
TMS320C55x
Technical Overview

Literature Number: SPRU393
February 2000

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgement, including those pertaining to warranty, patent
infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the
time of sale in accordance with TI’s standard warranty. Testing and other quality control
techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing
of all parameters of each device is not necessarily performed, except those mandated by
government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE
POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR
ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR
PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR
USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY
AT THE CUSTOMER’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such semiconductor products or services might be
or are used. TI’s publication of information regarding any third party’s products or services does
not constitute TI’s approval, warranty or endorsement thereof.

Copyright  2000, Texas Instruments Incorporated

Contents

iii

Contents

1 Introduction 1-1.
1.1 Introduction to the TMS320C55x 1-2.
1.2 Applications and Benchmarks for the ’C55x 1-3.
1.3 Key Features of the ’C55x 1-7.

2 ’C55x CPU Architecture 2-1.
2.1 Instruction Set Architecture and Implementation Highlights 2-2.
2.2 Instruction Buffer Unit (I Unit) 2-5.
2.3 Program Flow Unit (P Unit) 2-7.
2.4 Address Data Flow Unit (A Unit) 2-9.
2.5 Data Computation Unit (D Unit) 2-11.

3 Low-Power Enhancements 3-1.
3.1 Enhancements for Low-Power Dissipation 3-2.

3.1.1 Architecture 3-2.
3.1.2 Process 3-4.

4 Embedded Emulation Features 4-1.
4.1 Basic Emulation Features and Enhancements 4-2.
4.2 Trace Capability 4-5.
4.3 Real-Time Data Exchange (RTDX) 4-5.

A Related Documents from Texas Instruments A-1.

B Glossary B-1.

Figures

iv

Figures

1–1 Energy Consumption (W-us) 300-MHz, 0.9V ’C55x 1-5.
1–2 Performance (MIPS) 300-MHz ’C55x 1-6.
1–3 Code Density (Bytes) ’C55x 1-6.
2–1 CPU Diagram 2-4.
2–2 Instruction Buffer Unit (I Unit) Diagram 2-5.
2–3 Program Flow Unit (P Unit) Diagram 2-7.
2–4 Address Data Flow Unit (A Unit) Diagram 2-9.
2–5 Data Computation Unit (D Unit) Diagram 2-11.

Tables

1–1 Features and Benefits of the ’C55x 1-7.
1–2 ’C54x/’C55x Comparison 1-8.

1-1

Introduction

Topic Page

1.1 Introduction to the TMS320C55x 1-2.

1.2 Applications and Benchmarks for the ’C55x 1-3.

1.3 Key Features of the ’C55x 1-7.

Chapter 1

Introduction to the TMS320C55x

 1-2

1.1 Introduction to the TMS320C55x

The TMS320C55x digital signal processor (DSP) represents the latest
generation of ’C5000 DSPs from Texas Instruments. The ’C55x is built on the
proven legacy of the ’C54x and is source code compatible with the ’C54x,
protecting the customer’s software investment. Following the trends set by the
’C54x, the ’C55x is optimized for power efficiency, low system cost, and
best-in-class performance for tight power budgets.

With core power dissipation as low as 0.05 mW/MIPS at 0.9V, and
performance up to 800 MIPS (400 MHz), the TMS320C55x offers a
cost-effective solution to the toughest challenges in personal and portable
processing applications as well as digital communications infrastructure with
restrictive power budgets. Compared to a 120-MHz ’C54x, a 300-MHz ’C55x
will deliver approximately 5X higher performance and dissipate one-sixth the
core power dissipation of the ’C54x.

The ’C55x core’s ultra-low power dissipation of 0.05mW/MIPS is achieved
through intense attention to low-power design and advanced power
management techniques. The ’C55x designers have implemented an
unparalleled level of power-down configurability and granularity coupled with
unprecedented power management that occurs automatically and is
transparent to the user.

The ’C55x core delivers twice the cycle efficiency of the ’C54x through a
dual-MAC (multiply-accumulate) architecture with parallel instructions,
additional accumulators, ALUs, and data registers. An advanced instruction
set, a superset to that of the ’C54x, combined with expanded busing structure
complements the new hardware execution units.

The ’C55x continues the standard set by the ’C54x in code density leadership
for lower system cost. The ’C55x instructions are variable byte lengths ranging
in size from 8 bits to 48 bits. With this scalable instruction word length, the
’C55x can reduce control code size per function by up to 40% more than ’C54x.
Reduced control code size means reduced memory requirements and lower
system cost.

This overview describes the CPU architecture, low-power enhancements, and
embedded emulation features of the TMS320C55x. For detailed information,
refer to the documentation listed in Appendix A, Related Documents from
Texas Instruments.

Unless otherwise specified, all references to the ’C5000 refer to the
TMS320C5000 platform of DSPs; ’C55x refers to the TMS320C55x
fixed-point DSPs in the ’C5000 platform; and ’C54x refers to the TMS320C54x
fixed-point DSPs in the ’C5000 platform.

Introduction to the TMS320C55x

Applications and Benchmarks for the ’C55x

1-3Introduction

1.2 Applications and Benchmarks for the ’C55x

The TMS320C55x delivers an optimal combination of ultra-low power,
best-in-class performance, and low system cost to fuel the continued
digitization and miniaturization of personal and portable applications.

The ’C55x architecture and design was developed with four interrelated
objectives:

� Industry-leading ultra-low power

Allows increased battery life for portable applications or greater channel
density for power-efficient infrastructure systems.

� Efficient DSP performance

Allows more functionality to be added to systems or faster processing time
for existing algorithms.

� Leadership in code density

Requires less memory to perform given functions which translates to
lower system cost and/or smaller system size. All this as a result of more
tightly packed code.

� Complete code compatibility with the ’C54x

Maintains the customer’s software investment and large existing code
base.

Typical Applications for ’C55x

Industry-leading power efficiency coupled with the tremendous processing
performance and low system cost of the TMS320C55x spawn the next
generation of the following digital applications:

� Wireless handsets and personal communication systems

� Portable audio players

� Personal medical devices (hearing aids, etc.)

� Digital cameras

� Internet/information appliances

� Power-efficient multichannel telephony systems (e.g. RAS, VOP)

Applications and Benchmarks for the ’C55x

 1-4

Generally speaking, the ’C55x is broadly targeted at the consumer and
communication markets which utilize DSP algorithms such as:

� Speech coding and decoding

� Line or Acoustic Echo cancellation; noise cancellation

� Modulation and demodulation

� Image and audio compression and decompression

� Speech encryption, decryption

� Speech recognition, speech synthesis

Low Power, Low System Cost, High Performance

The ’C55x supports four basic application categories that value low power, low
system cost, and high performance with different levels of importance. Those
categories include:

1) Applications that require much longer battery life while maintaining or
slightly increasing performance . Examples include extending the
battery life of today’s digital cellular handsets, portable audio players, or
digital still cameras from hours to days, or days to weeks, while
maintaining the same level of functionality.

2) Applications that require much higher performance while maintaining
or slightly increasing battery life . Examples include tomorrow’s 3G
wireless handsets or internet appliances which may converge audio,
video, voice, and data into a single multifunction mobile product.
Consumers have come to expect a certain level of battery life in standby
and active modes and will not be willing to sacrifice this for more
functionality.

3) Applications that require very small size, ultra-low power
consumption, and low-to-medium levels of DSP performance .
Examples include the personal medical market whereby new advances in
hearing aids and medical diagnostics require DSP capability but with
battery life measured in weeks or months.

4) Power-efficient infrastructure applications (RAS, VOP, multiservice
gateways, etc.) that need increased channel density while meeting
stringent board-level power and space budgets .

Applications and Benchmarks for the ’C55x

1-5Introduction

’C55x Benchmarks

Figure 1–1, Figure 1–2, and Figure 1–3 compare the ’C55x to the ’C54x based
on the leadership position and prevalence of ’C54x in communication markets
today. When compared to a 120-MHz, 1.8V ’C54x; a 300-MHz, 0.9V ’C55x
exhibits up to:

� 6X lower core power

� 5X higher performance

� 30% less code size

The figures also illustrate improvements in the execution of algorithms for
some of the previously discussed target applications. These improvements
are a result of architectural enhancements to the ’C55x.

Figure 1–1. Energy Consumption (W-us) 300-MHz, 0.9V ’C55x†

FFT
butterfly

GSM
FR

GSM
EFR

Viterbi

8x

5.8x
6.2x

5.7x

6.7x

6x

4x

2x

0

6.4x

Auto
Correlation

Le
ss

 E
ne

rg
y

C
on

su
m

ed

Algorithms

† ’C55x results based on comparison of a 300-MHz, 0.9V ’C55x to a 120-MHz, 1.8V ’C54x.

Applications and Benchmarks for the ’C55x

 1-6

Figure 1–2. Performance (MIPS) 300-MHz ’C55x†

Vector
Max

PDC
HR

GSM
EFR

Viterbi

8x

5x

6x

7x
7.5x

6x

4x

2x

0

5.25x

Auto
Correlation

Conv
Encoder

5x
H

ig
he

r
P

er
fo

rm
an

ce

Algorithms

† ’C55x results based on comparison of a 300-MHz, 0.9V ’C55x to a 120-MHz, 1.8V ’C54x.

Figure 1–3. Code Density (Bytes) ’C55x†

GSM
HR

GSM
FR

GSM
EFR

PDC
HR

60%

50%

40%

30%

20%

10%

0

D
en

se
r

C
od

e 33%

14%

51%

27%

Algorithms

† ’C55x results based on comparison of a 300-MHz, 0.9V ’C55x to a 120-MHz, 1.8V ’C54x.

Key Features of the ’C55x

1-7Introduction

1.3 Key Features of the ’C55x

The ’C55x incorporates a rich set of features that provide processing
efficiency, low-power dissipation, and ease of use. Some of these features are
listed in Table 1–1.

Table 1–1. Features and Benefits of the ’C55x

Feature(s) Benefit(s)

A 32 x 16-bit Instruction buffer queue

Two 17-bit x17-bit MAC units

One 40-bit ALU

One 40-bit Barrel Shifter

One 16-bit ALU

Four 40-bit accumulators

Twelve independent buses:
– Three data read buses
– Two data write buses
– Five data address buses
– One program read bus
– One program address bus

User-configurable IDLE Domains

Buffers variable length instructions and implements efficient block
repeat operations

Execute dual MAC operations in a single cycle

Performs high precision arithmetic and logical operations

Can shift a 40-bit result up to 31 bits to the left,
or 32 bits to the right

Performs simpler arithmetic in parallel to main ALU

Hold results of computations and reduce the required memory
traffic

Provide the instructions to be processed as well as the operands
for the various computational units in parallel —to take advantage
of the ’C55x parallelism.

Improve flexibility of low-activity power management

Within the ’C5000 DSP platform, the ’C55x is the latest generation building on
the proven legacy of the ’C54x generation. The ’C55x is completely source
code compatible with the ’C54x, which means that programs developed on the
’C54x can be re-assembled and executed on the ’C55x with identical, bit-exact
results. Table 1–2 outlines a comparison of the hardware features between the
’C54x and the ’C55x.

Key Features of the ’C55x

 1-8

Table 1–2. ’C54x/’C55x Comparison

’C54x ’C55x

MACs 1 2

Accumulators 2 4

Read buses 2 3

Write buses 1 2

Program fetch 1 1

Address buses 4 6

Program word size 16 bits 8/16/24/32/40/48 bits

Data word size 16 bits 16 bits

Auxiliary Register ALUs 2 (16-bit each) 3 (24-bit each)

ALU 1 (40-bit) 1 (40-bit)
1 (16-bit)

Auxiliary Registers 8 8

Data Registers 0 4

Memory Space Separate Program/Data Unified space

2-1

’C55x CPU Architecture

Topic Page

2.1 Instruction Set Architecture and Implementation Highlights 2-2.

2.2 Instruction Buffer Unit (I Unit) 2-5.

2.3 Program Flow Unit (P Unit) 2-7.

2.4 Address Data Flow Unit (A Unit) 2-9.

2.5 Data Computation Unit (D Unit) 2-11.

Chapter 2

Instruction Set Architecture and Implementation Highlights

 2-2

2.1 Instruction Set Architecture and Implementation Highlights

The TMS320C55x is a low-power, general-purpose signal processing
architecture with an instruction set optimized for efficiency, ease of use, and
compactness. Although the ’C55x instruction set is much more powerful and
flexible than that of previous generations, the architecture is completely
compatible with TMS320C54x instructions. This allows programs developed
on the ’C54x to be re-assembled and executed on the ’C55x with bit-exact
results. A highly parallel architecture complements the ’C55x instruction set
and enables increased code density while reducing the number of cycles
required per operation. The union of an efficient, compact instruction set with
a highly parallel architecture provides a high-performance signal processing
engine while minimizing code size and power consumption.

The ’C55x instruction set includes a flexible set of orthogonal features to
enhance ease of use and program efficiency. Powerful addressing modes
which include the absolute addressing mode, the register-indirect addressing
mode, and the direct addressing mode (also known as displacement) greatly
reduce the instruction count required for signal processing algorithms. A
three-operand instruction format, with support for both memory and register
references, also provides excellent instruction density. All ’C55x instructions
that move data support any of the major addressing modes and operand
formats. This regularity is conducive to efficient high level language compiler
use and simplifies programming in assembly. The instruction set also includes
syntax that allows the programmer or compiler to schedule multiple
instructions for parallel execution. These instruction set features simplify the
task of the programmer and optimize the efficiency of ’C55x code resulting in
shorter product development time.

A key to the processing power and superior code density of the ’C55x is its
efficient implementation. This implementation uses variable length instruction
encoding to achieve optimal code density and efficient bus usage. Multiple
computational units are included to carry out computations in parallel, thereby
reducing the number of cycles required per operation. The dual
multiply-and-accumulate (MAC) units can perform two 17-bit x 17-bit MAC
operations in a single cycle while the 40-bit ALU can be used to operate on
32-bit data, or can be split to perform dual 16-bit operations. A second 16-bit
ALU for general-purpose arithmetic further increases parallelism and adds
flexibility. Based on a modified Harvard architecture, the ’C55x includes one
program bus and three independent read data buses that can simultaneously
bring data operands to the various computational units. The high degree of
parallelism and efficient instruction encoding maximize the overall processor
efficiency without sacrificing performance.

Instruction Set Architecture and Implementation Highlights

2-3’C55x CPU Architecture

This chapter describes the ’C55x CPU implementation in terms of the four
units highlighted in Figure 2–1. The four units are:

1) Instruction buffer unit – This unit buffers and decodes the instructions
that make up the application program. In addition, this unit includes the
decode logic that interprets the variable length instructions of the ’C55x.
The instruction buffer unit increases the efficiency of the DSP by
maintaining a constant stream of tasks for the various computational units
to perform.

2) Program flow unit – The program flow unit keeps track of the execution
point within the program being executed. This unit includes the hardware
used for efficient looping as well as dedicated hardware for speculative
branching, conditional execution, and pipeline protection. This hardware
is vital to the processing efficiency of the ’C55x as it helps reduce the
number of processor cycles needed for program control changes such as
branches and subroutine calls.

3) Address data flow unit – This unit provides the address pointers for data
accesses during program execution. The efficient addressing modes of
the ’C55x are made possible by the components of the address data flow
unit. Dedicated hardware for managing the five data buses keeps data
flowing to the various computational units. The address data flow unit
further increases the instruction level parallelism of the ’C55x architecture
by providing an additional general-purpose ALU for simple arithmetic
operations.

4) Data computation unit – This unit is the heart of the DSP, and performs
the arithmetic computations on the data being processed. It includes the
MACs, the main ALU, and the accumulator registers. Additional features
include a barrel shifter, rounding and saturation control, and dedicated
hardware for efficiently performing the Viterbi algorithm, which is
commonly used in error control coding schemes. The instruction level
parallelism provided by this unit is key to the processing efficiency of the
’C55x.

Instruction Set Architecture and Implementation Highlights

 2-4

Figure 2–1. CPU Diagram

CPU

Two data-write address buses (each 24 bits)

Program-read data bus (32 bits)

Program-read address bus (24 bits)

Three data-read data buses (each 16 bits)

Three data-read address buses (each 24 bits)

Instruction
buffer unit

(I unit)

Program
flow unit
(P unit)

Address
data

flow unit
(A unit)

Data
computation

unit
(D unit)

Two data-write data buses (each 16 bits)

Instruction Buffer Unit (I Unit)

2-5’C55x CPU Architecture

2.2 Instruction Buffer Unit (I Unit)

The instruction buffer unit of the TMS320C55x handles the task of bringing the
instruction stream from memory into the CPU. During each CPU cycle, the
I unit receives four bytes of program code from the 32-bit program bus, and
decodes one to six bytes of code that were previously received in the queue.
The I unit then passes the decoded information to the P unit, the A unit, and
the D unit for execution of the instructions. Figure 2–2 shows a block diagram
of the I unit.

Figure 2–2. Instruction Buffer Unit (I Unit) Diagram

Program–read data bus (32 bits)

48 bits

Instruction decoder controller

32 bits

P
unit

A
unit

D
unit

Instruction buffer queue
(64 bytes)

.

.

.

During the prefetch phase of the pipeline, the CPU fetches 32 bits of code from
program memory and places it in the instruction buffer queue. When the CPU
is ready to decode instructions, up to six bytes are transferred from the queue
to the instruction decoder. The instruction buffer queue can hold up to 64 bytes
of code at a time, optimizing the performance of the CPU by maintaining a
continuous program flow.

The instruction buffer queue is also used in conjunction with the local repeat
instruction to repeat or loop a block of code stored in the queue. This method
of looping is extremely efficient in both performance and power dissipation

Instruction Buffer Unit (I Unit)

 2-6

because once the code is loaded into the queue, no additional memory fetches
are required to execute the loop.

Another benefit of the instruction buffer queue is that it can perform speculative
fetching of instructions while a condition is being tested for conditional
program flow control instructions (conditional call, conditional return, or
conditional goto). This capability minimizes overhead due to program flow
discontinuities by preventing the need to flush the pipeline. Cycles that
otherwise would have been lost to a pipeline flush are converted to useful
processing cycles.

In the decode phase of the pipeline, the instruction decoder accepts up to six
bytes of program code from the instruction buffer queue and decodes those
bytes. Instructions are decoded in the order that they are received in the
instruction buffer queue—the I unit does not perform dynamic scheduling. This
results in predictable execution time, which is essential for designing real-time
embedded systems.

The ’C55x instruction set has a variable length encoding, with instruction
lengths varying from one to six bytes. Instead of encoding all instructions with
the same number of bits, simple instructions are encoded with fewer bits than
complex instructions. The instruction decoder identifies the boundaries of
instructions so that it can decode 8-, 16-, 24-, 32-, 40- and 48-bit instructions.
This encoding method results in very high-density program code and optimal
use of program memory.

Program Flow Unit (P Unit)

2-7’C55x CPU Architecture

2.3 Program Flow Unit (P Unit)

The ’C55x program flow unit, or P unit, controls the sequence of instructions
executed in a program. It generates the addresses for instruction fetches from
program memory, and directs operations such as hardware loops, branches,
and conditional execution. This unit also includes the logic for managing the
instruction pipeline, and the four status registers used to control and monitor
various features of the CPU. The components of the P unit enable the superior
cycle efficiency of the ’C55x. Figure 2–3 shows a block diagram of the P unit.

Figure 2–3. Program Flow Unit (P Unit) Diagram

Two data-read data buses (each 16 bits)

Program-read address bus (24 bits)

Program counter(s)

Program address generator

Status registers

Program flow

Pipeline protection unit

Interrupts

Two data-write data buses (each 16 bits)

I unit

Within the P unit, the program address generation logic generates 24-bit
addresses for instruction fetches from program memory. There are no
alignment restrictions on code placement within memory, because the P unit
supports byte addressing. The 24-bit address gives the ’C55x a program reach
of 16M bytes to accommodate large programs.

Program Flow Unit (P Unit)

 2-8

The P unit normally generates sequential addresses using the program
counter to keep track of the execution point within a program. However this
logic also generates nonsequential addresses for program control operations
such as:

� branches

� calls

� returns

� hardware looping (repeats)

� conditional execution

� interrupt servicing

The P unit is highly optimized for efficient execution of program flow operations
with minimal impact on pipeline performance. The address generation logic of
the P unit is completely independent of the other units within the CPU.
Because of this, the target address of a branch can be calculated and the
condition for a conditional branch can be tested early in the pipeline to
minimize branch latency. This parallelism also enables the execution of
program-control instructions in the same execute phase of the pipeline as data
processing instructions. This greatly enhances ’C55x performance over
previous architectures that only allow delay slots as a means for improving
branch performance. Other features of the P unit that enhance program
control performance include speculative branching logic, and a separate
program counter dedicated for fast returns from subroutines or interrupt
service routines.

The looping capabilities provided by the P unit include repetition of a single
instruction or a block of instructions. Three levels of hardware loops are
possible on the ’C55x by nesting a block repeat operation within another block
repeat operation, and including a single repeat in either or both of the repeated
blocks. The P unit also includes hardware to support conditional repeats.

A major benefit that the P unit provides is dedicated logic for pipeline
protection. In addition to handling control hazards, the P unit provides full
protection against write-after-read (WAR) and read-after-write (RAW) data
hazards. When such data hazards occur in a ’C55x instruction stream, the
pipeline protection logic inserts cycles to maintain the intended order of
operations and correct execution of the program.

Address Data Flow Unit (A Unit)

2-9’C55x CPU Architecture

2.4 Address Data Flow Unit (A Unit)

The address data flow unit generates the addresses for read and write
accesses to data space. This unit contains all the logic and registers necessary
to generate the addresses for the three data-read address buses and the two
data-write address buses. It also contains a general-purpose 16-bit arithmetic
logic unit (ALU) with shifting capability. Figure 2–4 shows a block diagram of
the A unit.

Figure 2–4. Address Data Flow Unit (A Unit) Diagram

Two data-read data buses (each 16 bits)

Three data-read address buses (each 24 bits)

Two data-write data buses (each 16 bits)

Addressing registers [0 to 7]

Temporary registers [0 to 3]

Coefficient data pointer

Smem/Xmem

Ymem

Cmem

I unit

ALU 16-bit

Two data-write address buses (each 24 bits)

Address Data Flow Unit (A Unit)

 2-10

The 16-bit ALU allows simpler arithmetic operations to be performed in parallel
with more complex operations performed in the D unit. It accepts immediate
values from the I unit and communicates bidirectionally with memory, the
A-unit registers, the D- unit registers, and the P-unit registers. Within the A unit,
the ALU can manipulate four general-purpose 16-bit registers, or any of the
address-generation registers. The four general-purpose registers enable
improved compiler efficiency and minimize the need for memory accesses.

Either the general purpose ALU, or one of the three Addressing Register ALUs
(ARAUs) can modify the nine addressing registers used for indirect
addressing. The three ARAUs provide independent address generators for
each of the three data-read buses of the ’C55x. This parallelism allows two
16-bit operands and a 16-bit coefficient to be read into the D unit during each
CPU cycle. The A unit also includes dedicated registers to support circular
addressing for instructions that use indirect addressing. Up to five
independent circular buffer locations can be used simultaneously with up to
three independent buffer lengths. There are no address alignment constraints
for these circular buffers.

Data Computation Unit (D Unit)

2-11’C55x CPU Architecture

2.5 Data Computation Unit (D Unit)

The data computation unit is the primary part of the CPU where data is
processed. Three data-read buses feed the two multiply-and-accumulate
(MAC) units and the 40-bit ALU, and intermediate results can be stored in one
of four 40-bit accumulator registers. The parallelism of this unit minimizes the
cycle count required per task to provide efficient execution of signal processing
algorithms. Figure 2–5 shows a block diagram of the D unit.

Figure 2–5. Data Computation Unit (D Unit) Diagram

Two data-write data buses (each 16 bits)

17-bit x 17-bit
MACAC0 AC1 AC2 AC3

40-bit
ALU

ShifterI unit

40-bit accumulators

Three data-read data buses (each 16 bits)

Register file

17-bit x 17-bit
MAC

D unit

The key to the computational power of the ’C55x is the dual MAC architecture.
A MAC unit consists of a multiplier and a dedicated adder with saturation logic.
In a single cycle, each MAC unit can perform a 17-bit by 17-bit multiplication
and a 40-bit addition or subtraction with optional 32-/40-bit saturation. The
three data-read buses can be used to carry two data streams and a common
coefficient stream to the two MAC units. The results from the MAC units can
be placed in any of four 40-bit accumulators within the D unit. This dual MAC

Data Computation Unit (D Unit)

 2-12

capability greatly increases the ’C55x performance for executing block filtering
algorithms as well as for other signal processing applications.

The D unit also includes a 40-bit arithmetic logic unit (ALU) that is completely
separate from the MAC units. The D unit ALU can perform arithmetical or
logical operations on 40-bit values from the accumulators, or it can be used
to perform dual 16-bit arithmetic operations simultaneously. In addition to
accepting inputs from the 40-bit accumulator registers of the D unit, the ALU
can accept immediate values from the I unit, and communicates bidirectionally
with memory, the A-unit registers, or the P-unit registers.

A powerful barrel shifter complements the MACs and ALU of the D unit. This
shifter can shift 40-bit accumulator values up to 31 bits to the left, or up to 32
bits to the right. It accepts immediate values from the I unit and communicates
bidirectionally with memory, the A-unit registers, and the P-unit registers. In
addition, it can supply a shifted value to the D-unit ALU as an input for further
calculation.

The results of computational operations in the D unit are written to memory by
the two 16-bit data-write buses. These buses, together with the A-unit address
generation logic can perform two 16-bit writes, or a single 32-bit write to
memory in one CPU cycle. This data throughput is essential for supporting the
real-time processing speed provided by the D unit.

3-1

Low-Power Enhancements

Topic Page

3.1 Enhancements for Low-Power Dissipation 3-2.
3.1.1 Architecture 3-2.
3.1.2 Process 3-4.

Chapter 3

Enhancements for Low-Power Dissipation

 3-2

3.1 Enhancements for Low-Power Dissipation

With the addition of the ’C55x generation of processors, Texas Instruments
furthers its position as the vanguard in low-power dissipation DSPs. The ’C55x
generation builds on the architecture foundation of the ’C54x generation of
processors—already the lowest power DSPs in the industry. A series of
process, design, and architectural enhancements collectively enable new
levels of power reduction. These design enhancements to the ’C55x not only
achieve ultra-low power but greatly increase performance.

3.1.1 Architecture

Increased Parallelism Minimizes Cycles Per Task

The ’C55x architecture expands on the ’C54x architecture to provide higher
performance and lower power dissipation through increased parallelism.
Increased data processing throughput per cycle is provided by:

� Two multiply-accumulate (MAC) units

� Two arithmetic logic units (ALUs)

� Three read buses

� Two write buses

These enhancements allow processing of two data streams, or one stream at
twice the speed, without the need to read coefficient values twice. Minimizing
memory access for a given task improves power and performance.

The ’C55x instruction architecture also provides the capability for two
instructions to be executed in a single cycle. The presence of two internal write
buses provides the capability to perform two writes, or a single double-word
write, or a double stack push in one cycle, reducing cycle time per task. Less
time per task means more time spent in a power-down (IDLE) mode and more
power saved.

Alternate Computational Hardware Use Provides a Low-Power Option for Many Tasks

The ’C55x architecture provides flexibility in performing computational tasks.
Two arithmetic/logic units (ALUs) can be used:

� One 40-bit ALU (Standard on the ’C54x)

� One 16-bit ALU (Added on the ’C55x)

Enhancements for Low-Power Dissipation

3-3Low-Power Enhancements

The 40-bit ALU is consistent with the architecture of the ’C54x generation, and
is used for primary computational tasks. The ’C55x architecture implements
an additional 16-bit ALU which can be used for smaller arithmetic and logic
tasks. The flexible instruction set provides the capability to direct simpler
computational or logical/bit-manipulation tasks to the 16-bit ALU which
consumes less power. This redirection of resources also saves power by
reducing cycles per task since both ALUs can operate in parallel.

Memory Accesses Minimized

Memory accesses, both internal and external, can be a major contributor to
power dissipation. Minimizing the number of memory accesses necessary to
complete a given task furthers the goal of minimizing power dissipation per
task. The ’C55x generation reduces the number of fetches necessary to
provide instructions to the CPU. On the ’C55x, program fetches are performed
as 32-bit accesses (extended from 16-bit on the ’C54x). In addition, the
variable-byte-length instruction set means that each 32-bit instruction fetch
can retrieve more than one instruction. Variable length instructions improve
code density and conserve power by scaling the instruction size to the
amount of information needed. This alliance of instruction set design and
architecture minimizes the power necessary to keep the application running
at top performance.

The flexible ’C55x instruction cache also provides a configurable cache
capability that can be used to optimize the cache operation for different types
of code. Improving the cache hit ratio means fewer external accesses and less
system power consumed. The burst-fill capability of the instruction cache can
minimize external memory accesses and their associated loss of performance
and power efficiency.

Automatic Low-Power Mechanisms for Peripherals and On-Chip Memory Arrays

The ’C55x core processor actively manages power consumption of on-chip
peripherals and memory arrays. This resource power management is fully
automatic and transparent to the user. It is performed without any impact on
the software or the computational performance of the application. It is another
contributor to power reduction without impact on performance.

When individual on-chip memory arrays are not being accessed, they are
automatically switched into a low-power mode. When an access request
arrives, the array returns to normal operation, without latency in the
application, and completes the memory access. If no further accesses to that
array are requested, the array returns to a low-power state until it is needed
again.

Enhancements for Low-Power Dissipation

 3-4

The processor provides a similar control to on-chip peripherals. Peripherals
can enter low-power states when they are not active and the CPU does not
require their attention. The peripherals also respond to processor requests
and exit their low-power states without latency. This power management
occurs in addition to the software controllable low-power states provided by
the IDLE domain control of the peripherals.

Configurable Functional (IDLE) Domains Provide Greater Power-Down Flexibility

A critical component of power conservation is minimizing the power used
when an application is in an idle or low-activity state. The ’C55x generation
improves the flexibility of low-activity power management through the
implementation of user-controllable IDLE domains. These domains are
sections of the device which can be selectively enabled or disabled under
software control. When disabled, a domain enters a very low-power IDLE state
in which register or memory contents are still maintained. When the domain
is enabled, it returns to normal operation. Each of the domains can be
separately enabled or disabled providing the application the capability to
manage low-activity power situations as efficiently as possible. On initial ’C55x
devices, the sections of the device configured as separate IDLE domains are:
the CPU, the DMA, the peripherals, the external memory interface (EMIF), the
instruction cache, and the clock generation circuitry.

3.1.2 Process

Advanced Lower-Voltage Process Technology

In addition to the power dissipation reductions achieved by the architectural
and instruction set enhancements, the ’C55x generation of processors will
further challenge the barriers to power reduction through advanced
low-voltage CMOS technologies. Initial ’C55x devices will be based on a
power-efficient CMOS technology that supports devices running at 1.5V and
0.9V. These low-voltage processors still maintain the capability to interface
directly to other standard 3.3V CMOS components.

4-1

Embedded Emulation Features

Topic Page

4.1 Basic Emulation Features and Enhancements 4-2.

4.2 Trace Capability 4-5.

4.3 Real-Time Data Exchange (RTDX) 4-5.

Chapter 4

Basic Emulation Features and Enhancements

 4-2

4.1 Basic Emulation Features and Enhancements

The ’C55x generation of processors support enhanced emulation and debug
capabilities providing an emulation environment that more closely models the
actual application environment than ever before. Features allowing real-time
operation of the application during emulation and a faster, more efficient debug
environment combine to minimize product development effort and
time-to-market.

Enhanced emulation features on the ’C55x development tools include:

� Non-intrusive real-time debug with watchpoint/breakpoint capability

� Faster screen updates

� Better control of functional code execution during emulation Halt events

� Trace capability

� Real-Time Data Exchange (RTDX)

The integration of these enhanced capabilities provides the software/system
developer with tools that allow greater visibility of hardware operation without
stopping the CPU or consuming MIPS for emulation purposes. The result is
an emulation environment capable of utilizing the full performance of the DSP.

Non-Intrusive Real-Time Debug

Emulation capability on TI DSPs is provided through a scan-based system that
exchanges data between the emulator/debugger and the DSP through a serial
test access port. On earlier DSP generations, exchange of data requires that
the CPU be stopped while data was scanned in or out. On the ’C55x
generation, this limitation is eliminated through the addition of dedicated
on-chip emulation hardware that orchestrates data exchange between the
CPU and the emulator without the need to halt the processor. The result is an
environment where debug information is available to the developer during
emulation while the application continues to run at full performance.

During application operation, the normal CPU timing and interaction with
peripherals is maintained by causing the emulator to delay access to on-chip
resources until they are not in use by the CPU for the application. For example,
the emulation hardware may be allowed to use the internal buses to access
on-chip memory only when the CPU is not using the same buses to support
the application. Restriction of emulation access to periods when on-chip
resources are available also limits impact on interrupt latency creating a more
realistic emulation environment.

Basic Emulation Features and Enhancements

4-3Embedded Emulation Features

In the event, that the emulation data exchange is more critical that preserving
the CPU environment, the developer has the capability to configure the DSP
to allow the emulator to share on-chip resources to gain quicker access. As
an example, the emulator may hold off CPU access to memory for a cycle to
gain access to data that needs to be exported. This flexibility allows the
developer to choose the emulation environment that best supports his/her
debug needs.

Faster Debug Screen Updates

Data from the DSP displayed and used by the emulator is exchanged through
a serial scan chain inside the DSP. On the ’C55x generation, the scan chain
length is limited to the on-chip emulation hardware block instead of the entire
CPU and peripheral system. This structure greatly reduces the length of the
scan chain and consequently improves the speed of data exchange between
the device and the debugger. The emulation hardware block is responsible for
managing the on-chip resources for data movement and relieves the emulator
of this additional overhead. The result is faster, more efficient visibility into the
operation of the application.

Basic Emulation Features and Enhancements

 4-4

Better Control of Functional Code Execution During Emulation Halt Events

In addition to the ability to exchange data between the CPU and the emulator
without halting the processor, the ’C55x emulation environment is also
capable of allowing the DSP to service interrupts when the CPU is halted.
Often debugging interrupt latency and performance can be difficult because
other devices in the system (such as data converters or codecs) interfacing to
the DSP via on-chip peripherals cannot be controlled by the emulator. Since
these other devices may be free running, debugging such a system is difficult
due to the loss of synchronization with these events when the DSP is halted
(for example, to update the screen on the debugger). The ’C55x devices
support two separate interrupt environments: one for interrupts requested
when the DSP is not interacting with the emulator (the normal application
state) and a separate environment for when the DSP is involved with
emulation. These two states are under program control of the DSP.

The CPU can execute interrupt service routines (ISR) while the main program
is halted during debug. Interrupt sequencing automatically preserves the
debug capabilities so that they can be re-enabled at the end of the ISR. Also,
certain debug registers can be accessed by the DSP to control debug
functionality from within the application. Certain critical portions of code can
disable emulation capabilities, then re-enable them at completion of the ISR.

Instructions in the CPU pipeline also can complete execution before the
emulation halt stalls the pipeline. This feature improves the readability of
expected results from registers in the debug window during halt.

Trace Capability

4-5Embedded Emulation Features

4.2 Trace Capability

Another enhancement of the ’C55x on-chip emulation hardware is Program
Counter (PC) Trace capability, which provides greater visibility into application
program flow. The PC Trace capability addresses the need to reconstruct
program flow by exporting enough information to completely reconstruct
program sequencing with an off-line program. Multiple capabilities will be
selected for export as a runtime user option to control what information is
exported when, and in which format. The PC Trace hardware in concert with
the emulator is capable of exporting:

� Trace of the last 32 PC values, or

� Trace of the the last 16 PC discontinuities

Trace of the last 32 PC values provides the ability to observe recent program
flow history. For example, a given subroutine may be called from many
different locations in the main program. By placing a breakpoint in the
subroutine, the PC trace capability can be used to determine the location in
the main program from which the subroutine was called.

Trace of the last 16 PC discontinuities provides the ability to observe long-term
history of the program flow. This function becomes more valuable in code that
is highly dependent on conditional branches and calls.

4.3 Real-Time Data Exchange (RTDX)

Real-Time Data Exchange (RTDX) functions of future ’C55x derivatives will
offer the capability to exchange data between the target and the emulation
host running the debugger. This feature will be enabled by on-chip real-time
debug hardware providing a shared path with the debug control. Allowing
target data to be sent from and received by the host at a rate of up to 2M bytes
per second will open new emulation possibilities including:

� Simulation of real-time inputs to the target

� Update of target system performance graphs on the host in real time

Trace Capability / Real-Time Data Exchange (RTDX)

A-1

Appendix A

Related Documents from Texas Instruments

The following books describe the TMS320C55x devices and related support
tools. To obtain a copy of any of these TI documents, call the Texas
Instruments Literature Response Center at (800) 477-8924. When ordering,
please identify the book by its title and literature number.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU. This
book also describes how to make individual portions of the DSP inactive
to save power.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the mnemonic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the algebraic instruction set.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the algebraic instructions individually. It
also includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the mnemonic instruction set.

TMS320C55x Optimizing C Compiler User’s Guide (literature number
SPRU281) describes the ’C55x C compiler. This C compiler accepts
ANSI standard C source code and produces assembly language source
code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP Programmer’s Reference Guide (literature number
SPRU376) describes ways to optimize C and assembly code for the
TMS320C55x DSPs and includes application program examples.

Appendix A

 A-2

Code Composer Studio contains the following online guides:

TMS320C55x DSP Instruction Sets Online Reference Guide describes
the algebraic and mnemonic instructions individually. It also includes the
parallelism features and rules of the instruction sets , a summary of the
instruction sets, a list of the instruction opcodes, and a cross-reference
of the mnemonic instruction sets.

TMS320C55x DSP Registers Online Guide describes the registers inside
the TMS320C55x DSPs and shows the addresses for DSP registers that
are mapped to memory.

TMS320C55x DSP CPU Online Guide describes the architecture and
operation of the CPU inside the TMS320C55x DSPs. This guide also
describes how to make individual portions of the DSP inactive to save
power.

Trademarks

Code Composer Studio is a trademark of Texas Instruments Incorporated.

Related Documents from Texas Instruments

B-1

Appendix A

Glossary

A

address: The location of program code or data stored; an individually
accessible memory location.

ALU: See arithmetic logic unit.

arithmetic logic unit (ALU): The hardware of the CPU that performs
arithmetic and logic functions.

C

cache: A fast storage buffer in the central processing unit of a computer.

central processing unit (CPU): The unit that coordinates the functions of
a processor.

circular addressing: An address mode in which a finite set of addresses is
reused by linking the largest address back to the smallest address.

clock cycles: A periodic or sequence of events based on the input from the
external clock.

code: A set of instructions written to perform a task; a computer program or
part of a program.

compiler: A computer program that translates programs in a high-level
language into their assembly-language equivalents.

CPU: See central processing unit.

crosspath: A link between register files to provide communication between
the CPU units.

Appendix B

Glossary

 B-2

D

data memory: A region of memory used for storing or manipulating data,
separate from the region used for storing program code.

direct memory access (DMA): Memory access that does not use the CPU;
used for data transfer directly between memory and a peripheral.

direct memory access (DMA) controller: Specialized circuitry that
transfers data from memory to memory without using the CPU.

DMA: See direct-memory access.

E

external interrupt: A hardware interrupt triggered by a pin.

external memory interface (EMIF): Microprocessor hardware which is
used to read from and write to off-chip memory.

F

fixed-point processor: A processor which does arithmetic operations
using integer arithmetic with no exponents.

floating-point processor: A processor capable of handling floating-point
arithmetic where real operands are represented using exponents.

H

hardware interrupt: An interrupt triggered through physical connections
with on-chip peripherals or external devices.

Glossary

B-3Glossary

I

IDLE: A power-down mode.

IDLE domain: Sections of a device which can be selectively enabled or
disabled under software control. When disabled, a domain enters a very
low-power state in which register or memory contents are still
maintained.

indirect addressing: An addressing mode in which an address points to
another pointer rather than to the actual data.

interrupt: A signal sent by hardware or software to request a processor’s
attention. An interrupt tells the processor to suspend its current
operation, save the current task status, and perform a particular set of
instructions. Interrupts communicate with the operating system and
prioritize tasks to be performed.

L

latency: The delay between the occurrence of a condition and the reaction
of the device. Also, in a pipeline, the necessary delay between the
execution of two potentially conflicting instructions to ensure that the
values used by the second instruction are correct.

M

million instructions per second (MIPS): A measure of the execution
speed of a computer.

multiplier: A CPU component that multiplies the contents of two registers.

Glossary

 B-4

P

parallelism: Sequencing events to occur simultaneously. Parallelism is
achieved in a CPU by using instruction pipelining.

peripheral: A device connected to and usually controlled by a host device.

pipeline: A method of executing instructions in which the output of one
process serves as the input to another, much like an assembly line.
These processes become the stages or phases of the pipeline.

pipeline processing: A technique that provides simultaneous, or parallel,
processing within the computer. It refers to overlapping operations by
moving data or instructions into a conceptual pipe with all stages of the
pipe processing simultaneously.

program cache: A fast memory cache for storing program instructions
allowing for quick execution.

program fetch unit: The CPU hardware that retrieves program instructions.

program memory: A memory region used for storing and executing
programs, separate from the region used for storing data.

R

register: A small area of high speed memory, located within a processor or
electronic device, that is used for temporarily storing data or instructions.
Each register is given a name, contains a few bytes of information, and
is referenced by programs.

reset: A means of bringing the CPU to a known state by setting the registers
and control bits to predetermined values and signaling execution to start
at a specified address.

Glossary

B-5Glossary

S

saturation: A state where any further input no longer results in the expected
output.

shifter: A hardware unit that shifts bits in a word to the left or to the right.

W

word: A set of bits that is stored, addressed, transmitted, or operated on as
a unit.

Index

Index-1

Index

A
A unit See address data flow unit (A unit)

absolute addressing mode 2-2

accumulator registers 2-11

address data flow unit (A unit) 2-3, 2-9 to 2-10
address pointers 2-3
addressing register ALUs (ARAUs) 2-10
addressing registers 2-10
ALU 2-9
buses 2-9
circular addressing 2-10
circular buffer 2-10
data buses 2-3
diagram 2-9
parallelism 2-3

address generation logic 2-7

addressing modes 2-2
absolute addressing mode 2-2
direct addressing mode 2-2
displacement addressing mode 2-2
register-indirect addressing mode 2-2

addressing register ALUs (ARAUs) 2-10

addressing registers 2-10

ALU 2-2, 2-9, 2-12, 3-2

arithmetic logic unit (ALU) 2-2, 2-9, 2-12, 3-2

B
barrel shifter 2-11, 2-12

branch 2-8

branches 2-8

burst-fill 3-3

buses 2-9, 2-11, 2-12, 3-2

byte addressing 2-7

C
cache 3-3
calls 2-8
circular addressing 2-10
circular buffer 2-10
CMOS 3-4
code B-1
computational units 2-2
conditional execution 2-7, 2-8
control hazards 2-8
CPU diagram 2-4

D
D unit See data computation unit (D unit)
data computation unit (D unit) 2-3, 2-11 to 2-12

accumulator registers 2-3, 2-11
ALU 2-3, 2-12
barrel shifter 2-3, 2-11, 2-12
buses 2-11, 2-12
diagram 2-11
MAC 2-3, 2-11
parallelism 2-11
signal processing 2-11
Viterbi algorithm 2-3

debug 4-2
debugger 4-2
delay slots 2-8
diagrams

address-data flow unit (A unit) 2-9
data computation unit (D unit) 2-11
instruction buffer unit (I unit) 2-5
program flow unit (P unit) 2-7

direct addressing mode 2-2
displacement addressing mode 2-2
DMA 3-4

Index

Index-2

E
emulation 4-2, 4-3

emulator 4-2, 4-4

H
hardware looping 2-8

Harvard architecture 2-2

I
I unit See instruction buffer unit (I unit)

IDLE 3-2, 3-4

instruction buffer queue 2-5, 2-6

instruction buffer unit (I unit) 2-3, 2-5 to 2-6
diagram 2-5
instruction buffer queue 2-5, 2-6
instruction decoder 2-6
local repeat instruction 2-5
program bus 2-5
variable length encoding 2-6
variable length instructions 2-3

instruction decoder 2-6

instruction fetches 2-7

interrupt service routines (ISR) 2-8, 4-4

interrupt servicing 2-8

K
key features of the ’C55x

accumulators 1-7
ALU 1-7
barrel shifter 1-7
IDLE 1-7
instruction buffer queue 1-7
MAC 1-7

L
low-power 3-2, 3-3

local repeat instruction 2-5

loops 2-7, 2-8

M
MAC 2-2, 2-11, 3-2

memory 3-3

multiply-and-accumulate (MAC) unit 2-2, 2-11, 3-2

O
operand 2-2

orthogonal 2-2

P
P unit See program flow unit (P unit)

parallel 2-2

parallelism 2-2, 2-8, 2-11, 3-2

pipeline B-4

pipeline processing B-4

pipeline protection 2-8

program bus 2-5

program counter (PC) 4-5

program flow unit (P unit) 2-3, 2-7 to 2-8
address generation logic 2-7
branch 2-8
branches 2-8
byte addressing 2-7
calls 2-8
conditional execution 2-3, 2-7, 2-8
control hazards 2-8
delay slots 2-8
diagram 2-7
hardware looping 2-8
instruction fetches 2-7
interrupt service routines 2-8
interrupt servicing 2-8
loops 2-7, 2-8
parallelism 2-8
pipeline protection 2-3, 2-8
read-after-write (RAW) data hazards 2-8
returns 2-8
status registers 2-7
write-after-read (WAR) data hazards 2-8

Index

Index-3

R
real-time data exchange (RTDX) 4-5
register-indirect addressing mode 2-2
reset B-4
returns 2-8
RTDX 4-5

S
scan-based system 4-2
serial test access port 4-2
signal processing 2-2, 2-11
status registers 2-7

T
trace capability 4-2, 4-5

V
variable length encoding 2-6

variable length instruction encoding 2-2

W
watchpoint/breakpoint 4-2

write-after-read (WAR) data hazards 2-8

	IMPORTANT NOTICE
	Contents
	Figures
	Tables
	Introduction
	Introduction to the TMS320C55x
	Applications and Benchmarks for the ’C55x
	Typical Applications for ’C55x
	Low Power, Low System Cost, High Performance
	'C55x Benchmarks

	Key Features of the ’C55x

	C55x CPU Architecture
	Instruction Set Architecture and Implementation Highlights
	Instruction Buffer Unit (I Unit)
	Program Flow Unit (P Unit)
	Address Data Flow Unit (A Unit)
	Data Computation Unit (D Unit)

	Low-Power Enhancements
	Enhancements for Low-Power Dissipation
	Architecture
	Increased Parallelism Minimizes Cycles Per Task
	Alternate Computational Hardware Use Provides a Low-Power Option for Many Tasks
	Memory Accesses Minimized
	Automatic Low-Power Mechanisms for Peripherals and On-Chip Memory Arrays
	Configurable Functional (IDLE) Domains Provide Greater Power-Down Flexibility

	Process
	Advanced Lower-Voltage Process Technology

	Embedded Emulation Features
	Basic Emulation Features and Enhancements
	Non-Intrusive Real-Time Debug
	Faster Debug Screen Updates
	Better Control of Functional Code Execution During Emulation Halt Events

	Trace Capability
	Real-Time Data Exchange (RTDX)

	Related Documents from Texas Instruments
	Trademarks

	Glossary
	Index

