
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1 0ÉÉ
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0 0ÉÉ
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0 0ÉÉÉ
ÉÉÉ

1 0ÉÉ
ÉÉ

0 0ÉÉ
ÉÉ

1 0 ÉÉ
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1G0(15–0)
ÉÉ
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1

G0G1 = field_expand(G0,#5555h)

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0AAAAh

0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 0

X X X X X X X X 0 1 1 1 0 0 1G1(15–0) 0

G0G1 = field_expand(G1,#AAAAh)

0
ÉÉ
ÉÉ1 1
ÉÉÉ
ÉÉÉ1 1

ÉÉ
ÉÉ0 1
ÉÉ
ÉÉ0 0

ÉÉ
ÉÉ1 0
ÉÉ
ÉÉ0 1
ÉÉÉ
ÉÉÉ1 0

ÉÉ
ÉÉ1

G0G1 = G0G1 | Temp
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At the receiver G0 and G1 must be extracted by de-interleaving the G0 G1
stream. The DSP has dedicated instructions to perform the de-interleaving of
the bit streams:

dst = field_extract(ACx,k16)

This instruction executes in 1 cycle according to the following algorithm:

1) Clear the destination register.

2) Reset to 0 the bit index pointing within the destination register:
index_in_dst.

3) Reset to 0 the bit index pointing within the source accumulator:
index_in_ACx.

4) Scan the bit field mask k16 from bit 0 to bit 15, testing each bit. For each
tested mask bit:

If the tested bit is 1:

a) Copy the bit pointed to by index_in_ACx to the bit pointed to by
index_in_dst.

b) Increment index_in_dst.

c) Increment index_in_ACx, and test the next mask bit.

If the tested bit is 0:

Increment index_in_ACx, and test the next mask bit.

Example 7–5 demonstrates the use of the field_extract() instruction. The ex-
ample shows how to de-multiplex the signal created in Example 7–4.
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Example 7–5. Demultiplexing a Bit Stream With the Field Extract Instruction

.asg T2, G0 ; Assign G0 to register T2.

.asg T3, G1 ; Assign G1 to register T3.

.asg AC0, G0G1 ; Assign G0G1 to register AC0.

.asg AR1, receive ; Assign receive to register AR1.

G0G1 = *receive ; Get bit stream.
G0 = field_extract(G0G1, #05555h) ; Extract G0 from bit stream.
G1 = field_extract(G0G1, #0AAAAh) ; Extract G1 from bit stream.

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 15555h

0 1 1 1 1 0 1 0 0 1 0 0 1 1 0G0G1(15–0) 1

X X X X X X X X 1 1 0 0 1 0 1G0 1

G0 = field_extract(G0G1,#5555h)

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0AAAAh

0 1 1 1 1 0 1 0 0 1 0 0 1 1 0G0G1(15–0) 1

X X X X X X X X 0 1 1 1 0 0 1G1 0

G1 = field_extract(G0G1,#AAAAh)



Viterbi Algorithm for Channel Decoding (ADDSUB, SUBADD, MAXDIFF)

 7-16

7.4 Viterbi Algorithm for Channel Decoding (ADDSUB, SUBADD, MAXDIFF)

The Viterbi algorithm is widely used in communications systems for decoding
information that has been convolutionally encoded. The most computationally
intensive part of the routine is comprised of many add-compare-select (ACS)
iterations. Minimizing the time for each ACS calculation is important. For a giv-
en system, the number of ACS calculations depends on the constraint length
K and is equal to 2(K – 2). Thus, as K increases, the number of ACS calculations
increases exponentially. The C55x DSP can perform the ACS operation in 1
cycle, due to dedicated instructions that support the Viterbi algorithm.

The convolutional encoder depicted in Figure 7–3 (page 7-10) is used in the
global system for mobile communications (GSM) and is described by the fol-
lowing polynomials (K=5):

������ � �� �� � �� ������ � �� �� �� � ��

The convolutionally encoded outputs are dependent on past data inputs.
Moreover, the contents of the encoder can be viewed as a finite state machine.
A trellis diagram can represent the allowable state transitions, along with their
corresponding path states. Decoding the data involves finding the optimal path
through the trellis, by iteratively selecting possible paths to each delay state,
for a given number of symbol time intervals. Two path metrics are calculated
by adding a local distance to two old metrics. A comparison is made and a new
path metric is selected from the two.

In the case of the GSM encoder, there are 16 possible states for every symbol
time interval. For rate 1/n systems, there is some inherent symmetry in the trel-
lis structure, which simplifies the calculations. The path states leading to a
delay state are complementary. That is, if one path has G0G1 = 00, the other
path has G0G1 = 11. This symmetry is based on the encoder polynomials and
is true for most systems. Two starting and ending complementary states can
be paired together, including all the paths between them, to form a butterfly
structure (see Figure 7–6). Hence, only one local distance is needed for each
butterfly; it is added and subtracted for each new state. Additionally, the old
metric values are the same for both updates, so address manipulation is mini-
mized.
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Figure 7–6. Butterfly Structure for K = 5, Rate 1/2 GSM Convolutional Encoder
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The following equation defines a local distance for the rate 1/2 GSM system:

�� � ���������� � ����������

where

SDx = Soft-decision input into the decoder
Gx(j) = Expected encoder output for the symbol interval j

Usually, the Gx(j)s are coded as signed antipodal numbers, meaning that “0”
corresponds to +1 and “1” corresponds to –1. This coding reduces the local
distance calculation to simple addition and subtraction.

As shown in Example 7–6, the DSP can calculate a butterfly quickly by using
its accumulators in a dual 16-bit computation mode. To determine the new path
metric j, two possible path metrics, 2j and 2j+1, are calculated in parallel with
local distances (LD and –LD) using the add-subtract (ADDSUB) instruction
and an accumulator. To determine the new path metric (j+2(K – 2)), the subtract-
add (SUBADD) instruction is also used, using the old path metrics plus local
distances stored in a separate accumulator. The MAXDIFF instruction is then
used on both accumulators to determine the new path metrics. The MAXDIFF
instruction compares the upper and lower 16-bit values for two given accumu-
lators, and stores the larger values in a third accumulator.
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Example 7–6 shows two macros for Viterbi butterfly calculations. The add-
subtract (ADDSUB) and subtract-add (SUBADD) computations in the two
macros are performed in alternating order, which is based on the expected en-
coder state. A local distance is stored in the register T3 beforehand. The
MAXDIFF instruction performs the add-compare-select function in 1 cycle.
The updated path metrics are saved to memory by the next two lines of code.

Two 16-bit transition registers (TRN0 and TRN1) are updated with every com-
parison done by the MAXDIFF instruction, so that the selected path metric can
be tracked. TRN0 tracks the results from the high part data path, and TRN1
tracks the low part data path. These bits are later used in traceback, to deter-
mine the original uncoded data. Using separate transition registers allows for
storing the selection bits linearly, which simplifies traceback. In contrast, the
TMS320C54x  (C54x ) DSP has only one transition register, storing the
selection bits as 0, 8, 1, 9, etc. As a result, on the C54x DSP, additional lines
of code are needed to process these bits during traceback.

You can make the Viterbi butterfly calculations faster by implementing user-
defined instruction parallelism (see section 4.2, page 4-20) and software pipe-
lining. Example 7–7 (page 7-21) shows the inner loop of a Viterbi butterfly al-
gorithm. The algorithm places some instructions in parallel (||) in the CPU, and
the algorithm implements software pipelining by saving previous results at the
same time it performs new calculations. Other operations, such as loading the
appropriate local distances, are coded with the butterfly algorithm.
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Example 7–6. Viterbi Butterflies for Channel Coding

(a) Mnemonic Instructions

BFLY_DIR_MNEM .MACRO
;new_metric(j)&(j+2^(K–2))

;
ADDSUB T3, *AR5+, AC0 ; AC0(39–16) = Old_Met(2*j)+LD

; AC0(15–0) = Old_met(2*j+1)–LD

SUBADD T3, *AR5+, AC1 ; AC1(39–16) = Old_Met(2*j)–LD
; AC1(15–0) = Old_met(2*j+1)+LD

MAXDIFF AC0, AC1, AC2, AC3 ; Compare AC0 and AC1
MOV AC2, *AR3+, *AR4+ ; Store the lower maxima (with AR3)

; and upper maxima (with AR4)
.ENDM

BFLY_REV_MNEM        .MACRO
;new_metric(j)&(j+2^(K–2))

SUBADD T3, *AR5+, AC0 ; AC0(39–16) = Old_Met(2*j)–LD
; AC0(15–0) = Old_met(2*j+1)+LD

ADDSUB T3, *AR5+, AC1 ; AC1(39–16) = Old_Met(2*j)+LD
; AC1(15–0) = Old_met(2*j+1)–LD

MAXDIFF AC0, AC1, AC2, AC3 ; Compare AC0 and AC1
MOV AC2, *AR3+, *AR4+ ; Store the lower maxima (with AR3)

; and upper maxima (with AR4)
.ENDM
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Example 7–6 .Viterbi Butterflies for Channel Coding (Continued)

(b) Algebraic Instructions

BFLY_DIR_ALG .MACRO
;new_metric(j)&(j+2^(K–2))

hi(AC0) = *AR5+ + T3, ; AC0(39–16) = Old_Met(2*j)+LD
lo(AC0) = *AR5+ – T3 ; AC0(15–0) = Old_met(2*j+1)–LD

hi(AC1) = *AR5+ – T3, ; AC1(39–16) = Old_Met(2*j)–LD
lo(AC1) = *AR5+ + T3 ; AC1(15–0) = Old_met(2*j+1)+LD

max_diff(AC0, AC1, AC2, AC3) ; Compare AC0 and AC1
*AR3+ = lo(AC2), *AR4+ = hi(AC2) ; Store the lower maxima (with AR3)

; and upper maxima (with AR4)
.ENDM

BFLY_REV_ALG        .MACRO
;new_metric(j)&(j+2^(K–2))

hi(AC0) = *AR5+ – T3, ; AC0(39–16) = Old_Met(2*j)–LD
lo(AC0) = *AR5+ + T3 ; AC0(15–0) = Old_met(2*j+1)+LD

hi(AC1) = *AR5+ + T3, ; AC1(39–16) = Old_Met(2*j)+LD
lo(AC1) = *AR5+ – T3 ; AC1(15–0) = Old_met(2*j+1)–LD

max_diff(AC0, AC1, AC2, AC3) ; Compare AC0 and AC1
*AR3+ = lo(AC2), *AR4+ = hi(AC2) ; Store the lower maxima (with AR3)

; and upper maxima (with AR4)
.ENDM
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Example 7–7. Viterbi Butterflies Using Instruction Parallelism

(a) Mnemonic Instructions

RPTBLOCAL end
butterfly:

ADDSUB T3, *AR0+, AC0 ; AC0(39–16) = Old_Met(2*j)+LD
; AC0(15–0) = Old_met(2*j+1)–LD

|| MOV *AR5+, AR7

SUBADD T3, *AR0+, AC1 ; AC1(39–16) = Old_Met(2*j)–LD
; AC1(15–0) = Old_met(2*j+1)+LD

|| MOV *AR6, T3 ; Load new local distance

MOV AC2, *AR2+, *AR2(T0) ; Store lower and upper maxima
; from previous MAXDIFF operation

|| MAXDIFF AC0, AC1, AC2, AC3 ; Compare AC0 and AC1

ADDSUB T3, *AR0+, AC0 ; AC0(39–16) = Old_Met(2*j)+LD
; AC0(15–0) = Old_met(2*j+1)–LD

|| MOV *AR5+, AR6

SUBADD T3, *AR0+, AC1 ; AC1(39–16) = Old_Met(2*j)–LD
; AC1(15–0) = Old_met(2*j+1)+LD

|| MOV *AR7, T3 ; Load new local distance

end MOV AC2, *AR2(T0), *AR2+ ; Store lower and upper maxima
; from previous MAXDIFF operation

|| MAXDIFF AC0, AC1, AC2, AC3 ; Compare AC0 and AC1
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Example 7–7 .Viterbi Butterflies Using Instruction Parallelism (Continued)

(b) Algebraic Instructions

localrepeat {
butterfly:

hi(AC0) = *AR0+ + T3, ; AC0(39–16) = Old_Met(2*j)+LD
lo(AC0) = *AR0+ – T3 ; AC0(15–0) = Old_met(2*j+1)–LD
|| AR7 = *AR5+

hi(AC1) = *AR0+ – T3, ; AC1(39–16) = Old_Met(2*j)–LD
lo(AC1) = *AR0+ + T3 ; AC1(15–0) = Old_met(2*j+1)+LD
|| T3 = *AR6 ; Load new local distance

*AR2+ = lo(AC2), *AR2(T0) = hi(AC2) ; Store lower and upper maxima
; from previous max_diff operation

|| max_diff( AC0, AC1, AC2, AC3) ; Compare AC0 and AC1

hi(AC0) = *AR0+ + T3, ; AC0(39–16) = Old_Met(2*j)+LD
lo(AC0) = *AR0+ – T3 ; AC0(15–0) = Old_met(2*j+1)–LD
|| AR6 = *AR5+

hi(AC1) = *AR0+ – T3, ; AC1(39–16) = Old_Met(2*j)–LD
lo(AC1) = *AR0+ + T3 ; AC1(15–0) = Old_met(2*j+1)+LD
|| T3 = *AR7 ; Load new local distance

*AR2(T0) = lo(AC2), *AR2+ = hi(AC2) ; Store lower and upper maxima
; from previous max_diff operation

|| max_diff( AC0, AC1, AC2, AC3) ; Compare AC0 and AC1
}
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TI C55x DSPLIB

The TI C55x DSPLIB is an optimized DSP function library for C programmers
on TMS320C55x  (C55x ) DSP devices. It includes over 50 C-callable as-
sembly-optimized general-purpose signal processing routines. These rou-
tines are typically used in computationally intensive real-time applications
where optimal execution speed is critical. By using these routines you can
achieve execution speeds considerably faster than equivalent code written in
standard ANSI C language. In addition, by providing ready-to-use DSP func-
tions, TI DSPLIB can shorten significantly your DSP application development
time.

The TI DSPLIB includes commonly used DSP routines. Source code is pro-
vided to allow you to modify the functions to match your specific needs.
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8.1 Features and Benefits

� Hand-coded assembly optimized routines

� C-callable routines fully compatible with the C55x DSP compiler

� Fractional Q15-format operands supported

� Complete set of examples on usage provided

� Benchmarks (cycles and code size) provided

� Tested against Matlab� scripts

8.2 DSPLIB Data Types

DSPLIB functions generally operate on Q15-fractional data type elements:

� Q.15 (DATA) : A Q.15 operand is represented by a short data type (16 bit)
that is predefined as DATA, in the dsplib.h header file.

Certain DSPLIB functions use the following data type elements:

� Q.31 (LDATA) : A Q.31 operand is represented by a long data type (32 bit)
that is predefined as LDATA, in the dsplib.h header file.

� Q.3.12 : Contains 3 integer bits and 12 fractional bits.

8.3 DSPLIB Arguments

DSPLIB functions typically operate over vector operands for greater efficiency.
Though these routines can be used to process short arrays or scalars (unless
a minimum size requirement is noted), the execution times will be longer in
those cases.

� Vector stride is always equal 1:  vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

� Complex elements  are assumed to be stored in a Real-Imaginary (Re-
Im) format.

� In-place computation is allowed (unless specifically noted):  Source
operand can be equal to destination operand to conserve memory.

Features and Benefits / DSPLIB Data Types / DSPLIB Arguments
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8.4 Calling a DSPLIB Function from C

In addition to installing the DSPLIB software, to include a DSPLIB function in
your code you have to:

� Include the dsplib.h include file

� Link your code with the DSPLIB object code library, 55xdsp.lib.

� Use a correct linker command file describing the memory configuration
available in your C55x DSP board.

For example, the following code contains a call to the recip16 and q15tofl rou-
tines in DSPLIB:

#include ”dsplib.h”

DATA x[3] = { 12398 , 23167, 564};

DATA  r[NX];
DATA  rexp[NX];
float rf1[NX];
float rf2[NX];

void main()
{
        short i;

        for (i=0;i<NX;i++) 
         {
               r[i] =0;
               rexp[i] = 0;
         }

        recip16(x, r, rexp, NX);
        q15tofl(r, rf1, NX);

        for (i=0; i<NX; i++)
         {
               rf2[i] = (float)rexp[i] * rf1[i];
         }

        return;
}

In this example, the q15tofl DSPLIB function is used to convert Q15 fractional
values to floating-point fractional values. However, in many applications, your
data is always maintained in Q15 format so that the conversion between float-
ing point and Q15 is not required.
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8.5 Calling a DSPLIB Function from Assembly Language Source Code

The DSPLIB functions were written to be used from C. Calling the functions
from assembly language source code is possible as long as the calling-func-
tion conforms with the C55x DSP C compiler calling conventions. Refer to the
TMS320C55x Optimizing C Compiler User’s Guide, if a more in-depth
explanation is required.

Realize that the DSPLIB is not an optimal solution for assembly-only program-
mers. Even though DSPLIB functions can be invoked from an assembly pro-
gram, the resulting execution times and code size may not be optimal due to
unnecessary C-calling overhead.

8.6 Where to Find Sample Code

You can find examples on how to use every single function in DSPLIB, in the
examples subdirectory. This subdirectory contains one subdirectory for each
function. For example, the examples/araw subdirectory contains the following
files:

� araw_t.c: main driver for testing the DSPLIB acorr (raw) function.

� test.h: contains input data(a) and expected output data(yraw) for the acorr
(raw) function as. This test.h file is generated by using Matlab scripts.

� test.c: contains function used to compare the output of araw function with
the expected output data.

� ftest.c:  contains function used to compare two arrays of float data types.

� ltest.c:  contains function used to compare two arrays of long data types.

� ld3.cmd: an example of a linker command you can use for this function .

Calling a DSPLIB Function from Assembly Language Source Code / Where to FInd Sample Code
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8.7 DSPLIB Functions

8.7.1 Description of Arguments

Table 8–1 describes the arguments for each function.

Table 8–1. DSPLIB Function Argument Descriptions

Argument Description

x,y argument reflecting input data vector

r argument reflecting output data vector

nx,ny,nr arguments reflecting the size of vectors x,y, and r respectively. In functions where
nx = nr = nr, only nx has been used.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

DATA data type definition equating a short, a 16-bit value representing a Q15 number.
Usage of DATA instead of short is recommended to increase future portability
across devices.

LDATA data type definition equating a long, a 32-bit value representing a Q31 number.
Usage of LDATA instead of long is recommended to increase future portability
across devices.

ushort Unsigned short (16 bit). You can use this data type directly, because it has been
defined in dsplib.h

8.7.2 List of DSPLIB Functions

Table 8–2 lists the DSPLIB functions by these 8 functional catagories:

� Fast-Fourier Transforms (FFT)
� Filtering and convolution
� Adaptive filtering
� Correlation
� Math
� Trigonometric
� Miscellaneous
� Matrix
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Table 8–2. DSPLIB Functions  

Functions Description

FFT

void cfft (DATA *x,  ushort nx, ushort scale) Radix–2 complex forward FFT – MACRO

void cifft (DATA *x,  ushort nx, ushort scale) Radix–2 complex inverse FFT – MACRO

void cbrev  (DATA *x,  DATA *r, ushort  n) Complex bit–reverse function

Filtering and Convolution

ushort fir(DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

FIR Direct form

ushort fir2(DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

FIR Direct form (Optimized to use DUAL–MAC)

ushort firs(DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh2)

Symmetric FIR Direct form (generic  routine)

ushort cfir(DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

Complex FIR direct form

ushort convol(DATA *x, DATA *h, DATA *r, ushort nr,
ushort nh)

Convolution

ushort convol1(DATA *x, DATA *h, DATA *r, ushort nr,
ushort nh)

Convolution (Optimized to use DUAL–MAC)

ushort convol2(DATA *x, DATA *h, DATA *r, ushort nr,
ushort nh)

Convolution (Optimized to use DUAL–MAC)

ushort iircas4(DATA *x, DATA *h,  DATA *r, DATA *dbuffer,
ushort nbiq, ushort nx)

IIR cascade Direct Form 2. 4 coefficients per
biquad.

ushort iircas5(DATA *x, DATA *h,  DATA *r, DATA *dbuffer,
ushort nbiq, ushort nx)

IIR cascade Direct Form 2. 5 coefficients per
biquad

ushort iircas51(DATA *x, DATA *h,  DATA *r, DATA
**dbuffer, ushort nbiq, ushort nx)

IIR cascade Direct Form 1.  5 coefficients per
biquad

ushort iirlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer,
int nx, int nh)

Lattice inverse IIR filter

ushort firlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer,
int nx, int nh)

Lattice forward FIR filter



DSPLIB Functions

8-7TI C55x DSPLIB

Table 8–2. DSPLIB Functions (Continued)

Functions Description

Adaptive filtering

ushort dlms(DATA *x, DATA *h, DATA *r, DATA *des,
DATA *dbuffer, DATA step, ushort nh, ushort nx)

LMS FIR (delayed version)

Correlation

ushort acorr (DATA *x, DATA *r, ushort nx, ushort nr, type) Auto-correlation (positive side only) – MACRO

Trigonometric

ushort sine(DATA *x, DATA *r, ushort nx) sine of a vector

ushort atan2_16(DATA *i, DATA *q, DATA *r, ushort nx) 4 – Quadrant Inverse Tangent of a vector

ushort atan16(DATA *x, DATA *r, ushort nx) Arctan of a vector

Math

ushort add (DATA *x, DATA *y, DATA *r, ushort nx, ushort
scale)

Optimized vector addition

ushort expn(DATA *x, DATA *r, ushort nx) Exponent of a vector

ushort logn(DATA *x, LDATA *r, ushort nx) Natural log of a vector

ushort log_2(DATA *x, LDATA *r, ushort nx) Log base 2 of a vector

ushort log_10(DATA *x, LDATA *r, ushort nx) Log base 10 of a vector

short maxidx (DATA *x, ushort nx) Index for maximum magnitude in a vector

short maxval (DATA *x, ushort nx) Maximum magnitude in a vector

short minidx (DATA *x, ushort nx) Index for minimum magnitude in a vector

short minval (DATA *x, ushort nx) Minimum element in a vector

short neg (DATA *x, DATA *r, ushort nx) 16-bit vector negate

short neg32 (LDATA *x, LDATA *r, ushort nx) 32-bit vector negate

short power (DATA *x, LDATA *r, ushort nx) sum of squares of a vector (power)

void recip16(DATA *x, DATA *r, DATA *rexp, ushort nx) Vector reciprocal

void ldiv16(LDATA *x, DATA *y,DATA *r, DATA *rexp,
ushort nx)

32 bit by 16-bit long division
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Table 8–2. DSPLIB Functions (Continued)

Functions Description

ushort sqrt_16(DATA *x, DATA *r, short nx) Square root of a vector

short sub (DATA *x, DATA *y, DATA *r, ushort nx, ushort
scale)

Vector subtraction

Matrix

ushort mmul(DATA *x1,short row1,short col1,DATA
*x2,short row2,short col2,DATA *r)

matrix multiply

ushort mtrans(DATA *x, short row, short col, DATA *r) matrix transponse

Miscellaneous

ushort fltoq15(float *x, DATA *r, ushort nx) Float to Q15 conversion

ushort q15tofl(DATA *x, float *r, ushort nx) Q15 to float conversion
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2s–complement addition
concept, 5-5
extended–precision, 5-10

2s–complement arithmetic
concepts, 5-5
extended–precision (concept), 5-8
extended–precision (details), 5-10, 5-17

2s–complement division, 5-21
2s–complement fractional format, 5-5
2s–complement integer format, 5-4
2s–complement multiplication

concept, 5-5
extended–precision, 5-17

2s–complement numbers
concept, 5-2
decimal equivalent (example), 5-3
negative of (example), 5-3

2s–complement subtraction
concept, 5-5
extended–precision, 5-10

A
A unit, parallel optimization within, 4-29
AC1 (access 1) stage of pipeline, 4-53
AC2 (access 2) stage of pipeline, 4-53
access 2 (AC2) stage of pipeline, 4-53
access 1 (AC1) stage of pipeline, 4-53
accesses to dual–access RAM (DARAM), 4-78
accesses to single–access RAM (SARAM), 4-79
AD (address) stage of pipeline, 4-53
adaptive FIR filtering

concept, 7-6
example, 7-9

addition
2s–complement, 5-5
extended–precision 2s–complement, 5-10

address (AD) stage of pipeline, 4-53
address buses available, 1-2
address generation units, 1-2
addressing modes

ARn, 2-8
bit addressing by instruction, 2-8
DP direct, 2-8
k23, 2-8

ADDSUB instruction used in Viterbi code, 7-19
advanced parallelism rules, 4-26
allocating data, 3-36
application–specific instructions, 7-1
architecture of TMS320C55x DSPs

features supporting parallelism, 4-21
overview, 1-2

arguments to functions in TMS320C55x DSP library,
8-2

arithmetic
2s–complement, 5-5
extended–precision 2s–complement (concept),

5-8
extended–precision 2s–complement (details),

5-10, 5-17
assembly code, 3-8
assembly code optimization, 4-1
asymmetric FIR filtering, 7-2

with FIRSN instruction, 7-4

B
B bus (BB), use in dual–MAC operations, 4-2
basic parallelism rules, 4-25
BB bus, use in dual–MAC operations, 4-2
bit field expand instruction

concept, 7-12
example, 7-13

bit field extract instruction
concept, 7-14
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example, 7-15

bit–reverse addressing, 6-1
in FFT algorithms, 6-4
in TMS320C55x DSP function library, 6-8
in–place versus off–place bit–reversing, 6-6
introduction, 6-2
syntaxes, 6-2
typical initialization requirements, 6-5

bit–stream (de)multiplexing, 7-11

block–repeat instructions, identifying which type to
use, 4-49

built–in parallelism, 4-20

buses available, 1-2

buses supporting parallelism, 4-23

butterfly structure (figure), 7-17

byte extensions (parallelism rule), 4-26

C
C bus (CB), use in dual–MAC operations, 4-2

c code, 3-8

C function library for TMS320C55x DSPs, 8-1
calling a function from assembly source, 8-4
calling a function from C, 8-3
data types used, 8-2
function arguments, 8-2
list of functions, 8-5
where to find sample code, 8-4

calling a function in TMS320C55x DSP library
from assembly source, 8-4
from C, 8-3

CARRY bit
affected by addition, 5-10
affected by subtraction, 5-13

CB bus, use in dual–MAC operations, 4-2

circular addressing, 3-29

coarse granularity
memory–mapped register pipeline protection,

4-66
status register pipeline protection, 4-64

code development flow, 1-3

code examples. See examples

CODE_SECTION, 3-40

comments, 2-3

compatibility with TMS320C54x DSPs, 1-2

compiler options, 3-2
–ml, 3-4
–mn, 3-4
–mr, 3-4
–ms, 3-4
–oisize, 3-3
–on, 3-2, 3-24
–onx, 3-3
–opn, 3-3
–pm, 3-4, 3-24

complex vector multiplication using dual–MAC hard-
ware, 4-6

computation blocks, 1-2
computed single–repeat register (CSR), using with a

single–repeat instruction, 4-50
constants, 2-5
control code, 3-27
convolutional encoding, 7-10
CSR, using with a single–repeat instruction, 4-50

D
D (decode) stage of pipeline, 4-53
D bus (DB), use in dual–MAC operations, 4-2
D unit, parallel optimization within, 4-37
DARAM accesses (buses and pipeline stages), 4-78
data alignment, 3-34
data allocation, 3-36
data buses available, 1-2
data types used in TMS320C55x DSP function li-

brary, 8-2
DB bus, use in dual–MAC operations, 4-2
decode (D) stage of pipeline, 4-53
delayed LMS algorithm, 7-7
directive, SECTIONS, 3-40
directives

.def, 2-5

.init, 2-5
MEMORY, 2-10
.sect, 2-5
SECTIONS, 2-10
.usect, 2-5

division, 2s–complement, 5-21
DSP function library for TMS320C55x DSPs, 8-1

calling a function from assembly source, 8-4
calling a function from C, 8-3
data types used, 8-2
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function arguments, 8-2
list of functions, 8-5
where to find sample code, 8-4

DSPLIB. See DSP function library for TMS320C55x
DSPs

dual–access RAM (DARAM) accesses (buses and
pipeline stages), 4-78

dual–MAC hardware/operations
efficient use of, 4-2
matrix multiplication, 4-18
pointer usage in, 4-3
taking advantage of implicit algorithm symmetry,

4-5

dynamic scaling for overflow handling, 5-32

E
encoding, convolutional, 7-10

examples
adaptive FIR filter (delayed LMS), 7-9
block FIR filter (dual–MAC implementation), 4-12,

4-14
branch–on–auxiliary–register–not–zero loop

construct, 4-48
complex vector multiplication (dual–MAC imple-

mentation), 4-7
demultiplexing bit streams (convolutional encod-

er), 7-15
multiplexing bit streams (convolutional encoder),

7-13
nested loops, 4-47
output streams for convolutional encoder, 7-11
parallel optimization across CPU functional units,

4-39
parallel optimization within A unit, 4-29
parallel optimization within CPU functional units,

4-29
parallel optimization within D unit, 4-37
parallel optimization within P unit, 4-35
symmetric FIR filter, 7-5
use of CSR for single–repeat loop, 4-51
Viterbi butterfly, 7-19

execute (X) stage of pipeline, 4-54

extended auxiliary register usage in dual–MAC op-
erations, 4-3

extended coefficient data  pointer usage in dual–
MAC operations, 4-3

extended–precision 2s–complement arithmetic
concepts, 5-8
details, 5-10, 5-17

F
FFT flow graph with bit–reversed input, 6-4
field expand instruction

concept, 7-12
example, 7-13

field extract instruction
concept, 7-14
example, 7-15

filtering
adaptive FIR (concept), 7-6
adaptive FIR (example), 7-9
symmetric/asymmetric FIR, 7-2
with dual–MAC hardware, 4-3, 4-5, 4-9

fine granularity
memory–mapped register pipeline protection,

4-66
status register pipeline protection, 4-64

FIR filtering
adaptive (concept), 7-6
adaptive (example), 7-9
symmetric/asymmetric, 7-2

FIRS instruction, 7-3, 7-4
FIRSN instruction, 7-4
fixed scaling for overflow handling, 5-32
fixed–point arithmetic, 5-1
fractional representation (2s–complement), 5-5
fractions versus integers, 5-3
FUNC_EXT_CALLED, 3-8
function allocation, 3-40
function inlining, 3-10
function library for TMS320C55x DSPs, 8-1

calling a function from assembly source, 8-4
calling a function from C, 8-3
data types used, 8-2
function arguments, 8-2
list of functions, 8-5
where to find sample code, 8-4

G
global symbols, 3-35
granularity

memory–mapped register pipeline protection,
4-66
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status register pipeline protection, 4-64
guard bits used for overflow handling, 5-31

H
hardware resource conflicts (parallelism rule), 4-25

I
I/O space available, 1-2
implicit algorithm symmetry, 4-5
input scaling for overflow handling, 5-32
input/output space available, 1-2
instruction buffer, 1-2
instruction length limitation (parallelism rule), 4-25
instruction pipeline

introduced, 1-2
minimizing delays, 4-53
segments and stages, 4-53

instructions executed in parallel, 4-20
instructions for specific applications, 7-1
int _norm, 3-15
integer representation (2s–complement), 5-4
integers versus fractions, 5-3
interrupt–control logic, 1-2
intrinsics, 3-12

int_abss, 3-14
int_lnorm, 3-15
int_lshrs, 3-15
int_md, 3-15
int_norm, 3-15
int_sadd, 3-14
int_shrs, 3-15
int_smacr, 3-15
int_smasr, 3-15
int_smpy, 3-14, 3-15
int_sneg, 3-15
int_ssubb, 3-14
int_subc, 3-15
long_addc, 3-15
long_labss, 3-15
long_laddc, 3-15
long_lsadd, 3-14
long_lsmpy, 3-14
long_lsneg, 3-15
long_lssh, 3-15
long_lsshl, 3-15

long_lssub, 3-14
long_lsubc, 3-15
long_smac, 3-14
long_smas, 3-14
_nassert, 3-18, 3-21

L
labels, 2-3
least mean square (LMS) calculation for adaptive

filtering, 7-6
least mean square (LMS) instruction, 7-6
linker command file, 3-39
linking, 2-10
local block–repeat instruction, when to use, 4-49
local symbols, 3-35
logical units, 3-36
long data access, 3-16
loop unrolling, 4-9
loop–control registers

avoiding pipeline delays when accessing, 4-52
when they are accessed in the pipeline, 4-68

loops
implementing efficient, 4-46
nesting of, 4-46

M
MAC, 3-28
MAC units, 1-2
map file, example, 2-12
math operations, 3-28
matrix mathematics using dual–MAC hardware,

4-18
MAXDIFF instruction used in Viterbi code, 7-19
maximum instruction length (parallelism rule), 4-25
memory, 3-34

allocating data, 3-34
data alignment, 3-34
stack configuration, 3-34
symbol declaration, 3-34

memory accesses and the pipeline, 4-77
memory available, 1-2
memory–mapped register pipeline–protection granu-

larity, 4-66
mmap() qualifier (parallelism rule), 4-26
MMR pipeline–protection granularity, 4-66



Index

Index-5

modulus operator, 3-29
multi–algorithm applications enhanced with dual–

MAC hardware, 4-4
multi–channel applications implemented with dual–

MAC  hardware, 4-3
multiplexing bit streams (convolutional encoder),

7-11
multiplication

2s–complement, 5-5
extended–precision 2s–complement, 5-17

multiply–and–accumulate (MAC) units, 1-2

N
_nassert, 3-18
negative of 2s–complement number (example), 5-3
nesting of loops, 4-46

O
operands, 3-38

global, 3-38
local, 3-38

operators supporting parallelism, 4-21
optimizing assembly code, 4-1
options, 3-2

–pm, 3-5
overflow flags used for overflow handling, 5-31
Overflow handling, 5-31

FFTs, 5-33
FIR filters, 5-32
hardware features for, 5-31
IIR filters, 5-32
techniques for, 5-31

P
P unit, parallel optimization within, 4-35
parallel enable bit, 4-25
parallel execution features, 4-20
parallel optimization, examples, 4-29, 4-39
parallelism

architectural features, 4-21
built–in, 4-20
user–defined, 4-20

parallelism rules for user–defined parallelism, 4-24

parallelism tips, 4-28
pipeline

introduced, 1-2
segments and stages, 4-53

pipeline conflicts, process to resolve, 4-55
pipeline delays

minimizing, 4-53
recommendations for preventing, 4-56
when accessing loop–control registers, 4-52

pipeline–protection granularity
for memory–mapped registers, 4-66
for status registers (ST0_55–ST3_55), 4-64

pointer usage in dual–MAC operations, 4-3
port() qualifier (parallelism rule), 4-26
pragma

CODE_SECTION, 3-40
DATA_SECTION, 3-37
FUNC_EXT_CALLED, 3-8

procedure for efficient code, 1-3
process for user–defined parallelism, 4-27
process to resolve pipeline conflicts, 4-55
processor initialization, 2-3, 2-7
Program–level Optimization, 3-5

R
R (read) stage of pipeline, 4-54
read (R) stage of pipeline, 4-54
recommendations for preventing pipeline delays,

4-56
registers, when they are accessed in the pipeline,

4-58, 4-68
resource conflicts (parallelism rule), 4-25
rules for user–defined parallelism, 4-24

S
SARAM accesses (buses and pipeline stages), 4-79
saturation for overflow handling, 5-32
saturation mode bits used for overflow handling,

5-31
scaling

dynamic, 5-32
fixed, 5-32
input, 5-32
methods for FFTs, 5-33
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FFTs, 5-33
FIR filters, 5-32
IIR filters, 5-32

section allocation, 2-5
example, 2-6
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.do, 3-36
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single–repeat instruction, when to use, 4-49

soft dual encoding, 4-25

ST0_55–ST3_55 pipeline–protection granularity,
4-64

stack configuration, 3-35

stacks available, 1-2

standard block–repeat instruction, when to use, 4-49

status register pipeline–protection granularity, 4-64

SUBADD instruction used in Viterbi code, 7-19
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2s–complement, 5-5
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symbol declarations, 3-35

symmetric FIR filtering, 7-2
with FIRS instruction (concept), 7-3
with FIRS instruction (example), 7-4
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function arguments, 8-2
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where to find sample code, 8-4
tips

applying parallelism, 4-28
nesting loops, 4-49
preventing pipeline delays, 4-56
producing efficient code, 1-3
resolving pipeline conflicts, 4-55

TMS320C54x–compatible mode, 1-2
TMS320C55x DSP function library, 8-1

calling a function from assembly source, 8-4
calling a function from C, 8-3
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function arguments, 8-2
list of functions, 8-5
where to find sample code, 8-4

transition registers (TRN0, TRN1) used in Viterbi
algorithm, 7-18

trip count, 3-18
unsigned integer types, 3-19

tutorial, 2-1

U
user–defined parallelism, 4-20

process, 4-27
rules, 4-24

V
variables, 2-5
vector multiplication using dual–MAC hardware, 4-6
Viterbi algorithm for channel decoding, 7-16
Viterbi butterfly

examples, 7-19
figure, 7-17

W
W (write) stage of pipeline, 4-54
write (W) stage of pipeline, 4-54
writing assembly code, 2-3

X
X (execute) stage of pipeline, 4-54
x2, 3-2
XARn, example, 2-9
XARn usage in dual–MAC operations, 4-3
XCDP usage in dual–MAC operations, 4-3
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