TMS320C54x
Chip Support Library
API Reference Guide

SPRU420
April 2001

b TEXAS

INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
atthe time of order acknowledgment, including those pertaining to warranty, patentinfringement,
and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized
to the extent Tl deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using Tl components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not
warrant or represent that any license, either express orimplied, is granted under any patentright,
copyright, mask work right, or other intellectual property right of Tl covering or relating to any
combination, machine, or process in which such products or services might be or are used. Tl's
publication of information regarding any third party’s products or services does not constitute TI's
approval, license, warranty or endorsement thereof.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated Tl product or service, is an unfair and deceptive business practice,
and Tl is not responsible nor liable for any such use.

Resale of TI's products or services with statements different from or beyond the parameters stated
by TI for that products or service voids all express and any implied warranties for the associated
TI product or service, is an unfair and deceptive business practice, and Tl is not responsible nor
liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright 0 2001, Texas Instruments Incorporated

About This Manual

Preface

Read This First

The TMS320C54x™ DSP Chip Support Library (CSL) provides C-program
functions to configure and control on-chip peripherals. It is intended to make
it easier to get algorithms running in a real system. The goal is peripheral ease
of use, shortened development time, portability, and hardware abstraction,
with some level of standardization and compatibility among devices. A version
of the CSL is available for all TMS320C54x[] DSP devices.

This document provides reference information for the CSL library and is
organized as follows:

[Overview — high level overview of the CSL

[0 Howtouse CSL - Configuration and use of the DSP/BIOS[] Configuration
Tool, installation, coding, compiling, linking, macros, etc.

[Usingthe DSP/BIOSO Configuration Tool with the different CSL Modules
[Using CSL functions and macros with each individual CSL module.

[Using the individual registers.

How to Use This Manual

The information in this document describes the contents of the
TMS320C5000™ DSP Chip Support Library (CSL) as follows:

1 Chapter 1 provides an overview of the CSL, includes tables showing CSL
API module support for various C5000 devices, and lists the API modules.

[Chapter 2 provides basic examples of how to use CSL functions with or
without using the DSP/BIOS Configuration Tool, and shows how to de-
fine build options in the Code Composer Studiol] environment.

Notational Conventions / Related Documentation From Texas Instruments

4

Notational Conventions

Chapter 3 provides basic examples of how to configure the individual CSL
modules using the DSP/BIOS[Configuration Tool.

Chapters 4-15 provide basic examples, functions, and macros for the indi-
vidual CSL modules.

Appendix A provides examples of how to use CSL C5000 Registers.

This document uses the following conventions:

a

a

Program listings, program examples, and interactive displays are shown
in a special typeface

In syntax descriptions, the function or macro appears in a bold typeface
and the parameters appear in plainface within parentheses. Portions of a
syntax that are in bold should be entered as shown; portions of a syntax
that are within parentheses describe the type of information that should be
entered.

Macro names are written in uppercase text; function names are written in
lowercase.

TMS320C54x0 DSP devices are referred to throughout this reference
guide as C5401, C5402, etc.

How to Use This Manual

Related Documentation From Texas Instruments

The following books describe the TMS320C54x[] DSP and related support
tools. To obtain a copy of any of these Tl documents, call the Texas Instru-
ments Literature Response Center at (800) 477-8924. When ordering, please
identify the book by its title and literature number. Many of these documents
are located on the internet at http://www.ti.com.

TMS320C54x Assembly Language Tools User’s Guide (literature number
SPRU102) describes the assembly language tools (assembler, linker,
and othertools used to develop assembly language code), assembler di-
rectives, macros, common object file format, and symbolic debugging di-
rectives for the 'C54x generation of devices.

TMS320C54x Optimizing C Compiler User’s Guide (literature number
SPRU103) describes the 'C54x C compiler. This C compiler accepts
ANSI standard C source code and produces TMS320 assembly lan-
guage source code for the 'C54x generation of devices.

TMS320C54x Simulator Getting Started (literature number SPRU137) de-
scribes how to install the TMS320C54x simulator and the C source
debugger for the 'C54x. The installation for MS-DOSO, PC-DOSI,
SunOS[, Solaris[], and HP-UX[systems is covered.

TMS320C54x Evaluation Module Technical Reference (literature number
SPRU135) describes the 'C54x evaluation module, its features, design
details and external interfaces.

TMS320C54x Simulator Getting Started Guide (literature number
SPRU137) describes how to install the TMS320C54x simulator and the
C source debugger for the 'C54x. The installation for Windows 3.1,
SunOS[, and HP-UX[O systems is covered.

TMS320C54x Code Generation Tools Getting Started Guide (literature
number SPRU147) describes how to install the TMS320C54x assembly
language tools and the C compiler for the 'C54x devices. The installation
for MS-DOS[, OS/20, SunOSM, Solaris[1, and HP-UX[9.0x systems
is covered.

TMS320C54x Simulator Addendum (literature number SPRU170) tells you
how to define and use a memory map to simulate ports for the 'C54x. This
addendum to the TMS320C5xx C Source Debugger User’s Guide dis-
cusses standard serial ports, buffered serial ports, and time division mul-
tiplexed (TDM) serial ports.

Read This First Y,

How to Use This Manual

Trademarks

vi

The Texas Instruments logo and Texas Instruments are registered trademarks
of Texas Instruments. Trademarks of Texas Instruments include: Tl, Code
Composer, DSP/BIOS, and TMS320C5000.

All other brand or product names are trademarks or registered trademarks of
their respective companies or organizations.

Contents

1 CSL OVeIVIBW .ottt e e e e e e e e e e
An overview of the features and architecture of the Chip Support Library
1.1 Introduction t0 CSL ..ottt e e e
1.2 Naming CONVENLIONSttt e e e e et
1.3 DAl TYPES oottt
1.3.1 Resource Managementc.uiitiit it
1.4 Symbolic Constant Valuest
R T | = To 1
1.6 FUNCHONS .o e e
1.6.1 Initializing ReQISIErS ... it e
1.7 Support for Device-Specific Features
HOW 10 USE GO . e e e e e e

Detailed instructions and examples for the configuration of CSL DSP/BIOS

2.1 Installing the Chip Support Library

2.2 OVBIVIBW ottt ettt e e e e e

2.3 DSP/BIOS Configuration Tool: CSL Tree

2.4 Generation of the C Files (CSL APIS)ot e
2.4.1 Header File projectcfg.h ...
2.4.2 Source File projectcfg_C.Ct

2.5 Creating a Configuration ittt e e
2.5.1 Modification of C code (MaiN.C)t

2.6 Example of CSL APIs Generation (TIMER Module) 2-14
2.6.1 Configuration of the TIMERLDEVICEiiiiiiiiiiinannn 2-14
2.6.2 Generation of CFileS i 2-16

2.7 Configuring Peripherals Without GUI i 2-19
2.7.1 USINg DMA_config() ..o 2-19
2.7.2 USINGg DMA_CONFIGATTS() -+ v o vt e e e e e e e e [2-20

2.8 Compiling and Linking With CSLoiti e [2-22
2.8.1 Usingthe DOS Command Lineot 2-22
2.8.2 Using the Code Composer Studio Project Environment 2-23
2.8.3 Creating aLinker Command File 2-27

2.9 Rebuillding CSL ot 2-29

2.10 Using Function Inlining oo e 2-29

vii

Contents

3

viii

DSP/BIOS Configuration Tool: CSL Modules
Detailed explanation for using specific modules when configuring CSL
0 A O 1Y =
3.2 DMAMOAUIE ..
3.2 1 OVEIVIBW . ottt e e e
3.2.2 DMA Configuration Managerc.ooiiiiiinenna...
3.2.3 DMAResource Managerouutiuiiiiiiinneaann.
3.2.4 C Code Generation for DMAModule
3.3 GPIOMOdUIE ..
3.3l OVEIVIBW vttt
3.3.2 Non-Multiplexed GPIO Configuration Manager
3.3.3 C Code Generation for GPIO Module
3.4 MCBSP Module
341 OVEIVIEW ottt ettt e
3.4.2 MCBSP Configuration Managerccoiiiiinnann.
3.43 MCBSP Resource Managervuuiiiininnunnennan..
3.4.4 C Code Generation for MCBSP Module
35 PLLMoOdUle ...
351 OVEIVIBW . .t e
3.5.2 PLL Configuration Managercuiiiieinnunnennann.
3.5.3 PLLResource Managercouuiiiiieniiannnnnnann.
3.5.4 C Code Generation for PLL Module
3.6 TIMERMOUIE
3.6. 1 OVEIVIBW . .ttt e
3.6.2 TIMER Configuration Managerccouiuiiniennn..
3.6.3 TIMER Resource Managerc..uuiiiiiiennnnnnannn.
3.6.4 CCode Generationfor TIMER,
3.7 WATCHDOG TIMER Module i
371 OVEIVIBW . .ttt e
3.7.2 WATCHDOG TIMER Configuration Manager
3.7.3 WATCHDOG TIMER Resource Manager
3.7.4 C Code Generation for WATCHDOG TIMER
CHIP ModUle ...
General description of the CSL chip module, its functions, and macros
A1 OVEIVIEW .ottt e e e e e e e
4.2 FUNCHONS ..ot e e
DAT ModUle ...
General description of the DAT module and its functions
5.l OVBIVIBW ottt e
5.2 FUNCHONS ...

.......... 4-2
.......... 4-3

.......... 5-2
.......... 5-3

3-33

10

11

12

Contents

DMA MOTUIEo ettt
General description of the DMA module, its configuration structures, functions, and macros

B.1 OVBIVIBW ottt e 6-2
6.2 Configuration StrUCIUIE ot e e et et e e e 6-4
6.3 FUNCHONS . .. 6-7
6.4 MaACIOS . .ttt e 6-20
6.5 EXAMPIES . .. 6-32
EBUS MOUIE ...ttt ettt et e e e e e
Features and description of the external bus interface (EBUS) module

A R © Y1 = 7-2)
7.2 Configuration StrUCIUIE i e e e e e 7-3
7.3 FUNCHONS ..t e e e 7-4
T4 MACIOS . ettt e 7-6
GPIOMoOdUIE ...
General description of the GPIO module and its macros

8.1 OVBIVIBW ottt ettt e e e e e 8-2
8.2 MACIOS . .t 8-3

HPIMOGUIE ...t et e e e e e e e e e e e e

Describes macros available for the HPI module

9.1 MACIOS ..o
IRQ MOUIE ..ottt e e e e
General description of the IRQ module and its functions

1O.1 OVBIVIEW ..ttt et et e e e e e e e e e e e e e e 10-2
10.2 Configuration StrUCIUret e e 10-8
L10.3 FUNCHONS .« oottt et e e e e et e e e e e e e e 10-9
MCBSP MOTUIE . ..ot e e e
General description of the McBSP Module, its configuration structure, functions and macros
111 OVBIVIEW .ottt e e e e e e e e e e e e e e e e e e 11-2
11.2 Configuration SITUCIUIE e e e e 11-4
11.3 FUNCHONS .ottt e e e e e e e e e e e e e e 11-6
114 MACIOS ..ottt e e e 11-23
115 EXAMPIES et 11-41
PLL MOAUIE ..o e e e e e e
A description of the structure, functions, and macros of the PLL module

120 OVEIVIEW . oottt et e e e e e e e e e e e e 12-2
12.2 Configuration SIrUCIUNe oo e e 12-3
12.3 FUNCHONS « oottt ettt e e e e e e e e e e e e e e e 12-4
D S |V - Vo o 1 12-6

Contents ix

Contents

13 PWR MOAUIE o e 13-1
General description of the PWR module and its functions
131 OVEIVIEW .ottt et e e e e et e e e e 13-2
13,2 FUNCHONS .o e e e e e e 13-3
14 TIMER MOAUIE e e e 14-1
General description of the structure and functions for the TIMER Module
TA.L OVEIVIEW .ttt ittt e e e e e e e e e e e e e e e e e 14-2
14.2 Configuration SITUCLUIEttt e e e e e e 14-3
T4.3 FUNCHONS ..o e e e e e e e e e e 14-4
S |V T 01 14-8
15 WDTIM MOAUIE . .. e e e e e e e e 15-1
General description of the WDTIM module, its structure, functions, and macros
150 OVEIVIEW ittt ettt ettt e e et e e e e e e e e e 15-2
15.2 Configuration StrUCIUre i e e e e 15-3
15.3 FUNCHONS .ot e e e e e e e 15-4
T |V - Vo 01 15-8
A Peripheral Registers A-1
Al DMA REQISIEIS . ottt e e A-2)
A.1.1 DMA Channel Priority and Enable Control Register (DMPREC) A-2
A.1.2 DMA Channel n Sync Select and Frame Count Register (DMSFCn) A-3
A.1.3 DMA Channel n Transfer Mode Control Register (DMMCRnN) A-6
A.1.4 DMA Channel n Source Address Register (DMSRCn) A-8
A.1.5 DMA Global Source Address Reload Register (DMGSA) A-9
A.1.6 DMA Source Program Page Address Register (DMSRCP) A-9
A.1.7 DMA Channel n Destination Address Register (DMDSTn) A-10
A.1.8 DMA Global Destination Address Reload Register (DMGDA) A-10
A.1.9 DMA Destination Program Page Address Register (DMDSTP) A-11
A.1.10 DMA Channel n Element Count Register (DMCTRN) A-11
A.1.11 DMA Global Element Count Reload Register (DMGCR) A-12
A.1.12 DMA Global Frame Count Reload Register (DMGFR) A-12
A.1.13 DMA Element Address Index Register 0 (DMIDX0) A-13
A.1.14 DMA Element Address Index Register 1 (DMIDX1) A-13
A.1.15 DMA Frame Address Index Register O (DMFRIQ) A-14
A.1.16 DMA Frame Address Index Register 1L (DMFRIL) A-14
A.1.17 DMA Global Extended Source Data Page Register (DMSRCDP) A-15
A.1.18 DMA Global Extended Destination Data Page Register (DMDSTDP) A-15
A.2 Multichannel BSP (MCBSP) Registers ... i A-16
A.2.1 McBSP Serial Port Control Register (SPCR1), A-16
A.2.2 McBSP Serial Port Control Register 2 (SPCR2) A-18
A.2.3 McBSP Pin Control Register (PCR) ...t A-20
A.2.4 Receive Control Register 1L (RCR1) ...t A-23

A3
A4

A5

A.6

A7
A.8

Contents

A.2.5 Receive Control Register 2 (RCR2)t
A.2.6 Transmit Control Register 1 (XCRL)ttt
A.2.7 Transmit Control Register 2 (XCR2)t
A.2.8 Sample Rate Generator Register 1 (SRGR1) it
A.2.9 Sample Rate Generator Register 2 (SRGR2) it
A.2.10 Multichannel Control Register L (MCR1)ot
A.2.11 Multichannel Control Register 2 (MCR2)t
A.2.12 Receive Channel Enable Register (RCERN),
A.2.13 Transmit Channel Enable Register (XCERN)ccoiiiia..
Clock Mode Register (CLKMD)t e
TIMEr REGISIEIS . . ot
A.4.1 Timer Control Register (TCR)t
A.4.2 Timer Secondary Control Register (TSCR)
Watchdog Timer Registers (C5440 and C5441)t
A.5.1 Watchdog Timer Control Register (WDTCR)ccoiiiiiinenn...
A.5.2 Watchdog Timer Secondary Control Register WDTSCR)
Software Wait-State RegiSters
A.6.1 Software Wait-State Register (SWWSR),
A.6.2 Software Wait-State Control Register (SWCR),
Bank-Switching Control Register (BSCR)t
General Purpose I/O RegISterS
A.8.1 General Purpose I/0O Control Register (GPIOCR)
A.8.2 General Purpose I/O Status Register (GPIOSR)

Contents

A-24

A-25

A-26

A-27

A-28

A-29

[A-32]

A-30

[A-33

A-35

A-37

A-37

A-39

A-40

A-40

A-42

A-43

A-43

A-44

A-45

A-49

1A-49

[A-51]

Xi

Figures

I
NNNRPRPRRPRRPRRPRPRPPOONOTRWONRERPRRPRLPRLPRLPRLPOONOUNWNRR

NPFRPOOWO~NOOUOPR~WNEO

wwwwwwwwwwwwwwoooowoocrooooooommMMNNNNNNNNNNNNH

AP MOAUIES . .
L0 R I =
Expanded CSL Tree e e e
Insert Configuration ODJECt o e
Delete/Rename OptioNSottt e e e
Show Dependency Optiont e e e
Resource Manager Properties Page ...t
PractiCe SUMMAIYttt e e e e
CCS PrOJECt VW . .ottt e e
Configuring the TIMERL DEVICEt e
Header File mytimercfg.h
Source File mytimercfg_C.C ...
Example of main.c File Using Data Generated by the Configuration Tool
Defining the Target Device in the Build Options Dialogcoii....
Defining Far MOdeo e
Adding the Include Search Path
Defining Library Paths
DMA SECHONS MENUottt et e e e e e
DMA Properties Paget e
DMA Resource Manager MENUttt e
DMA Properties Page With Handle Object Accessibleoo...
GPIO SECHONS MENU . ..\ttt e e e e e e e e
GPIO Properties Pageiii ittt e e
MCBSP SeCtionS MENUot i e
MCBSP Properties Pageooii e e e e
MCBSP Resource Manager MeNUt e e e
MCBSP Properties Page With Handle Object Accessible
PLL SECHONS MENU . ..ottt e e e e e e e
PLL Properties Page e
PLL Resource Manager MENUt
PLL Properties Page e e
TiIMer SECtioNS MENUot e e e e e
TIMER Properties Pageo e e
Timer Resource Manager MENUttt i
Timer Properties Page With Handle Object Accessible
WATCHDOG TIMER Sections MenUottt et
WATCHDOG TIMER Properties Pageouuiiii i
WATCHDOG TIMER Resource Manager MENU ...t
WATCHDOG TIMER Properties Paget

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22
A-23
A-24
A-25
A-26
A-27
A-28
A-29
A-30
A-31
A-32
A-33
A-34
A-35
A-36
A-37
A-38
A-39
A-40
A-41
A-42
A-43

Figures

DMA Channel Initialization Using DMA_config()

DMA Channel Priority and Enable Control Register (DMPREC)
DMA Channel n Sync Select and Frame Count Register (DMSFCn)
DMA Channel n Transfer Mode Control Register (DMMCRN)
DMA Channel n Source Address Register (DMSRCN)oiiiiiiiiiii ..
DMA Global Source Address Reload Register (DMGSA) ...,
DMA Source Program Page Address Register (DMSRCP) ...,

DMA Channel n Destination Address Register (DMDSTN) ...,

DMA Global Destination Address Reload Register (DMGDA)

DMA Destination Program Page Address Register (DMDSTP)

DMA Channel n Element Count Register (DMCTRN)ciiiiiiiiiiiian.

DMA Global Element Count Reload Register (DMGCR),

DMA Global Frame Count Reload Register (DMGFR) oo,

DMA Element Address Index Register O (DMIDX0)t

DMA Element Address Index Register 1 (DMIDX1)

DMA Frame Address Index Register O (DMFRIO),

DMA Frame Address Index Register L (DMFRIL) ...

DMA Global Extended Source Data Page Register (DMSRCDP)

DMA Global Extended Destination Data Page Register (DMDSTDP)

McBSP Serial Port Control Register 1 (SPCR1)

McBSP Serial Port Control Register 2 (SPCR2) i

McBSP Pin Control Register (PCR) . ..ottt e

Receive Control Register 1 (RCRL) oottt e

Receive Control Register 2 (RCR2)ot e

Transmit Control Register 1 (XCRL) ot

Transmit Control Register 2 (XCR2)ot s

Sample Rate Generator Register 1 (SRGR1) ...ttt

Sample Rate Generator Register 2 (SRGR2) ...ttt

Multichannel Control Register 1 (MCRL)t

Multichannel Control Register 2 (MCR2)t

Receive Channel Enable Register (RCERN)

Transmit Channel Enable Register (XCERN) i

Clock Mode Register (CLKMD) ...ttt e e e et

Timer Control Register (TCR)t

Timer Secondary Control Register (TSCR) — C5440, C5441, and C5472

Watchdog Timer Control Register (WDTCR) ...t

Watchdog Timer Secondary Control Register WDTSCR)t

Software Wait-State Register (SWWSR) i e

Software Wait-State Control Register (SWCR) ...

Bank-Switching Control Register (BSCR) — C5402, C5409, and C5420

Bank-Switching Control Register (BSCR) — C5410, C5410A, and C5416

Bank-Switching Control Register (BSCR) — C5440 and C5441

General Purpose I/0 Control Register (GPIOCR)ttt

General Purpose I/O Status Register (GPIOSR)

Tables

|11
A OWN P

N RS RS S S e

R IEENNIOND D (N O AN
A OWONRPRPRPRPLOONOO

Xiv

CSL Modules and Include Files 1-4
CSL DEVICE SUPPOI ot ottt ettt e e e e e e e e e 1-4
CSL Naming CONVENLIONSottt et et et e e e e e e 1-5
S Data TYPES v ittt ettt e e e e e e 1-6
Generic CSL Symbolic CONStantS e 1-8
GeNENC CSL MACIOS . .\ttt ettt et et e e e e 1-10
Generic CSL Macros (Handle-based)t 1-11
Generic CSL FUNCHIONS ..ottt e e e e e e e e 1-12
Device-Specific Features SUPPOrt e 1-14
CSL DIreCtOry SIIUCIUIE . . . o\ e e e et et e e e e e e e P-22|
CHIP FUNCHIONS . ..o e e e e e e e e e e e 4-2
DAT FUNCHIONS . .ottt e e e e e e et e e e e e e 5-2
DMA Configuration StrUCIUIE it e ettt 6-2
DMA FUNCHONS . .ottt et e e e e et e e e e e e et 6-3
DMA CSL Macros(using channel number) i 6-20
DMA CSL Macros(using handles) 6-21]
EBUS Configuration StruCturettt et 7-2
EBUS FUNCHIONSt e e e e e e e e e e 7-2
EBUS MaCIOS ...ttt e e e e e e 7-6
GPIO Macros (C544x deviCes ONlY)t e 8-3
HPI Macros (C544X deviCes ONlY) ...t e et 9-2
IRQ Configuration SIrUCtUreo e 10-4
IRQ FUNCHONS ..ot e e e e e e e e 10-4
IRQ_EVT _NNNN Event List . ..o e 10-5
MCBSP Configuration SITUCLUIE e 11-2
MCBSP FUNCHONS ... e e e 11-2
MCBSP CSL Macros (using port number) ... i [11-23]
MCBSP CSL Macros (Using handle)oue e [11-24]
PLL Primary SUMMANYttt et e e e e e e e e e e 12-2
PLL FUNCHONS .. e e e e e e e e e 12-2
PLL CSL Macros Using Timer Port Number i 12-6
PWR FUNCHONS . .o e e e e e e e e e e 13-2
TIMER Configuration Structuret 14-2
TIMER FUNCHONS ..o\ttt et e et e e e e e e et 14-2)
TIMER CSL Macros Using Timer Port Number 14-9
TIMER CSL Macros Using Handle i 14-10

15-1
15-2
15-3
15-4
A-1

A-10
A-11
A-12
A-13
A-14
A-15
A-16
A-17
A-18
A-19
A-20
A-21
A-22

A-23
A-24

Tables

WDTIM Configuration StruCtUre oo e 15-2
WDTIM FUNCLIONS . . .ttt e e e e e e e 15-2
WDTIM CSL Macros Using Timer Port Number 15-9
WDTIM CSL Macros Using Handle e 15-10
DMA Channel Priority and Enable Control Register (DMPREC) Field Values
(DMA_DMPREC _field_symval) A-2)
DMA Channel n Sync Select and Frame Count Register (DMSFCn) Field Values
(DMA_DMSFC_field_symval)orinii e
DMA Channel n Transfer Mode Control Register (DMMCRN) Field Values
(DMA_DMMCR_field_SYMVal)coeineme e
DMA Channel n Source Address Register (DMSRCn) Field Values
(DMA_DMSRC field_symval) A-8
DMA Global Source Address Reload Register (DMGSA) Field Values
(DMA_DMGSA_field_SYMVAI)ttt
DMA Source Program Page Address Register (DMSRCP) Field Values
(DMA_DMSRCP_fIeld_SYMVAI .+« e ot e et et e e e
DMA Channel n Destination Address Register (DMDSTn) Field Values
(DMA_DMDST _field_symval) e A-10
DMA Global Destination Address Reload Register (DMGDA) Field Values
(DMA_DMGDA_field_SYMVAI)ttt e e e
DMA Destination Program Page Address Register (DMDSTP) Field Values
(DMA_DMDSTP_field_SYMVaA)ooveee e e
DMA Channel n Element Count Register (DMCTRN) Field Values
(DMA_DMCTR_field_SymVal)\ttt e e e
DMA Global Element Count Reload Register (DMGCR) Field Values
(DMA_DMGCR_field_symval)o A-12
DMA Global Frame Count Reload Register (DMGFR) Field Values
(DMA_DMGFR_field_symval)coii e
DMA Element Address Index Register 0 (DMIDXO0) Field Values
(DMA_DMIDXO_field_symval)oouii e A-1
DMA Element Address Index Register 1 (DMIDX1) Field Values
(DMA_DMIDXI_field_Symval)oeie et
DMA Frame Address Index Register 0 (DMFRIO) Field Values
(DMA_DMFRIO_field_SYMVal)ttt e e
DMA Frame Address Index Register 1 (DMFRI1) Field Values
(DMA_DMFRIL_field_symval) A-14
DMA Global Extended Source Data Page Register (DMSRCDP) Field Values
(DMA_DMSRCDP _field_SYmMVal)ttt i
DMA Global Extended Destination Data Page Register (DMDSTDP) Field Values
(DMA_DMDSTDP _field_symval)co i e A-1
McBSP Serial Port Control Register 1 (SPCR1) Field Values
(MCBSP_SPCR1_field_symval) A-16
McBSP Serial Port Control Register 2 (SPCR2) Field Values
(MCBSP_SPCR2_field_symval) ... A-18
McBSP Pin Control Register (PCR) Field Values (MCBSP_PCR_field_symval) A-20
Receive Control Register 1 (RCR1) Field Values (MCBSP_RCR1 _field_symval) A-23
Receive Control Register 2 (RCR2) Field Values (MCBSP_RCR?2_field_symval) A-24
Transmit Control Register 1 (XCR1) Field Values (MCBSP_XCR1 field_symval) A-25
Contents XV

Tables

A-25 Transmit Control Register 2 (XCR2) Field Values
(MCBSP_XCR2_field_symval) e

A-26 Sample Rate Generator Register 1 (SRGR1) Field Values
(MCBSP_SRGR1_field_symval) e

A-27 Sample Rate Generator Register 2 (SRGR2) Field Values
(MCBSP_SRGR2_field_symval) e

A-28 Multichannel Control Register 1 (MCR1) Field Values
(MCBSP_MCRIL_field_symval) e

A-29 Multichannel Control Register 2 (MCR2) Field Values
(MCBSP_MCR2 _field_symval)ooui e

A-30 Receive Channel Enable Register (RCERnN) Field Values
(MCBSP_RCERN_field_symval) e

A-31 Transmit Channel Enable Register (XCERnN) Field Values
(MCBSP_XCERN_field_symval) e

A-32 Clock Mode Register (CLKMD) Field Values
(PLL_CLKMD _field_symval)ccoi e e

A-33 Timer Control Register (TCR) Field Values
(TIMER_TCR_field_symval) e

A-34 Timer Secondary Control Register (TSCR) Field Values
(TIMER_TSCR field_symval) i e e

A-35 Watchdog Timer Control Register (WDTCR) Field Values
(WDTIM_WDTCR_field_symval) e

A-36 Watchdog Timer Secondary Control Register (WDTSCR) Field Values
(WDTIM_WDTSCR field_symval)c e

A-37 Software Wait-State Register (SWWSR) Field Values
(EBUS_SWWSR field_symval)coiiiii i

A-38 Software Wait-State Control Register (SWCR) Field Values
(EBUS_SWCR_field_symval)

A-39 Bank-Switching Control Register (BSCR) Field Values — C5402, C5409, and C5420
(EBUS _BSCR field_symval) e

A-40 Bank-Switching Control Register (BSCR) Field Values — C5410, C5410A, and C5416
(EBUS_BSCR_field_symval) e

A-41 Bank-Switching Control Register (BSCR) Field Values — C5440 and C5441
(EBUS _BSCR field_symval) e

A-42 General Purpose I/0O Control Register (GPIOCR) Field Values
(HPIL_GPIOCR_field_symval) e

A-43 General Purpose I/O Status Register (GPIOSR) Field Values
(HPI_GPIOSR_field_symval) e

XVi

3-10
3-11
3-12
3-13
3-14
3-15
3-16
101
11-1

UsSiNg PER_CoONfig .. o 1-13
Using PER _CONfIgAIGS ..ot e e e e e e e 1-13
Properties Page Optionst e e [2-9
Modifying the C File [2-13
Initializing a DMA Channel with DMA_config()coueuiuieieieaanan.. [2-19
Initializing a DMA Channel with DMA_cCOnfigArgs()oueueeienenananan.... [2-20
Using a Linker Command Fileouinii [2-28
DMA Header File 3-7
DMA Source File (Declaration Section)iiiiiii .. 3-8
DMA Source File (Body SeCtion)t 3-9
GPIO Source File (Body SECHION)t e 3-11
MCBSP Header Fileo 3-16
MCBSP Source File (Declaration Section) 3-17]
MCBSP Source File (Body SECHON)ottt 3-18
PLL Header File e 3-22
PLL Source File (Declaration SEction)ot 3-23
PLL Source File (Body SECLION)ot 3-23
Timer Header File 3-28
Timer Source File (Declaration Section), 3-29
Timer Source File (Body SECHON)\ttt e e [3-29
WATCHDOG TIMER Header File [3-34
WATCHDOG TIMER Source File (Declaration Section) 3-34
WATCHDOG TIMER Source File (Body Section)c.coiiiiiiiiiiinainn... 3-34
Manual Setting Outside DSPBIOS HWIS e 10-3
McBSP Port Initialization Using MCBSP_config() ..., 11-4
Contents XVii

Chapter 1

CSL Overview

This chapter introduces the Chip Support Library, briefly describes its
architecture, and provides a generic overview of the collection of functions,
macros, and constants that help you program DSP peripherals.

Topic Page
1.1 INroduCtion t0 CSL .o v vttt et e e e e e
1.2 Naming CONVENLIONS ...\ttt et et e e e e ee e
1.3 DaAta TYPES . ittt e 1-6
1.4 Symbolic Constant Values ..., 1
1.5 MACIOS . .ottt e e 1-9
1.6 FUNCHONS e e e -12
1.7 Support for Device-Specific Features — :L-

1-1

Introduction to CSL

1.1 Introduction to CSL

The Chip Support Library(CSL) is a fully scalable component of DSP/BIOS
that provides C program functions to configure and control on-chip
peripherals. Itis intended to simplify the process of running algorithmsin areal
system. The goal is peripheral ease of use, shortened development time,
portability, hardware abstraction, and a small level of standardization and
compatibility among devices.

How the CSL Benefits You

1-2

(1 Standard Protocol to Program Peripherals

A standard protocol to each programming of on-chip peripherals. This
includes data types and macros to define peripheral configurations,
and functions to implement the various operations of each peripheral.

[Basic Resource Management

Basic resource management is provided through the use of open and
close functions for many of the peripherals. This is especially helpful for
peripherals that support multiple channels.

[Symbol Peripheral Descriptions

As aside benefit to the creation of CSL, a complete symbolic description of
all peripheral registers and register fields has been created. Itis suggested
that you use the higher level protocols described in the first two benefits,
as these are less device specific, thus making it easier to migrate your
code to newer versions of DSPs.

CSL integrates GUI, graphic user interface, into the DSP/BIOS configuration
tool. The CSL tree of the configuration tool allows the pre-initialization of some
peripherals by generating C files using CSL APIs. The peripherals are
pre-configured with the pre-defined configuration objects (see Chapter 2, How
To Use CSL).

Chapter 3, DSP/BIOS Configuration Tool: CSL Modules, details the available
CSL modules found in the DSP/BIOS Configuration tool.

Introduction to CSL

CSL Architecture

The CSL consists of discrete modules that are built and archived into a library
file. Each peripheral is covered by a single module while additional modules
provide general programming support.

Figure 1-1 illustrates the individual API modules. This architecture allows for
future expansion as new modules are added and new peripherals emerge.

Figure 1-1. API Modules

CSL DAT DEV DMA McBSP TIMER

Although each APl module provides a unique API, some interdependency
exists between the modules. For example, the DMA module depends on the
IRQ module because of DMA interrupts; As a result, when you link code that
uses the DMA module, a portion of the IRQ module is linked automatically.

Device support for an APl module depends on whether or not the device
actually uses the associated peripheral. For example, the Watchdog Timer
WDTIM is not supported on a C5402 because this device does not support a
Watchdog Timer. Other modules such as the IRQ, however, are supported on
all devices.

Each module has a compile-time support symbol that denotes whether or not
the module is supported for a given device. For example, the symbol
_DMA_SUPPORT has avalue of 1 if the current device supports itand a value
of 0 otherwise. The available symbols are located in Table 1-1. You can use
these support symbols in your application code to make decisions.

CSL Overview 1-3

Introduction to CSL

Table 1-1 lists general and peripheral modules with their associated include
file and the module support symbol. these components must be included in
your application.

Table 1-1. CSL Modules and Include Files

Peripheral Module Description Include File Module Support
(PER) Symbol

DAT Device independent data copy/fill module csl_dat.h _DAT_SUPPORT
CHIP Device specific module csl_chip.h _CHIP_SUPPORT
DMA Direct memory access csl_dma.h _DMA_SUPPORT
EBUS External memory bus interface csl_ebus.h _EBUS_SUPPORT
GPIO General purpose I/0 csl_gpio.h _GPIO_SUPPORT
HPI Host port interface csl_hpi.h _HPI_SUPPORT
IRQ Interrupt controller csl_irg.h _IRQ_SUPPORT
MCBSP Multi-channel buffered serial port csl_mcbsp.h _MCBSP_SUPPORT
PLL PLL csl_pll.h _PLL_SUPPORT
PWR Power-down csl_pwr.h _PWR_SUPPORT
TIMER Timer peripheral csl_timer.h _TIMER_SUPPORT
WDTIM Watch Dog Timer Peripheral csl_wdtim.h _WDTIM_SUPPORT

Table 1-2 lists the C5000 devices that CSL supports and the far and near
libraries included in CSL. The device support symbol to be used with the
compiler.

Note: Devices C541 to C549 are NOT supported by CSL.

Table 1-2. CSL Device Support

Device Near-Mode Library Far-Mode Library Device Support Symbol

C5402 csl5402.lib csl5402x.lib CHIP_5402
C5409 csl5409.lib csl5409x.lib CHIP_5409
C5409A cslI5409A.lib csI5409Ax.lib CHIP_5409A
C5410 csl5410.lib csl5410x.lib CHIP_5410
C5410A csl5410A.lib csI5410Ax.lib CHIP_5410A
C5416 csl5416.lib csl5416x.lib CHIP_5416
C5420 csl5420.lib csl5420x.lib CHIP_5420
C5421 csl5421.lib csl5421x.lib CHIP_5421
C5440 csl5440.lib csl5440x.lib CHIP_5440
C5441 csl5441.lib csl5441x.lib CHIP_5441
C5472 csl5472.lib csl5472x.lib CHIP_5472

Naming Conventions

1.2 Naming Conventions

The following conventions are used when naming CSL functions, macros and
data types:

Table 1-3. CSL Naming Conventions

Object Type Naming Convention
Function PER_funcName() t
Variable PER varName() T
Macro PER_MACRO_NAME
Typedef PER_Typename T
Function Argument funcArg

Structure Member memberName

TPER is the placeholder for the module name.

(1 All functions, macros and data types start with PER_ (where PER is
the Peripheral module name listed in Table 1-1) in capital letters.

(1 Function names use all small letters. Capital letters are used only if the
function name consists of two separate words. (for example,
PER_getConfig()).

(1 Macro names use all capital letters (for example,
DMA_DMPREC_RMK).

(1 Data types start with a capital letter followed by small letters
(for example, DMA_Handle).

CSL Overview 1-5

Data Types

1.3 Data Types

The CSL provides its own set of data types that all begin with a capital letter.
Table 1-4 lists the CSL data types as defined in the stdinc.h file.

Table 1-4. CSL Data Types

Data Type Description

Bool unsigned short
PER_Handle void *

Int16 short

Int32 long

Uchar unsigned char
Uint16 unsigned short
Uint32 unsigned long
DMA_AdrPtr void (*DMA_AdrPtr)()

pointer to a void function

1.3.1 Resource Management

CSL provides a limited set of functions to enable resource management for
applications that support multiple algorithms and may reuse the same
peripheral device.

Resource managementin CSL is achieved through API calls to the PER_open
and PER_close functions. The PER_open function normally takes a device
number and reset flag as the primary arguments and returns a pointer to a
Handle structure that contains information about which channel (DMA) or port
(MCBSP) was opened. When given a specific device number, the open
function checks a global flag to determine its availability. If the device/channel
is available, then it returns a pointer to a predefined Handle structure for this
device. If the device has already been opened by another process, then an
invalid Handle is returned with a value equal to the CSL symbolic constant,
INV.

Note: To ensure that no resource usage conflicts occur, CSL performs other function calls,
other than returning an invalid handle from the PER_open function. You must check the
value returned from the PER_open function to guarantee that the resource has been
allocated.

Before accepting a handle object as an argument, API functions first check to
ensure that a valid Handle has been passed.

1-6

Data Types

Calling PER_close frees a device/channel for use by other processes.
PER_close clears the in_use flag and resets the device/channel.

All CSL modules that support multiple devices or channels, such as MCBSP
and DMA, require a device Handle as primary argument to most API functions.
For these API's , the definition of a PER_Handle object is required.

1.3.1.1 Using CSL Handles

CSL Handle objects are used to uniquely identify an opened peripheral
channel/port or device. Handle objects must be declared in the C source, and
initialized by a call to a PER_open function before calling any other API
functions that require a handle object as argument.

For example:

DMA_Handle myDma; /* Defines a DMA_Handle object, myDma */

Once defined, the CSL Handle object is initialized by a call to PER_open:

myDma = DMA_open(DMA_CHAO,DMA_OPEN_RESET); /* Open DMA channel
0*

The call to DMA_open initializes the handle, myDma. This handle can then be
used in calls to other API functions:

DMA_start(myDma); [* Begin transfer */

DMA_close(myDma); /* Free DMA channel */

Note: Handles are required only for peripherals that have multiple channels or ports, such as
DMA, MCBSP, TIMER, and DAT.

CSL Overview 1-7

Symbolic Constant Values

1.4 Symbolic Constant Values

To facilitate initialization of values in your application code, the CSL provides

sym

bolic constants for registers and writable field values as described in

Table 1-5. The following naming conventions are used:

Uood

Table 1-5. Generic CSL

PER indicates a peripheral module as listed in Table 1-1 on page 1-4.
REG indicates a peripheral register.

FIELD indicates a field in the register.

SYMVAL indicates the symbolic value of a register field as listed in
Appendix A.

Symbolic Constants

(a) Constant Values for Registers

Constant

Description

PER_REG_DEFAULT

Default value for a register; corresponds to the register value after a
reset or to O if a reset has no effect.

(b) Constant Values for Fields

PER_REG_FIELD_SYMVAL

Symbolic constant to specify values for individual fields in the specified
peripheral register. See Appendix A for the symbolic values.

PER_REG_FIELD_DEFAULT

Default value for a field; corresponds to the field value after a reset or to
0 if a reset has no effect.

1.5 Macros

Macros

Table 1-6 provides a generic description of the most common CSL macros.
The following naming conventions are used:

a
a
Q
a

a

PER indicates a peripheral module as listed in Table 1-1 on page 1-4.
REG# indicates, if applicable, a register with the channel number.

(For example: DMPREC, DMSRC], ..)

FIELD indicates a field in a register.

regval indicates an integer constant, an integer variable, a symbolic
constant (PER_REG_DEFAULT), or a merged field value created with the
PER _REG_RMK() macro.

fieldvalindicates an integer constant, integer variable, macro, or symbolic
constant (PER_REG_FIELD _SYMVAL) as explained in section 1.4; all
field values are right justified.

CSL also offers equivalent macros to those listed in Table 1-6, but instead of
using REG# to identify which channel the register belongs to, it uses the
Handle value. The Handle value is returned by the PER_open() function.
These macros are shown in Table 1-7. Please note that REG is the register
name without the channel number.

CSL Overview 1-9

Macros

Table 1-6. Generic CSL Macros

Macro

Description

PER_REG_RMK(,
fieldval _15,

fieldval_0
)

Creates a value to store in the peripheral register; _RMK macros make it easier
to construct register values based on field values.

The following rules apply to the _RMK macros:

Defined only for registers with more than one field.

Include only fields that are writable.

Specify field arguments as most-significant bit first.

Whether or not they are used, all writable field values must be included.

If you pass a field value exceeding the number of bits allowed for that
particular field, the _RMK macro truncates that field value.

ooood

PER_RGET(REG#
)

Returns the value in the peripheral register.

PER_RSET(REG#,
regval

)

Writes the value to the peripheral register.

PER_FMK (REG,
FIELD,
fieldval)

Creates a shifted version of fieldval that you could OR with the result of other
_FMK macros to initialize register REG. This allows you to initialize few fields in
REG as an alternative to the _RMK macro that requires that ALL the fields in the
register be initialized.

PER_FGET(REG#
FIELD

)

Returns the value of the specified FIELD in the peripheral register.

PER _FSET(REG#,
FIELD,
fieldval

)

Writes fieldval to the specified FIELD in the peripheral register.

PER_ADDR(REG#
)

If applicable, gets the memory address (or sub-address) of the peripheral register
REG#.

1-10

Macros

Table 1-7. Generic CSL Macros (Handle-based)

Macro

Description

PER_RGET_H(handle,
REG

)

Returns the value of the peripheral register REG associated with Handle.

PER_RSET_H(handle,
REG,
regval

)

Writes the value to the peripheral register REG associated with Handle.

PER_ADDR_H(handle,
REG

)

If applicable, gets the memory address (or sub-address) of the peripheral register
REG associated with Handle.

PER_FGET_H(handle,
REG,
FIELD

)

Returns the value of the specified FIELD in the peripheral register REG
associated with Handle.

PER_FSET_H(handle,
REG,
FIELD,
fieldval

)

Sets the value of the specified FIELD in the peripheral register REG to fieldval.

CSL Overview 1-11

Functions

1.6 Functions

Table 1-8 provides a generic description of the most common CSL functions
where PER indicates a peripheral module as listed in Table 1-1 on page 1-4.
Because not all of the functions are available for all the modules, specific
descriptions and functions are listed in each module chapter.

The following conventions are used in Table 1-8:
[Italics indicate variable names.

[Brackets[...] indicate optional parameters.

B [handle]is required only for the handle-based peripherals: DAT, DMA,
MCBSP, and TIMER. See Section 1.3.1.1 on page 1-7, Using CSL
Handles.

B [priority]is required only for the DAT peripheral module.

Table 1-8. Generic CSL Functions

Function

Description

handle = PER _open (

Opens a peripheral channel and then performs the operation indicated by flags;

channelNumber, must be called before using a channel. The return value is a unique device handle
[priority] to use in subsequent API calls.
flags The priority parameter applies only to the DAT module.
)

PER_config (Writes the values of the configuration structure to the peripheral registers. You can
[handle,] initialize the configuration structure with:
*configStructure 1 Integer constants

)

(1 Integer variables

[CSL symbolic constants, PER_REG_DEFAULT (see Section 1.4 on page
1-8, CSL Symbolic Constant Values)

(1 Merged field values created with the PER_REG_RMK macro

PER_configArgs (

Writes the individual values (regval_n) to the peripheral registers. These values

[handle,] can be any of the following:
regval 1, [0 Integer constants
(1 Integer variables
(1 CSL symbolic constants, PER_REG_DEFAULT
(1 Merged field values created with the PER_REG_RMK macro
regval_n
)
PER_start (
gvan]dle]) Starts the peripheral after using PER_config() or PER_configArgs().
XX
’ txrx] and [delay] apply only to MCBSP.
[delay] [txrx] and [delay] apply only
)

1-12

Functions

Table 1-8. Generic CSL Functions

Function Description

PER_reset(Resets the peripheral to its power-on default values.
[handle]

)

PER _close (Closes a peripheral channel previously opened with PER_open(). The
handle registers for the channel are set to their power-on defaults, and any pend-
) ing interrupt is cleared.

1.6.1 |Initializing Registers

Example 1-1. Using

The CSL provides two types of functions for initializing the registers of a
peripheral: PER_config and PER_configArgs (where PER s the peripheral as
listed in Table 1-1 on page 1-4).

1 PER config allows you to initialize a configuration structure with the
appropriate register values and pass the address of that structure to the
function, which then writes the values to the register. Example 1-1 shows
an example of this method.

(1 PER_configArgs allows you to pass the individual register values as
arguments to the function, which then writes those individual values to the
register. Example 1-2 shows an example of this method.

PER_config and PER_configArgs can be used interchangeably, but it is still
necessary to generate the register values. To simplify the process of defining
the values to be written to the peripheral registers, the CSL provides the
PER_REG_RMK (make) macros, which form merged values from a list of field
arguments. Macros are covered in Section 1.5, on page 1-9, CSL Macros.

PER_Config

Example 1-2. Using

PER_Config MyConfig = {
reg0 ,
regl,
main() {
I.:;iER_config(&MyConfig);

}

PER_configArgs

PER_configArgs(reg0, regl, ..);

CSL Overview 1-13

Support for Device-Specific Features

1.7 Support for Device-Specific Features

Not all C54x peripherals offer the exact same type of features across the
different C54x devices. Table 1-9 lists specific features that are not common
across the C54x family. Also listed are the devices that support these features.
References to Table 1-9 will be found across the CSL documentation.

Table 1-9. Device-Specific Features Support
(a) DMA Module-Channel Reload

Individual Channel Register Re-
load Support

Global Channel Register Reload
Support

5416, 5421, 5440, 5409a, 5410a
5441

All other C54x supported devices

(b) DMA Module-Extended Data Reach

Global Extended Data Memory
Support

Individual Channel Extended
Data Memory Support

No Extended Data Memory
Support

5440, 5441 5409, 5416, 5421, 5409a, 5410a

5402, 5410, 5420, 5472

(c) MCBSP Module-Channel Support

MCBSP 128—Channel Support

MCBSP 32-Channel Support

5416, 5421, 5440, 5409a, 5410a,
5441

All other C54x supported devices

(d) MCBSP Module-C2KS Support

C2KS Support

No C2KS Support

5409A, 5410A, 5416, 5421, 5440,
5441

All other C54x supported devices

(e) Watch-dog Module

Watch-dog Timer Support

No Watch-dog Timer Support

5440, 5441

All other C54x supported devices

1-14

Support for Device-Specific Features

Table 1-9. Device-Specific Features Support (Continued)

() Timer Module

Timer Extended Pre-Scaler No Timer Extended Pre-Scaler
Support Support
5472, 5440, 5441 All other C54x supported devices

(9) Chip Module

Device ID Support No Secure ID Support
5416, 5409A, 5410A, 5440, All other C54x supported devices
5441, 5421

CSL Overview 1-15

Chapter 2

How to Use CSL

This chapter provides instructions and examples that explain the configuration
and use of CSL DSP/BIOS. Specific examples are provided in each module
chapter.

Topic Page
2.1 Installing the Chip Support Library — Z:D
2.2 OVEIVIEW ..ottt et e e e e e e e e e
2.3 DSP/BIOS Configuration Tool: CSL Tree 2
2.4 Generation of the C Files (CSLAPIS) 2
2.5 Creating a Configuration c.oueeieiiinaaien.. 2
2.6 Example of CSL API Generation (TIMER Module) —.............. 214 |
2.7 Configuring Peripherals Without GUI 2-19 |
2.8 Compiling and Linking With CSLoveiiiie e 2-
2.9 Rebuilding CSL 2-29 |
2.10 Using Function Inlining oo 2—@

2-1

Installing the Chip Support Library

2.1

2-2

Installing the Chip Support Library

Code Composer Studiold (CCS) release version 2.0 and greater automatically
installs the CSL. If you are using an earlier version of CCS, follow these steps
to install CSL:

1) Unzip csl.zip into a temporary folder.
2) Copy all C header files (*.h) into c:\ti\C5400\bios\include

3) Copy all library files (*.lib) into c:\t\C5400\bios\lib

2.2 Overview

Overview

With a few exceptions (GPIO, PLL), all of the CSL module functions operate
on two types of objects:

1 The PER_Handle object
(O The PER_Config object

These objects are predefined C structure types which when properly declared
and initialized, contain all the information necessary to configure and control
the peripheral device.

There are two ways to configure peripherals when using CSL. One is manual
configuration by declaring and initializing objects and C source.

The other option is by using the DSP/BIOS Configuration Tool. This method
is preferred because the graphical user interface provision that is part of the
DSP/BIOS configuration tool is integrated into Code Composer Studio.

The CSL GUI provides the benefit of a visual tool that allows you to view the
chosen register settings, determine which flags/options have been set by a
particular mode selection, and most importantly, it is possible to have the code
for the configuration settings automatically be created and stored in a C source
file that can be integrated directly into your application.

How to Use CSL 2-3

DSP/BIOS Configuration Tool: CSL Tree

2.3 DSP/BIOS Configuration Tool: CSL Tree

The DSP/BIOS Configuration Tool allows you to access the CSL graphical
interface and configure some of the on-chip peripherals. Each peripheral is
represented as a subdirectory of the CSL Tree as shown in Figure 2—1.

The process consists of three main steps:

1) Creation of the DSP/BIOS configuration file (.cdb file). In Code Composer
Studio, select File —> New —> DSP/BIOS Configuration.

2) Configuration of the on-chip peripherals through the CSL hierarchy tree.

3) Automatic generation of the C-code files when saving the configuration
file.

Figure 2-1. CSL Tree

== Configl *
Estimated Data Size: 758 Est Min. Stack Size (MaALS): 107

=g System

[—E Instrurnentation

w-(i# Scheduling

& ## Synchronization

& (8 Input/Output

EI@ Chip Support Library
ﬂ DhdA, - Direct Memany Access Cantraller
-4 GPIO - General Purpose Input/ Output
"“’J—' FMCESPF - Multichannel Buffered Serial Port
w-é@ PLL- Clock Generator
- B8 TIMEF: - Tirmer Device
E WOTIMER -‘Watchdog Timer Device

For the TMS320C5400 DSP platform, the peripherals available in the
DSP/BIOS Configuration Tool are:

DMA

GPIO

MCBSP

PLL

TIMER
WATCHDOG TIMER

U oo odo

Figure 2—2 shows an example of an expanded CSL Tree.

2-4

DSP/BIOS Configuration Tool: CSL Tree

Figure 2-2. Expanded CSL Tree

i’ Configl * 0] x|

Estimated Data Size: 758 Est Min. Stack Size (hAlLls): 107

..
&
B
B
-
&

ﬁ Chip Suppan Library

@ Swstem
[E Instrumentation

3® Scheduling
Synchronization

(8 Input/Output

OkdA - Direct Mermaory Access Controller
B Dida Configuration Manager
B Dida Resource Manager

&

—

-t GFIO - General Purpose Input/ Qutput

Lt Mor-Multiplexed GPIO Configuration
=g BACBSE - Multichannel Buffered Serial Port

i bACESF Configuration Manager
-0 MCESF Resource kManager

=-éa PLL- Clock Generator

&4 PLL Configuration Manager

w4 PLL Resource Manager

=8 TIMER - Timer Device

Tirmer Configquration Manager

Timer Resource Manager

=- B8 WO TIMER - Watchdog Timer Device
Wiatchdog Timer Confiquration Manager
Whatchdog Timer Resource Manager

Each peripheral is organized into several sections:

a

PERIPHERAL Configuration Manager — Allows you to setthe peripheral
register values by selecting the options through the Properties pages.
Several configuration objects can be created by selecting the
InsertdmaCfg option from the right-click menu (see Figure 2-3). The
menu options allow you to rename and delete the configuration object (see
Figure 2—4), and to display the Dependency Dialog box that allows you to
determine which peripheral is using the configuration (see Figure 2-5).

PERIPHERAL Resource Manager — Allows you to allocate the on-chip
device which will be used like a DMA channel,a MCBSP port, ora TIMER
device. The handle objects can be renamed only (no deletions permitted).

The devices are displayed as pre-defined objects and cannot be deleted
or renamed. However, the Handles to these objects can be renamed.

How to Use CSL 2-5

DSP/BIOS Configuration Tool: CSL Tree

Figure 2-3. Insert Configuration Object

IS [=l E3

Estimated Data Size: 758 Est Min. Stack Size (MAUs): 107

@ Swystem

&g Instrumentation

#-38 Scheduling

83 Synchronization

@ Input/Output

E@\ Chip Support Librany

= ﬁ‘ Dk - Direct Mermory Access Cantroller
v

- @B DMA Resource Ma

; ﬁ GFIO - General Purpos Cut

i MCBSP - Multichannel | oopy

“what's This?

PEste

-8 WOTIMER: - Watchdoc

Figure 2—4. Delete/Rename Options

2-6

Froperies
Sheyw DEpendeny,
== Configl = M=] B3

Estimated Data Size: 758 Est Min. Stack Size (MaALUg): 107
@ Swstem
-l Instrurnentation
J;B Scheduling
@ Swynchranization
& Input/ Output
-l Chip Support Library
Elﬂ DA - Direct Memory Access Caontroller

=] ¥ DMA Configuration Manager
' YWhat's This?

Cut

Copy

Paste

[r=ert et
-5 GPIO - Genel
sl MCBSP - Myl FEname i
- éf PLL-Clock C o Propertyfvalue view
=l 188 TIMER: - Tirn: :
-8 WOTIMER - Properties

St e EEnE e

DSP/BIOS Configuration Tool: CSL Tree

Figure 2-5. Show Dependency Option

EI MTIMEP\ Timer Device
L E ﬂg Tlmer Cunflguratlun Manager

7
l ﬂg Tlmer Resou Winete VIS
BE WOTIMER -Wa

Copy
Paste

== =l

Delete
EEnamme

Fropery/value wiew

Froperties

Dependency Diﬁlnﬁ

Timerl

Cancel |

How to Use CSL 2-7

Generation of the C Files (CSL APIs)

2.4 Generation of the C Files (CSL APIs)

After saving the configuration file project.cdb, the following C files are
generated:

(1 Header file: projectcfg.h
(1 Source file: projectcfg_c.c

In these examples, project is your .cdb file name. The bold characters are
attached automatically.

2.4.1 Header File project cfg.h

The header file contains several elements:

[d The definition of the chip. For example, if the selected chip is 5402, the
definition is:
#define CHIP_5402 1

[The csl header files of the CSL tree

#include <csl_dma.h>
#include <csl_emif.h>
#include <csl_timer.h>

[0 The declaration list of the variables Handle and configuration names
defined in the project.cdb. These are declared external, as shown below:

extern TIMER_Config timerCfg1,;
extern MCBSP_Config MCBSPmcbspCigO;

extern TIMER_Handle hTimerZl,;
extern MCBSP_Handle hMcbspO0;

In order to access the predefined handle and configuration objects, the header
file must be included in your project C file:

/* User's main .c file */
The following line is mandatory and must also be included in your C file:
#include < project cfg.h>

2.4.2 Source File project cfg_c.c

The source file consists of the Include section, the Declaration section, and the
Body section:

[Include section:

This section defines the header file. The source file has access to the data
declared in the header file.
#include < project cfg.h>

Note: If this line is added before the other csl header files (csl_pll, csl_timer, ...), you are not

required to specify the device number under the Project option (that —dCHIP_54xx is not
required).

Generation of the C Files (CSL APIs)

] Declaration section:

This section defines the configuration structures and the Handle objects
previously defined in the configuration tool.

The values of the registers reflect the options selected through the
Properties pages of each device, as shown in Example 2—-1.

Example 2—-1. Properties Page Options

/* Config Structures */

TIMER_Config timerCfg0 = {
0x0010, [* Timer Control Register (TCR) */
0x0000, /* Timer Period Register (PRD) */
0x0000 [* Timer Prescaler Register (PRSC) */

2

DMA_Config dmaCfg0 = {
0x0000, /* Source Destination Register (CSDP) */
0x0000, [* Control Register (CCR) */
0x0000, /* Interrupt Control Register (CICR) */

NULL, [* Lower Source Address (CSSA_L) — Symbolic(Byte Address)
*
/
NULL, [* Upper Source Address (CSSA_U) — Symbolic(Byte Address)
*
/
NULL, [* Lower Destination Address (CDSA_L) — Symbolic(Byte Ad-
dress) */
NULL, /* Upper Destination Address (CDSA_U) — Symbolic(Byte Ad-
dress) */

0x0001, /* Element Number (CEN) */
0x0001, [* Frame Number (CFN) */
0x0000, [* Frame Index (CFIl) */
0x0000 [* Element Index (CEIl) */

I3

/* Handles */
TIMER_Handle hTimerZ,
DMA Handle hDmao;

(1] Body section

The body is composed of a unique function, CSL_cfglnit(), which is called
from your C file.

The function CSL_cfglnit() allows you to allocate/open and configure a
device by calling the Peripheral_open() and Peripheral_config() APlIs,
respectively.

How to Use CSL 2-9

Generation of the C Files (CSL APIs)

These two functions are generated when the Open Handle to Timer and
Enable pre-initialization options are checked in the Properties page of the
related Resource Manager (see Figure 2—6).

Note: A device can be allocated/opened without being configured.

In Figure 2-6:

B If Enable pre-initialization is checked, the TIMER_config() function is
generated.

B IfEnable pre-initialization is unchecked, TIMER_config() is not gener-
ated, but the configuration structure timerCfgl is created and avail-
able for you to use.

Figure 2—6. Resource Manager Properties Page

Timerl Properties
General I
Camment: ITimer 1

TIMER_open()

Specify Handle Hame : IhTimer'I

¥ Enable pre-initialization

Pre-initialize: Itimelegﬂ 'I

TIMER _configi)

Ok I Cancel | Lply

woid CEL_cfglniti)

{
CEL_init () ;

hTimerl = TIMER open(TIMEER _DEV1, TIMER_OPFEN_ REZET):

L= TIMEPR configihTimerl, stimerCfgl);
+

Before using these predefined APIs, CSL_cfglnit must be called. This
function is automatically called by the DSP/BIOS CSL boot/start-up
routine.

[* User’s file main.c */

void main ()

{

2-10

Creating a Configuration

2.5 Creating a Configuration

To create a configuration, you must:

1)
2)

3)

4)

5)

6)

7)

8)

9)

Modify the Project folder on the Code Composer Studio Interface
Modify the C code (main.c).

In Code Composer Studio, select File - New - DSP/BIOS Configuration:
open Configl.cdb window (default name)

Select File —» Save as: project.cdb (user cdb name)

Select Project - Add Files to Project: project.cdb (the files projectcfg.s54
and projectcfg_c.c will appear in “generated files” folder)

Configure the CSL peripherals Properties pages as needed: Create the
configuration objects and Opening of Handles objects. (see section 2.3
and section 2.4.2).

Save project.cdb
Select Project - Add Files to Project

Include the following files in your Project:
(1 command file: projectcfg.cmd

(1 asm source file: project.s54 (CSL predefined APIS)

Figure 2—7 shows the project layout after a .cdb file is created and the
project.cmd, project.s54, and projectcfg c.c files have been added to the
project.

How to Use CSL 2-11

Creating a Configuration

Figure 2—7. Practice Summary

2-12

|prDjed.pjt

leebug

Sl EE e

e | 0 DEEEHRM |

@ [@
w [:l GELfiles Estimated Data Size: 758 Est
- =1 Projects F-(g System
. =5 ﬁ PTU ct . - Instrumentation
Y = J QE Scheduling
& & Felnirate'j Files - Synchronization
s) neiude -8 Input/Ouiput

g =] ler.arles @, Chip Support Likbrany
=2 : projectcfy.cmd
— B Source
L [#] maine
iz

T Y File View I/‘- Bookmarks
|projectpit zl[pebug S cEss 0w
He GEERERMHEL
™ @ Files = project =] E3
T [:| GEL files Estimated Data Size: 758 Est.
=1 Projects)

P - :) @ System
- =- & project.pjt w-[g8 Instrumentation
o E| D DSP;"B|OS nflg GE Scheduling

. = ect.cdb : oot
& ok 110j 2t C Qﬂ Synchronization
s El [:I GenerateddFlle;4 @ Input/ Output
2 E:E}zgdgs@: -l Chip Suppaort Likrany
— 3 Include -
[Libraries
..[E] projectciy.cmd

=8 [:l Saurce
i)
" DY File iew I/GBUkaarks

Creating a Configuration

2.5.1 Modification of C code (main.c)
To modify the C code (main.c):

1) Add the header file #include projectcfg.h to your main.c file, As shown
In Example 2—2. These lines are required to provide access to the Handle
and configuration objects.

Note: CSL_cfglnit() is automatically called by the DSP/BIOS CSL boot/start-up routine. This

function pre-opens and pre-configures the peripherals ONLY. It does not start device op-

eration. A call to the PER_Start function is required within your code to begin peripheral
operation with the pre-chosen settings.

Example 2—2. Modifying the C File

[* Include file */
#include project cfg.h

/* main program */
void main()

How to Use CSL 2-13

Example of CSL APIs Generation (TIMER Module)

2.6 Example of CSL APIs Generation (TIMER Module)

This section provides an example using the 5402 Timerl device, which
demonstrates how to open and define a configuration for a TIMER device
using the graphical user interface. It also provides a full example of C files
generated from a .cdb file by using the Chip Support Library APIs.

Warning:

First, go to Global Settings (System Folder) and select the chip type
present on your board.

This step is very important because the chip type affects the setting of the
default values of the peripheral registers. Make sure that you have not
already created any configuration objects with the wrong chip type selected.
Before switching chip types, it is recommended that you delete any existing
configuration objects, which have default values that are not identical from
one chip to another.

2.6.1 Configuration of the TIMER1 Device

The configuration file mytimer.cdb is assumed to be created previously and
opened (see section 2.5, Getting Started, for more details).

In the CCS Project View window (see Figure 2—8) open mytimer.cdb, and go
to the sub-folder TIMER module (CSL Folder).

Follow these steps:

1) Right-click on the TIMER Configuration Manager, insert a new
configuration object.

2) Right-click on timerCfg0 and select Properties to open the timerCfg0
Properties window (as shown in Figure 2-9). Set the configuration by
clicking on any of the tabs.

3) Under the Timer Resource Manager, right-click on Timerl and select
Properties to open the Timerl Properties window (see Figure 2-9).

B Check the Open Handle to Timer and Enable pre-initialization.

B From the pre-initialize drop-down list, select the configuration,
timerCfgO0.

2-14

Figure 2-8. CCS Project View

Example of CSL APIs Generation (TIMER Module)

|mytimer.pjt leebug j| 2 | CURE] | FLS
Blé 0BBREHEL |
“ D Fles Estimated Data Size: 758 Est. Min. Ste
o | |@ 03 GELfiles ®-{ System
o E|[:| Frojects [E Instrurmentation

=25 mytimer.pjt 3# Scheduling
0 E| [:l DEF/BIOS Conﬂg #& Synchronization
P : @ Iput,"Output
=
&
i

3 .
main.c
" O File View I/‘Eluokmarks

Figure 2-9. Configuring the TIMER1 Device

B- %E TIMER - Timer Device
B- %ﬁ Timer Configuration M anager
1— =i %E tirmerCigl
B %ﬁ Timer Resource Manager
Timer0
Timerl

B- %ﬁ TIMER - Timer Device
E| %E Timer Configuration anager
----- %ﬁ timerCigl
EI %ﬁ Tirmer Resource Manager
; Timer0

Tirmer] —_—

timerCfgD Properties

Generall Counter Control - Advanced |

V| Set Manually

Timer Contral Register : IDRDD2D
Timer Period Register : IDxDSDE‘
Timen Seals Fegsten [MEERE] IUHUUUU

ok I Cancel | Apply |

Timerl Properties X

General I

COMMER: ITimer 1

¥ Open Handle to Timer

Specify Handle Mame : IhTimer1

¥ Enable pre-iritialization

Pre-iritialize: ITIMEH NOTHING l

T 1EF. THIM

QK I Cancel I Apply

How to Use CSL

2-15

Example of CSL APIs Generation (TIMER Module)

2.6.2 Generation of C Files

After saving the configuration file mytimer.cdb, the header file mytimercfg.h
and the source file mytimercfg_c.c are generated (see Figure 2-10 and

Figure 2—-11).

Figure 2-10. Header File mytimercfg.h

/* Do *not* directly modify this file. It was */
/* generated by the Configuration Tool; any */
/* changes risk being overwritten. */

/* INPUT mytimer.cdb */
#define CHIP_5402 1

/* Include Header Files */
#include <std.h>

#@nclude <hst..h> csl header files of the peripherals imple-
#include <swi.h> mented under the CSL tree

#include <tsk.h>
#include <log.h>
#include <sts.h>

#include <csl_timer.h> >

#ifdef __ cplusplus - - -
extern "C” { The Handle and Configuration objects are

#endif defined gnd can be used by other C files
(User’s files).

extern far HST_Obj RTA_fromHost;
extern far HST_Obj RTA_toHost;
extern far SWI_Obj KNL_swi;
extern far TSK_Obj TSK_idle;
extern far LOG_Obj LOG_system;
extern far STS_Obj IDL_busyObj;
extern far TIMER_Config timerCfgo;
extern far TIMER_Handle htimerl;
extern far void CSL_cfglnit();

#ifdef __ cplusplus
}

#endif /* extern "C” */

2-16

Example of CSL APIs Generation (TIMER Module)

Figure 2-11. Source File mytimercfg_c.c

[* generated by the Configuration Tool; any */
[* changes risk being overwritten. */

/* INPUT mytimer.cdb */

/* Include Header File */
#include <mytimercfg.h>

[* Config Structures */
TIMER_Config timerCfg0 =
0x0020,

0x0300 /* Timer Period

[* Timer Control Register */

TIMER Configuration structure timerCfg0
with full TIMER peripheral register values

Register */

I

| Handle hTimerl declaration

/* Handles */
TIMER_Handle hTimerZl;

*/
void CSL_cfglnit()

CSL_init();

hTimerl = TIMER_open(TIM

TIMER_config(hTimerl, &timerCfg0);

}

—

The TIMER_open() function returns the
handle value in the handle variable
hTimerl previously declared.

R_DEV1, TIMER_OPEN_RESET);

TIMER_config() function sets the register

values defined by the configuration object
timerCfgO.

How to Use CSL 2-17

Example of CSL APIs Generation (TIMER Module)

Figure 2-12. Example of main.c File Using Data Generated by the Configuration Tool

#include <csl.h>
#include <csl_timer.h>
#include <csl_irg.h>

#include <mytimercfg.h>
static Uint32 TIMEREventld1; \ This line is required and must be included

in order to use the peripheral pre-initializa-

void main() { tion defined through the Configuration Tool.
/* Obtain the event IDs for the TIMER devices */
TIMEREventld1l = TIMER_getEventld(hTimerl);
/* Enable the TIMER events */
IRQ_enable(TIMEREventldl);
/* Start the TIMERS — */ Handle object “hTimerl” is used directly by

TIMER_start(hTimerl / the TIMER CSL APIs.

/* Waiting for TIMER Interrupt: */
while('IRQ_test(TIMEREventldl));

/* Close TIMER */
TIMER_close(hTimerl);

}

2-18

Configuring Peripherals Without GUI

2.7 Configuring Peripherals Without GUI

Note: If you choose not to configure peripherals using GUI, you must pre-define the
PER_Handle and PER_Config objects.

Example 2-3illustrates the use of CSL to initialize DMA channel 0 and to copy
a table from address 0x3000 to address 0x2000 using the _config() function.
Example 2—4 is similar except that it uses the _configArgs() function.

Source address: 2000h in data space
Destination address: 3000h in data space
Transfer size: Sixteen 16-bit single words

2.7.1 Using DMA_config()
Example 2—3 uses the DMA_config() function to initialize the registers.

Example 2-3. Initializing a DMA Channel with DMA _config()

/I Step 1: Include the

Il the header file of the module/peripheral you
Il will use <csl_dma.h>. The different header files are shown
Il in Table 1-1.

#include <csl_dma.h>

/I Example-specific initialization
#define N 16 /I block size to transfer

#pragma DATA_SECTION(src,"tablel”) // scr data table address
Uint16 src[N] = {

OXBEEFu, OxBEEFu, OxBEEFu, OxBEEFu,

OXxBEEFu, OxBEEFu, OxBEEFu, OxBEEFu,

OXBEEFu, OxBEEFu, OxBEEFu, OxBEEFu,

OxBEEFu, OxBEEFu, OxBEEFu, OxBEEFu
J3

#pragma DATA_SECTION(dst, "table2”) // dst data table address
Uint16 dst[N];

/[Step 2: Define and initialize the DMA channel
I configuration structure

DMA_Config myconfig = {
0 [*priority */
DMA_DMMCR_RMK(0,0,0,0,1,1,1,1), *DMMCR */
DMA_DMSFC_RMK(0,0,0), DMSFC */
(DMA_Adr_Ptr)&src[0], [*DMSRC */
(DMA_Adr_Ptr)&dst[0], *DMDST */
(Uint16)(N-1) DMCTR */

How to Use CSL 2-19

Configuring Peripherals Without GUI

Example 2-3. Initializing a DMA Channel with DMA _config() (Continued)

/IStep 3: Define a DMA_Handle pointer. DMA_open will initialize this handle
1 when a DMA channel is opened.

DMA_Handle myhDma,;

void main(void) {

/IStep 4: Initialize the CSL Library. A one-time only initialization of the
1l CSL library must be done before calling any CSL module API.
CSL_init(); [*InitCSL ¥/

/IStep 5: Open, configure and start the DMA channel.

1 To configure the channel you can use the

1l DMA_config() or DMA_configArgs() functions.
myhDma = DMA_open(DMA_CHAO0,0); /* Open Channel */
DMA_config(myhDma, &myConfig); /* Configure Channel */
DMA_start(myhDma); [* Begin Transfer */

/IStep 6: (Optional).
Il Use CSL DMA APIs to track DMA channel status

while(DMA_getStatus(myhDma)); /* Wait for complete */
//Step 7: Close DMA channel.

DMA_close(myhDma); [* Close channel (Optional) */

2.7.2 Using DMA_configArgs()

Example 2-4 performs the same task as Example 2-3 but uses
DMA_configArgs() to initialize the registers.

Example 2—4. Initializing a DMA Channel with DMA _configArgs()

/] Step 1: Include the

1l the header file of the module/peripheral you
I will use <csl_dma.h>. The different header files are shown
1l in Table 1-1 on page 1-4.

2-20

Configuring Peripherals Without GUI

Example 2—4. Initializing a DMA Channel with DMA _configArgs() (Continued)

#include <csl_dma.h>

/I Example-specific initialization
#define N 16 /I block size to transfer

#pragma DATA_SECTION(src,"tablel”) // scr data table address
Uintl16 src[N] ={

OxBEEFu, OxBEEFu, OxBEEFu, OxBEEFu,

OXBEEFu, OxBEEFu, OxBEEFu, OxBEEFu,

OxBEEFu, OxBEEFu, OXBEEFu, OxBEEFu,

OXxBEEFu, OxBEEFu, OxBEEFu, OxXBEEFu
b
#pragma DATA_SECTION(dst, "table2”) // dst data table address
Uint16 dst[N];

/IStep 2: Define a DMA_Handle pointer. DMA_open will initialize this handle
I when a DMA channel is opened.

DMA_Handle myhDma,;

void main(void) {

/IStep 3: Initialize the CSL Library One-time only initialization of the CSL

I library must be done before calling any CSL module API.
CSL_init(); [*InitCSL %/

/IStep 4: Open, configure and start the DMA channel.

I To configure the channel you can use the

I DMA_config() or DMA_configArgs() functions.

myhDma = DMA_open(DMA_CHAO,0);/*Open Channel(Optional) */
DMA_configArgs(
0 [* priority */
DMA_DMMCR_RMK(0,0,0,0,1,1,1,1), /* DMMCR */

DMA_DMSFC_RMK(0,0,0), /[* DMSFC */
(DMA_Adr_Ptr)&src[0], I* DMSRC */
(DMA_Adr_Ptr)&dst[0], /* DMDST */
(Uint16)(N-1) * DMCTR */
DMA_start(mthma); /* Begin Transfer */

/IStep 6: (Optional)
Il Use CSL DMA APIs to track DMA channel status

while(DMA_getStatus(myhDma)); /* Wait for complete */
/[Step 7: Close DMA channel.

DMA_close(myhDma); /* Close channel */

How to Use CSL 2-21

Compiling and Linking With CSL

2.8 Compiling and Linking With CSL

After writing your program, you have two methods available for compiling and
linking your project:

[Use the DOS command line.
[0 Use the Code Composer Studio project build environment.

Table 2—1 lists the location of the CSL components after installation. Use this
information when you set up the compiler and linker search paths. Section
2.8.3, Creating a Linker File, on page 2-27, explains specific requirements for
the linker command file.

Table 2-1. CSL Directory Structure

This CSL component... Is located in this directory...
Libraries c:\ti\c5400\bios\lib
Source Library c:\ti\c5400\bios\src
Include files c:\ti\c5400\bios\include
Examples c:\tilexamples\csl
Documentation c:\ti\docs

2.8.1 Using the DOS Command Line

2-22

To compile and link your project using the DOS Command line:
1) Set the include file and library search paths.

Before you compile and link your program, you must verify that the include file
search paths are correctly set for the compiler and that the library search path
is correctly set for the linker. You can set these paths either in the autoexec.bat
file or with the -i option.

[Tosettheinclude and library search paths, using the autoexec.batfile, add
the following line to the autoexec.bat file:

SET C54X_C_DIR=.;C:\ti\c5400\bios\include;C:\ti\c5400\bios\lib;%C54X_ C_DIR%

[d To set the include and library search paths using the -i option, add the
following when compiling and linking:

-i c:\ti\c5400\bios\include (for the compiler)
-i c:\ti\c5400\bios\lib (for the linker)

2)
U

a

Compiling and Linking With CSL

Select the correct C54x device and library to link to.
To compile and link for near mode, type the following on the command line:
¢l500 -dCHIP_5402 ex1.c csl5402.lib linker.cmd -oex1.out

To compile and link for far mode, type the following on the command line:

¢cl500 -mf -v548 -dCHIP_5402 ex1.c csl5402x.lib linker.cmd -oex1far.out

Notice the usage of the device support symbol CHIP_5402 (see Table 1-2,
on page 1-4) to control conditional compilation. This usage is required
because the C54x family offers different peripheral features that are specific
to a particular C54x device.

2.8.2 Using the Code Composer Studio Project Environment

You must configure the CCS project environment to work with CSL. To
configure the CCS Project environment, follow these steps listed below.

[Specify the target device you are using:

1)
2)
3)

4)

5)

In Code Composer Studio, select Project - Options
In the Build Options dialog box, select the Compiler tab (see Figure 2—-13).
In the Category list box, highlight Preprocessor.

In the Define Symbols field, enter one of the device support symbols in
Table 1-2, on page 1-4.

For example, if you are using the 5402 device, enter CHIP_5402.

Click OK.

How to Use CSL 2-23

Compiling and Linking With CSL

Figure 2—13. Defining the Target Device in the Build Options Dialog

2-24

1

2)
3)
4)
5)
6)

If you use any far-mode libraries, define far mode for the compiler and link
with the far mode runtime library (rts_ext.lib):

In Code Composer Studio, select Project - Options

In the Build Options dialog box, select the Compiler Tab (Figure 2-14),
In the Category list box, highlight advanced.

Select Use Far Calls.

In the Processor Version (-v) field, type 548.

Click OK.

Compiling and Linking With CSL

Figure 2—14. Defining Far Mode

1)

2)

3)

4)

A A s T M e LR P e O s
' DEBLG -0 CHIF_ 512" il <5 %

u
|
u
|
u
|
|

If you are using Code Composer Studio releases prior to 2.0, add the
search path for the header files:

In Code Composer Studio, select Project - Options...

In the Build Options Dialog box, select the Compiler Tab (see
Figure 2-15).

In the Include Search Path field (-i), type:
c:\ti\c5400\bios\include

Click OK.

How to Use CSL 2-25

Compiling and Linking With CSL

Figure 2—15. Adding the Include Search Path

2-26

1)
2)
3)

4)

5)

6)

-0 W g WA B LTV TR 0 O e tiread O e
£ @S A b ncede™ -d”_DEEUG® -« "CHIP_E807" -mdl <540

Specify the search path for the CSL library:

In Code Composer Studio, select Project - Options

In the Build Options dialog box, Select the Linker Tab (see Figure 2—16).
In the Category list, highlight Basic.

In the Library search Path field (-I), type:
c:\ti\c5400\bios\lib

In the Include Libraries (-i) field, enter the correct library from Table 1-2,
on page

For example, if you are using the 5402 device, enter csI5402.lib for near
mode or csl5402x.lib for far mode.

Click OK.

Compiling and Linking With CSL

Figure 2-16. Defining Library Paths

)~ 0" | ey st e O T~ =" N CS 0 B g sl ® s B E02 Bl " s 1" d

Caluging Barse
= Sappesss Banrsr (g
= Eshnasiesty Faad Libmn s ()
Curipid Mochiie _:J
Curiput Flornamaiol. | Cebag!rbmerncan
Map Fimame -mg |
| uipend Mo Fan-tne faanbakiaisn :J
Heap S0 1
Black 520]
Pl Yl i) [

Code Ertry Funt(-a] |
Liwany S mach e e [c 10,0800, bas b
nclude Librares (. [eo iz i in

b pa i

[=] cancal | Haip

2.8.3 Creating a Linker Command File
The CSL has two requirements for the linker command file:

[J You must allocate the .csl data section.

CSL creates a .csl data section to maintain global data that CSL uses to
implement functions with configurable data. You must allocate this section
within the base 64K address space of the data space.

[J You must reserve address 0x7b in scratch pad memory

The CSL uses address 0x7b in the data space as a pointer to the .csl data
section, which is initialized during the execution of CSL_init(). For this
reason, you must call CSL_init() before calling any other CSL functions.
Overwriting memory location 0x7b can cause the CSL functions to fail.

Example 2-5 illustrates these requirements which must be included in the
linker command file.

How to Use CSL 2-27

Compiling and Linking With CSL

Example 2-5. Using a Linker Command File

MEMORY

PAGE 0: PROGQO: origin = 4000h, length = 0D000h
PROGL1: origin=18000h, length = 08000h
PAGE 1: DATA: origin= 0800h, length = 03800h
}
SECTIONS
{
text >PROGO PAGE 0
.cinit > PROGO PAGE 0
.switch > PROGO PAGE 0

.data > DATA PAGE 1
.bss > DATA PAGE 1
.const > DATA PAGE 1
.sysmem > DATA PAGE 1
.stack > DATA PAGE 1
. csl data > DATA PAGE 1
tablel : load = 3000h PAGE 1
table2 : load = 2000h PAGE 1

2-28

Rebuilding CSL

2.9 Rebuilding CSL

All CSL source code is archived in the file csl.src located in the \bios\src folder.
For example, to rebuild csl5402x.lib, type the following on the command line:

mk500 csl.src -dCHIP_5402 -v548 -mf

2.10 Using Function Inlining

Because some CSL functions are short, they set only a single bit field. In this
case, incurring the overhead of a C function call is not always necessary. If you
enable inline, the API declares these functions as static inline. Using this
technique can help reduce code size. In order to allow for future changes, the
CSL documentation does not identify which functions are inlined; however, if
you enable function inlining with the compiler -x option, you see an increase
in CSL code performance.

How to Use CSL 2-29

Chapter 3

DSP/BIOS Configuration Tool: CSL Modules

Note: Inmostcases, you are notrequired to use the DSP/BIOST configuration tool to configure
peripherals.

The Chip Support Library (CSL) graphical user interface is part of the
DSP/BIOSO configuration tool integrated in Code Composer Studio (CCS).
This graphical user interface (GUI) benefits you by reducing manual C-code
generation and offering an easy way to use on-chip peripherals by
programming the associated Peripheral registers through the properties

pages.

Topic Page
3L OVEIVIEW ..ot eeeeeeeeeeeeeee
3.2 DMAMOGUIE ...\ttt
3.3 GPIOMOUUIEowweeee et 3-10
34 MCBSP MOGUIE ...
3.5 PLLMOGUIE ...\ttt e
3.6 TIMERMOQUIEooeeee e 5-24
3.7 WATCHDOG TIMER MOQUIEooeee e

3-1

Overview

3.1 Overview

3-2

Chapter 2 outlined the basic CSL program flow and illustrated the use of CSL
macros in C source for declaring and defining the necessary PER_Handle and
PER_Config objects needed for peripheral operation in CSL.

As an alternative to the manual declaration and initialization of the peripheral
configuration objects within the C source described in chapter 2, CSL also
provides a graphical user interface (GUI) that is part of the DSP/BIOS
configuration tool and is integrated into Code Composer Studio.

The CSL graphical user interface (GUI) provides the benefit of a visual tool that
allows you to view the chosen register settings, determine which flags/options
have been set by a particular mode selection, and most importantly, have the
code for the configuration settings automatically be created and stored ina C
source file that can be integrated directly into your application.

DMA Module

3.2 DMA Module

3.2.1 Overview

The DMA module facilitates configuration of the Direct Memory Access (DMA)
controller. The DMA module consists of a configuration manager and a
resource manager.

The configuration manager allows creation of an object that contains the
complete set of register values needed to configure a DMA channel. The
resource manager associates a configuration object with a specific DMA
channel.

Figure 3—1 illustrates the DMA sections menu on the CSL graphical user
interface (GUI).

Figure 3—1. DMA Sections Menu

E@ Dk - Direct Memorn Access Controller
E Dk Configuration b anager

F-g8 DA Fesource b anager

The DMA includes the following sections:

[DMA Configuration Manager : Allows you to create configuration objects
by setting the peripheral registers related to the DMA.

0 DMA Resource Manager : Allows you to select a DMA channel and to
associate a configuration object to this channel . The six channel handle
objects are predefined.

3.2.2 DMA Configuration Manager

The DMA Configuration Manager allows you to create DMA Channel
configurations through the Properties page and to generate the configuration
objects.

3.2.2.1 Creating/Inserting a configuration
There is no predefined configuration object available.

To configure a DMA channel through the Peripheral Registers, you must insert
a new configuration object.

DSP/BIOS Configuration Tool: CSL Modules 3-3

DMA Module

To insert a new configuration object, right-click on the DMA Configuration

Manager and select insert dmaCfg from the drop-down menu. The

configuration objects can be renamed. Their use depends on the on-chip

device resources. Because six channels are available, a maximum of six

configurations can be used simultaneously.

Note: A maximum of six configurations may be inserted. This is due to the association that each
configuration has with a pre-defined global configuration. The global configuration is dy-
namically updated with changes made to the associated DMA configuration. One DMA

configuration (and its associated global configuration) can be used by more than one
DMA channel.

3.2.2.2 Deleting/Renaming an Object

To delete or rename an object, right-click on the configuration object you want
to delete or rename. Select Delete to delete a configuration object. Select
Rename to rename the object.

If a configuration object is used by one of the predefined handle objects of the
DMA Resource Manager, the Delete and Rename options are grayed-out and
non-usable. The Show Dependency option is accessible and shows which
device is using the configuration object (see Section 2.3, DSP/BIOS
Configuration Tool: CSL Tree, on page 2-4).

3.2.2.3 Configuring the Object Properties

You can configure object properties through the Properties dialog box. (See
Figure 3-2). To access the Properties dialog box, right-click on a configuration
object and select Properties. By default, the General page of the Properties
dialog box is displayed.

The Properties pages allow you to set the Peripheral registers related to the
DMA. You can set the configuration options through the following Tab pages:

[J Transfer Modes: Allows you to configure the Priority, Sync Events,
ABU/Multi-frame

[0 Source/Destination: Allows you to configure the Address, Index,
Element/Frame Count

[Autoinit: Allows you to configure the Reload Registers

[0 Advanced A and B Pages: This page contains the full hexadecimal
register values and reflects the option setting of the previous pages. Also,
the full register values can be entered directly and the new options are
mirrored in the related pages automatically.

Figure 3-2.

DMA Module

DMA Properties Page

G e | Trarsis viodes | saops S U i’ Imnl im0]

Erarmm decirken v Tpsacs
Do bl S i D

Sy sk Fosems

ooy iy - Syl

[PP TRR T]

[T SO T TS

P g ey s i

| s |

Each page is composed of several options that are set to a default value (at
device reset).

3.2.2.4 Address Formats

The source, destination, and addresses can be specified in either a numeric
format (hard coded address) or a symbolic format. Before setting any
addresses, it is suggested that you ensure that the right format is selected in
the Source Address Format and Destination Address Format pull-down
menus located on the Source and Destination tabs of the Properties page.

3.2.3 DMA Resource Manager

Figure 3-3.

The DMA Resource Manager allows you to generate the DMA_open() and
DMA_config() CSL functions.

Figure 3—3illustrates the DMA Resource Manager menu on the CSL graphical
user interface (GUI).

DMA Resource Manager Menu

Eﬂ Dl - Direct Memary Access Contraller
ﬂ D4 Caonfiguration Manager

Elﬂ DhiA Pesource Manager
8 DMAD

B DA

..... B a2

B DMa3

BB DAY

B DMAR

DSP/BIOS Configuration Tool: CSL Modules 3-5

DMA Module

3.2.3.1 Predefined Objects

The six channel handle objects are predefined and each is associated with a
supported on-chip DMA channel as follows:

DMAO — Default handle name: hDmaO
DMAL — Default handle name: hDmal
DMA2 — Default handle name: hDma2
DMAS3- Default handle name: hDma3

DMAA4 — Default handle name: hDma4

U U o od o od

DMAS5 — Default handle name: hDma5

3.2.3.2 Properties Page

3-6

You can generate the DMA_open() and DMA_config() CSL functions through
the Properties page.

To access the Properties page, right-click on a predefined DMA channel and
select Properties from the drop-down menu (see Figure 3—4).

The first time the Properties page appears, only the Open Handle to DMA
check-box can be selected. Select this to open the DMA channel, allowing
pre-initialization.

DMA_NOTHING is used to indicate that there is no configuration object
selected for this DMA.

To pre-initialize the DMA channel, check the Enable pre-initialization
check-box. You can then select one of the available configuration objects (see
section 3.2.2 , DMA Configuration Manager) for this channel through the
pre-initialize drop-down list.

If DMA_NOTHING is selected, no configuration object is generated for the
related DMA handle (see section 3.2.4, C Code Generation for DMA Module,
on page 3-7).

In the example shown in Figure 3-4, the Open DMA Channel option is
checked and the handle object hDmal is now accessible (The handle object
can be renamed by typing the new name in the box provided). The
DMA_open() function is now generated with hDmal containing the returned
handle address.

DMA Module

Figure 3—4. DMA Properties Page With Handle Object Accessible

3.2.4 C Code Generation for DMA Module
Two C files are generated from the configuration tool:
(g Header file

[0 Source file.

3.2.4.1 Header File

The header file includes all the csl header files of the modules and contains
the DMA handles, and configuration objects generated by the configuration
tool (see Example 3-1).

Example 3—1. DMA Header File

extern DMA_Config dmaCfgo;
extern DMA_GblConfig gDMAConfig0;;
extern DMA_Handle hDmal;

DSP/BIOS Configuration Tool: CSL Modules 3-7

DMA Module

3.2.4.2 Source File

The source file includes the declaration of the channel handle objects and the
configuration structures (see Example 3-2).

Example 3—2. DMA Source File (Declaration Section)

/*

/*

Config Structures */

DMA_Config dmaCfg0 = {

0x0000, /* Channel Priority (0x0000 or 0x0001 */

0x0000, [* Global Reload Register Usage in Autoinit Mode (AUTO
IX : 0x0000 or 0x0001) */

0x0000, /* Transfer Mode Control Register (DMMCR) */
0x0000, /* Sync Event and Frame Count Register (DMSFC) */
NULL, /* Source Address Register (DMSRC) - Symbolic */
NULL, /* Destination Address Register (DMDST) - Symbolic */
0x0000 [* Element Count Register (DMCTR) */

DMA_GbIConfig gDMAConfig0 = {

0x0, /* Breakpoint Emulation Behavior (FREE) */

0x0000, /* Global Reload Register Usage in Autoinit Mode (AUTO
IX : 0x0000 or 0x0001) */

NULL, /* Source Program Page Address Register (DMSRCP) - Symbolic */
NULL, /* Destination Program Page Address Register (DMDSTP) - Symbolic */
0x0000, /* Element Address Index Register 0 (DMIDX0) */

0x0000, /* Frame Address Index Register 0 (DMFRIQ) */

0x0000, [* Element Address Index Register 1 (DMIDX1)

0x0000, [* Frame Address Index Register 1 (DMFRI1)

NULL, /* Global Source Address Reload Register (DMGSA) - Symbolic */
NULL, /* Global Destination Address Reload Register (DMGDA) - Symbolic */
0x0000, /* Global Element Count Reload Register (DMGCR) */

0x0000 [* Global Frame Count Reload Register B (DMGFR) */

Handles */

DMA_Handle hDmal;

The source file contains the Handle and Configuration Pre-Initialization using
the CSL DMA API functions, DMA open() and DMA config() (see
Example 3-3).

DMA Module

These two functions are encapsulated in a unique function, CSL_cfglnit(),
which is called from your main C file. DMA_open() and DMA_config() are
generated only if Open Handle to DMA and Enable pre-initialization (with a
selected configuration other than DMA_NOTHING) are checked under the
DMA Resource Manager Properties page.

Example 3—3. DMA Source File (Body Section)

void CSL_cfglnit()
{
CSL_init();
hDmal = DMA_open(DMA_CHA1, DMA_OPEN_RESET);
DMA_config(hDmal, &dmacCfg0);
DMA_globalConfig(0OxOFFFF, &gDMAConfig0);

DSP/BIOS Configuration Tool: CSL Modules 3-9

GPIO Module

3.3 GPIO Module

The GPIO module facilitates configuration/control of the General Purpose I/O
on the C54x. The module consists of a configuration manager. The
configuration manager allows you to configure the directions of either the input
or output of the GPIO pins.

Figure 3-5 illustrates the GPIO sections menu on the CSL graphical user
interface (GUI)

3.3.1 Overview
Figure 3-5. GPIO Sections Menu

GPIO - General Purpose Input/Output
-

------ o Mon-hultiplexed GPIO Configuration

The Non-Multiplexed GPIO includes the following section:
(1 Non-Multiplexed GPIO Configuration Manager : Allows you to
configure the GPIO Pin directions.
3.3.2 Non-Multiplexed GPIO Configuration Manager

The Non-Multiplexed GPIO Configuration Manager allows you to configure the
GPIO Pin directions.

3.3.2.1 Properties Pages of the Non-Multiplexed GPIO Configuration

The Properties pages allow you to set the Peripheral registers related to the
GPIO. The configuration options are divided into the following Tab page:

[d Settings: Allows you to configure the Input/Output settings of GPIO Pins.

Figure 3—-6, Non-Multiplexed GPIO Properties Page, depicts the Properties
Page dialog box.

Figure 3—6. GPIO Properties Page

Fabp -l | poaead 90 LosSsqurahos Fropedies

= e Plon-mubplesed GG

Sk IODIAD Bs |Llrus-:~d 1-|
Sakai DDA 85 |L|rus-:~d 1-|
Sakac! IODIAZ 85 |Llrus-:~d 1-|
Sakec IOOIA 85 |Llrus-:~d 1-|

[ot] coeel | teme | b |

3-10

GPIO Module

The settings Tab is composed of several options that are set to a default value
(at device reset).

The options represent the fields of the GPIO register direction; the associated
field name is shown in parenthesis. For further details of the fields and
registers, refer to the GPIO section of the TMS320C54x DSP Enhanced
Peripherals Reference Set (literature number SPRU302).

3.3.3 C Code Generation for GPIO Module

3.3.3.1 Header File

3.3.3.2 Source File

Two C files are generated from the configuration tool:
] Header file

] Source file.

The header file includes all the csl header files of the modules.

The source file contains the GPIO Register set macro invocation. This macro
invocation is encapsulated in a unique function, CSL_ cfglnit(), which is called
from your main C file.

GPIO_RSET() will be generated only if Configure Non—Multiplexed GPIO is
checked under the Non-multiplexed GPIO Configuration Properties page.
See Figure 3-6.

Example 3—4. GPIO Source File (Body Section)

void CSL_cfglnit()
CSL_init();

GPIO_RSET(IODIR, 3840);
}

DSP/BIOS Configuration Tool: CSL Modules 3-11

MCBSP Module

3.4 MCBSP Module

3.4.1 Overview

Figure 3—7. MCBSP Sections Menu

3.4.2

The MCBSP module facilitates configuration/control of the Multi Channel
Buffered Serial Port (MCBSP). The module consists of a configuration
manager and a resource manager. The configuration manager allows creation
of one or more configuration objects. The configuration objects contain all of
the data necessary to set the MCBSP Control Registers. The resource
manager associates a configuration object with a specified port.

Figure 37 illustrates the GPIO sections menu on the CSL graphical user
interface (GUI)

FACBEP - Multic :
: J"I_"ﬁ' MCBSF Configuration Manager
¢ b WCESP Resource Manager

The MCBSP includes the following two sections:

(1 MCBSP Configuration Manager : Allows you to create configuration
objects. No predefined configuration objects.

(1 MCBSP Resource Manager : Allows you to select a device and to
associate a configuration object to that device. Three handle objects are
predefined.

MCBSP Configuration Manager

The MCBSP Configuration Manager allows you to create device
configurations through the Properties page and to generate the configuration
objects.

3.4.2.1 Creating/Inserting a Configuration Object

3-12

There is no predefined configuration object available.

To configure a MCBSP port through the peripheral registers, you must insert
a new configuration object.

To insert a new configuration object, right-click on the MCBSP Configuration
Manager and select insert mcbspCfg from the drop-down menu. The
configuration objects can be renamed. Their use depends upon the on-chip
device resources.

Note: The number of configuration objects is unlimited. Several configurations can be created
and the user can select the right one for a specific port and can change the configuration
later just by selecting a new one under the MCBSP Resource Manager. The goal is to
provide more flexibility and to reduce the time required to modify register values.

MCBSP Module

3.4.2.2 Deleting/Renaming an Object

To delete or to rename an object, right-click on the configuration object you
wantto delete or rename. Select Delete to delete a configuration object. Select
Rename to rename the object.

If a configuration object is used by one of the predefined handle objects of the
MCBSP Resource Manager, the Delete and Rename options are grayed out
and non-usable. The Show Dependency optionis accessible and shows which
device is using the configuration object (see Section 2.2, Introduction to
DSP/BIOS Configuration Tool: CSL Tree, on page 2-3).

3.4.2.3 Configuring the Object Properties

The Properties pages allow you to set the Peripheral registers related to the
MCBSP Port (see Figure 3—8). To access the Properties dialog box, right-click
on a configuration object and select Properties. By default, the General page
of the Properties dialog box is displayed.

The Properties pages allow you to set the Peripheral registers related to the
MCBSP. you can set the configuration options through the following pages:

[General: Allows you to configure the Digital Loopback, ABIS Mode,
Breakpoint Emulation.

[J Transmit Modes: Allows you to configure the Interrupt mode, Frame Sync,
Clock control.

[Transmit Lengths: Allows you to configure the Phase, elements-per-word,
elements per frame.

1 Receiver Modes: Allows you to configure the Interrupt mode, Frame Sync,
Clock control.

[Receiver Lengths: Allows you to configure the Phase, elements-per-word,
elements per frame.

[0 Sample-Rate Generator: Allows you to configure the Sample-Rate
Generator (Frame Setup).

1 Receive Multi-channel: Allows you to configure the Element and Block
partitioning.

1 Transmit Multi—-channel: Allows you to configure the Element and Block
partitioning.

[J Some fields are activated according to the setup of the Transmitter,
Receiver, and Sample-rate generator options.

DSP/BIOS Configuration Tool: CSL Modules 3-13

MCBSP Module

[0 Advanced A and B: Summary of the previous pages. This page contains
the full hexadecimal register values and reflects the setting of the options
done under the previous pages

(1 The full register values can be entered directly and the new options will be
mirrored on the corresponding pages automatically.

Figure 3-8, MCBSP Properties Page, depicts the Properties Page.

Figure 3—-8. MCBSP Properties Page

Each Tab page is composed of several options that are set to a default value
(at device reset).

3-14

MCBSP Module

3.4.3 MCBSP Resource Manager

The MCBSP Resource Manager allows you to generate the MCBSP_open()
and the MCBSP__config() CSL functions.

Figure 3-9 illustrates the MCBSP Resource Manager menu on the CSL
graphical user interface (GUI).

Figure 3—-9. MCBSP Resource Manager Menu

|é|--"u__' MCBSP Resource Manager
"u_' McBSFO
"u_' McBSF1
L WMcBSP?

3.4.3.1 Predefined Objects

Three handle objects are predefined and each of them is associated with a
supported on-chip MCBSP port.

1 MCBSPO — Default handle name: hMcbsp0
[MCBSP1 - Default handle name: hMcbspl
1 MCBSP2 — Default handle name: hMcbsp2

Note: The above objects cannot be deleted. They can be renamed only.

A configuration can be enabled if at least one configuration object was defined
previously. See Section 3.4.2, MCBSP Configuration Manager, on page 3-12.

3.4.3.2 Properties Page

You can generate the MCBSP_open() and MCBSP_config() CSL functions
through the Properties page.

To access the Properties page, right-click on a predefined MCBSP channel
and select Properties from the drop-down menu (see Figure 3-10).

The first time the Properties page appears, only the Open Handle to MCBSP
check-box can be selected. Select this to open the MCBSP channel, allowing
pre-initialization.

MCBSP_NOTHING is used to indicate that there is no configuration object
selected for this serial port.

To pre-initialize a MCBSP port, check the Enable Pre-Initialization box. You
can then select one of the available configuration objects (see Section 3.4.2,
MCBSP Configuration Manager, on page 3-12) for this channel through the
pre-initialize drop-down list.

DSP/BIOS Configuration Tool: CSL Modules 3-15

MCBSP Module

If MCBSP_NOTHING is selected, no configuration object is generated for the
related MCBSP handle. (see Section 3.4.4, C Code Generation for MCBSP
Module, on page 3-16).

In the example shown in Figure 3-10, the Open Handle to MCBSP option is
checked and the handle object hMcbsp1 is now accessible (The handle object
can be renamed by typing the new name in the box provided). The
MCBSP_open() function is now generated with hMcbspO containing the
returned handle address.

Figure 3—10. MCBSP Properties Page With Handle Object Accessible

McBSP1 Properties

General |

Eafemt: IMCBSP1

¥ Dpen Handle to McESE

Specify Handle Mame : IhMCbSp1

" Enahle pre-initialization

Prednitalfze: [MCBSP_NOTHING =]

Ok I Cancel | Appaly | Help

3.4.4 C Code Generation for MCBSP Module
Two C files are generated from the configuration tool:
(] Header file
[Source file.

3.4.4.1 Header File

The header file includes all the csl header files of the modules and contains
the MCBSP handle and configuration objects defined from the configuration
tool (see Example 3-5).

Example 3—-5. MCBSP Header File

extern MCBSP_Config mcbsCfgo;
extern MCBSP_Handle hMcbsp1;

3-16

MCBSP Module

3.4.4.2 Source File

The source file includes the declaration of the handle object and the
configuration structures (see Example 3-6).

Example 3—6. MCBSP Source File (Declaration Section)

/* Config Structures */
MCBSP_Config mchspCfgo = {
0x0000, /* Serial Port Control Register 1 */

0x0000, /* Serial Port Control Register 2 */
0x0000, /* Receive Control Register 1 */
0x0000, /* Receive Control Register 2 */
0x0000, [* Transmit Control Register 1 */
0x0000, [* Transmit Control Register 2 */
0x0000, [* Sample Rate Generator Register 1 */
0x0000, [* Sample Rate Generator Register 2 */
0x0000, /* Multi—-channel Control Register 1 */

0x0000, /* Multi—-channel Control Register 2 */

0x0000, /* Pin Control Register */

0x0000, /* Receive Channel Enable Register Partition A */
0x0000, /* Receive Channel Enable Register Partition B */
0x0000, /* Transmit Channel Enable Register Partition A */
0x0000 /* Transmit Channel Enable Register Partition B */

/* Handles */
MCBSP_Handle hMchsp1,;

The source file contains the Handle and Configuration Pre-Initialization using
the CSL MCBSP API functions, MCBSP_open() and MCBSP_config() (see
Example 3-7). These two functions are encapsulated in a unique function,
CSL_cfglnit(), which is called from your main C file. MCBSP_open() and
MCBSP_config() are generated only if Open Handle to DMA and Enable
pre-initialization (with a selected configuration other than MCBSP_NOTHING)
are, respectively, checked under the MCBSP Resource Manager Properties

page.

DSP/BIOS Configuration Tool: CSL Modules 3-17

MCBSP Module

Example 3—7. MCBSP Source File (Body Section)

void CSL_cfglnit()
{
CSL_init();

hMcbspl = MCBSP_open(MCBSP_PORT1, MCBSP_OPEN_RESET);
MCBSP_config(hMcbspl, &mcbspCfg0);

3-18

PLL Module

3.5 PLL Module

3.5.1 Overview

The PLL module facilitates programming of the Phase Locked Loop controlling
C54xx clock. The PLL module consists of a configuration manager and a
resource manager. The configuration manager allows creation of one or more
configuration objects. A configuration object consists of the necessary register
settings to control the PLL. The resource manager associates a selected
configuration with the PLL.

Figure 3—11 illustrates the PLL sections menu on the CSL graphical user
interface (GUI).

Figure 3—11.PLL Sections Menu
Eﬁ =

w&& PLL Configuration Manager
gﬁ FLL Resource Manager

The PLL includes the following two sections:

1 PLL Configuration Manager : Allows you to create configuration objects
by setting the Peripheral registers related to the PLL.

[PLL Resource Manager : Allows you to associate a configuration object
to the PLL.

3.5.2 PLL Configuration Manager

The PLL Configuration Manager allows you to create PLL configurations
through the Properties page and to generate the configuration objects.

3.5.2.1 Creating/Inserting a configuration

There is no predefined configuration object.

To configure a PLL setting through the Peripheral Registers, you must insert
a new configuration object.

To insert a new configuration object, right-click on the PLL Configuration

Manager and select Insert plICfg. The configuration objects can be renamed.
Note: Note: The number of configuration objects is unlimited. Several configurations can be
created. You user can select one for the PLL and can change the configuration later just

by selecting another configuration under the PLL Resource Manager. This feature allows
you more flexibility and reduces the time required to modify register values.

DSP/BIOS Configuration Tool: CSL Modules 3-19

PLL Module

3.5.2.2 Deleting/Renaming and Object

To delete or rename an object, right-click on the configuration object you want
to delete or rename. Select Delete to delete a configuration object. Select
Rename to rename the object.

If a configuration object is used by one of the predefined handle objects of the
PLL Resource Manager, the Delete and Rename options are grayed out and
non-usable. The Show Dependency option is accessible and shows which
device is using the configuration object. See Section 2.2, Introduction to
DSP/BIOS Configuration Tool: CSL Tree.

3.5.2.3 Configuring the Object Properties

You can configure object properties through the Properties dialog box (see
Figure 3-12). To access the Properties dialog box, right-click on a
configuration object and select Properties. By default, the General page of the
Properties dialog box is displayed.

The Properties pages allow you to set the Peripheral registers related to the
PLL. You can set the configuration options through the following tab page:

[Settings: Allows you to configure the Counter Value, Multiplier, Divide
Factor

Figure 3-12, PLL Properties Page, depicts the Properties Page dialog box.

Figure 3-12. PLL Properties Page

3-20

pliCfg0 Properties [x]

General Sefiings |

PLL Counter Value (FLLCOUNT] [0 - 255] Iﬁ

PLL kultiplier IPLLMUL +1 vI
PLL kultiplier (FLLMUL) ID vI
CLREUT Output Bivide Factor IDiVide by 4 YI

0K I Cancel Al Help

Each Tab page is composed of several options that are set to a default value
(at device reset).

The options represent the fields of the PLL registers; the associated field name
is shown in parenthesis. For further details of the fields and registers, refer to
the Expansion Bus chapter of the TMS320C54x DSP CPU and Peripherals
References Set (literature number SPRU131F).

PLL Module

3.5.3 PLL Resource Manager

The PLL Resource Manager allows you to generate the PLL_config() CSL
function.

Because only one PLL is supported, only one resource is available and used
as the default.

Figure 3-13 illustrates the PLL Resource Manager menu on the CSL
graphical user interface (GUI).

Figure 3—13. PLL Resource Manager Menu

El,;ﬁ FLL Res u:u rce Manager

3.5.3.1 Properties Page
You can generate the PLL_config() CSL function through the Properties page.

To access the Properties page, right-click on a predefined PLL channel and
select Properties from the drop-down menu (see Figure 3-14).

The first time the properties page appears, only the Enable Configuration PLL
check box can be selected. Select this to enable the PLL configuration.

PLL_NOTHING is used to indicate that there is no configuration object
selected for this peripheral.

To pre-initialize the PLL channel, check the Enable Configuration of PLL box.
One of the available configuration objects(see Section 3.2.2 , PLL
Configuration Manager) can then be selected for this channel through the
Pre—Initialize drop-down list.

If PLL_NOTHING remains selected, The PLL_config() function will not be
generated for the PLL.

In Figure 3-14, the plICfg0 is selected and the PLL_config function will be
generated. (See Section 3.5.4, C Code Generation for PLL Module, on page
3-22))

DSP/BIOS Configuration Tool: CSL Modules 3-21

PLL Module

Figure 3-14. PLL Properties Page

PLLD Properties

General |

EOTERT: IPLL o

¥ Enable Configuration of FLL

Pre-initialize: |plICig0 ﬂ
[PLL_NOTHING

Ok I Cancel Appaly Helg

3.5.4 C Code Generation for PLL Module

Two C files are generated from the configuration tool:

(] Header file

] Source file.

3.5.4.1 Header File

The header file includes all the csl header files of the modules and contains
the PLL configuration objects defined from the configuration tool (see

Example 3-8).

Example 3-8. PLL Header File

extern PLL_Config plICfgO;

3.5.4.2 Source File

The source file includes the declaration of the configuration structures (values

of the peripheral registers) (see Example 3-9).

3-22

PLL Module

Example 3—9. PLL Source File (Declaration Section)

/* Config Structures */

PLL_Config plICfg0 = {
0x2, /* PLL Multiplier/Divider Mode */
0x0, /* PLL Counter Value (PLLCOUNT) */
0x0, /* PLL Multiplier Value (PLLMUL) */

h

The source file contains the Pre-Initialization PLL API function,PLL_config().
This function is encapsulated into a unique function, CSL_cfglnit(), which is
called from your main C file (see Example 3-10).

PLL_config() is generated only if Enable Configuration of PLL is checked
under the PLL Resource Manager Properties page (with a selected
configuration other than PLL_NOTHING) (see Figure 3—-14, on page 3-22).

Example 3—10. PLL Source File (Body Section)
void CSL_cfglnit()
{

CSL_init();

PLL_config(&PLLCfg0);

}

DSP/BIOS Configuration Tool: CSL Modules 3-23

TIMER Module

3.6 TIMER Module

3.6.1 Overview

The Timer module facilitates configuration/control of the on-chip Timer. The
timer module consists of a configuration manager and a resource manager.
The configuration manager allows the creation of one or more configuration
objects. The configuration object consists of the necessary data to set the
Timer control registers. The resource manager associates a selected
configuration with a timer.

Figure 3—15 illustrates the Timer sections menu on the CSL graphical user
interface (GUI).

Figure 3-15. Timer Sections Menu

E]F TIMER - Timer Devvice
Timer Canfiguration Manager
= B8 Timer Resource Manager

The TIMER includes the following two sections:

(1 TIMER Configuration Manager : Allows you to create configuration ob-
jects. There are no predefined configuration objects.

1 TIMER Resource Manager : Allows you to select a device that will be used
and to associate a configuration object with that device. Three handle ob-
jects are predefined.

3.6.2 TIMER Configuration Manager

The TIMER Configuration Manager allows you to create device configurations
through the Properties page and generate the configuration objects.

3.6.2.1 Creating/Inserting a configuration

3-24

There are no predefined configuration objects available.

To configure a TIMER device through the peripheral, you must insert a new
configuration object.

To insert a new configuration object, right-click on the TIMER Configuration
Manager and select Insert timerCfg from the drop-down menu. The
configuration objects can be renamed. Their use depends on the on-chip
device resources.

Note: Note: The number of configuration objects is unlimited. Several configurations can be
created and you can select the right one for a specific device and change the configura-
tion later just by selecting a new one under the TIMER Resource Manager. This feature
provides you with more flexibility and reduces the time required to modify register values.

TIMER Module

3.6.2.2 Deleting/Renaming an Object

To delete or to rename an object, right-click on the configuration object you
wantto delete orrename. Select Delete to delete a configuration object. Select
Rename to rename the object.

If a configuration object is used by one of the predefined handle objects of the
TIMER Resource Manager (see Section 3.7.3, Timer Resource Manager), the
Delete and Rename options are grayed out and non-usable. The Show
Dependency option is accessible and shows which device is using the
configuration object (See Section 2.2, Introduction to DSP/BIOS
Configuration Tool: CSL Tree, on page 2-3).

3.6.2.3 Configuring the Object Properties

You can configure object properties through the Properties dialog box (see
Figure 3-16). To access the Properties dialog box, right-click on a
configuration object and select Properties. By default, the General page of the
Properties dialog box is displayed.

The Properties pages allow you to set the Peripheral registers related to the
TIMER. You can set the configuration options through the following tab pages:

1 General: Allows you to configure the Breakpoint Emulation
[Counter Control: Allows you to configure the Counter configuration

[J Advanced Page: Allows you to configure the Summary of the previous
pages

[This page contains the full hexadecimal register values and reflects the
setting of the previous pages

[Thefull register values can be entered directly and the new options will be
mirrored on the previous three pages automatically

Figure 3—-20, TIMER Properties Page, depicts the Properties Page dialog box.

DSP/BIOS Configuration Tool: CSL Modules 3-25

TIMER Module

Figure 3-16. TIMER Properties Page

3-26

timerCfg0 Properties

Generall CDunterCuntrDIl GFIO Advanced |

Timer Control Register: Im

Timer Period Register : IUXUUUU

limer 2cale Begister (IECE]: IDXDDDD

Ok I Cancel Aty Help

Each Tab page is composed of several options that are set to a default value
(at device reset).

The options represent the fields of the TIMER registers; the associated field
name is shown in parenthesis. For further details on the fields and registers,
refer to the Timers chapter in the TMS320C54x Chip Support Library API
Reference Guide (literature number SPRU420).

3.6.3

TIMER Module

TIMER Resource Manager

The TIMER Resource Manager allows you to generate the TIMER_open() and
the TIMER_config() CSL functions.

Figure 3-17 illustrates the DMA Resource Manager menu.

Figure 3—17. Timer Resource Manager Menu

3.6.3.1 Predefined Objects

Two handle objects are predefined and each of them is associated with a
supported on-chip TIMER device.

] TIMERO — Default handle name: hTimer0
0 TIMER1 — Default handle name: hTimerl

Note: The above objects can neither be deleted nor renamed.

A configuration is enabled if at least one configuration object is defined
previously in section 3.7.2, TIMER Configuration Manager, on page 3-30.

3.6.3.2 Properties Page

You can generate the TIMER_config and TIMER_open CSL functions through
the Properties page.

To access the Properties page, right-click on a predefined TIMER handle ob-
ject and select Properties from the drop-down menu (see Figure 3—18).

The first time the properties page appears, only the Open Handle to Timer
check-box can be selected. Select this to open the TIMER configuration, al-
lowing pre-initialization.

TIMER_CFGNULL is used to indicate that there is no configuration object
selected for this device.

To pre-initialize the TIMER channel, check the Enable Pre-Initialization box.
One of the available configuration objects(see Section 3.2.2 , TIMER
Configuration Manager) can then be selected for this channel through the
Pre—Initialize drop-down list.

If TIMER_CFGNULL is selected, no configuration object will be generated for
the related TIMER handle. (See Section 3.7.4, C Code Generation for TIMER,
on page 3-33.)

DSP/BIOS Configuration Tool: CSL Modules 3-27

TIMER Module

In Figure 3-22, Timer Properties Page With Handle Object Accessible, the
Open Handle to TIMER option is checked and the handle object hTimerO is
now accessible (renaming allowed). The TIMER_open() function will be
generated with hTimerO containing the return handle address.

Figure 3—18. Timer Properties Page With Handle Object Accessible

Timerl Properties

General |

Ealifmemt: ITlmer1

¥ Dpen Handle to Timer!

Specify Handle Narme ; IhTimeH

" Enahle pre-initialization

Presinitialize: ITlMER_NOTHING j

Ok I Cancel | Appaly | Help

3.6.4 C Code Generation for TIMER

Two C files are generated from the configuration tool:
[Header file
[Source file.

3.6.4.1 Header File

The header file includes all the csl header files of the modules and contains
the TIMER handle and configuration objects defined from the configuration
tool (see Example 3-11).

Example 3—11. Timer Header File

extern TIMER_Config timerCfgO;
extern TIMER_Handle hTimerl

3-28

TIMER Module

3.6.4.2 Source File

The source file includes the declaration of the handle object and the
configuration structures (see Example 3-12).

Example 3—12. Timer Source File (Declaration Section)

/* Config Structures */

TIMER_Config timerCfgl = {
0x0000, /* Timer Control Register */
0x0000 [* Timer Period Register */

/* Handles */
TIMER_Handle hTimerl;

The source file contains the Handle and Configuration Pre-Initialization using
CSL TIMER API functions TIMER_open() and TIMER_config() (see
Example 3-13). These two functions are encapsulated into a unique function,
CSL_cfglnit(), which is called from your main C file.

TIMER_open() and TIMER_config() will be generated only if Open Handle to
TIMER and Enable-Pre-Initialization (with timerCfg0) are, respectively,
checked on the TIMER Resource Manager Properties page.

Example 3—13. Timer Source File (Body Section)

void CSL_cfglnit()

{
CSL_init();

hTimerl = TIMER_open(TIMER_DEV1, TIMER_OPEN_RESET);
TIMER_config(hTimerl, &timerCfgl);

DSP/BIOS Configuration Tool: CSL Modules 3-29

WATCHDOG TIMER Module

3.7 WATCHDOG TIMER Module

3.7.1 Overview

The WATCHDOG TIMER module facilitates configuration/control of the
on-chip WATCHDOG TIMER. The WATCHDOG TIMER module consists of a
configuration manager and a resource manager. The configuration manager
allows the creation of one or more configuration objects. The configuration
object consists of the necessary data to set the WATCHDOG TIMER control
registers. The resource manager associates a selected configuration with a
timer.

Figure 3-19 illustrates the WATCHDOG TIMER sections menu on the CSL
graphical user interface (GUI).

Figure 3-19. WATCHDOG TIMER Sections Menu

E|. WD TIMER -Watchdog Timer Device
YWatchdog Timer Configuration Manager
=38 ‘Watchdog Timer Resource Manager

The WATCHDOG TIMER includes the following two sections:

(O WATCHDOG TIMER Configuration Manager : Allows you to create
configuration objects.(There are no predefined configuration objects.)

(1 WATCHDOG TIMER Resource Manager : Allows you to associate a
configuration object to the Watchdog Timer. The WATCHDOG TIMER is
only available in the TMS320C5440 and TMS320C5441 devices.

3.7.2 WATCHDOG TIMER Configuration Manager

The WATCHDOG TIMER Configuration Manager allows you to create device
configurations through the Properties page and generate the configuration
objects.

3.7.2.1 Creating/Inserting a configuration

3-30

There are no predefined configuration objects available.

To configure a WATCHDOG TIMER device through the peripheral, you must
insert a new configuration object.

To insert a new configuration object, right-click on the WATCHDOG TIMER
Configuration Manager and select Insert wdtimCfg from the drop-down menu.
The configuration objects can be renamed. Their use depends on the on-chip
device resources.

Note: The number of configuration objects is unlimited. Several configurations can be created
and you can select the right one for a specific device and change the configuration later
just by selecting a new one under the WATCHDOG TIMER Resource Manager. This fea-
ture provides you with more flexibility and reduces the time required to modify register
values.

WATCHDOG TIMER Module

3.7.2.2 Deleting/Renaming an Object

To delete or to rename an object, right-click on the configuration object you
wantto delete orrename. Select Delete to delete a configuration object. Select
Rename to rename the object.

If a configuration object is used by one of the predefined handle objects of the
WATCHDOG TIMER Resource Manager, the Delete and Rename options are
grayed out and non-usable. The Show Dependency option is accessible and
shows which device is using the configuration object. See Section 2.2,
Introduction to DSP/BIOS Configuration Tool: CSL Tree, on page 2-3.

3.7.2.3 Configuring the Object Properties

You can configure object properties through the Properties dialog box (see
Figure 3—20). To access the Properties dialog box, right-click on a
configuration object and select Properties. By default, the General page of the
Properties dialog box is displayed.

The Properties pages allow you to set the Peripheral registers related to the
WATCHDOG TIMER. You can set the configuration options through the
following tab pages:

1 General: Allows you to configure the Breakpoint Emulation

(1 Counter Control: Allows you to configure the Breakpoint Emulation
Counter configuration

[0 Advanced Page: Allows you to configure the Summary of the previous
three pages

(1 This page contains the full hexadecimal register values and reflects the
setting of the three pages

[Thefull register values can be entered directly and the new options will be
mirrored on the previous three pages automatically

Figure 3—20, WATCHDOG TIMER Properties Page, depicts the Properties
Page dialog box.

DSP/BIOS Configuration Tool: CSL Modules 3-31

WATCHDOG TIMER Module

Figure 3-20. WATCHDOG TIMER Properties Page

wthmd gl Hrope fes

EMM|M|MI|M|

Lo |<-H'-U commets el
Simskpr Emuiaios Benericr RIS -]

||:E-Iﬂnlm|||5;plyil'|uh]

Each Tab page is composed of several options that are set to a default value
(at device reset).

The options represent the fields of the WATCHDOG TIMER registers; the
associated field name is shown in parenthesis. For further details on the fields
and registers, refer to the WATCHDOG TIMER chapter in the TMS320C55xx
Chip Support Library API Reference Guide (SPRU420).

3.7.3 WATCHDOG TIMER Resource Manager

The WATCHDOG TIMER Resource Manager allows you to generate the
WDTIM_config() CSL function.

Figure 3-21 illustrates the WATCHDOG TIMER Resource Manager Menu.

Figure 3-21. WATCHDOG TIMER Resource Manager Menu

5 |:|1 rce Manager

“Wiatchdo | Timer Fe
B WO

3.7.3.1 Properties Page

You can generate the WDTIM_config() csl function through the Properties
page.

To access the Properties page, right-click on a predefined TIMER handle
object and select Properties from the drop-down menu (see Figure 3-22).

The first time the properties page appears, only the Enable Configuration of
WATCHDOG TIMER check-box can be selected. Select this to open the
WATCHDOG TIMER configuration, allowing pre-initialization.

3-32

WATCHDOG TIMER Module

WDTIM_NOTHING is used to indicate that there is no configuration object
selected for this device.

To pre-initialize the Watchdog Timer, check the Enable Configuration of
WATCHDOG TIMER box. One of the available configuration objects (see
Section 3.2.2 , Watchdog Timer Configuration Manager) can then be selected
for this channel through the Pre—Initialize drop-down list.

If WDTIM_NOTHING remains selected, no WDTIM_config() function call will
be generated for the WATCHDOG TIMER handle. (See Section 3.7.4, C Code
Generation for WATCHDOG TIMER, on page 3-33.)

In Figure 3—22, the Enable Configuration of Watchdog Timer option is checked
and wdtimCfg0 is now accessible. The Wdtim_open() function will be
generated.

Figure 3-22. WATCHDOG TIMER Properties Page

WDTim0 Properties | %]
General |
EarmEnRt: IWatcthg Timer

¥ Enable Configuration of Watchdog Timer

Fre-initialize: widtim Cfgll

Ok I Cancel Apply Help

3.7.4 C Code Generation for WATCHDOG TIMER
Two C files are generated from the configuration tool:
] Header file

] Source file.

DSP/BIOS Configuration Tool: CSL Modules 3-33

WATCHDOG TIMER Module

3.7.4.1 Header File

The header file includes all the csl header files of the modules and contains
the WATCHDOG TIMER configuration objects defined from the configuration
tool (see Example 3-14).

Example 3—-14. WATCHDOG TIMER Header File

extern WDTIM_Config wdtimCfgO;

3.7.4.2 Source File

The source file includes the declaration of the configuration structures (see
Example 3-15).

Example 3—15. WATCHDOG TIMER Source File (Declaration Section)

[* Config Structures */

WDTIM_Config WdtimCfg0 = {
0x0000, /* Timer Control Register */
0x0000, /* Timer Period Register */
0x0000, /* Timer Register (TIM) */
0x0000 [* Timer Scale Register (TSCR) */

The source file contains the Configuration Pre-Initialization using the CSL
WATCHDOG TIMER API WDTIM_config() (see Example 3—16). This function
is encapsulated into a unique function, CSL_cfglnit(), which is called from your
main C file.

WDTIM_config() will be generated only if Enable Configuration of
WATCHDOG TIMER is checked and a configuration other than
WDTIM_NOTHING is selected on the Watchdog Timer Resource Manager
Properties page.

Example 3—16. WATCHDOG TIMER Source File (Body Section)

void CSL_cfglnit()

{
CSL_init();

WDTIM_config(&wdtimCfg0);
}

3-34

Chapter 4

CHIP Module

The CSL chip module offers general CPU functions and macros for C54x
register accesses. The CHIP module is not handle-based.

Topic Page
A1 OVEIVIEW ettt e e e
4.2 FUNCHON ottt et e e e e e

41

Overview

4.1 Overview

The CSL CHIP module offers general CPU functions. The CHIP module is not
handle-based.

Table 4-1 lists the functions available as part of the CHIP module.

Table 4—1. CHIP Functions

Function Purpose See page ...
CHIP_getCpuld Returns the CPU ID field of the CSR register. @
CHIP_getEndian Returns the current endian mode of the device @
CHIP_getRevID Returns the CPU revision ID. @I
CHIP_getSubsysID Returns sub-system ID (or core) for a multi-core @

device.
CHIP_getMapMode Returns the current MAP mode of the device. @l

4.2 Functions

CHIP_getCpuld

Function
Arguments
Return Value
Description

Example

CHIP_getEndian

Function
Arguments
Return Value

Description

Example

Functions

This section lists the functions in the CHIP module.

Get CPU ID (C5416, C5421, C5440, C5441 only)

Uint32 CHIP_getCpuld();

None

CPUID Returns the CPU ID

This function returns the CPU ID field of the CSR register.

Uint32 Cpuld;
Cpuld = CHIP_getCpuld();

Get endian mode (C5416 and C5421 only)

Uint16 CHIP_getEndian();
None
Endian mode CHIP_ENDIAN_LITTLE =1

Returns the current endian mode of the device as determined by the EN bit of
the CSR register.

UINT16 Endian;

Endian = CHIP_getEndian();

CHIP Module 4-3

Functions

CHIP_getMapMode

Function
Arguments

Return Value

Description

Example

CHIP_getRevID

Function
Arguments
Return Value

Description

Example

4-4

Read map-mode bits

Uintl6 CHIP_getMapMode();
None

map mode Returns current device MAP mode, which will be one of the
following:

CHIP_MAP_0: MP/MC DROM and OVLY bits are OFF

CHIP_MAP_1: DROM bitis on

CHIP_MAP_2: OVLY bitis on

CHIP_MAP_3: Both DROM and OVLY Bits are on

CHIP_MAP_4: MP/MC bit is on

CHIP_MAP_5: MP/MC and DROM are on

CHIP_MAP_6: MP/MC and OVLY bits are on

CHIP_MAP_7: MP/MC, DROM, and OVLY bits are on

Reads the map mode bits (OVLY, DROM, MPMC) from the device. In devices
not supported by a specific map-mode bit, the value returned is invalid. See
the specific device data sheet for the availability of map mode bits. This
function useful for debugging purposes.

oo ooo

Uintl6 MapMode;

MapMode = CHIP_getMapMode();
if (MapMode == CHIP_MAP_0) {
/* do map O tasks /
}else {
/* do map 1 tasks */

}

Get revision ID (C5410, C5411, C5416, C5421 only)

Uint32 CHIP_getRevld();
None
Revision ID Returns CPU revision ID

This function returns the CPU revision ID as determined by the Revision 1D
field of the CSR register.

Uint32 Revld;
Revld = CHIP_getRevld();

Functions

CHIP_getSubsysld Get subsystem ID (5440 only)

Function Uint32 CHIP_Subsysld();

Arguments None

Return Value Subsytem ID

Description Get the sub-system ID (or core) from a multi-core device
Example Uint32 Revld,;

Revld = CHIP_getRevld();

CHIP Module 4-5

Chapter 5

DAT Module

The handle-based DAT (data) module allows you to use DMA hardware to
move data.

Topic Page
5.1 OVEIVIEW ...ttt
5.2 FUNCHONS .ttt et e e e e e e e e e e e e e 5-3 |

5-1

Overview

5.1 Overview

The handle-based DAT (data) module allows you to use DMA hardware to
move data. This module works the same for all devices that support DMA
regardless of the type of DMA controller; therefore, any application code using
the DAT module is compatible across all devices as long as the DMA supports
the specific address reach and memory space.

The DAT copy operations occur on dedicated DMA hardware independent of
the CPU. Because of this asynchronous nature, you can submit an operation
to be performed in the background while the CPU performs other tasks in the
foreground. Then you can use the DAT_wait() function to block completion of
the operation before moving to the next task.

Since the DAT module uses the DMA peripheral, it cannot use a DMA channel
that is already allocated by the application. To ensure this does not happen,
you must call the DAT_open() function to allocate a DMA channel for exclusive
use. When the module is no longer needed, you can free the DMA resource
by calling DAT_close().

Table 5-1 lists the functions for use with the DAT modules. The functions are
presented in the order that they will typically be used in an application.
Note:

1) Multiplexing Across Different Devices:
To simplify the Interrupt multiplexing across different devices, the C54x DAT module
uses only DMA channels 2 and 3.

2) Memory Spaces:
The DAT module contains functions to copy data from one location to another and
to fill a region of memory in program, data, or I/O space valid for the specific device
(Refer to the C54x data sheets). CSL does not perform any searches for invalid
memory addresses.

Table 5—-1. DAT Functions

Function Purpose See page
DAT_open() Opens a DAT channel 5-8
DAT_copy() Copies a linear block of data from src to dst using

DMA hardware
DAT_copy2D() Copies 2D data from src to dst using DMA hard- 5-5

ware
DAT _fill() Fills a linear block of memory with the specified fill

value using DMA hardware
DAT_wait() Waits for a previous transfer to complete
DAT_close() Closes a DAT channel 5-3

5.2 Functions

DAT_close

Function

Arguments
Return Value

Description

Example

DAT _copy

Function

Arguments

Functions

This section describes, in alphabetical order, the functions in the DAT module.

Closes the DAT module

void DAT_close(
DAT_Handle hDat

)i
hDat Handle to a DAT channel (obtained via DAT_open)
None

Closes a DAT channel previously opened with DAT_open(). Any pending
requests are first allowed to complete.

DAT_close(hDat);

Copies linear block of data from src to dst

Uint16 DAT_copy(
DAT_Handle hDat,
Uint32 src,
Uint32 dst,
Uintl6 ElemCnt
)i
hDat Handle to a DAT channel (obtained via DAT_open)
src Source address ORed with any of the following memory
space symbols:
(1 DAT_PROGRAM_SPACE
(1 DAT_DATA_SPACE
(1 DAT_IO_SPACE

For example:

[0x10000 | DAT_PROGRAM_SPACE indicates address
0x10000 in program space

[0 0x10000 | DAT_DATA_ SPACE indicates address 0x10000 in
data space

[0x100 | DAT_IO_SPACE indicates address 0x100 in I/O
space;

dst Destination address ORed with a memory space symbol
ElemCnt Number of 16-bit words to copy

DAT Module 5-3

Functions

Return Value

Description

Example

DMA status Returns status of data transfer at the moment of exiting the
routine:

(JO: transfer complete

[1J1: on-going transfer

Copies a linear block of data from src to dst using DMA hardware.

You must open the DAT channel with DAT_open() before calling this function.
You can use the DAT_wait() function to poll for the completed transfer of data.

#define DATA_SIZE 256 // number of 16-bit elements to transfer
Uint16 BuffA[DATA_SIZE];

Uint16 BuffB[DATA_SIZE];

DAT_Handle hDat;

main() {

hDat = DAT_open(DAT_CHAANY,DAT_PRI_LOW,0);
DAT_copy(

hDat,

BuffA | DAT_DATA_SPACE,

BuffB | DAT_DATA_SPACE,

DATA_SIZE

DAT copy2D

Function

Arguments

Return Value

Functions

Copies data from src to dst

Uint16 DAT_copy2D(
DAT_Handle hDat,
uintl6 Type,
Uint32 src,

Uint32 dst,
Uintl6 LinelLen,
Uint16 LineCnt,
Uint16 LinePitch

hDat
Type

Src

dst

bol
LineLen
LineCnt
LinePitch

DMA status

Handle to a DAT channel (obtained via DAT_open)
Type of 2D DMA transfer, must be one of the following:
(O DAT_1D2D

(O DAT_2D1D

(1 DAT_2D2D

Pointer to source ORed with any of the following memory
space symbols:

0 DAT_PROGRAM_SPACE
0 DAT_DATA_SPACE
0 DAT_IO_SPACE

For example:

(1 0x10000 | DAT_PROGRAM_SPACE indicates address
0x10000 in program space;

(1 0x10000 | DAT_DATA_SPACE indicates address
0x10000 in data space;

(1 O0x100 | DAT_IO_SPACE indicates address 0x100 in
I/Ospace;

Pointer to destination address ORed with a memory space sym-

Number of 16-bit words to copy for each line
Number of lines to copy
Pitch of each line, number of 16-bit words

Returns status of data transfer at the moment of exiting the
routine:
[JO0: transfer complete

DAT Module 5-5

Functions

Description

Example

[J1: on-going transfer

Depending on the type of 2D DMA data transfer request, this function copies
data from src to dst using DMA hardware.

You must open the DAT channel with DAT_open() before calling this function.
You can use the DAT_wait() function to poll for the completed transfer of data.

#define DATA_SIZE 256
Uint16 BUffA[DATA_SIZE];
Uint16 BuffB[DATA_SIZE];
DAT_Handle hDat;

main(){

hDat = DAT_open(DAT_CHAANY,DAT_PRI_LOW,0);
DAT_copy2D(

hDat,

DAT_2D2D,

BuffA | DAT_DATA_SPACE,

BuffB | DAT_DATA_SPACE,

10,20,10

DAT _fill

Function

Arguments

Return Value

Description

Example

Functions

Fills linear block of memory with specified fill value

Uint16 DAT _fill(
DAT_Handle hDat;
Uint32 dst,
Uint16 ElemCnt,
Uint32 Value
)i
hDat Handle to a DAT channel
dst Destination address ORed with any of the following memory
space symbols:
(O DAT_PROGRAM_SPACE
(1 DAT_DATA_SPACE
(1 DAT_IO_SPACE

For example:

[Ox10000 | DAT_PROGRAM_SPACE indicates address
0x1000 in program space;

(1 0x10000 | DAT_DATA_SPACE indicates address
0x10000 in data space;

(1 O0x100 | DAT_IO_SPACE indicates address 0x100 in
I/Ospace;

ElemCnt Number of bytes to fill (must be power of 2)
Value fill value

DMA status Returns status of data transfer at the moment of exiting the
routine:
[JO0: transfer complete
[1J1: on-going transfer

Fills a linear block of memory with the specified fill value using DMA hardware.

You must open the DAT channel with DAT_open() before calling this function.
You can use the DAT_wait() function to poll for the completed transfer of data.

Uintl6é BUFF_SIZE 256;
Uint16 BuffBUFF_SIZE];
Uint16 FillValue = OXA5A5;
DAT_Handle hDat;

hDat = DAT_open(DAT_CHAANY,DAT_PRI_LOW,0);

DAT_fill(
hDat, Buff | DAT_DATA_SPACE, BUFF_SIZE, &FillValue

DAT Module 5-7

Functions

DAT_open

Function

Arguments

Return Value

Description

Example 1

Example 2

5-8

Opens DAT module

DAT_Handle DAT_open(

int ChaNum,
int Priority,
Uint32 Flags
)i
ChaNum Specifies which DMA channel to allocate; must be one of the
following:
(1 DAT_CHAANY (allocates Channel 2 or 3)
(1 DAT_CHA2
(1 DAT_CHA3
Priority Specifies the priority of the DMA channel, must be one of the
following:
(0 DAT_PRI_LOW sets the DMA channel for low priority level
(1 DAT_PRI_HIGH sets the DMA channel for high priority level
Flags Miscellaneous open flags (currently None available).

Handle for DAT channel. If the requested DMA channel is currently being used,
an INV(-1) value is returned.

Opens the DAT module. You must call this function before using any of the oth-
er DAT API functions. The ChaNum argument specifies which DMA channel
to open for exclusive use by the DAT module. Currently, no flags are defined
and the argument should be set to zero.

To open a DAT channel using any available DMA channel (2 or 3 only) in low
priority mode:

DAT_Handle hdat;

hdat = DAT_open(DAT_CHAANY,DAT_PRI_LOW,0);

To open the DAT channel using DMA channel 2 in high priority mode:
DAT_Handle hdat;
hdat = DAT_open(DAT_CHA2,DAT_PRI_HIGH,0);

Function

Arguments
Return Value

Description

Example

Functions

Waits for previous transfer to complete

void DAT_wait(
DAT_Handle hDat
)i

hDat Handle to a DAT channel

None

This function polls the IFR flag to see if the DMA channel has completed a
transfer. If the transfer is already completed, the function returns immediately.
If the transfer is not complete, the function waits for completion of the transfer
as identified by the handle; interrupts are not disabled during the wait.

Uint16 TransferStat;
DAT_Handle hDat;
man(){

hDat = DAT_open(DAT_CHAANY, DAT_PRI_LOW, 0);
TransferStat = DAT_copy(hDat, src,dst,len);
/* custom DAT configuration */

if (TransferStat)
DAT_wait(hDat, TransferStat);

DAT Module 5-9

Chapter 6

DMA Module

The DMA module is a handle-based module that requires you to call
DMA_open() to obtain a handle before calling any other functions.

Topic Page
B.1 OVEIVIEW v e e et e e e e e e e e e
6.2 Configuration STrUCIUIEonririree e, 6
6.3 FUNCHONS ...ttt et e e 6-7
6.4 MACIOS ...\ttt 6-20
6.5 EXaMPIES .. 6-32

6-1

Overview

6.1 Overview

The DMA module is a handle-based module that requires you to call
DMA_open() to obtain a handle before calling any other functions.

The C54x DMA is not exactly the same across different C54x devices. The
differences mainly relate to:

(1 Individual channel register reload support
(10 Extended Data Memory Support

For more information regarding the DMA support in the C54x family, please
refer to Table 1-9 Device-specific Features Support.

Table 6-1 lists the configuration structure for use with the DMA functions.
Table 6-2 lists the functions available in the CSL DMA module.

Table 6-1. DMA Configuration Structure

Structure Purpose See page ...

DMA_Config DMA structure that contains all local registers 6-4
required to set up a specific DMA channel.

DMA_GblConfig Global DMA structure that contains all global =3
registers that you may need to initialize a DMA
channel

Overview

Table 6-2. DMA Functions

(a) Primary Functions

Function Purpose See page
DMA_open() Opens a DMA channel 6-16
DMA_config() Sets up the DMA channel using the configuration structure @
DMA_configArgs() Sets up the DMA channel using the register values passed in @
DMA_start() Starts a DMA channel
DMA_stop() Disables a DMA channel
DMA_close() Closes a DMA channel @
DMA_reset() Resets DMA channel register to their power-on reset value
DMA_pause() Pauses a DMA channel. Identical to DMA_stop(). 6-18

(b) DMA Global Register Function

DMA_globalAlloc() Allocates a global DMA register
DMA_globalConfig() Sets up the DMA channel using the configuration structure @
DMA_globalConfigArgs() Sets up the DMA channel using the register values passed in @
DMA_globalFree() Frees a global DMA register that was previously allocated 6-15
DMA _resetGbl() Resets the DMA global register

(c) Auxiliary Functions

DMA_getEventld() Returns the IRQ Event ID for the DMA completion interrupt 6-10
DMA_getStatus() Get DMA channel status
DMA_getChan() Returns channel number used in given handle 6-17
DMA_getConfig() Get DMA channel configuration
DMA_globalGetConfig() Get DMA global register configuration

DMA Module 6-3

Configuration Structure

6.2 Configuration Structure

DMA_Config

Structure
Members

6-4

Because the DMA has both local and global registers to each channel, the CSL
DMA Module has two configuration structures:

(1 DMA_Config (channel configuration structure): contains all the local
registers required to set up a specific DMA channel.

(1 DMA_GbIConfig (global configuration structure): contains all the global
registers that you may need to initialize a DMA channel. These global
registers are resources shared across the different DMA channels and
include element/frame indexes, reload registers, as well as src/dst page
registers.

You can use literal values or the _ RMK macros to create the structure member
values.

DMA channel configuration structure

DMA_Config

uint16 priority DMA channel priority

Uintl6 dmmcr DMA transfer mode control register
Uint16 dmsfc DMA sync select and frame count register

DMA_AdrPtr dmsrc DMA source address register
DMA_AdrPtr dmdst DMA destination address register
Uint16 dmctr DMA element count register

For devices supporting individual channel reload registers (see note) add:
DMA_AdrPtr dmgsa DMA source address reload

DMA_AdrPtr dmgda DMA destination address reload

Uint16 dmgcr DMA element count reload

Uint16 dmgfr DMA frame count reload

For devices supporting individual channel extended data memory addressing
(see note), add:

Uintlé dmsrcdp data page for src

Uintlé dmdstdp data page for dst

Note: For more information concerning these devices, see section 1.7 Device-Specific
Features Support.

Description

Example

DMA_GbIConfig

Structure

Members

Configuration Structure

This is the DMA configuration structure used to set up a DMA channel. You
create and initialize this structure then pass its address to the DMA_config()
function. You can use literal values or the DMA_REG RMK macros to create
the structure member values.

DMA_Config MyConfig = {

0, [* priority */
0x0000, I* xfretrl */
0x0000, /* syncframe */

(DMA_AdrPtr) 0x0300,/* src */
(DMA_AdrPtr) 0x0400,/* dst ~ */
Ox00FF [* xfrent */

kh

DMA global configuration structure

DMA_GblConfig

Uint16 free run free under emulation control
Uint16 dmsrcp global program page for src
Uint16 dmdstp global program page for dst
Uint16 dmidx0 global element index 0O

Uint16 dmfrio global frame index O

Uint16 dmidx1 global element index 1

Uint16 dmfril global frame index 1

For devices offering global channel reload registers (see note), add:
DMA_AdrPtr dmgsa global src address reload
DMA_AdrPtr dmgda global dst address reload
Uint16 dmgcr global element count reload
Uint16 dmgfr global frame count reload

For devices supporting global extended data memory addressing (see note),
add:

Uint16 dmsrcdp; global data page for src

Uint16 dmdstdp; global data page for dst

Note: For more information concerning these devices, see section 1.7, Device-specific
Features Support.

DMA Module 6-5

Configuration Structure

Description You can use literal values or the DMA_REG_RMK macros to create the struc-
ture member values.

Example DMA_GblConfig MyGblConfig = {
0, /* stop under emulation control */
10, [* src program page */
20, [* dst program page */
0x1, /* index 0 */
0x4 [* frame index 0 */
0, /* index 1 */
0 [* frameindex 1 */

(DMA_AdrPtr) 100, /* src data page */
(DMA_AdrPtr) 101 /* dst data page */
}

For a complete example, see Example 2 in section 6.5.

6.3 Functions

DMA_close

Function

Arguments
Return Value

Description

Example

DMA _config

Function

Arguments

Return Value

Description

Example

Functions

This section describes the functions in the DMA CSL module.

Closes DMA channel

void DMA_close(
DMA_Handle hDma

)i
hDma Handle to DMA channel; see DMA_open()..
None

Closes a DMA channel previously opened with DMA_open(). The registers for
the DMA channel are set to their power-on reset defaults, then the completion
interrupt is disabled and cleared.

DMA_close(hDma);

Sets up DMA channel using configuration structure

void DMA_config(
DMA_handle hDma,
DMA_Config *Config

)i

hDma Handle to DMA channel; see DMA_open().

Config Pointer to aninitialized configuration structure (See DMA_Config)
None

Sets up the DMA channel using the configuration structure. The values of the
structure are written to the DMA registers. To start the DMA channel, you must
callthe DMA_start() function. DMA_Config() initializes the DMA channel regis-
ter, but does not start the DMA channel.

DMA_Config MyConfig = {

0x0, [*priority */
0x0000, *mer */
0x0000, [*sfc */

(DMA_AdrPtr) 0x0300,/* src */
(DMA_AdrPtr) 0x0400,/* dst ~ */
OX00FF [*ctr ¥/

DMA _config(hDma,&MyConfig);

For complete examples, please refer to section 6.5, Examples.

DMA Module 6-7

Functions

DMA_configArgs Sets up DMA channel with register values

Function

Arguments

6-8

void DMA_configArgs(

DMA_Handle hDma,
Uint16 priority,
Uintl6 dmmocr,
Uint16 dmsfc,
DMA_AdrPtr dmsrc,
DMA_AdrPtr dmdst,
Uintl6 dmctr,

For devices supporting individual channel reload registers (see note), add:
DMA_AdrPtr dmgsa,
DMA_AdrPtr dmgda,
Uint16 dmgcr,
Uint16 dmgfr,

For devices supporting individual channel extended data memory addressing
(see note), add:

Uintlé dmsrcdp

Uintlé dmdstdp

)i

Note: For more information concerning these devices, see section 1.7, Device-specific
Features Support

hDma Handle to DMA channel; see DMA_open()

priority DMA channel priority

dmmcr DMA transfer mode control register value

dmsfc DMA sync select and frame count register value

dmsrc DMA source address register value

dmdst DMA destination address register value

dmctr DMA element count register value

For devices supporting individual channel reload registers (see note):

dmgsa Pointer to DMA source address reload value
dmgda Pointer to DMA destination address reload value
dmgcr DMA element count reload value

dmgfr DMA frame count reload value

For devices supporting individual channel extended data memory addressing
(see note), add.

Uintlé dmsrcdp data page for src

Uintl6 dmdstdp data page for dst

Return Value

Description

Example

DMA _getChan

Function

Arguments
Return Value
Description

Example

Functions

None

Sets up the DMA channel with the register values passed to the function. The
register values are written to the DMA registers. To start the DMA channel, you
must call the DMA_start() function. DMA_Config() initializes the DMA channel
register, but does not start the DMA channel.

You may use literal values for the arguments; or for readability, you may use
the MK macros to create the register values based on field values.

DMA_configArgs(hDma,
0x0000, /* channel priority */
0x0000, /* mcr */
0x0000, /* sfc */
0x0300, /* src */
0x0400, /* dst */

OXO00FF /* ctr */

);

For a complete example, see Section 5.4, Example 1B.

Returns Channel number used in given handle

Uint16 DMA_getChan(
DMA_Handle hDma

)i

hDma Handle to DMA channel; see DMA_open().
Channel number

Get channel number used by a specific handle.

Uintl16 chanNum;
chanNum = DMA_getChan(hDma);

DMA Module 6-9

Functions

DMA_getEventld

Function

Arguments
Return Value

Description

Example

DMA_globalAlloc

Function

Arguments

6-10

Returns IRQ Event ID for DMA completion interrupt

Uint16 DMA_getEventld(
DMA_Handle hDma

);
hDma Handle to DMA channel; see DMA_open().
EventID IRQ Event ID for DMA Channel

Returns the IRQ Event ID for the DMA completion interrupt. Use this ID to man-
age the event using the IRQ module.

Eventld = DMA_getEventld(hDma);
IRQ_enable(Eventld);

For a complete example, see Section 6.5, Example 2.

Performs global register allocation

Uint16 DMA_globalAlloc (
Uintl6 RegMask

);

RegMask Mask that indicates which global registers you want to use;
must be one of the following:

DMA_GBL_DMIDXANY (any global index register)
DMA_GBL_DMIDXO (global index 0)
DMA_GBL_DMIDX1 (global index 1)
DMA_GBL_DMFRIO (global frame index 0)
DMA_GBL_DMFRI1 (global frame index 1)
DMA_GBL_RLDR (global reload registers)
DMA_GBL_SRCP (global program page for src)
DMA_GBL_DSTP (global program page for dst)
DMA_GBL_SRCDP (global data page for src)
DMA_GBL_DSTDP (global data page for dst)
DMA_GBL_ALL (all global registers)

Note: Inthe C54x, the DMA_GBL_DMFRIx and DMA_GBL_DMIDXx masks should be
used in pairs. For example, when you use DMA_GBL_DMFRIO, you should also use
DMA_GBL_DMIDXO0. Similarly both DMA_GBL_DMFRI1 and DMA_GBL_DMIDX1
should be used. If you do not follow this guideline, the function allocates all
(DMA_GBL_DMFRIO, DMA_GBL_DMFRI1, DMA_GBL_DMIDXO,
DMA_GBL_DMIDX1). If you use DMA_GBL_DMIDXANY, the function allocates any of
the available DMA_GBL_DMFRIx/DMA_GBL_DMIDXx pairs.

Return Value

Description

Example

Functions

RegMaskalloc Mask that indicates the global registers that are being
allocated as a response to the current RegMask requests.
This mask does NOT include registers you requested via
previous calls to DMA_globalAlloc().

If ANY of the RegMask requests cannot be fulfilled, then
RegMaskAlloc equals zero.

Performs Global register allocation. This function returns a mask that indicates
to the DMA_global Config/ConfigArgs functions which global registers are be-
ing

allocated for the DMA channel. If you request via RegMask a global register
that has been previously allocated the function returns a zero.

The use of this function is considered optional. It can be used to prevent double
allocation of registers to DMA channels. If not used, you can pass off the
DMA_GBL_ALL (Oxffff value) as the RegMaskAlloc parameter for the
DMA_global Config/Args functions.

#define NOTUSED 0

DMA_GbIConfig MyGblConfig = {

0, [* free emulator control */
10, [* src program page */
20, [* dst program page */
0x1, /* index 0 */

0x4 [* frame index 0 */
NOTUSED, [*index 1 */
NOTUSED, [* frame index 1 */
(DMA_AdrPtr) 100, [* src data page */
(DMA_AdrPtr) 101, [* dst data page */

}

mask = DMA_globalAlloc (DMA_GBL_DMIDX1|DMA_GBL_DMFRIO);
DMA_globalConfig (mask, &MyGblConfig);

For a complete example, see Section 6.5, Example 2.

DMA Module 6-11

Functions

DMA_globalConfig Sets up DMA global registers using configuration structure

Function

Arguments

Return Value

Description

Example

6-12

void DMA_globalConfig (
Uint16 RegMaskAlloc,
DMA_GblConfig *Config

);

RegMaskAlloc Mask to indicate global registers to initialize. This argument
is produced by the DMA_GlobalAlloc function. A value of
DMA_GBL_ALL(0xffff value) allocates all the global registers
specified in Config.

Config Pointer to an initialized global configuration structure

None

Sets up the DMA global registers using the global configuration structure. The
values of the structure are written to the DMA global registers. Since the DMA
global registers are shared, this function will ONLY initialize the registers that
have been allocated viaa DMA_globalAlloc routine and passed to this function
via the RegMaskAlloc value. See DMA_globalAlloc.

This function is considered optional. It may not be necessary to use this func-
tion if no global resource register initialization (element/frame indexes, reload
registers, and src/dst page registers) is required for the DMA transfer.

#define NOTUSED 0

DMA_GblConfig MyGblIConfig = {

0, /* free emulator control */
10, /* src program page */
20, /* dst program page */
0Ox1, /*index 0 */

0x4 /* frame index 0 */
NOTUSED, [*index 1 */
NOTUSED, /* frame index 1 */
(DMA_AdrPtr) 100, [* src data page */
(DMA_AdrPtr) 101, /* dst data page */

}

mask = DMA_globalAlloc (DOMA_GBL_DMIDX1|DMA_GBL_DMFRIO);
DMA_globalConfig (mask, &MyGblConfig);

For a complete example, see Section 6.5, Example 2.

DMA_globalGetCon-
fig

Function
Arguments

Return Value
Description

Example

DMA_globalConfi-
gArgs

Function

Functions

Gets DMA global configuration register

void DMA_globalGetConfig (
Uint16 RegMaskAlloc,
DMA_GblConfig *Config
);

RegMaskAlloc Mask that indicates which global register to get. Refer to
DMA _globalAlloc for valid values. DMA_GBL_ALL will get all
global registers

Config Pointer to an un-initialized global configuration structure

None

Gets the current configuration for the DMA global registers specified by Reg-

Mask. This is accomplished by reading the actual DMA global registers and

fields and storing them back in the config structure.

DMA_GbIConfig ConfigRead;

DMA _globalGetConfig (DMA_GBL_ALL, &ConfigRead);

Sets up DMA global registers using arguments

void DMA_globalConfigArgs(
Uint1l6 RegMask,
Uintl6 free
Uint16 dmidxo,
Uint16 dmfri0,
Uint16 dmidx1,
Uint16 dmfril,

For devices supporting global channel reload registers,(see section 1.7) add:
DMA_AdrPtr dmgsa,
DMA_AdrPtr gbldmgda,
Uint16 dmgc,
Uint16 dmgfr,

For all devices, add:
Uint16 dmsrcp,
Uint16 dmdstp,

For devices supporting extended DMA data support, (see Section 1.7) add:

Uint16 dmsrcdp,
Uint16 dmdstdp

DMA Module 6-13

Functions

Arguments

Return Value

Description

Example

6-14

RegMask Mask to indicate global registers to initialize. This argument is
produced by the DMA_GlobalAlloc function. A value of Oxffff
(DMA_GBL_ALL) allocates all the global registers specified in
Config.

free;
dmidxO0;
dmfrio;
dmidx1;
dmfril;

Response to emulation control
Global element index 0

Global frame index 0

Global element index 1

Global frame index 1

For devices supporting global channel reload registers,(See Section 1.7)

dmgsa;
dmgda;
dmgcr;
dmgfr;

For all devices:
dmsrcp;
dmdstp;

Pointer to global src address reload
Pointer to global dst address reload
Global element count reload

Global frame count reload

Global program page for src
Global program page for dst

For devices supporting extended data addressing (See Section 1.7)

dmsrcdp;
dmdstdp;

None

Global data page for src
Global data page for dst

Sets up the DMA global registers with the register values passed to the func-
tion. The register values are written to the DMA global registers. Since the
DMA global registers are shared, this function will ONLY initialize the registers

that have been
function via the

allocated via a DMA_globalAlloc routine and passed to this
RegMaskAlloc value. See DMA_globalAlloc().

Functions

DMA_globalFree Frees global DMA register that was previously allocated

Function

Arguments

Return Value

Description

Example

void DMA_globalFree(
Uint16 regMask

);

regMask Global register mask that can be obtained from
DMA_globalAlloc() ; a value of Oxffff (DMA_GBL_ALL) frees all
of the global DMA registers.

None

Frees global DMA registers that were previously allocated by calling
DMA_globalAlloc(). Once freed, the register is again available for allocation.

Uintl16 RegMask;
RegMask = DMA_globalAlloc(DMA_GBL_IDX0,);

/* some time later on when you're done with it */
DMA_globalFree(RegMask);

DMA Module 6-15

Functions

DMA_open Opens DMA channel

Function

Arguments

Return Value

Description

Example

6-16

DMA_Handle DMA_open(
int ChaNum,
Uint32 Flags

);

ChaNum DMA channel to open:
DMA_CHAANY
DMA_CHAO
DMA_CHA1
DMA_CHA2
DMA_CHA3
DMA_CHA4
DMA_CHA5

Flags Open flags (logical OR of any of the following):
DMA_OPEN_RESET

Device handle Handle to newly opened device

Opens a DMA channel. Before a DMA channel can be used, you must first call
this function to open the channel. Once opened, it cannot be opened again be-
fore you call DMA_close(). The return value is a unique device handle for use
in subsequent DMA API calls. If the open fails, INV is returned.

You can use this function in either of the following ways:

(1 Specify exactly which physical channel to open.
(1 Use DMA_CHAANY to allow the library pick an unused channel; you can
see which channel has been allocated by calling DMA_getChan().

Ifyou specify the DMA_OPEN_RESET flag, the DMA channel registers are set
to the power-on reset defaults and the channel interrupt is disabled and
cleared. Use this flag when the DMA channel has been running to clean
previously set status and interrupt flags.

DMA_Handle hDma;

hDma = DMA_open(DMA_CHAANY,DMA_OPEN_RESET);

DMA _reset

Function

Arguments

Return Value

Description

Example

DMA _resetGbl

Function

Arguments

Return Value

Description

Example

Functions

Resets DMA channel

void DMA_reset(
DMA_Handle hDma

)i
hDma Handle to DMA channel; see DMA_open()..

Or INV (If you want to reset all DMA channel registers)
None

Resets the DMA channel by setting its registers to the power-on defaults and
disables and clears the channel interrupt. You can use INV as the device han-
dle to reset all channels.

/* reset an open DMA channel /
DMA_reset(hDma);

/* reset all DMA channels */
DMA_reset(INV);

Resets DMA global register

void DMA_resetGbl(
DMA_Handle hDma

);

hDma Handle to DMA channel; see DMA_open(),
Or INV (-1) If you want to reset all DMA channel registers.

None

Resets the DMA global register by setting all global registers to the power-on
defaults. You must use INV (-1) as the device handle to reset all the global
registers.

DMA reset(hDma);

*or */
DMA_reset(INV);

DMA Module 6-17

Functions

Starts DMA channel

Function

Arguments
Return Value

Description

Example

DMA_stop

Function

Arguments
Return Value

Description

Example

DMA_pause

Function

Arguments
Return Value

Description

Example

6-18

void DMA_start(
DMA_Handle hDma

)i
hDma Handle to DMA channel; see DMA_open().

None

Starts a DMA channel by setting to 1, the enable channel bits in the DMA prior-
ity and enable control register (DMPREC) accordingly. See DMA_stop().

DMA_start(hDma);

Disables DMA channel

void DMA_stop(
DMA_Handle hDma

)i
hDma Handle to DMA channel; see DMA_open().
None

Disables the DMA channel by resetting (¢) the enable channel bits in the DMA
priority and enable control (DMPREC) register accordingly. See DMA_start().

DMA_stop(hDma);

Pauses DMA channel

void DMA_pause(
DMA_Handle hDma

)i
hDma Handle to DMA channel; see DMA_open().
None

Identical to DMA_stop(). This is provided for compatibility with other TMS320
devices only.

DMA_pause(hDma);

DMA_getStatus

Function

Arguments

Return Value
Description

Example

DMA_getConfig

Function

Arguments

Return Value

Description

Example

Functions

Get DMA channel status

DMA_getStatus (
DMA_Handle hDma

);
hDma

1: if DMA channel is still running
0: if DMA channel has stopped (transfer completed)

Returns the status of the DMA channel used by handle. Use as a indication
of transfer complete.

while (DMA_getStatus(myHdma)); [*wait for transfer to complete */

For a complete example of DMA_getStatus, see Section 5.4 (Example 1a)

Get DMA channel configuration

void DMA_getConfig(
DMA_Handle hDma
DMA_Config *Config

);

hDma Handle to DMA channel; see DMA_open().

Config Pointer to an un-initialized configuration structure (see
DMA_Config)

None

Gets the current configuration for the DMA channel used by handle. This is
accomplished by reading the actual DMA channel registers and fields and
storing them back in the Config structure.

DMA_Config ConfigRead;

myHdma = DMA_open (DMA_CHAO, 0);
DMA_getConfig (myHdma, &ConfigRead);

DMA Module 6-19

Macros

6.4 Macros

As covered in section 1.5, CSL offers a collection of macros that allow
individual access to the peripheral registers and fields. To use the DMA macros
include “csl_dma.h” in your project.

Because the DMA has several channels, the macros identify the channel used
by either the channel number or the handle used. Table 6-3 lists the macros
available for a DMA channel using the channel number as part of the register
name. Table 6—4 lists the macros available for a DMA channel using its
corresponding handle.

Table 6-3. DMA CSL Macros(using channel number)

(a) Macros to read/write DMA register values

DMA_RGET()

DMA_RSET()

(b) Macros to read/write DMA register field values(Applicable only to registers with more than one field)

DMA_FGET()

DMA_FSET()

(c) Macros to create value to write to a DMA register and fields (Applicable only to registers with more than

one field)

DMA_REG_RMK()

DMA_FMK()

(d) Macros to read a register address

DMA_ADDR()

6-20

Macros

Table 6-4. DMA CSL Macros(using handles)

(a) Macros to read/write DMA register values

DMA_RGET_H()

DMA_RSET_H()

(b) Macros to read/write DMA register field values(Applicable only to registers with more than 1-field)

DMA_FGET_H()

DMA_FSET_H()

(c) Macros to create value to write to a DMA register and fields (Applicable only to registers with more than
1-field)

DMA_REG_RMK_H()

DMA_FMK_H()

(d) Macros to read a register address

DMA_ADDR_H()

DMA Module 6-21

Macros

Get value of DMA register

Macro Uintl6 DMA_ RGET (REG)

Arguments REG LOCALREG# or GLOBALREG, where:
(1 LOCALREG# Local register name with channel number (#),
where #=0,1, 2 ,3,4, 5,
DMSRC#
DMDST#
DMCTR#
DMSFC#
DMMCR#

For devices supporting individual channel reload registers, add:
DMGSA#
DMGDA#
DMGCR#
DMGFR#

For devices supporting individual channel extended data
memory space support, add:

DMSRCDP#

DMDSTDP#

(1 GLOBALREG Global register name
DMPREC
DMSRCP
DMDSTP
DMSRCDP
DMDSTDP

For devices supporting global channel reload registers, add:
DMGSA
DMGDA
DMGCR
DMGFR

For devices supporting global extended data memory space support, add:

DMSRCDP
DMDSTDP
Return Value value of register
Description Returns the DMA register value

6-22

Example 1

Example 2

DMA_RSET

Macro

Arguments

Return Value
Description

Example 1

Example 2

Macros

For local registers:

uUintl6 myvar;
myVar = DMA_RGET(DMSRC1); /*read DMSRC for channel 1 */

For global registers:
Uintl6 myVar;

myVar = DMA_RGET(DMPREC);

Set value of DMA register

Void DMA_RSET (REG, Uint16 regval)

REG LOCALREG# or GLOBALREG,as listed in DMA_RGET()
macro
regval register value that wants to write to register REG

value of register
Set the DMA register REG value to regval

For local registers:

DMA_RSET(DMSRC1, 0x8000); /*DMSRC for channel 1 = 0x8000 */

For global registers:

DMA_RSET(DMSRCDP, 3); /* DMSRCP = 3*/

DMA Module 6-23

Macros

DMA_REG _RMK Creates register value based on individual field values

Macro

Arguments

Return Value

Description

Example

6-24

Uintl6 DMA_REG_RMK (fieldval_n,... fieldval_0)

REG Only writable registers containing more than one field are
supported by this macro. Also notice that the channel
number is not used as part of the register name.

DMSFC
DMMCR
DMPREC

fieldval Field values to be assigned to the writable register fields.
Rules to follow:
(JOnly writable fields are allowed
[JStart from Most-significant field first
(JValue should be a right-justified contant. If fieldval_n
[Jvalue exceeds the number of bits allowed for that field,
(fieldval_n is truncated accordingly.

Value of register that corresponds to the concatenation of values passed for
the fields.

Returns the DMA register value given specific field values. You can use
constants or the CSL symbolic constants covered in Section 1.4.

Uint16 myregval;
myregval = DMA_DMSFC_RMK (0,0,3); /* dsyn,dblw,frame-
count fields */

or you can use the PER_REG_FIELD _SYMVAL symbolic constants provided
in CSL (see section 1.4).

myregval=DMA_DMSFC_RMK
(DMA_DMSFC_DSYN_None, DMA_DMSFC_DBLW_OFF, 3);

DMA_REG_RMK are typically used toinitialize a DMA configuration structure
used for the DMA_config() function (see section 6.5).

Macros

DMA_FMK Creates register value based on individual field values
Macro Uintl6 DMA_FMK (REG, FIELD, fieldval)

Arguments

Return Value

Description

Example

REG Only writable registers containing more than one field are
supported by this macro. Also notice that for local registers, the
channel number is not used as part of the register name.
DMPREC
DMSFC
DMMCR

FIELD Symbolic name for field of register REG Possible values: Field names
as listed in the C54x Register Reference Guide. (Appendix A) Only
writable fields are allowed.

fieldval Field values to be assigned to the writable register fields.
Rules to follow:
[Only writable fields are allowed
[JStart from Most-significant field first
[JValue should be a right-justified contant. If fieldval_n
[Jvalue exceeds the number of bits allowed for that field,
fieldval_n is truncated accordingly.

Shifted version of fieldval. fieldval is shifted to the bit numbering appropriate
for FIELD.

Returns the shifted version of fieldval. Fieldval is shifted to the bit numbering
appropriate for FIELD within register REG. This macro allows the user to initial-
ize few fields in REG as an alternative to the DMA_REG_RMK() macro that
requires ALL the fields in the register to be initialized. The returned value could
be ORed with the result of other FMK macros, as show below.

Uint16 myregval;
myregval = DMA_FMK (DMSFC, DBLW, 1) | DMA_FMK (DMSFC, DSYN,
2);

DMA Module 6-25

Macros

Get value of register field

Macro

Arguments

Return Value
Description

Example 1

Example 2

6-26

Uintl6 DMA_FGET (REG, FIELD)

REG Only writable registers containing more than one field are
supported by this macro. Also notice that for local registers, the
channel number is used as part of the register name.

DMPREC
DMSFC
DMMCR

FIELD Symbolic name for field of register REG Possible values: Field names
as listed in the C54x Register Reference Guide. (Appendix A) Only
writable fields are allowed.

Value of register field
Gets the DMA register field value

For local registers:
Uint16 myvar;

myregval = DMA_FGET (DMMCR1, CTMOD);

For global registers:
uintl16 myvar;

myregval = DMA_FGET (DMPREC, INTOSEL);

Macros

Set value of register field

Macro

Arguments

Return Value
Description

Example 1

Example 2

Void DMA_FSET (REG, FIELD, fieldval)

REG Only writable registers containing more than one field are
supported by this macro. Also notice that for local registers, the
channel number is used as part of the register name.

DMPREC
DMSFC#
DMMCR#

FIELD Symbolic name for field of register REG Possible values: Field names
as listed in the C54x Register Reference Guide. (Appendix A) Only
writable fields are allowed.

fieldval Field values to be assigned to the writable register fields.
Rules to follow:
[Only writable fields are allowed
[JStart from Most-significant field first
[JValue should be a right-justified contant. If fieldval_n
[Jvalue exceeds the number of bits allowed for that field,
fieldval_n is truncated accordingly.

None
Set the DMA register value to regval

For Local Registers:
DMA_FSET (DMMCR1, CTMOD, 1);

For global registers:
DMA_FSET (DMPREC, NTOSEL, 1);

DMA Module 6-27

Macros

DMA_ADDR

Macro
Arguments
Return Value
Description

Example 1

Example 2

DMA_RGET_H

Macro

Arguments

Return Value

Description

Example

6-28

Get address of given register

Uint16 DMA_ADDR (REG)
REG LOCALREG# or GLOBALREG as listed in DMA_RGET() macro
Address of register LOCALREG and GLOBALREG

Get the address of a DMA register. In the case of LOCALREG (sub-addressed
registers), the function returns the sub-address. For example:
DMA_ADDR (DMSRC1) returns a value of 5.

For local registers:
myvar = DMA_ADDR (DMMCR1);

For global registers:
myvar = DMA_ADDR (DMPREC);

Get value of DMA register used in handle

Uint16 DMA_RGET_H (DMA_Handle hDma, LOCALREG)

hDma Handle to DMA channel that identifies the specific DMA
channel used.

LOCALREG Same register as in DMA_RGET(), but without channel
number (#). Example: DMSRC (instead of DMSRC#)

Value of register

Returns the DMA value for register LOCALREG for the channel associated
with handle.

DMA_Handle myHandle;
Uintl6 myVar;

myHandle = DMA_open (DMA_CHAO, DMA_OPEN_RESET);

myVar = DMA_RGET_H (myHandle, DMMCR);

DMA_RSET_H

Macro

Arguments

Return Value

Description

Example

DMA_FGET_H

Macro

Arguments

Return Value
Description

Example

Macros

Set value of DMA register

void DMA_RSET_H (DMA_Handle hDma, LOCALREG, Uint16 regval)

hDma Handle to DMA channel that identifies the specific DMA
channel used.

LOCALREG Same register as in DMA_RSET(), but without channel
number (#). Example: DMSRC (instead of DMSRC#)

regval value to write to register LOCALREG for the channel
associated with handle.

None

Set the DMA register LOCALREG for the channel associated with handle to
the value regval.

DMA_Handle myHandle;
myHandle = DMA_open (DMA_CHAO, DMA_OPEN_RESET);

DMA_RSET_H (myHandle, DMMCR, 0x123);

Get value of register field

Uintl6 DMA_FGET_H (DMA_Handle hDma, LOCALREG, FIELD)

hDma Handle to DMA channel that identifies the specific DMA
channel used.

LOCALREG Same register as in DMA_RSET(), but without channel
number (#). Example: DMSRC (instead of DMSRC#)
Only register containing more than one field are
supported by this macro.

FIELD Symbolic name for field of register REG Possible values:
Field names as listed in the C54x Register Reference Guide
(Appendix A). Only readable references are allowed

Value of register field given by FIELD, of LOCALREG use by handle.
Gets the DMA register field value

DMA_Handle myHandle;
myHandle = DMA_open (DMA_CHAO, DMA_OPEN_RESET);

myVar = DMA_FGET_H (myHandle, DMMCR, CTMOD);

DMA Module 6-29

Macros

Set value of register field

void DMA_FSET_H (DMA_Handle hDma, LOCALREG, FIELD, fieldval)

Macro

Arguments

Return Value

Description

Example

6-30

hDma

LOCALREG

FIELD

fieldval

None

Handle to DMA channel that identifies the specific DMA
channel used.

Same register as in DMA_RSET(), but without channel
number (#). Example: DMSRC (instead of DMSRC#)
Only register containing more than one field are

supported by this macro.

Symbolic name for field of register REG Possible values:
Field names as listed in the C54x Register Reference Guide
(Appendix A). Only readable references are allowed

Field values to be assigned to the writable register fields.
Rules to follow:

Only writable fields are allowed

Start from Most-significant field first

Value should be a right-justified contant. If fieldval_n
value exceeds the number of bits allowed for that field,
fieldval_n is truncated accordingly.

I Y I

Set the DMA register field FIELD of the LOCALREG register for the channel
associated with handle to the value fieldval.

DMA_Handle myHandle;

uUintlé myVar

myHandle = DMA_open (DMA_CHAO, DMA_OPEN_RESET);

DMA_FSET_H (myHandle, DMMCR, CTMOD, 1);

Macros

DMA_ADDR_H Get address of given register

Macro

Arguments

Return Value

Description

Example

Uintl6 DMA_ADDR_H (DMA_Handle hDma, LOCALREG))

hDma Handle to DMA channel that identifies the specific DMA
channel used.

LOCALREG Same register as in DMA_RSET(), but without channel
number (#). Example: DMSRC (instead of DMSRC#)

Address of register LOCALREG

Get the address of a DMA local register (sub-address) for channel used in
hDma

DMA_Handle myHandle;
uUintl6 myVar

myVar = DMA_ADDR_H (myHandle, DMMCR);

DMA Module 6-31

Examples

6.5 Examples

6-32

The following CSL DMA initialization examples are provided under the
\examples\dma directory.

a
a

d
EI

Example 1A. DMA channel initialization using DMA_config()
Example 1B. DMA channel initialization using DMA_configArgs()

Example 2. DMA channel auto-initialization with interrupt on transfer
completion using DMA_config(). This example also illustrates the usage
of globalConfig() to configure DMA global registers.

Example 3. DMA channel data transfer from/to MCBSP.

Example 4. DMA channel data transfer from/to MCBSP in ABU and digital
loopback mode

For illustration purposes, Example 1A is covered in detail below, and is
illustrated in Figure 6-1, on page 6-33.

Example 1A explains how DMA Channel O is initialized to transfer the data
table at 0x3000@data space to 0x2000@data space. This example does not
use any DMA global registers resources. Basic initialization values are as
follows:

a
a

Source address: 2000h in data space

Destination address: 3000h in data space

[Transfer size: 10h words single words

The following two macros are used to create the initialization values for
DMMCR and DMSFC respectively:

DMA_DMMCR_RMK(autoinit, dinm, imod, ctmod, sind, dms, dind, dmd)

0 0 0 0 1 1 1 1

DMA_DMSFC_RMK(dsyn, dblw, framecount)

0 0 0 (single-frame, Nframes-1)

The settings are needed for the DMMCR are:

DMMCRO = 0x0145u
#0000000100000101b

;0

~0

(AUTOINIT) Autoinitialization disabled

(DINM) Interrupts masked

Examples

1 (IMOD) N/A
e Qe (CTMOD) Multi-frame mode

; 0 Reserved

001 (SIND) Post increment source
address

01 (DMS) Source in data space

0 Reserved

e 001~~ (DIND) Post increment destination
address

; 01 (DMD) Destination in data space
The needed for the DMSFC are:
DMSFCO0 = 0x0000u

#0000000000000000b
;0000~~~~~~~~~~~~ (DSYN) No sync event

0 (DBLW) Single-word mode
; 000 Reserved

j e e 00000000 (Frame Count) FrameCount = Oh
(one frame)

Figure 6—1. DMA Channel Initialization Using DMA_config()
#include <csl_dma.h> /I include csl_PER.h required
#define N 16
#pragma DATA_SECTION(src,"tablel”) //tablel to be located
at 0x3000@ds
Uint16 src[N] = {
h
#pragma DATA_SECTION(dst, "table2”) // table2 to be

located at 0x2000@ds
Uint16 dst[N];

DMA Module 6-33

Examples

DMA_Config myconfig = {

0x0 [* low priority channel */

DMA_DMMCR_RMK(DMA_DMMCR_AUTOINIT_OFF,
DMA_DMMCR_DINM_OFF,
DMA_DMMCR_IMOD_FULL_ONLY,
DMA_DMMCR_CTMOD_MULTIFRAME,
DMA_DMMCR_SIND_POSTINC,
DMA_DMMCR_DMS_DATA,
DMA_DMMCR_DIND_POSTINC,
DMA_DMMCR_DMD_DATA),

/* DMMCR */

DMA_DMSFC_RMK(DMA_DMSFC_DSYN_NONE,
DMA_DMSFC_DBLW_OFF,

DMA_DMSFC_FRAMECNT_OF(0)), I*
DMSFC */
&src[0], /* DMSRC */
&dst[0], /* DMDST */
(Uint16)(N-1) /* DMCTR */
DMA_Handle myhDma; [* define a DMA handle*/

void main(void) {

CSL_init(); /* Init CSL — REQUIRED!!! */

myhDma = DMA_open(DMA_CHAQO, 0); /* Open Channel */
DMA_config(myhDma, &myconfig); /* Configure Channel */
DMA_start(myhDma); [* Begin Transfer */
while(DMA_getStatus(myhDma)); /* Wait for complete */

DMA_close(myhDma);
}

6-34

Chapter 7

EBUS Module

This chapter describes the configuration structure, functions, and macros
used in the external bus interface (EBUS) module.

Topic Page
T.L OVEIVIEW .ottt et e e e e e e e e e e 7-2
7.2 Configuration StUCIUIE . ..ottt et et e e e 7
7.3 FUNCHONS ... e /-4
T4 MACIOS ..ottt et e e e e e 7-6

7-1

Overview

7.1 Overview

The EBUS module provides a configuration structure, functions, macros, and
constants that allow you to control the external bus interface through the CSL.

Table 7-1 summarizes the configuration structure. Table 7-2 lists the EBUS
functions.

Use the following guidelines for the EBUS functions:

(1 You can perform configuration by calling either EBUS_config(),
EBUS_configArgs(), or any of the SET register macros.

Because EBUS_ config() and EBUS_configArgs() initialize all three
external bus control registers, macros are provided to enable efficient
access to individual registers when you need to set only one or two.

The recommended approach is to initialize the external bus by using
EBUS_config() with the EBUS_Config structure.

Table 7-1. EBUS Configuration Structure

Structure

Purpose See page...

EBUS_Config

EBUS configuration structure used to setup the 7-3
EBUS interface

Table 7-2. EBUS Functions

Function

Purpose See page ...

EBUS_config()

EBUS_configArgs()

Sets up EBUS using configuration structure (EBUS_Config) 7-4

Sets up EBUS using register values passed to the function 7-5

7-2

Configuration Structure

7.2 Configuration Structure

EBUS_Config

Structure

Members

Description

Example

This section describes the configuration structure that you can use to set up
the EBUS interface.

EBUS configuration structure used to setup EBUS interface

EBUS_Config

For 544x devices:
uintl6 bscr Bank-switching control register

For other C54x devices:

Uint16 swwsr Software wait-state register
Uint16 bscr Bank-switching control register
Uintl6 swcr Sofware wait-state control register

The EBUS configuration structure is used to set up the EBUS Interface. You
create and initialize this structure and then pass its address to the
EBUS_config() function. You can use literal values or the EBUS REG_RMK
macros to create the structure member values.

EBUS_Config Configl = {
OX7FFF, /* swwsr */
0xF800, /* bscr */
0x0000 /* swcr */

EBUS Module 7-3

Functions

7.3 Functions

EBUS_config

Function

Arguments
Return Value

Description

Example

7-4

This section describes the EBUS API functions.

Writes value to up EBUS using configuration structure

void EBUS_config(
EBUS_Config *Config

)i
Config Pointer to an initialized configuration structure

None

Writes a value to setup the EBUS using the configuration structure. The values
of the structure are written to the port registers (see also EBUS_configArgs()
and EBUS_Config).

EBUS_Config MyConfig = {
OX7FFF, I* swwsr */
0xF800, /* bscr */
0x0000 /* swcer */

EBUS_config(&MyConfig);

EBUS_configArg S

Function

Arguments

Return Value

Description

Example

Functions

Writes to EBUS using register values passed to the function

For C544X devices:
EBUS_configArgs (Uint16 bscr)

For other C54x devices:
void EBUS_configArgs(
Uintl6 swwsr,

Uint16 bscr,

Uint16 swcr
)i
SWWSr Software wait-state register
bscr Bank-switching control register
swcr Software wait-state control register
None

Writes to the EBUS using the register values passed to the function. The
register values are written to the EBUS registers.

You may use literal values for the arguments; or for readability, you may use
the EBUS_REG_RMK macros to create the register values based on field
values.

EBUS_configArgs (
OX7FFF, /* swwsr */
OxF800, /* bscr */
0x0000 /* swcer */

);

EBUS Module 7-5

Macros

7.4 Macros

As covered in Section 1.3, CSL offers a collection of macros to gain individual
access to the EBUS peripheral registers and fields..

Table 7-3 contains a list of macros available for the EBUS module. To use
them, include "csl_ebus.h”.

Table 7-3. EBUS Macros

(a) Macros to read/write EBUS register values

Macro Syntax
EBUS_RGET() Uintl6 EBUS_RGET(REG)
EBUS_RSET() void EBUS_RSET(REG, Uint16 regval)

(b) Macros to read/write EBUS register field values (Applicable only to registers with more than one field)

Macro Syntax
EBUS_FGET() Uintl6 EBUS_FGET(REG, FIELD)
EBUS_FSET() Void EBUS_FSET(REG,FIELD, Uint16 fieldval)
(c) Macros to read/write EBUS register field values (Applicable only to registers with more than one field)
Macro Syntax
EBUS_REG_RMK() Uint16 EBUS_REG_RMK(fieldval_n,...fieldval_0)
Note: *Start with field values with most significant field
positions:

field_n: MSB field
field_0: LSB field
* only writeable fields allowed

EBUS_FMK() Uintl6 EBUS_FMK(REG, FIELD, fieldval)

(d) Macros to read a register address

Macro Syntax
EBUS_ADDR() Uintl6 EBUS_ADDR(REG)
EBUS_FSET() Void EBUS_FSET(REG,FIELD, Uint16 fieldval)

7-6

Macros

Where:
REG: SWWSR (exceptin C544x), SWCR (except in C544x), BSCR
FIELD : register field name as specified in Appendix A.

B For FSET and _FMK, field should be a writable field
B _FGET, this field should, at least, be readable.

regVal: value to write in register REG
fieldval : value to write in field FIELD of register REG. Rules to follow:

B Only writable fields are allowed

B Value should be a right—justified constant. If fieldval_n value exceeds
the number of bits allowed for that field, fieldval _n is truncated
accordingly.

For examples on how to use macros, refer macro sections 6.4 (DMA) and
11.4 (MCBSP).

EBUS Module 7-7

Chapter 8

GPIO Module

The GPIO module is designed to allow central control of non—multiplexed
GPIO pins available in the C54x devices. (C544x devices only)

Topic Page
8.1 OVEIVIEW v e ettt et e e e 3-2 |
8.2 MACIOS ..ottt e 8-3

8-1

Overview

8.1 Overview

8-2

The GPIO module is designed to allow central control of non-multiplexed
GPIO pins available in the C54x devices. (C544x devices only)

Currently, there are no functions available for the GPIO module. Macros that
allows access to registers have been provided.

Macros

8.2 Macros

As covered in Section 1.3, CSL offers a collection of macros to gain individual
access to the GPIO "specific” registers (GPIOCR and GPIOSR) in C544x
devices.

Table 8-1 contains a list of macros available for the GPIO module. To use
them, include "csl_gpio.h”.

Table 8—1. GPIO Macros (C544x devices only)

(a) Macros to read/write GPIO register values

Macro Syntax

GPIO_RGET() Uintl6 GPIO_RGET(REG)

GPIO_RSET() void GPIO_RSET(REG, Uint16 regval)

(b) Macros to read/write GPIO register field values (Applicable only to registers with more than one field)
Macro Syntax

GPIO_FGET() Uintl6 GPIO_FGET(REG, FIELD)

GPIO_FSET() Void GPIO_FSET(REG,FIELD, Uint16 fieldval)

(c) Macros to read/write GPIO register field values (Applicable only to registers with more than one field)
Macro Syntax

GPIO_REG_RMK() Uintl6 GPIO_REG_RMK(fieldval_n,...fieldval_0)

Note: *Start with field values with most significant field
positions:
field_n: MSB field
field_0: LSB field
* only writable fields allowed

GPIO_FMK() Uint16 GPIO_FMK(REG, FIELD, fieldval)
(d) Macros to read a register address

Macro Syntax

GPIO_ADDR() Uintl6é GPIO_ADDR(REG)

GPIO_FSET() Void GPIO_FSET(REG,FIELD, Uint16 fieldval)
Where:

REG: include GPIOCR, GPIOSR
FIELD : register field name as specified in Appendix xxx.

W For FSET and _FMK, field should be a writable field
B _FGET, this field should, at least, be readable.

8-3

Macros

8-4

regVal: value to write in register REG
fieldval : value to write in field FIELD of register REG. Rules to follow:

B Only writable fields are allowed

B Value should be aright—justified constant. If fieldval_n value exceeds
the number of bits allowed for that field, fieldval n is truncated
accordingly.

For examples on how to use macros, refer to the macro sections 6.4 (DMA)
and 11.4 (MCBSP).

Chapter 9

HPI| Module

Describes macros available for the HPI module.

Topic Page

9.1 MACIOS . .ttt ittt 9-2

9-1

Macros

9.1 Macros

As covered in Section 1.3, CSL offers a collection of macros to gain individual

access to the peripheral registers and fields.

Table 9-1 contains a list of macros available for the HPI module. To use them,

include "csl_hpi.h".

Table 9-1. HPI Macros (C544x devices only)

(a) Macros to read/write HPI register values

Macro Syntax
HPI_RGET() Uintl6 HPI_RGET(REG)
HPI_RSET() void HPI_RSET(REG, Uint16 regval)

(b) Macros to read/write HPI register field values (Applicable only to registers with more than one field)

Macro Syntax
HPI_FGET() Uint16 HPI_FGET(REG, FIELD)
HPI_FSET() Void HPI_FSET(REG,FIELD, Uint16 fieldval)
(c) Macros to read/write HPI register field values (Applicable only to registers with more than one field)
Macro Syntax
HPI_REG_RMK() Uint16 HPI_REG_RMK(fieldval_n,...fieldval_0)
Note: [Start with field values with most significant field
positions:

field_n: MSB field
field_0: LSB field
(] only writable fields allowed

HPI_FMK() Uint16 HPI_FMK(REG, FIELD, fieldval)

(d) Macros to read a register address

Macro Syntax
HPI_ADDR() Uintl6 HPI_ADDR(REG)
HPI_FSET() Void HPI_FSET(REG,FIELD, Uint16 fieldval)

Macros

Where:
REG : include HPIC, GPIOCR, GPIOSR
FIELD : register field name as specified in Appendix xxx.

B For FSET and _FMK, field should be a writable field
B For _FGET, this field should, at least, be readable.

regVal: value to write in register REG
fieldval : value to write in field FIELD of register REG. Rules to follow:

B Only writable fields are allowed

B Value should be a right—justified constant. If fieldval_n value exceeds
the number of bits allowed for that field, fieldval _n is truncated
accordingly.

For examples on how to use macros, refer macro sections 6.4 (DMA) and
11.4 (MCBSP).

HPI Module 9-3

Chapter 10

IRQ Module

The IRQ module provides an easy to use interface for enabling/disabling
interrupts.

Topic Page
101 OVEIVIEW oottt ettt e e e e e e e e e e e 10-2
10.2 Configuration StrUCIUFEttt ettt e e e 1p-8 |
08 [FUMEIENS cococoanusanaocaoooasacaaananaosanananaoaaoannoanas

10-1

Overview

10.1 Overview

10-2

The IRQ module provides an interface for managing peripheral interrupts to
the CPU. This API provides the following functionality:

(1 Masking an interrupt in the IMR register.
[Polling for the interrupt status from the IFR register.

[Placing the necessary code in the interrupt vector table to branch to a
user-defined interrupt service routine (ISR).

[

Enabling/Disabling Global Interrupts in the ST1 (INTM) bit.

(1 Reading and writing to parameters in the DSP/BIOS dispatch table.
(When the DPS BIOS dispatcher option is enabled in DSP BIOS.)

The DSP BIOS dispatcher is responsible for dynamically handling
interrupts and maintains a table of ISRs to be executed for specific
interrupts. The IRQ module has a set of APIs that update the dispatch
table.

Table 10-2(a) and (b) list the primary and auxiliary IRQ functions.
Table 10-2(c) lists the API functions that enable DSP/BIOS dispatcher
communication. These functions should be used only when DSP/BIOS is
present and the DSP/BIOS dispatcher is enabled. Table Table 10-3 lists
available interrupts for this feature.

The IRQ module assigns an event ID to each of the possible physical
interrupts. Because there are more events possible than can be masked in the
IMR register, many of the events share a common physical interrupt.
Therefore, it is necessary in some cases to map the logical events to the
corresponding physical interrupt. The IRQ module defines a set of constants
IRQ_EVT_NNNN that uniquely identify each of the possible logical interrupts.
Alist of these event IDs is listed in Table 10-3. All of the IRQ API’s operate on
logical events.

The IRQ functions in Table 10-2(a) can be used with or without DSP/BIOS;
however, if DSP/BIOS is present, do not disable interrupts for long periods of
time, as this could disrupt the DSP/BIOS environment.

Table 10-2(b) lists the only API function that cannot be used when DSP/BIOS
dispatcher is present or DSP/BIOS HWI module is used to configure the
interrupt vectors . This function, IRQ_plug(), dynamically places code at the
interrupt vector location to branch to a user—defined ISR for a specified event.
If you call IRQ_plug() when DSP/BIOS dispatcher is present or HWI module
has been used to configure interrupt vectors, this could disrupt the DSP/BIOS
operating environment.

Overview

Interrupts within CSL can be managed in the following methods:
(1 Manual setting outside DSPBIOS HWIs
(1 Using DSPBIOS HWIs

[Using DSPBIOS Dispatcher

Example 10-1. Manual Setting Outside DSPBIOS HWIs

#define NVECTORS 32

#pragma CODE_SECT (mylvtTable, "myvec”)
int mylviTable[NVECTORS];

extern interrupt mylsr();
main (){

; Option 1: use Event IDs directly

y ees

IRQ_setVecs (&mylvtTable);
IRQ_plug (IRQ_EVT_TINTO,&mylsr);
IRQ_enable(IRQ_EVT_TINTO);
IRQ_globalEnable();

; Option 2: Use the PER_getEventld() function (TIMER as an example)
for a better abstraction

P

IRQ_setVecs (&mylvtTable);

eventld = TIMER_getEventld (hTimer);
IRQ_plug (eventld,&mylsr);
IRQ_enable (eventld);
IRQ_globalEnable();

}

IRQ Module 10-3

Overview

Table 10-1. IRQ Configuration Structure

Structure Purpose See page ...
IRQ_Config IRQ structure that contains all local registers 10-8
required to set up a specific IRQ channel.

Table 10-2. IRQ Functions
(a) Primary Functions
Function Purpose See page ...
IRQ_clear() Clears the interrupt flag in the IFR register for the specified [10-9

event.
IRQ_disable() Disables the specified event in the IMR register.
IRQ_enable() Enables the specified event in the IMR register flag. 10-1

IRQ_globalDisable()

Globally disables all maskable interrupts. (INTM = 1)

=
@
[y
N

IRQ_globalEnable() Globally enables all maskable interrupts. (INTM = 0) 10-12
IRQ_globalRestore() Restores the status of global interrupt enable/disable 10-13
(INTM).
IRQ_setVecs() Sets the base address of the interrupt vector table. 10-15]
IRQ_test() Polls the interrupt flag in IFR register the specified event. 10-15]
(b) Auxiliary Functions
IRQ_plug() Writes the necessary code in the interrupt vector location |10-8
to branch to the interrupt service routine for the specified
event.
Caution: Do not use this function when DSP/BIOS is
present and the dispatcher is enabled.
(c) DSP/BIOS Dispatcher Communication Functions
IRQ_config() Updates the DSP/BIOS dispatch table with a new 10-9
configuration for the specified event.
IRQ_configArgs() Updates the DSP/BIOS dispatch table with a new 10-10
configuration for the specified event.
IRQ_getConfig() Returns current DSP/BIOS dispatch table entries for the 10-1

specified event.

10-4

Overview

Function

Purpose See page ...

(c) DSP/BIOS Dispatcher Communication Functions

IRQ_getArg()

IRQ_map()
IRQ_setArg()

Returns value of the argument to the interrupt service 10-11
routine that the DSP/BIOS dispatcher passes when the
interrupt occurs.

Maps a logical event to its physical interrupt. 10-13

Sets the value of the argument for DSP/BIOS dispatch to [10-14;
pass to the interrupt service routine for the specified
event.

Table 10-3. IRQ_EVT_NNNN Event List

(a) IRQ Events

Constant

Purpose

IRQ_EVT RS
IRQ_EVT_SINTR
IRQ_EVT_NMI
IRQ_EVT_SINT16
IRQ_EVT_SINT17
IRQ_EVT_SINT18
IRQ_EVT_SINT19
IRQ_EVT_SINT20
IRQ_EVT_SINT21
IRQ_EVT_SINT22
IRQ_EVT_SINT23
IRQ_EVT_SINT24
IRQ_EVT_SINT25
IRQ_EVT_SINT26
IRQ_EVT_SINT27

IRQ_EVT_SINT28

Reset

Software Interrupt
Non-Maskable Interrupt (NMI)
Software Interrupt #16
Software Interrupt #17
Software Interrupt #18
Software Interrupt #19
Software Interrupt #20
Software Interrupt #21
Software Interrupt #22
Software Interrupt #23
Software Interrupt #24
Software Interrupt #25
Software Interrupt #26
Software Interrupt #27

Software Interrupt #28

IRQ Module 10-5

Overview

(a) IRQ Events

Constant

Purpose

IRQ_EVT_SINT29
IRQ_EVT_SINT30
IRQ_EVT_SINTO
IRQ_EVT_SINT1
IRQ_EVT_SINT2
IRQ_EVT_SINT3
IRQ_EVT_SINT4
IRQ_EVT_SINT5
IRQ_EVT_SINT6
IRQ_EVT_SINT7
IRQ_EVT_SINT8
IRQ_EVT_SINT9
IRQ_EVT_SINT10
IRQ_EVT_SINT11
IRQ_EVT_SINT12

IRQ_EVT_SINT13

IRQ_EVT_INTO
IRQ_EVT_INT1
IRQ_EVT_INT2

IRQ_EVT_INT3

IRQ_EVT_TINTO

IRQ_EVT_HINT

IRQ_EVT_DMAO

Software Interrupt #29
Software Interrupt #30
Software Interrupt #0
Software Interrupt #1
Software Interrupt #2
Software Interrupt #3
Software Interrupt #4
Software Interrupt #5
Software Interrupt #6
Software Interrupt #7
Software Interrupt #38
Software Interrupt #9
Software Interrupt #10
Software Interrupt #11
Software Interrupt #12

Software Interrupt #13

External User Interrupt #0
External User Interrupt #1
External User Interrupt #2

External User Interrupt #3

Timer O Interrupt

Host Interrupt (HPI)

DMA Channel O Interrupt

10-6

(a) IRQ Events

Overview

Constant

Purpose

IRQ_EVT_DMA1
IRQ_EVT_DMA2
IRQ_EVT_DMA3
IRQ_EVT_DMA4

IRQ_EVT_DMA5

IRQ_EVT_RINTO
IRQ_EVT_XINTO
IRQ_EVT RINT2
IRQ_EVT_XINT2
IRQ_EVT TINT1
IRQ_EVT_HPINT
IRQ_EVT_RINT1

IRQ_EVT_XINT1

IRQ_EVT_IPINT

IRQ_EVT_SINT14

IRQ_EVT_WDTINT

DMA Channel 1 Interrupt
DMA Channel 2 Interrupt
DMA Channel 3 Interrupt
DMA Channel 4 Interrupt

DMA Channel 5 Interrupt

MCBSP Port #0 Receive Interrupt
MCBSP Port #0 Transmit Interrupt
MCBSP Port #2 Receive Interrupt
MCBSP Port #2 Transmit Interrupt
Timer #1 Interrupt

Host Interrupt (HPI)

MCBSP Port #1 Receive Interrupt

MCBSP Port #1 Transmit Interrupt

FIFO Full Interrupt

Software Interrupt #14

Watchdog Timer Interrupt

IRQ Module

10-7

Configuration Structure

10.2 Configuration Structure

IRQ_Config IRQ configuration structure

Structure IRQ_Config

Members IRQ_IsrPtr funcAddr; Address of interrupt service routine
Uint32 ierMask; Interrupt to disable the existing ISR
Uint32 funcArg; Argument to pass to ISR when invoked

Description Thisis the IRQ configuration structure used to update a DSP/BIOS table entry.
You create and initialize this structure then pass its address to the
IRQ_config() function.

Example IRQ_Config MyConfig = {
0x0000, /* funcAddr */
0x0300, /* ierMask */
0x0000, /* funcArg */

I3

10-8

10.3 Functions

IRQ_clear

Function

Arguments

Return Value
Description

Example

Function

Arguments

Return Value
Description

Example

Functions

This sections describes the IRQ functions.

Clears event flag from IFR register

void IRQ_clear(
Uint16 Eventld

);

Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list
of events. Or, use the PER_get XXX Eventld() function to get the
EventlD.

None
Clears the event flag from the IFR register

IRQ_clear(IRQ_EVT_TINTO);

Updates Entry in DSPBIOS dispatch table

void IRQ_config(
Uintl6 Eventld,
IRQ_Config *Config

)i

EventID Event ID, see IRQ_EVT_NNNN for a complete list of events.
Config Pointer to an initialized configuration structure

None

Updates the entry in the DSPBIOS dispatch table for the specified event.

IRQ Module 10-9

Functions

IRQ_configArgs

Function

Arguments

Return Value

Description

Example

IRQ_disable

Function

Arguments

Return Value
Description

Example

10-10

Updates entry in DSPBIOS dispatch table

void IRQ_configArgs(
Uintl6 Eventld,
IRQ_IsrPtr funcAddr,
Uint32 funcArg,
Uint16 ierMask

);

Eventld Event ID, see IRQ_EVT_NNNN for a complete list of events.

funcAddr Interrupt service routine address

funcArg Argument to pass to interrupt service routine when it is invoked
by DSPBIOS dispatcher

ierMask Interrupts to disable while processing the ISR for this event
(Mask for IERO, IER1)

None
Updates DSPBIOS dispatch table entry for the specified event.

You may use literal values for the arguments. For readability, you may use the
RMK macros to create the register values based on field values.

IRQ_configArgs(EventID, funcAddr, funcArg, ierMask);

Disables specified event

void IRQ_disable(
Uintl6 Eventld

);

Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list
of events. Or, use the PER_get XXX Eventld() function to get the
EventlID.

None
Disables the specified event, by modifying the IMR register.

IRQ_disable(IRQ_EVT_TINTO);

Function

Arguments

Return Value
Description

Example

Function

Arguments

Return Value
Description

Example

IRQ_getConfig

Function

Arguments

Return Value

Description

Example

Functions

Enables specified event

void IRQ_enable(
Uint16 Eventld

)i
Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list

of events. Or, use the PER_get XXX Eventld() function to get the
EventlD.

None
Enables the specified event.

IRQ_enable(IRQ_EVT_TINTO);

Gets value for specified event

Uint32 IRQ_getArg(
Uint16 Eventld

)i
Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list

of events. Or, use the PER_get XXX Eventld() function to get the
EventlD.

Value of argument
Returns value for specified event.

IRQ_getArg(IRQ_EVT_TINTO);

Gets DSP/BIOS dispatch table entry

void IRQ_getConfig(
Uint16 Eventld,
IRQ_Config *Config
)i
Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list
of events. Or, use the PER_get XXX Eventld() function to get the
EventID.
Config Pointer to configuration structure

None

Returns current values in DSP/BIOS dispatch table entry for the specified
event.

IRQ Module 10-11

Functions

I3IONe| o) E\BIEE:1I[WM G/obally Disables Interrupts

Function

Arguments
Return Value

Description

Example

int IRQ_globalDisable(
)i

None
intm Returns the old INTM value

This function globally disables interrupts by setting the INTM of the ST1 regis-
ter. The old value of INTM is returned. This is useful for temporarily disabling
global interrupts, then enabling them again.

Uint32 intm;
intm = IRQ_globalDisable();

IRQ_globalRestore (intm);

IIOMe|[e]EII=EVISMM G/obally Enables Interrupts

Function

Arguments
Return Value

Description

Example

10-12

int IRQ_globalEnable(
)i

None
intm Returns the old INTM value

This function globally Enables interrupts by setting the INTM of the ST1 regis-
ter. The old value of INTM is returned. This is useful for temporarily enabling
global interrupts, then disabling them again.

Uint32 intm;
intm = IRQ_globalEnable();

IRQ_globalRestore (intm);

Functions

[IOMe| o] LN (eI Restores The Global Interrupt Mask State

Function

Arguments
Return Value

Description

Example

Function

Arguments

Return Value

Description

Example

void IRQ_globalRestore(
int intm

)i
intm Value to restore the INTM value to (0 = enable, 1 = disable)

None

This function restores the INTM state to the value passed in by writing to the
INTM bit of the ST1 register. This is useful for temporarily disabling/enabling
global interrupts, then restoring them back to its previous state.

int intm;
intm = IRQ_globalDisable();

IRQ_globalRestore (intm);

Maps Event To Physical Interrupt Number

void IRQ_map(
Uint16 Eventld

);

Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list
of events. Or, use the PER_get XXX Eventld() function to get the
EventID.

None

This function maps a logical event to a physical interrupt number for use by
DSPBIOS dispatch.

IRQ_map(IRQ_EVT_TINTO);

IRQ Module 10-13

Functions

IRQ_plug

Function

Arguments

Return Value

Description

Example

IRQ_setArg

Function

Arguments

Return Value

Description

Example

10-14

Initializes An Interrupt Vector Table Vector

int IRQ_plug(
Uintl6 Eventlid,

IRQ_IsrPtr funcAddr,
)i

Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list
of events. Or, use the PER_get XXX Eventld() function to get the
EventID.

funcAddr Address of the interrupt service routine to be called when the
interrupt happens. This function must be C-callable and if
implemented in C, it must be declared using the interrupt
keyword.

Oorl

Initializes an interrupt vector table vector with the necessary code to branch
to the specified ISR.

Caution: Do not use this function when DSP/BIOS is present and the dispatcher is
enabled.

void Mylsr ();

IRQ_plug (IRQ_EVT_TINTO, &mylsr)

Sets value of argument for DSPBIOS dispatch entry

void IRQ_setArg(
Uintlé Eventld
uUint32 val
)i
Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list
of events. Or, use the PER_get XXX Eventld() function to get the
EventID.

None

Sets the argument that DSP/BIOS dispatcher will pass to the interrupt service
routine for the specified event.

IRQ_setArg(IRQ_EVT_TINTO, val);

IRQ_setVecs

Function

Arguments
Return Value

Description

Example

IRQ_test

Function

Arguments

Return Value
Description

Example

Functions

Sets the base address of the interrupt vectors

void IRQ_setVecs(
Uint32 IVPD
Uint32 val Uint32 IVPH

)i
vecs IVPD pointer to the DSP interrupt vector table
oldVecs Returns IVPH Pointer to the Host interrupt Vector table

Use this function to set the base address of the interrupt vector table in the
IVPD and IVPH registers.

Caution: Changing the interrupt vector table base can have adverse effects
onyour system because you will be effectively eliminating all previous interrupt
settings. There is a strong chance that the DSP/BIOS kernel and RTDX will fail
if this function is not used with care.

IRQ_setVecs ((void*) 0x8000);

Tests event to see if its flag is set in IFR register

Bool IRQ_test(
Uint16 Eventld

);

Eventld Event ID, see IRQ_EVT_NNNN (Table 10-3) for a complete list

of events. Or, use the PER_get XXX Eventld() function to get the
EventID.

Event flag, O or 1
Tests an event to see if its flag is set in the IFR register.

while (IRQ_test(IRQ_EVT_TINTO);

IRQ Module 10-15

Chapter 11

McBSP Module

THE McBSP is a handle-based module that requires you to call
MCBSP_open() to obtain a handle before calling any other functions.

Topic Page
B @ V=T 4 1= 1-2
11.2 Configuration Structure —.........t 1
11.3 FUNCHONS ...ttt et e et et 1-6
114 MACIOS ..ottt ettt e et e e e 1-23
11.5 EXamples ... 1-41

11-1

Overview

11.1 Overview

THE McBSP

is a handle-based module that requires you to call

MCBSP_open() to obtain a handle before calling any other functions.
Table 11-1 lists the structure for use with the McBSP modules. Table 11-2 lists
the functions for use with the McBSP modules.

Table 11-1. McBSP Configuration Structure

Structure Purpose See page...
MCBSP_Config McBSP configuration structure used to setup a

McBSP port

Table 11-2. McBSP Functions

(a) Primary Functions

Function

Purpose

MCBSP_open()

MCBSP_config()

MCBSP_configArgs()

MCBSP_start()

Opens a McBSP port

Sets up the McBSP port using the configuration
structure

Sets up the McBSP port using the register values
passed in

Start a transmit and/or receive for a MCBSP port

= = = =1 »
N N IR @
= = = el @
[(e] A N\ ||l ©
D
Q
@

MCBSP_close() Closes a McBSP port 11-11
(b) Channel Control Functions

MCBSP_channelDisable() Disables one or several McBSP channels 11-6
MCBSP_channelEnable() Enables one or several McBSP channels of the 11-8

selected register

MCBSP_channelStatus() Returns the channel status
(c) Interrupt Control Functions

MCBSP_getRcvEventld() Retrieves the receive event ID for the given port 11-15
MCBSP_getXmtEventld() Retrieves the transmit event ID for the given port 11-15

11-2

Overview

Table 11-2. McBSP Functions
Function Purpose See page ...

(d) Auxiliary Functions

MCBSP_read16() Performs a direct 16-bit read to the data receive 11-16
register DRR1
MCBSP_write16() Writes a 16-bit value to the serial port data transmit [11-20
register, DXR1
MCBSP_read32() Performs two direct 16-bit reads: data receive 11-17
register 2 DRR2 (MSB) and data receive register 1
DRR1 (LSB)
MCBSP_write32() Writes two 16-bit values to the two serial port data [11-20
transmit registers, DXR2 (16-bit MSB) and DXR1
(16-bit LSB)
MCBSP_reset() Resets the given serial port 11-26
MCBSP_rfull() Reads the RFULL bit SPCR1 register 11-17
MCBSP_rrdy() Reads the RRDY status bit of the SPCR1 register 11-18
MCBSP_xempty() Reads the XEMPTY bit from the SPCR2 register 11-21
MCBSP_xrdy() Reads the XRDY status bit of the SPCR2 register 11-21
MCBSP_getConfig() Get MCBSP channel configuration 11-22
MCBSP_getPort() Get MCBSP Port number used in given handle 11-22

McBSP Module 11-3

Configuration Structure

11.2 Configuration Structure

MCBSP_Config

This section lists the structure in the McBSP module.

McBSP configuration structure used to setup McBSP port

Structure MCBSP_Config
Members Uint16 spcrl Serial port control register 1 value
Uint16 spcr2 Serial port control register 2 value
Uintl16 rcrl Receive control register 1 value
Uintl16 rcr2 Receive control register 2 value
Uint16 xcrl Transmit control register 1 value
Uint16 xcr2 Transmit control register 2 value
Uint16 srgrl Sample rate generator register 1 value
Uint16 srgr2 Sample rate generator register 2 value
Uintl6 mcrl Multi-channel control register 1 value
Uint1l6 mcr2 Multi-channel control register 2 value
Uint16 pcr Pin control register value
For Devices supporting 128 channels:
uintl6 rcera Receive channel enable register partition A value
uintl6 rcerb Receive channel enable register partition B value
Uint16 rcerc Receive channel enable register partition C value
uint16 rcerd Receive channel enable register partition D value
uintl6 rcere Receive channel enable register partition E value
Uint16 rcerf Receive channel enable register partition F value
Uint16 rcerg Receive channel enable register partition G value
Uint16 rcerh Receive channel enable register partition H value
Uint16 xcera Transmit channel enable register partition A value
uintl16 xcerb Transmit channel enable register partition B value
Uint16 xcerc Transmit channel enable register partition C value
Uint16 xcerd Transmit channel enable register partition D value
uintl6 xcere Transmit channel enable register partition E value
Uint16 xcerf Transmit channel enable register partition F value
Uint16 xcerg Transmit channel enable register partition G value
Uint16 xcerh Transmit channel enable register partition H value
Description McBSP configuration structure used to setup a McBSP port. You create and

initialize this structure then pass its address to the MCBSP_config() function.
You can use literal values or the MCBSP_RMK macros to create the structure
member values.

11-4

Configuration Structure

Example MCBSP_Config MyConfig = {
0x8001, /* spcrl */
0x0001, /* spcr2 */
0x0000, /*rcrl */
0x0000, /* rcr2 */
0x0000, /* xcrl */
0x0000, /* xcr2 */
0x0001, /* srgrl */
0x2000, /* srgr2 */
0x0000, /* mcrl */
0x0000, /* mcr2 */
0x0000 /*pcr */
0x0000, /* rcera */
0x0000, /* rcerb */
0x0000, /* xcera */
0x0000, /* xcerb */

h

MCBSP_config(hMcbsp,&MyConfig);

MCBSP Module 11-5

Functions

11.3 Functions

This section lists the functions in the McBSP module.

MCBSP_ Disables one or several McBSP channels
channelDisable

Function void MCBSP_channelDisable(
MCBSP_Handle hMcbsp,
Uint16 RegAddr,
Uintl6 Channels

);

Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()

RegAddr Receive and Transmit Channel Enable Registers:
(1 MCBSP_RCERA
(1 MCBSP_RCERB
(1 MCBSP_XCERA
(1 MCBSP_XCERB

For devices supporting 128 channels (see Section 1.7)
MCBSP_RCERC
MCBSP_RCERD
MCBSP_RCERE
MCBSP_RCERF
MCBSP_RCERG
MCBSP_RCERH
MCBSP_XCERC
MCBSP_XCERD
MCBSP_XCERE
MCBSP_XCERF
MCBSP_XCERG
MCBSP_XCERH

I I i iy Ay Ay Ay O

Channels Available values for the specific RegAddr are:
MCBSP_CHANO
MCBSP_CHAN1
MCBSP_CHAN2
MCBSP_CHAN3
MCBSP_CHAN4
MCBSP_CHANS

Uooooo

11-6

Return Value

Description

Example

Functions

MCBSP_CHANG6
MCBSP_CHAN7
MCBSP_CHANS
MCBSP_CHAN9
MCBSP_CHAN10
MCBSP_CHAN11
MCBSP_CHAN12
MCBSP_CHAN13
MCBSP_CHAN14
MCBSP_CHAN15

UoUuUuoUouuooo

None

Disables one or several McBSP channels of the selected register. To disable
several channels at the same time ,the sign “|” OR has to be added in between.

This function does not check to see if valid data has been received. Use
MCBSP_rrdy() for this purpose.

/* Disables Channel 0 of the partition A */
MCBSP_channelDisable(hMcbsp,MCBSP_RCERA,(MCBSP_CHANO);
/* Disables Channels 1, 2 and 8 of the partition B with “|"*/
MCBSP_channelDisable(hMcbsp,MCBSP_RCERB,(MCBSP_CHAN1
MCBSP_CHAN2 | MCBSP_CHANS));

MCBSP Module 11-7

Functions

MCBSP_ Enables one or several McBSP channels of selected register
channelEnable

Function void MCBSP_channelEnable(
MCBSP_Handle hMcbsp,
Uintl6 RegAddr,
Uintl6 Channels

);
Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()

RegAddr Receive and Transmit Channel Enable Registers:
(1 MCBSP_RCERA
(1 MCBSP_RCERB
(1 MCBSP_XCERA
(1 MCBSP_XCERB

For devices supporting 128 channels (See Section 1.7)
MCBSP_RCERC
MCBSP_RCERD
MCBSP_RCERE
MCBSP_RCERF
MCBSP_RCERG
MCBSP_RCERH
MCBSP_XCERC
MCBSP_XCERD
MCBSP_XCERE
MCBSP_XCERF
MCBSP_XCERG
MCBSP_XCERH

IS I A Ay Ay O

Channels Available values for the specificReg Addr are:
MCBSP_CHANO
MCBSP_CHAN1
MCBSP_CHAN2
MCBSP_CHAN3
MCBSP_CHAN4
MCBSP_CHANS
MCBSP_CHANG6
MCBSP_CHAN7
MCBSP_CHANS
MCBSP_CHAN9
MCBSP_CHAN10

oo uUuoooo

11-8

Return Value

Description

Example

Functions

MCBSP_CHAN11
MCBSP_CHAN12
MCBSP_CHAN13
MCBSP_CHAN14
MCBSP_CHAN15

Uoooo

None
Enables one or several McBSP channels of the selected register.

To enabling several channels at the same time, the sign “|” OR has to be added
in between.

/* Enables Channel 0 of the partition A */
MCBSP_channelEnable(hMcbsp,MCBSP_RCERA,(MCBSP_CHANO);
/* Enables Channel 1, 4 and 6 of the partition B with “|” */
MCBSP_channelEnable(hMcbsp,MCBSP_RCERB,(MCBSP_CHAN]]|
MCBSP_CHAN4 | MCBSP_CHANS®));

MCBSP Module 11-9

Functions

MCBSP_ Returns channel status
channelStatus

Function Uintl6 MCBSP_channelStatus(
MCBSP_Handle hMcbsp,
Uintl6 RegAddr,

Uintl6 Channel

);

Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()

RegAddr Receive and Transmit Channel Enable Registers:
(1 MCBSP_RCERA
(1 MCBSP_RCERB
(1 MCBSP_XCERA
(1 MCBSP_XCERB
For devices supporting 128 channels (See Section 1.7)
MCBSP_RCERC
MCBSP_RCERD
MCBSP_RCERE
MCBSP_RCERF
MCBSP_RCERG
MCBSP_RCERH
MCBSP_XCERC
MCBSP_XCERD
MCBSP_XCERE
MCBSP_XCERF
MCBSP_XCERG
MCBSP_XCERH

oo oooo

Channel Selectable Channels for the specific RegAddr are:
MCBSP_CHANO
MCBSP_CHAN1
MCBSP_CHAN2
MCBSP_CHAN3
MCBSP_CHAN4
MCBSP_CHANS5
MCBSP_CHANG
MCBSP_CHAN7
MCBSP_CHANS
MCBSP_CHAN9
MCBSP_CHAN10
MCBSP_CHAN11

oo oooo

11-10

Return Value
Description

Example

MCBSP_close

Function

Arguments
Return Value

Description

Example

Functions

MCBSP_CHAN12
MCBSP_CHAN13
MCBSP_CHAN14
MCBSP_CHAN15

Uooo

Channel status 0 - Disabled
1 - Enabled

Returns the channel status by reading the associated bit into the the selected
register (RegAddr). Only one channel can be observed.

Uintl6 C1, C4;

/* Returns Channel Status of the channel 1 of the partition B

*/
C1=MCBSP_channelStatus(hMcbsp,MCBSP_RCERB,MCBSP_CHANL1);
[* Returns Channel Status of the channel 4 of the partition A

*/
C4=MCBSP_channelStatus(hMcbsp,MCBSP_RCERA,MCBSP_CHANA4);

Closes McBSP port

void MCBSP_close(
MCBSP_Handle hMchsp

);
hMcbsp Handle to McBSP port obtained by MCBSP_open()
None

Closes a McBSP port previously opened via MCBSP_open(). The registers for
the McBSP port are set to their power-on defaults and any associated inter-
rupts are disabled and cleared.

MCBSP_close(hMcbsp);

MCBSP Module 11-11

Functions

MCBSP_config Sets up McBSP port using configuration structure
Function void MCBSP__config(

MCBSP_Handle hMcbsp,
MCBSP_Config *Config

)i
Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()
Config Pointer to an initialized configuration structure
Return Value None
Description Sets up the McBSP port identified by hMcbsp handle using the configuration

structure. The values of the structure are written to the hMcbsp port registers.
MCBSP_config() initializes the MCBSP port registers, but does not start the
MCBSP port.

To start a McBSP port, you must call the MCBSP_start() function (see also
MCBSP_configArgs()).

Example MCBSP_Config MyConfig = {
0x8001, /* spcrl */
0x0001, /* spcr2 */
0x0000, /* rcrl */
0x0000, /* rcr2 */
0x0000, /* xcrl */
0x0000, /* xcr2 */
0x0001, /* srgrl */
0x2000, /* srgr2 */
0x0000, /* mcrl */
0x0000, /* mcr2 */
0x0000, /* rcera*/
0x0000, /* rcerb*/
0x0000, /* xcera*/
0x0000, /* xcerb*/
0x0000 /* pcr */

k

MCBSP_config(hMcbsp,&MyConfig);
For complete examples, please refer to Section 11.4.

11-12

MCBSP_configArgs

Function

Arguments

Sets up McBSP port using register values passed in

Functions

void MCBSP_configArgs(
MCBSP_Handle hMcbsp,
uint16 spcrl,
uint16 spcr2,
Uintl6 rcrl,
Uintl6 rcr2,
Uint16 xcrl,
Uintl6 xcr2,
Uint16 srgrl,
uint16 srgr2,
Uintl6 mcrl,
Uintl6 mcr2,
uint16 pcr
For Devices that support 128 channels:
Uintl6 rcera,
Uint16 rcerb,
Uintl6 rcerc,
Uint16 rcerd,
Uintl6 rcere,
Uint16 rcerf,
Uint16 rcerg,
Uintl6 rcerh,
Uintl6 xcera,
Uintl6 xcerb,
Uintl6 xcerc,
Uint16 xcerd,
Uintl6 xcere,
Uintl6 xcerf,
Uint16 xcerg,
Uintl6 xcerh,

)i
hMcbsp Handle to McBSP port obtained by MCBSP_open()
spcrl Serial port control register 1 value
spcr2 Serial port control register 2 value
rcrl Receive control register 1 value
rcr2 Receive control register 2 value
xcrl Transmit control register 1 value
Xcr2 Transmit control register 2 value
srgrl Sample rate generator register 1 value

MCBSP Module

11-13

Functions

Return Value

Description

Example

11-14

srgr2
mcrl
mcr2
pcr

rcera
rcerb
xcera
xcerb

None

Sets up the McBSP port using the register values that are passed. The register
values are written to the port registers. MCBSP_configArgs() initializes the

Sample rate generator register 2 value
Multi-channel control register 1 value
Multi-channel control register 2 value

Pin control register value

Receive channel enable register partition A value
Receive channel enable register partition B value
Transmit channel enable register partition A value
Transmit channel enable register partition B value

McBSP port registers, but does not start the McBSP port.

To start a McBSP port, you must call the MCBSP_start() function (see also

MCBSP_configArgs()).

You may use literal values for the arguments or for readability, you may use
the MCBSP_RMK macros to create the register values based on field values.

MCBSP_configArgs(hMcbsp,

0x8001, /* spcrl */
0x0001, /* spcr2 */
0x0000, /* rcrl */
0x0000, /*rcr2 */
0x0000, /* xcrl */
0x0000, /* xcr2 */
0x0001, /* srgrl */
0x2000, /* srgr2 */
0x0000, /* merl */
0x0000, /* mcr2 */
0x0000 /* pcr */
0x0000, /* rcera*/
0x0000, /* rcerb*/
0x0000, /* xcera*/
0x0000, /* xcerb*/

MCBSP_getXmt
EventID

Function

Arguments
Return Value

Description

Example

MCBSP_getRcv
Eventld

Function

Arguments
Return Value

Description

Example

Functions

Retrieves transmit event ID for given port

Uint1l6 MCBSP_getXmtEventld(
MCBSP_Handle hMcbsp
)i

hMcbsp Handle to McBSP port obtained by MCBSP_open()

Receiver event ID

Simple replace receive for transmit. Use this ID to manage the event using the
IRQ module.

Uintl6 XmtEventld;

XmtEventld = MCBSP_getXmtEventld(hMcbsp);
IRQ_enable(XmtEventld);

Retrieves receive event ID for given port

Uintl6 MCBSP_getRcvEventld(
MCBSP_Handle hMcbsp

)i
hMcbsp Handle to McBSP port obtained by MCBSP_open()

Receiver event ID

Retrieves the IRQ receive event ID for the given port. Use this ID to manage
the event using the IRQ module.

Uintl16 RecvEventld;

RecvEventld = MCBSP_getRcvEventld(hMcbsp);
IRQ_enable(RecvEventld);

MCBSP Module 11-15

Functions

MCBSP_open Opens McBSP port

Function

Arguments

Return Value

Description

Example

MCBSP_readl16

Function

Arguments

Return Value
Description

Example

11-16

MCBSP_Handle MCBSP_open(
int devNum,

Uint32 flags

);

devNum McBSP device (port) number:
Q MCBSP_DEVO
d MCBSP_DEV1
O MCBSP_DEV?2 (except for 5402)
Q MCBSP_DEVANY

flags Open flags, may be logical OR of any of the following:
a MCBSP_OPEN_RESET
Device Handle

Before a McBSP port can be used, it must first be opened by this function.
Once opened, it cannot be opened again until closed, see
MCBSP_close().The return value is a unique device handle that you use in
subsequent MCBSP API calls. If the open fails, INV (-1) is returned.

If the MCBSP_OPEN_RESET is specified, the McBSP port registers are set
to their power-on defaults and any associated interrupts are disabled and
cleared.

MCBSP_Handle hMcbsp;
hMcbsp = MCBSP_open(MCBSP_DEV0,MCBSP_OPEN_RESET);

Performs16-bit data read

Uintl6 MCBSP_read16(
MCBSP_Handle hMchsp

);
hMcbsp Handle to McBSP port obtained by MCBSP_open()

Data read for MCBSP receive port.
Performs a direct 16-bit read from the data receive register DRR1.

Uint16 Data;

Data = MCBSP_read16(hMcbsp);

This function doesn’t check if valid data has been received. Use
MCBSP_rrdy() for this purpose.

MCBSP_read32

Function

Arguments
Return Value

Description

Example

MCBSP _reset

Function

Arguments
Return Value

Description

Example

Functions

Performs 32-bit data read

Uint16 MCBSP_read32(
MCBSP_Handle hMcbsp

)i
hMcbsp Handle to McBSP port obtained by MCBSP_open()
Data (MSW-LSW ordering)

A 32-bit read. First, the 16-bit MSW (Most significant word) is read from regis-
ter DRR2. Then, the 16-bit LSW (least significant word) is read from register
DRR1.

Uint32 Data;

MCBSP_read32(hMcbsp);

Resets given serial port

void MCBSP_reset(
MCBSP_Handle hMcbsp
)i

hMcbsp Handle to McBSP port obtained by MCBSP_open()
None

Resets the given serial port. If you use INV (-1) for hMcbsp, all serial ports are
reset. Actions Taken:

(1 All serial port registers are set to their power-on defaults.
[All associated interrupts are disabled and cleared.

MCBSP_reset(hMcbsp);
MCBSP_reset(INV);

MCBSP Module 11-17

Functions

MCBSP_rfull

Function

Arguments

Return Value

Reads RFULL bit of serial port control register 1

Bool MCBSP_rfull(
MCBSP_Handle hMcbsp

);
hMchbsp Handle to McBSP port obtained by MCBSP_open()

RFULL Returns RFULL status bit of SPCR1 register, O (receive buffer
empty) or 1(receive buffer full)

Description Reads the RFULL bit of the serial port control register 1. (Both RBR and RSR
are full. A receive overrun error could have occured.)
Example if (MCBSP_rfull(hMcbsp)) {
}
MCBSP_rrdy Reads RRDY status bit of SPCR1 register
Function Bool MCBSP_rrdy(
MCBSP_Handle hMcbsp
);
Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()

Return Value

Description

Example

11-18

RRDY Returns RRDY status bit of SPCR1,0or 1

Reads the RRDY status bit of the SPCR1 register. A 1 indicates the receiver
is ready with data to be read.

if (MCBSP_rrdy(hMcbsp)) {

}

Functions

MCBSP_start Starts transmit and/or receive operation for a McBSP port
Function void MCBSP_start(

Arguments

Return Value

Description

Example

MCBSP_Handle hMcbsp,
Uint16 txRxSelectorstartMask,
Uintl6 SampleRaterateGenDelay

);

hMcbsp
txRxSelector
EI
(|

|
SampleRateGenDelay

SampleRateGenDelay =

None

Handle to McBSP port obtained by MCBSP_open()
Start transmit, receive or both:
MCBSP_XMIT_START

MCBSP_RCV_START

MCBSP_XMIT_START | MCBSP_RCV_START
Sample rate generates delay. MCBSP logic requires
two sample_rate generator clock periods after
grabbing the sample rate generator logic to stabilize.
Use this parameter to provide the appropriate delay
before starting the MCBSP. A conservative value
should be equal to:

2 x Sample_Rate_Generator_Clock_period
4xC54x_Instruction_Cycle

Starts a transmit and/or receive operation for a McBSP port.

MCBSP Module 11-19

Functions

MCBSP_write16 Writes a 16-bit data value

Function void MCBSP_write16(

MCBSP_Handle hMcbsp,

Uint16 Val

)i
Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()

Val 16-bit data value to be written to MCBSP transmit register.

Return Value None
Description Directly writes a 16-bit value to the serial port data transmit register; DXR1, Be-

fore writing the value, this function does not check if the transmitter is
ready. Use MCBSP_xrdy() for this purpose.

Example MCBSP_write16(hMcbsp,0x1234);

MCBSP_write32 Writes a 32-bit data value with overrun protection

Function Void MCBSP_write32(
MCBSP_Handle hMcbsp,
Uint32 Val
);
Arguments hMcbsp Handle to McBSP port obtained by MCBSP_open()
Val 32-bit data value
Return Value None
Description Directly writes two 16-bit values to the two serial port data transmit registers,
DXR2 (16-bit MSW) and DXR1 (16-bit LSW);Before writing the value, this
function does not check to see if the transmitter is ready . Use

MCBSP_ xrdy() for this purpose.

Example MCBSP_write32(hMcbsp,0x12345678);

11-20

MCBSP_xempty

Function
Arguments
Return Value
Description

Example

MCBSP_ xrdy

Function

Arguments
Return Value

Description

Example

Functions

Reads XEMPTY bit from SPCR2 register

Bool MCBSP_xempty(
MCBSP_Handle hMcbsp

)i
hMcbsp Handle to McBSP port obtained by MCBSP_open()

XEMPTY Returns XEMPTY bit of SPCR2 register, O(transmit buffer empty)
or 1(transmit buffer full)

Reads the XEMPTY bit from the SPCR2 register. A 0 indicates the transmit
shift (XSR) is empty.

if (MCBSP_xempty(hMcbsp)) {

}

Reads XRDY status bit of SPCR2 register

Bool MCBSP_xrdy(
MCBSP_Handle hMcbsp

)i
hMcbsp Handle to McBSP port obtained by MCBSP_open()
XRDY Returns XRDY status bit of SPCR2.

Reads the XRDY status bit of the SPCR2 register. A “1” indicates that the
transmitter is ready to transmit a new word. A "0” indicates that the transmitter
is not ready to transmit a new word.

if (MCBSP_xrdy(hMcbsp)) {

MCBSP_write16 (hMcbsp, 0x1234);

MCBSP Module 11-21

Functions

(VIel=5S Ml oIV I Get MCBSP channel configuration

Function void MCBSP_getConfig (
MCBSP_Handle hMcbsp,
MCBSP_Config *Config

)
Arguments hMcbsp Handle to McBSP port; (see MCBSP_open())
Config Pointer to an initialized configuration structure (see
MCBSP_Config)
Return Value None
Description Get the current configuration for the McBSP port used by handle. This is ac-

complished by reading the actual McBSP port registers and fields and storing
them back in the Config structure.

Example MCBSP_Config ConfigRead,;

myHandle = MCBSP_open (MCBSP_DEV), 0);
MCBSP_getConfig (myHandle, &ConfigRead);

MCBSP_getPort Get McBSP port number used in given handle

Function Uintl6 MCBSP_getPort (MCBSP_Handle hMcbsp)

Arguments hMcbsp Handle to McBSP port given by MCBSP_open()
Return Value Port number

Description Get Port number used by specific handle

Example Uintl6 PortNum;

PortNum = MCBSP_getPort (Hmcbsp));

11-22

11.4 Macros

Macros

As covered in Section 1.5, CSL offers a collection of macros to get individual
access to the peripheral registers and fields.

The following are the list of macros available for the MCBSP. To use these
macros, include “csl_mcbsp.h ”

Because the MCBSP has several channels, macros identify the channel by
either the channel number or the handle used.

Table 11-3 lists the macros available for a MCBSP channel using the channel
number as part of the register name.

Table 11-4 lists the macros available for a MCBSP channel using its
corresponding handle.

Table 11-3. MCBSP CSL Macros (using port number)

(a) Macros to read/write MCBSP register values

Macro

MCBSP_RGET()
MCBSP_RSET()

(b) Macros to read/write MCBSP register field values (Applicable only to registers with more than one field)

Macro

MCBSP_FGET()
MCBSP_FSET()

(c) Macros to read/write MCBSP register field values (Applicable only to registers with more than one field)

Macro

MCBSP_REG_RMK()
MCBSP_FMK()

(d) Macros to read a register address

Macro

MCBSP_ADDR()

MCBSP Module 11-23

Macros

Table 11-4. MCBSP CSL Macros (using handle)

(a) Macros to read/write MCBSP register values

Macro

MCBSP_RGET_H()
MCBSP_RSET_H()

(b) Macros to read/write MCBSP register field values (Applicable only to registers with more than one field)

Macro

MCBSP_FGET_H()
MCBSP_FSET_H()

(c) Macros to read a register address

Macro

MCBSP_ADDR_H()

11-24

Macros

MCBSP_RGET Get the value of a MCBSP register

Macro Uint16 MCBSP_RGET (REG#)

Arguments REG# Register name with channel number (#) where
#=0,1, (2: depending on the device)
DRR1#

DRR2#
SPCR1#
SPCR2#
RCR1#
RCR2#
XCR1#
XCR2#
SRGR1#
SRGR2#
MCR1#
MCR2#
PCR#

RCERA#
RCERB#
XCERA#
XCERB#

For devices supporting 128-channels, add:
RCERC#
XCERC#
RCERD#
XCERD#
RCERE#
XCERE#
RCERF#
XCERF#
RCERG#
XCERG#
RCERH#
XCERH#

Return Value value of register
Description Returns the MCBSP register value

Example 1 Uint16 myVar;

myVar = MCBSP_RGET(RCR10); /*get register RCR1 of channel 0 */

MCBSP Module 11-25

Macros

MCBSP_RSET Set the value of a MCBSP register

Macro Void MCBSP_REG_SET (MCBSP_Handle hMcbsp, Uintl6 RegVal)

Arguments REG# Register name with channel number (#) where
#=0,1, (2: depending on the device)
DXR1#

DXR2#
SPCR1#
SPCR2#
RCR1#
RCR2#
XCR1#
XCR2#
SRGR1#
SRGR2#
MCR1#
MCR2#
PCR#

RCERA#
RCERB#
XCERA#
XCERB#

For devices supporting 128-channels, add:
RCERC#
XCERC#
RCERD#
XCERD#
RCERE#
XCERE#
RCERF#
XCERF#
RCERG#
XCERG#
RCERH#
XCERH#
regval Register value needed to write to register REG

Return Value None
Description Set the MCBSP register REG value to regval

Example 1 For registers:
MCBSP_RSET(RCR10, 0x4); /* RCR1C for channel 0 = 0x4 */

11-26

Macros

(YIRS Creates a register value based on individual field values

Macro Uintl6 MCBSP_REG_RMK (fieldval_n,...,fieldval_0)

Arguments REG Only writable register containing more than one field are
supported by this macro. Please note that the channel number
is not used as part of the register name.

SPCR1
SPCR2
RCR1
RCR2
XCR1
XCR2
SRGR1
SRGR2
MCR1
MCR2
PCR

RCERA
RCERB
XCERA
XCERB

For devices supporting 128-channels, add:

RCERC

XCERC

RCERD

XCERD

RCERE

XCERE

RCERF

XCERF

RCERG

XCERG

RCERH

XCERH

fieldval_n field values to be assigned to the register fields rules to follow:

JOnly writable fields are allowed
[JStart from Most-significat field first
[JValue should be a right-justified constant. If fieldval_nvalue
exceeds the number of bits allowed for that field, then
fieldval_n is truncated accordingly.

MCBSP Module 11-27

Macros

Return Value

value of register that corresponds to the concatenation of values passed for
the fields. (writable fields only)

Description Returns the MCBSP register value given to specific field values. You can use
constants or the CSL symbolic constants covered in Section 1.4.

Example 1 MCBSP_RCR1_RMK (4,3); /*frame lenght, word length */
or you can use the PER_REG_FIELD_SYMVAL symbolic constants
provided in CSL (See section 1.4)
MCBSP_REG_RMK macros are typically used to initialize a MCBSP
configuration structure used for the MCBSP_config() function. For more
examples see Section 11.5.

MCBSP_FMK Creates a registervalue based on individual field values
Macro Uintl6 MCBSP_FMK (REG, FIELD, fieldval)
Arguments REG Only writable register containing more than one field are

11-28

supported by this macro. Please note that the channel number
is not used as part of the register name.
SPCR1

SPCR2

RCR1

RCR2

XCR1

XCR2

SRGR1

SRGR2

MCR1

MCR2

PCR

RCERA
RCERB
XCERA
XCERB

For devices supporting 128-channels, add:
RCERC
XCERC

Return Value

Description

Example 1

Macros

RCERD
XCERD
RCERE
XCERE
RCERF
XCERF
RCERG
XCERG
RCERH
XCERH
FIELD Symbolic name for field of register REG. Possible values are the field
names as listed in the C54x Register Reference Guide.
Only writable fields are allowed
fieldval field values to be assigned to the register fields rules to follow:
[(QOnly writable fields are allowed
[(JStart from Most-significat field first
[(JValue should be a right-justified constant. If fieldval_n value
exceeds the number of bits allowed for that field, then fieldval_n
is truncated accordingly.

Shifted version of fieldval. fieldval is shifted to the bit numbering appropriate
for FIELD.

Returns the shifted version of fieldval. fieldval is shifted to the bit numbering
appropriate for FIELD within register REG. This macro allows the user to
initialize few fields in REG as an alternative to the MCBSP_REG_RMK()
macro that requires ALL the fields in the register to be initialized. The returned
value could be ORed with the result of other _FMK macros, as shown in the
example below.

Uintl6 myregval;
Myregval = MCBSP_FMK (RCR1, RFRLEN1, 1) | MCBSP_FMK (RCR1,
RWDLEN1,2);

MCBSP Module 11-29

Macros

Get the value of a register field

Macro Uintl6 MCBSP_FGET (REG#, FIELD)

Arguments REG# Register name with channel number (#) where
#=0,1, (2: depending on the device)
DRR1#

DRR2#
SPCR1#
SPCR2#
RCR1#
RCR2#
XCR1#
XCR2#
SRGR1#
SRGR2#
MCR1#
MCR2#
PCR#
RCERA#
RCERB#
XCERA#
XCERB#

For devices supporting 128-channels, add:
RCERC#
XCERC#
RCERD#
XCERD#
RCERE#
XCERE#
RCERF#
XCERF#
RCERG#
XCERG#
RCERH#
XCERH#
FIELD symbolic name for field of register REG. Possible values are
the field names listed in the C54x Register Reference Guide
(Appendix x) Only readable fields are allowed

Return Value Value of register field

11-30

Macros

Description Gets the MCBSP register FIELD value

Example 1 Uintl6 myVar;

myVar = MCBSP_FGET(RCR2,RPHASE);

MCBSP_FSET Set the value of a register field

Macro Void MCBSP_FSET (REG#, FIELD, fieldval)

Arguments REG# Register name with channel number (#) where
#=10,1, (2: depending on the device)
DXR1#

DXR2#
SPCR1#
SPCR2#
RCR1#
RCR2#
XCR1#
XCR2#
SRGR1#
SRGR2#
MCR1#
MCR2#
PCR#
RCERA#
RCERB#
XCERA#
XCERB#
For devices supporting 128-channels, add:
RCERC#
XCERC#
RCERD#
XCERD#
RCERE#
XCERE#
RCERF#
XCERF#
RCERG#
XCERG#
RCERH#
XCERH#
FIELD Symbolic name for field of register REG. Possible values:
Field names as listed in the C54x Register Reference Guide.

MCBSP Module 11-31

Macros

Return Value
Description

Example 1

11-32

Only writable fields are allowed
fieldval field values to be assigned to the register fields rules to follow:
Only writable fields are allowed
(JStart from Most-significat field first
[(JValue should be a right-justified constant. If fieldval_n value
exceeds the number of bits allowed for that field, then
fieldval_n is truncated accordingly.

None
Set the MCBSP register value to regval

For Registers:
MCBSP_FSET(RCR2,RPHASE,?2);

Macros

MCBSP_ADDR Get the address of a given register

Macro Uintl6 MCBSP_ADDR (REG#)

Arguments REG# Register name with channel number (#) where
#=10,1, (2: depending on the device)
DRR1#
DRR2#
DXR1#
DXR2#
SPCR1#
SPCR2#
RCR1#
RCR2#
XCR1#
XCR2#
SRGR1#
SRGR2#
MCR1#
MCR2#
PCR#
RCERA#
RCERB#
XCERA#
XCERB#
For devices supporting 128-channels, add:
RCERC#
XCERC#
RCERD#
XCERD#
RCERE#
XCERE#
RCERF#
XCERF#
RCERG#
XCERG#
RCERH#
XCERH#

Return Value Address of register REG
Description Get the address of a given MCBSP register.

Example 1 For Registers:
myVar = MCBSP_ADDR(RCR10); /*get register RCR1 of channel 0 */

MCBSP Module 11-33

Macros

ez eI Il Get the value of a MCBSP register used in a handle

Macro Uintl6 MCBSP_RGET_H (MCBSP_Handle hMcbsp, REG)

Arguments hMcbsp Handle to MCBSP channel that identifies the MCBSP
channel used.
REG Similar to register in MCBSP_RGET(), but without channel
number (#).
DRR1
DRR2
SPCR1
SPCR2
RCR1
RCR2
XCR1
XCR2
SRGR1
SRGR2
MCR1
MCR2
PCR

RCERA
RCERB
XCERA
XCERB

For devices supporting 128-channels, add:
RCERC
XCERC
RCERD
XCERD
RCERE
XCERE
RCERF
XCERF
RCERG
XCERG
RCERH
XCERH

Return Value value of register

Description Returns the MCBSP register value for register REG for the channel associated
with handle.

11-34

Macros

Example 1 MCBSP_Handle myHandle;
Uintl6 myVar;

myHandle = MCBSP_open (MCBSP_DEV0, MCBSP_OPEN_RESET);

myVar = MCBSP_RGET_H(myHandle, RCR1)

Set the value of a MCBSP register

Macro Void MCBSP_RSET_H (MCBSP_Handle hMcbsp, REG, Uint16 RegVal)

Arguments hMcbsp Handle to McBSP port that identifies specific McBSP port
being used.
REG# Similar to register in MCBSP_RGET(), but without channel
number (#).
DXR1
DXR2
SPCR1
SPCR2
RCR1
RCR2
XCR1
XCR2
SRGR1
SRGR2
MCR1
MCR2
PCR

RCERA
RCERB
XCERA
XCERB

For devices supporting 128-channels, add:
RCERC
XCERC
RCERD
XCERD
RCERE
XCERE

MCBSP Module 11-35

Macros

RCERF
XCERF
RCERG
XCERG
RCERH
XCERH
regval value to write to register REG for the channel associated with
handle.
Return Value None
Description Set the MCBSP register REG for the channel associated with handle to the
value regval.
Example 1 MCBSP_Handle myHandle;

Uintl6 myVar;
myHandle = MCBSP_open (MCBSP_DEVO, MCBSP_OPEN_RESET);

myVar = MCBSP_FSET_H(myHandle, RCR1, 0x4)

Get the value of a register field

Macro Uint16 MCBSP_FGET_H (MCBSP_Handle Hmcbsp, REG, FIELD)

Arguments hMcbsp Handle to McBSP port that identifies specific MCBSP port
being used.
REG Similar to register in MCBSP_RGET(), but without channel
number (#).
DRR1
DRR2
SPCR1
SPCR2
RCR1
RCR2
XCR1
XCR2
SRGR1
SRGR2
MCR1
MCR2
PCR

11-36

Macros

RCERA
RCERB
XCERA
XCERB

For devices supporting 128-channels, add:
RCERC
XCERC
RCERD
XCERD
RCERE
XCERE
RCERF
XCERF
RCERG
XCERG
RCERH
XCERH
FIELD symbolic name for field of register REG Possible values:
Field names listed in the C54x Register Reference Guide
Only readable fields are allowed

Return Value Value of register field given by FIELD and of REG used by handle.
Description Gets the MCBSP register FIELD value
Example 1 MCBSP_Handle myHandle;

Uintl6 myVar;
myHandle = MCBSP_open (MCBSP_DEV0, MCBSP_OPEN_RESET);

myVar = MCBSP_FGET_H(myHandle, RCR2, RPHASE)

Set the value of a register field

Macro Void MCBSP_FSET_H (MCBSP_Handle hMcbsp, REG, FIELD, fieldval)
Arguments hMcbsp Handle to McBSP port that identifies specific McBSP port
being used.
REG# Similar to register in MCBSP_RGET(), but without channel
number (#).

MCBSP Module 11-37

Macros

DXR1
DXR2
SPCR1
SPCR2
RCR1
RCR2
XCR1
XCR2
SRGR1
SRGR2
MCR1
MCR2
PCR

RCERA
RCERB
XCERA
XCERB

For devices supporting 128-channels, add:

RCERC

XCERC

RCERD

XCERD

RCERE

XCERE

RCERF

XCERF

RCERG

XCERG

RCERH

XCERH
FIELD Symbolic name for field of register REG. Possible values are the field

names as listed the C54x Register Reference Guide. Only writable
fields are allowed .
fieldval field values to be assigned to the register fields
rules to follow:

[(dOnly writable fields are allowed

[JValue should be a right-justified constant. If fieldval_n value
exceeds the number of bits allowed for that field, then
fieldval is truncated accordingly.

11-38

Macros

Return Value None

Description Setthe MCBSP register field FIELD of the REG register for the channel associ-
ated with handle to the value fieldval.

Example 1 MCBSP_Handle myHandle;
Uintl6 myVar;

myHandle = MCBSP_open (MCBSP_DEVO0, MCBSP_OPEN_RESET);

myVar = MCBSP_FSET_H(myHandle, RCR2, RPHASE, 1)

Vo= Get the address of a given register

Macro Uintl6 MCBSP_ADDR (REG#)

Arguments hMcbsp Handle to MCBSP channel that identifies the MCBSP
channel used. Use only for MCBSP channel registers.
Registers are listed as part of the MCBSP_RGET_H macro
description.

REG Similar to register in MCBSP_RGET(), but without channel
number (#).
DRR1
DRR2
DXR1
DXR2
SPCR1
SPCR2
RCR1
RCR2
XCR1
XCR2
SRGR1
SRGR2
MCR1
MCR2
PCR

RCERA
RCERB
XCERA
XCERB

MCBSP Module 11-39

Macros

For devices supporting 128-channels, add:
RCERC
XCERC
RCERD
XCERD
RCERE
XCERE
RCERF
XCERF
RCERG
XCERG
RCERH
XCERH

Return Value Address of register REG
Description Gets the address of the MCBSP register associated with handle hMCBSP

Example 1 MCBSP_Handle myHandle;
Uintl6 myVar;

myVar = MCBSP_ADDR(myHandle, RCR1)

11-40

Examples

11.5 Examples

The following CSL MCBSP initialization examples are provided under the
\examples\MCBSP directory.

Example 11-1 illustrates the McBSP portinitialization using MCBSP_config().
The example also explains how to set the MCBSP into digital loopback mode
and perform 32-bit reads/writes from/to the serial port.

Also, under the \examples\DMA directory, you will find the following combined
DMA and MCBSP examples:

(0 Example: DMA channel data transfer from/to MCBSP in ABU digital loop-
back mode.

Example 11-1. McBSP Port Initialization Using MCBSP_config()
#include <csl_mcbsp.h>
static MCBSP_Config ConfigLoopBack32= {

—

void main(void) {
MCBSP_Handle mhMcbsp;
Uint32 xmt, rcv;
‘CSL_init():
mhMcbsp = MCBSP_open(MCBSP_DEV0, MCBSP_OPEN_RESET);
MCBSP_config(mhMcbsp, &ConfigLoopBack32);
MCBSP_start (mhMchsp,MCBSP_XMIT_START|MCBSP_RCV_START);
while (IMCBSP_xrdy(mhMcbsp));
MCBSP_write32(mhMcbsp,xmt);

;/.\}ﬁile ('MCBSP_rrdy(mhMcbsp));
rcv = MCBSP_read32(mhMcbsp);

MCBSP_cIose(mhMcbsp);

}

MCBSP Module 11-41

Chapter 12

PLL Module

This chapter describes the structure, functions, and macros of the PLL
module.

Topic Page
12,1 OVEIVIEBW .ottt ettt e e e e e e e et 12-2
12.2 Configuration Structure 1p-3

12.3 FUNCHIONS ..ttt e e et e e 12-4
12,4 MACIOS ..ottt ettt e e 12-6

12-1

Overview

12.1 Overview

The CSL PLL module offers functions and macros to control the power
consumption of different sections in the C54X device.

The PLL module is not handle-based.
Table 12-1 lists the configuration structure to use with the PLL functions.

Table 12-2 lists the functions available as part of the PLL module.
Table 12-1. PLL Primary Summary

(a) PLL Configuration Structure

Structure Purpose See page...

PLL_Config PLL structure that contains the register required to |12-3
setup the PLL.

Table 12-2. PLL Functions

(a) PLL Functions

Function Purpose See page ...

PLL_config() Configure the PLL with the values provided in a 12-4
configuration structure.

PLL_configArgs() Configure the PLL with the values provided as 12-4]
function arguments.

12-2

Configuration Structure

12.2 Configuration Structure

PLL_Config

This section describes the structure in the PLL module.

PLL configuration structure used to set up PLL interface

Structure PLL_Config

Members Uintl6 mode : available values
PLL_MODE_DIV =0 (divide mode)
PLL_MODE_PLLINT =2 (pll integer multiplier mode)
PLL_MODE_PLLFRCT = 3 (pll fractional multiplier mode)
This value combines the effect of the PLLNDIV and
PLLDIV fields.

Uint16 plicount : internal lockup counter (number of PLL clock input cycles
that the PLL logic should wait before “locking” in the new
frequency.)

Uint16 plimul : PLL multiplier register field value.

Description PLL configuration structure used to set up the PLL Interface. You create and
initialize this structure and then pass its address to the PLL_config() function.

You can use literal values or the PLL_REG _RMK macros to create the struc-

ture member values.

Mode plimul final multiplier
PLL MODE_DIV 0-14 0.5
15 0.25
PLL MODE_PLLINT 0-14 plimul+1
15 1
PLL MODE_PLLFRCT even (pllmul+1)/2
odd plimul/4

Example

clock_out freq = clock_in freq *final multiplier
PLL_Config myconfig = {

PLL_MODE_DIV,

20,

1, /* final multiplier = 0.5 */

PLL Module 12-3

Functions

12.3 Functions

PLL config

Function
Arguments
Return Value

Description

Example

PLL_configArgs

Function

Arguments

Return Value

12-4

This section describes the functions in the PLL module.

PLL_config (PLL_Config *pcfg)
PLL_configArgs (Uint16 mode, Uint16 plimul, Uint16 pllcount);

Writes value to set up PLL using configuration structure

void PLL_config (PLL_Config *config)
Config Pointer to an initialized configuration structure
none

Writes a value to up the PLL using the configuration structure. The values of
the structure are written to the port registers. See also PLL_configArgs() and
PLL_Config.

PLL_Config MyConfig;
PLL_config (yConfig);

Writes to PLL using register values passed to function

PLL_configArgs (Uint16 mode, Uint16 plimul, Uint16 pllcount);

Uintl6 mode : available values
PLL_MODE_DIV =0 (divide mode)
PLL_MODE_PLLINT =2 (pll integer multiplier mode)
PLL_MODE_PLLFRCT = 3 (pll fractional multiplier mode)

This value combines the effect of the PLLNDIV and
PLLDIV fields.

Uint16 plicount :internal lockup counter (number of PLL clock input cycles that
the PLL logic should wait before “locking” in the new
frequency.)

Uint16 plimul : PLL multiplier register field value.

none

Functions

Description Writes to the PLL using the register values passed to the function. The register
values are written to the PLL registers.

You may use literal values for the arguments; or for readability, you may use
the PLL_RMK macros to create the register values based on field values.

Clock out frequency is determined as follows:

Mode plimul final multiplier
PLL_MODE_DIV 0-14 0.5

15 0.25
PLL_MODE_PLLINT 0-14 plimul+1

15 1
PLL_MODE_PLLFRCT even (plimul+1)/2

odd plimul/4

Example PLL_configArgs (PLL_MODE_DIV, 1, 20)

PLL Module 12-5

Macros

12.4 Macros

As covered in Section 1.5, CSL offers a collection of macros to get individual
access to the peripheral registers (CLKMD) and fields.

The following is a list of macros available for the PLL module. To use them,
include “csl_pll.h".

Table 12-3. PLL CSL Macros Using Timer Port Number

(a) Macros to read/write PLL register values

Macro Syntax
PLL_RGET() Uintl6 PLL_RGET(REG)
PLL_RSET() Void PLL_RSET(REG, Uintl16 regval)

(b) Macros to read/write PLL register field values (Applicable only to registers with more than one field)

Macro Syntax
PLL_FGET() Uintlé PLL_FGET(REG, FIELD)
PLL_FSET() Void PLL_FSET(REG, FIELD, Uint16 fieldval)

(c) Macros to create value to PLL registers and fields (Applies only to registers with more than one field)

Macro Syntax

PLL_REG_RMK() Uint16 PLL_REG_RMK(fieldval_n,...fieldval 0)

Note: *Start with field values with most significant field positions:
field_n: MSB field
field_0: LSB field
*only writable fields allowed

PLL_FMK() Uint16 PLL_FMK(REG, FIELD, fieldval)

(d) Macros to read a register address

Macro Syntax
PLL_ADDR() Uintl6é PLL_ADDR(REG)

Where:

REG indicates the register, Xxx Xxx.

FIELD indicates the register field name as specified in Appendix A.
[For REG_FSET and REG_FMK, FIELD must be a writable field.
] For REG_FGET, the field must be a writable field.

regval indicates the value to write in the register (REG).

fieldval indicates the value to write in the field (FIELD).

For examples on how to use macros, refer macro sections 6.4 (DMA) and
11.4 (MCBSP).

12-6

Chapter 13

PWR Module

The CSL PWR module offers functions to control the power consumption of
different sections in the C54x device.

Topic Page
13,1 OVEIVIEW oottt ettt et e e e et e 13-2
13.2 FUNCHONS ..ttt ettt e e e e e e e e e e e

13-1

Overview

13.1 Overview

The CSL PWR module offers functions to control the power consumption of
different sections in the C54x device. The PWR module is not handle-based.

Currently, there are no macros available for the power-down module.

Table 13-1 lists the functions for use with the PWR modules that order specific
parts of the C54x to power down.

Table 13-1. PWR Functions

Function

Purpose See page ...

PWR_powerDown

Forces the DSP to enter a power-down state 13-3

13-2

13.2 Functions

PWR_powerDown

Function

Arguments

Return Value

Description

Example

Functions

This section lists the functions in the PWR module.

Forces DSP to enter power-down state

void PWR_powerDown (PWR_MODE pwrdMode, PWR_wakeMode
wakeMode)

mode pwrdMode:
(1 PWR_CPUDOWN: CPU goes idle, but peripherals keep
running. This corresponds to the IDLE #1 instruction.
0 PWR_CPUPERDOWN: Both CPU and peripherals power-
down. This corresponds to the IDLE #2 instruction.
0 PWR_CPUPERPLLDOWN: CPU, peripherals, and PLL
power-down. This corresponds to the IDLE #3 instruction.

wakeMode (Valid for all pwrdModes above)

10 PWR_ENABGIE: Wakes up with an unmasked interrupt and
jump to execute the ISR’s executed.

(0 PWR_DISABGIE: Wakes up with an unmasked interrupt and
executes the next following instruction (interrupt is not take).

None

Power-down the device in different power-down and wake-up modes. In the
C54x, power-down is achieved by executing an IDLE K instruction.

PWR_powerDown (PWR_CPUDOWN, PWR_ENABGIE);

PWR Module 13-3

Chapter 14

TIMER Module

This chapter describes the Structure and Functions for the TIMER Module.

Topic Page
141 OVEIVIEW . v ove e e e e e e e e e e e e
14.2 Configuration StrUCIUIE ...\t 't ittt et e e e 14-3 |
14.3 FUNCHONS .ttt et e e e e e e e e
|V = Vo o 14-8

14-1

Overview

14.1 Overview

Table 14-1 lists the structure for use with the TIMER modules. Table 14-2 lists
the functions for use with the TIMER modules.

Table 14-1. TIMER Configuration Structure

Structure Purpose See page...
TIMER_Config TIMER configuration structure used to setup a 14-3
timer device

Table 14-2. TIMER Functions

Function Purpose See page

TIMER_open() Opens a TIMER device

TIMER_config() Sets up the TIMER register using the configuration |14-4
structure

TIMER_configArgs() Sets up the TIMER using the register values
passed in

TIMER_start() Starts the TIMER device running

TIMER_reload() Reloads the TIMER

TIMER_stop() Stops the TIMER device running 14-7]

TIMER_reset() Resets the TIMER device

TIMER_close() Closes a previously opened TIMER device 14-4)

14-2

Configuration Structure

14.2 Configuration Structure

TIMER_Config

Structure

Members

Description

Example

This section lists the structure in the TIMER module.

TIMER configuration structure used to setup timer device

TIMER_Config
Uint16 tcr Control register value
Uint16 prd Period register value

For C5440, C541, and C5472 devices only:
[Uint tscr Timer scaler register

The TIMER configuration structure is used to setup a timer device. You create
and initialize this structure then pass its address to the TIMER_config() func-
tion. You can use literal values or the TIMER_RMK macros to create the struc-
ture member values.

TIMER_Config MyConfig = {
0x0000, /* tcr */
0x1000, /* prd */
3

TIMER_config(hTimer,&MyConfig);

TIMER Module 14-3

Functions

14.3 Functions

This section lists the functions in the TIMER module.

TIMER_close Closes previously opened TIMER device
Function void TIMER_close(
TIMER_Handle hTimer
)i
Arguments hTimer Device handle (see TIMER_open()).
Return Value None
Description Closes a previously opened timer device (see TIMER_open()).

The Following tasks are Performed:
(1 The timer IRQ event is disabled and cleared

[The timer registers are set to their default values

Example TIMER_close(hTimer);
TIMER_config Sets up TIMER register using configuration structure
Function void TIMER_config,(

TIMER_Handle hTimer,
TIMER_Config *Config

)i
Arguments hTimer Device handle, (see TIMER_open()).
config Pointer to an initialized configuration structure
Return Value None
Description Sets up the TIMER register using the configuration structure. The values of the

structure are written to the registers TCR, PRD, TIM, (see also
TIMER_configArgs() and TIMER_Config.)

Example TIMER_Config MyConfig = {
h

TIMER_config(hTimer,&MyConfig);

14-4

TIMER_
configArgs

Function
Arguments

Return Value

Description

Example

TIMER_getEventld

Function

Arguments
Return Value

Description

Example

Functions

Sets up TIMER using register values passed in

void TIMER_configArgs(
TIMER_Handle hTimer,

Uint16 tcr,
Uint16 prd);
hTimer Device handle (see TIMER_open()).
ter Control register value
prd Period register value
tim Timer register value — loaded with PRD and decremented
None

Sets up the timer using the register values passed in. The register values are
written to the timer registers. The timer control register (tcr) is written last (see
also TIMER_config()).

You may use literal values for the arguments or for readability, you may use
the TIMER_RMK macros to create the register values based on field values.

TIMER_configArgs (hTimer,
0x0010, /* tcr */
0x1000, /* prd */

Obtains IRQ event ID for TIMER device

Uintl6 TIMER_getEventld(
TIMER_Handle hTimer

);
hTimer Device handle (see TIMER_open()).
EventID IRQ Event ID for the timer device

Obtains the IRQ event ID for the timer device (see IRQ Module in Chapter
10-11).

TimerEventld = TIMER_getEventld(hTimer);
IRQ_enable(TimerEventld);

TIMER Module 14-5

Functions

TIMER_open

Function

Arguments

Return Value

Description

Example

TIMER _reload

Function

Arguments
Return Value
Description

Example

14-6

Opens TIMER device

TIMER_Handle TIMER_open(
int DevNum,
Uint16 Flags

);

DevNum Device Number:
| TIMER_DEVANY
| TIMER_DEVO
| TIMER_DEV1

Flags Open flags, logical OR of any of the following:
Q TIMER_OPEN_RESET

Device Handle Device handle

Before a TIMER device can be used, it must first be opened by this function.
Once opened, it cannot be opened again until closed (see
TIMER_close()).The return value is a unique device handle that are used in
subsequent TIMER API calls. If the open fails, INV (-1) is returned.

If the TIMER_OPEN_RESET is specified, the timer device registers are set to
their power-on defaults and any associated interrupts are disabled and
cleared.

TIMER_Handle hTimer;

hTimer = TIMER_open(TIMER_DEVO0,0);

Reloads TIMER

void TIMER_reload(
TIMER_Handle hTimer

)i

hTimer Device handle (see TIMER_open()).

None

Reloads the timer, TIM loaded with PRD and PSC loaded with TDDR value.

TIMER_reload(hTimer);

TIMER_reset

Function

Arguments
Return Value

Description

Example

TIMER_start

Function

Arguments
Return Value
Description

Example

TIMER_stop

Function

Arguments
Return Value
Description

Example

Functions

Resets TIMER device

void TIMER_reset(
TIMER_Handle hTimer

)i
hTimer Device handle (see TIMER_open()).
None

Resets the timer device. Disables and clears the interrupt event and sets the
timer registers to default values. If INV (1) is specified, all timer devices are
reset.

TIMER_reset(hTimer);
TIMER_reset(INV);

Starts TIMER device running

void TIMER_start(
TIMER_Handle hTimer

)i

hTimer Device handle (see TIMER_open()).
None

Starts the timer device running. TSS field =0.

TIMER_start(hTimer);

Stops TIMER device running

void TIMER_stop(
TIMER_Handle hTimer

);

hTimer Device handle (see TIMER_open()).
None

Stops the timer device running. TSS field =1.

TIMER_stop(hTimer);

TIMER Module 14-7

Macros

14.4 Macros

14-8

CSL offers a collection of macros to access CPU control registers and fields.
For additional details, see section 1.5.

Because the TIMER peripheral typically has two independent timers in the
C54x devices, the macros identify the correct timer through either the device
number or the handle.

(] Table 14-3 lists the TIMER macros available that use the device number
as part of the register name.

] Table 14-4 lists the TIMER macros available that use a handle.

Both Table 14-3 and Table 14—4 use the following conventions:

To use the TIMER macros, include csl_timer.h and follow these restrictions:
(1 Only writable fields are allowed

[0 Values should be a right-justified constants.

[If fieldval_n value exceeds the number of bits allowed for that field,
fieldval nis truncated accordingly

For examples that are similar to the TIMER macros, see section 6.4 inthe DMA
chapter or section 11.4 in the MCBSP chapter.

Macros

Table 14-3. TIMER CSL Macros Using Timer Port Number

(a) Macros to read/write TIMER register values

Macro Syntax
TIMER_RGET() Uintl6 TIMER_RGET(REG)
TIMER_RSET() void TIMER_RSET(REG, Uint16 regval)

(b) Macros to read/write TIMER register field values (Applicable only to registers with more than one field)

Macro Syntax
TIMER_FGET() Uint16 TIMER_FGET(REG, FIELD)
TIMER_FSET() Void TIMER_FSET(REG, FIELD, Uint16 fieldval)

(c) Macros to create value to write to TIMER registers and fields (Applies only to registers with more than
one field)

Macro Syntax
TIMER_REG_RMK() Uint16 TIMER_REG_RMK(fieldval_n,...fieldval_0)
Note: *Start with field values with most significant field
positions:

field_n: MSB field
field_0: LSB field
* only writable fields allowed

TIMER_FMK() Uintle TIMER_FMK(REG, FIELD, fieldval)

(d) Macros to read a register address

Macro Syntax

TIMER_ADDR() Uint16 TIMER_ADDR(REG)

Notes: 1) REG indicates the register, TCR, PRD, TSCR (C5440, C5441, C5472 only), or TIM.
2) FIELD indicates the register field name as specified in Appendix A.
[For REG_FSET and REG__FMK, FIELD must be a writable field.
[For REG_FGET, the field must be a writeable field.
3) regval indicates the value to write in the register (REG)
4) fieldval indicates the value to write in the field (FIELD)

TIMER Module 14-9

Macros

Table 14-4. TIMER CSL Macros Using Handle

(a) Macros to read/write TIMER register values

Macro Syntax
TIMER_RGET_H() Uintl6 TIMER_RGET_H(TIMER_Handle hTimer, REG)
TIMER_RSET() void TIMER_RSET_H(

TIMER_Handle hTimer,

REG,

uintl6 regval
)

(b) Macros to read/write TIMER register field values (Applicable only to registers with more than one field)

Macro Syntax
TIMER_FGET_H() Uintl6 TIMER_FGET_H(TIMER_Handle hTimer, REG, FIELD)
TIMER_FSET_H() Void TIMER_FSET_H(
TIMER_Handle hTimer,
REG,
FIELD,
fieldval)
(c) Macros to read a register address
Macro Syntax
TIMER_ADDR_H)() Uintl6 TIMER_ADDR_H(TIMER_Handle hTimer, REG)

Notes: 1) REG indicates the register, TCR, PRD, TSCR (C5440, C5441, C5472 only), or TIM.
2) FIELD indicates the register field name as specified in Appendix A.
[d For REG_FSET and REG__FMK, FIELD must be a writable field.
[[] For REG_FGET, the field must be a writable field.
3) regValindicates the value to write in the register (REG)
4) fieldValindicates the value to write in the field (FIELD)

14-10

Chapter 15

WDTIM Module

Lists the structure for use with the WDTIM modules.

Topic Page
15,0 OVEIVIEW . . v ove e e e e e e e e e e e e e
15.2 Configuration StrUCIUI®t 't ettt et e e e 15-3 |
15.3 FUNCHONS .\ttt e e e e e e e e e
15,4 MACIOS .ttt ettt et e e 15-8

15-1

Overview

15.1 Overview

Table 15-1 and Table 15-2 list the configuration structures and functions used
with the WDTIM module.

Table 15-1. WDTIM Configuration Structure

Structure Purpose See page...
WDTIM_Config WDTIM configuration structure used to setup a 15-3
timer device

Table 15-2. WDTIM Functions

Function Purpose See page ...
WDTIM_open Opens a WDTIM device 15-6]
WDTIM_getConfig Reads the current register values of the timer and
stores the result in the configuration structure
WDTIM_config Sets up the WDTIM register using the configuration
structure
WDTIM_configArgs Sets up the WDTIM using the register values 15-5]
passed in
WDTIM_start Starts the WDTIM device running 15-7]
WDTIM_close Closes a previously opened WDTIM device
WDTIM_service Writes to the watchdog key of the timer 15-6]

15-2

Configuration Structure

15.2 Configuration Structure

WDTIM_Config

Structure

Members

Description

Example

This section lists the structure in the WDTIM module.

WDTIM configuration structure used to setup timer device

WDTIM_Config

Uintl16 wdtcr; control

Uint16 wdtscr; secondary control
Uintl6 wdprd, period

The WDTIM configuration structure is used to setup a timer device. You create
and initialize this structure then pass its address to the WDTIM_config()
function. You can use literal values or the WDTIM_RMK macros to create the
structure member values.

WDTIM_Config MyConfig = {
0x0000, /* control */
0x1000, /* secondary control */
0x1000, /* period */
3

WDTIM_config(hWdTimer,&MyConfig);

WDTIM Module 15-3

Functions

15.3 Functions

This section lists the functions in the WDTIM module.

WDTIM_close Closes previously opened WDTIM device
Function void WDTIM_close(
WDTIM_Handle hTimer
)i
Arguments hTimer Device handle (see WDTIM_open()).
Return Value None
Description Closes a previously opened timer device (see WDTIM_open()).

The Following tasks are Performed:
(1 The timer IRQ event is disabled and cleared

[The timer registers are set to their default values

Example WDTIM_close(hTimer);
WDTIM_config Sets up WDTIM register using configuration structure
Function void WDTIM_config(

WDTIM_Handle hTimer,
WDTIM_Config *Config

)i
Arguments hTimer Device handle (see WDTIM_open()).
config Pointer to an initialized configuration structure
Return Value None
Description Sets up the WDTIM register using the configuration structure. The values of

the structure are written to the registers TCR, PRD, and TIM (see also
WDTIM_configArgs() and WDTIM_Config).

Example WDTIM_Config MyConfig = {
h

WDTIM_config(hTimer,&MyConfig);

15-4

WDTIM_confi-
gArgs

Function
Arguments

Return Value

Description

Example

Functions

Sets up WDTIM using register values passed in

void WDTIM_configArgs(
WDTIM_Handle hTimer,

Uint16 tcr,
Uint16 prd,);
hTimer Device handle (see WDTIM_open()).
Wdtcr Control register value
Wdtscr
Wdprd Period register value
None

Sets up the timer using the register values passed in. The register values are
written to the timer registers. The timer control register (tcr) is written last (see
also WDTIM_config()).

You may use literal values for the arguments or for readability, you may use
the WDTIM_RMK macros to create the register values based on field values.

WDTIM_configArgs (hTimer,
0x0010, /* tcr */
0x1000, /* prd */

WDTIM Module 15-5

Functions

WDTIM_open

Function

Arguments

Return Value

Description

Example

WDTIM_service

Function

Arguments
Return Value

Description

Example

15-6

Opens WDTIM device

WDTIM_Handle WDTIM_open(
int DevNum,
Uintl6 Flags

);

TimNum Timer Number:
Flags Open flags, logical OR of any of the following:
OWDTIM_OPEN_RESET

Device Handle Device handle

Before a WDTIM device can be used, it must first be opened by this function.
Once opened, it cannot be opened again until closed (see WDTIM_close()).
The return value is a unique device handle that are used in subsequent
WDTIM API calls. If the open fails, INV (-1) is returned.

If the WDTIM_OPEN_RESET is specified, the timer device registers are set
to their power-on defaults and any associated interrupts are disabled and
cleared.

WDTIM_Handle hTimer;

hTimer = WDTIM_open(WDTIM_DEVO0,0);

Writes to the watchdog key of the timer

void WDTIM_service(
WDTIM_Handle hTimer

)i
hTimer Device handle (see WDTIM_open()).
None

Resets the timer device. Disables and clears the interrupt event and sets the
timer registers to default values. If INV (1) is specified, all timer devices are
reset.

WDTIM_servicehTimer);
WDTIM_service(INV);

WDTIM_start Starts WDTIM device running

Function

Arguments
Return Value
Description

Example

Functions

void WDTIM_start(
WDTIM_Handle hTimer

);

hTimer Device handle (see WDTIM_open()).

None
Starts the timer device running. TSS field =0.

WDTIM_start(hTimer);

WDTIM Module

15-7

Macros

15.4 Macros

15-8

CSL offers a collection of macros to access CPU control registers and fields.
For additional details (see section 1.5).

Because the WDTIM peripheral typically has two independent timers in the
C54x devices, the macros identify the correct timer through either the device
number or the handle.

(] Table 15-3lists the WDTIM macros available that use the device number
as part of the register name.

] Table 154 lists the WDTIM macros available that use a handle.

Both Table 15-3 and Table 154 use the following conventions:

To use the WDTIM macros, include csl_timer.h and follow these restrictions:
(1 Only writable fields are allowed

[0 Values should be a right-justified constants.

[If fieldval_n value exceeds the number of bits allowed for that field,
fieldval nis truncated accordingly

For examples that are similar to the WDTIM macros, see section 6.4 in the
DMA chapter or section 11.4 in the MCBSP chapter.

Macros

Table 15-3. WDTIM CSL Macros Using Timer Port Number

(a) Macros to read/write WDTIM register values

Macro Syntax
WDTIM_RGET() Uintl6 WDTIM_RGET(REG)
WDTIM_RSET() void WDTIM_RSET(REG, Uint16 regval)

(b) Macros to read/write WDTIM register field values (Applicable only to registers with more than one field)

Macro Syntax
WDTIM_FGET() Uint16 WDTIM_FGET(REG, FIELD)
WDTIM_FSET() void WDTIM_FSET(REG, FIELD, Uint16 fieldval)

(c) Macros to create value to write to WDTIM registers and fields (Applicable only to registers with more than
one field)

Macro Syntax

WDTIM_REG_RMK() Uint16 WDTIM_REG_RMK(fieldval_n,...fieldval_0)

Note: *Start with field values with most significant field
positions:
field_n: MSB field
field_0: LSB field
* only writable fields allowed

WDTIM_FMK() Uintl6 WDTIM_FMK(REG, FIELD, fieldval)

(d) Macros to read a register address

Macro Syntax

WDTIM_ADDR() Uintl6 WDTIM_ADDR(REG)

Notes: 1) REG indicates the register, TCR, PRD, TSCR (C5440, C5441, C5472 only), or TIM.
2) FIELD indicates the register field name as specified in Appendix A.
[For REG_FSET and REG__FMK, FIELD must be a writable field.
[For REG_FGET, the field must be a readable field.
3) regval indicates the value to write in the register (REG)
4) fieldval indicates the value to write in the field (FIELD)

WDTIM Module 15-9

Macros

Table 15-4. WDTIM CSL Macros Using Handle

(a) Macros to read/write WDTIM register values

Macro

Syntax

WDTIM_RGET_H()
WDTIM_RSET_H()

Uintl6 WDTIM_RGET_H(WDTIM_Handle hTimer, REG)

void WDTIM_RSET_H(
WDTIM_Handle hTimer,
REG,
uintl6 regval

)

(b) Macros to read/write WDTIM register field values (Applicable only to registers with more than one field)

Macro

Syntax

WDTIM_FGET_H()
WDTIM_FSET_H()

Uintl6 WDTIM_FGET_H(WDTIM_Handle hTimer, REG, FIELD)

void WDTIM_FSET_H(
WDTIM_Handle hTimer,
REG,
FIELD,
fieldval)

(c) Macros to read a register address

Macro

Syntax

WDTIM_ADDR_H()

Uint16 WDTIM_ADDR_H(WDTIM_Handle hTimer, REG)

Notes: 1) REG indicates the register WDTCR, WDTSCR, WDPRD, or WDTIM.
WDTIM is not supported in _RSET/_RSET_H/_FSET/_FSET_H/_RMK macros because these macros apply
only to writable registers (WDTIM is read-only)

2) FIELD indicates the register field name as specified in Appendix A.
[For REG_FSET_H and REG__FMK_H, FIELD must be a writable field.
[For REG_FGET_H, the field must be a readable field.

3) regValindicates the value to write in the register (REG)

4) fieldVval indicates the value to write in the field (FIELD)

15-10

Appendix A

Peripheral Registers

This appendix provides symbolic constants for the peripheral registers.

Topic Page
Al DMAREGISIEIS ..ottt e A-2 |
A.2 Multichannel BSP (McBSP) Registers coovvvun... A
A.3 Clock Mode Register (CLKMD)ouirtieiiie e, Al35 |
A4 TIMEr REQISIEISttt e e N-37 |
A5 Watchdog Timer Registers (C5440 and C5441) A-@
A.6 Software Wait-State Registers i, A
A.7 Bank-Switching Control Register (BSCR) A 45 |
A.8 General Purpose /O REJISErSovirieiiee e Al49 |

A-1

DMA Registers

A.1 DMA Registers

A.1.1 DMA Channel Priority and Enable Control Register (DMPREC)

Figure A-1. DMA Channel Priority and Enable Control Register (DMPREC)

15 14 13 8 7 6 5 0
| FREE [AUTOIXT | DPRC | INTOSEL | DE
RW-0 R/W-0 RIW=0 R/W-0 RIW=0

T Only available on specific devices.

Note:

R/W-x = Read/Write-Reset value

Table A—-1. DMA Channel Priority and Enable Control Register (DMPREC)
Field Values (DMA_DMPREC field _symval)

Bit

field symval

Value

Description

15

FREE
OFF
ON

Controls the behavior of the DMA controller during emulation.
DMA transfers are suspended when the emulator stops

DMA transfers continue even during emulation stop

14

AUTOIX

USE_DMAO

USE_CHAN

For C5409A, C54010A, C5416, C5440, and C5441: Selects
which DMA global reload registers are used to reload the DMA
channels.

All DMA channels use DMGSAO, DMGDAO, DMGCRO, and
DMGFRO as their reload registers.

Each DMA channel uses its local set of reload registers during
autoinitialization mode.

13-8

DPRC OF(value)

0-63

DMA channel priority control bit. Each bit specifies the priority of
a DMA channel. When the bitis cleared to 0, the channel is a low
priority; when the bit is set to 1, the channel is a high priority.

INTOSEL

Interrupt multiplex control bits. The INTOSEL bits control how
the DMA interrupts are assigned in the interrupt vector table and
IMR/IMF registers. The effects of this field on the operation are
device-specific.

NONE
CH2_CH3

CHO_TO_CH3

00
01
10

11

For C5402, C5409, C5409A, C5440, C5441, and C5472:
Interrupts available: Timer 1, McBSP 1 RINT/XINT
Interrupts available: Timer 1, DMA channel 2, DMA channel 3

Interrupts available: DMA channel 0, DMA channel 1,
DMA channel 2, DMA channel 3

Reserved

DMA Registers

Table A—1. DMA Channel Priority and Enable Control Register (DMPREC)
Field Values (DMA _DMPREC field symval) (Continued)

Bit field symval Value Description
INTOSEL For C5410, C5416, C5420, and C5421:
CH4_CH5 00 Interrupts available: McBSP 0 RINT/XINT, McBSP 1 RINT/

XINT, McBSP 2 RINT/XINT, DMA channel 4, DMA channel 5

CH2 _TO _CH5 01 Interrupts available: McBSP 0 RINT/XINT, McBSP 2 RINT/
XINT, DMA channel 2, DMA channel 3, DMA channel 4,
DMA channel 5

CHO_TO _CH5 10 Interrupts available: McBSP 0 RINT/XINT, DMA channel O,
DMA channel 1, DMA channel 2, DMA channel 3, DMA chan-
nel 4, DMA channel 5

11 Reserved

5-0 DE OF(value) 0-63 DMA channel enable bit. Each bit enables a DMA channel.
When the bit is cleared to 0, the channel is disabled; when the
bit is set to 1, the channel is enabled.

A.1.2 DMA Channel n Sync Select and Frame Count Register (DMSFCn)

Figure A-2. DMA Channel n Sync Select and Frame Count Register (DMSFCn)

15 12 1 10 8 7 0
| DSYN | DBLW | reserved | FRAMECNT
RIW-0 R/W-0 R/W-0 RIW-0

Note: R/W-x = Read/Write-Reset value

Table A—2. DMA Channel n Sync Select and Frame Count Register (DMSFCn)
Field Values (DMA_DMSFC field_symval)

Bit field symval Value Description

15-12 DSYN DMA sync event. Specifies which sync event is used to initiate
DMA transfers for the corresponding DMA channel. The effects
of this field on the operation are device-specific.

For C5402:
NONE 0000 No sync event (nonsynchronization operation)
REVTO 0001 McBSP 0 receive event (REVTO)
XEVTO 0010 McBSP 0 transmit event (XEVTO)

0011 Reserved
0100 Reserved

Peripheral Registers A-3

DMA Registers

Table A—2. DMA Channel n Sync Select and Frame Count Register (DMSFCn)
Field Values (DMA_DMSFC field symval) (Continued)

Bit field symval Value Description
DSYN REVT1 0101 McBSP 1 receive event (REVT1)
XEVT1 0110 McBSP 1 transmit event (XEVT1)
0111- Reserved
1100
TINTO 1101 Timer O interrupt event
INT3 1110 External interrupt 3 event
TINT1 1111 Timer 1 interrupt event
For C5409, C5409A, and C5472:
NONE 0000 No sync event (nonsynchronization operation)
REVTO 0001 McBSP 0 receive event (REVTO)
XEVTO 0010 McBSP 0 transmit event (XEVTO)
REVT2 0011 McBSP 2 receive event (REVT2)
XEVT2 0100 McBSP 2 transmit event (XEVT2)
REVT1 0101 McBSP 1 receive event (REVTL)
XEVT1 0110 McBSP 1 transmit event (XEVT1)
0111- Reserved
1100
TINTO 1101 Timer interrupt event
INT3 1110 External interrupt 3 event
For C5410, C5410A, and C5416:
NONE 0000 No sync event (nonsynchronization operation)
REVTO 0001 McBSP 0 receive event (REVTO)
XEVTO 0010 McBSP 0 transmit event (XEVTO)
REVT2 0011 McBSP 2 receive event (REVT2)
XEVT2 0100 McBSP 2 transmit event (XEVT2)
REVT1 0101 McBSP 1 receive event (REVTL)
XEVT1 0110 McBSP 1 transmit event (XEVT1)
REVTAO 0111 McBSP 0 receive event — ABIS mode (REVTAO)
XEVTAO 1000 McBSP 0 transmit event — ABIS mode (XEVTAO)
REVTA2 1001 McBSP 2 receive event — ABIS mode (REVTA2)
XEVTA2 1010 McBSP 2 transmit event — ABIS mode (XEVTA2)

DMA Registers

Table A—2. DMA Channel n Sync Select and Frame Count Register (DMSFCn)
Field Values (DMA_DMSFC field_symval) (Continued)

Bit field symval Value Description
DSYN REVTAl1 1011 McBSP 1 receive event — ABIS mode (REVTAL)

XEVTAL 1100 McBSP 1 transmit event — ABIS mode (XEVTAL)
TINTO 1101 Timer interrupt event
INT3 1110 External interrupt 3 event

1111 Reserved

For C5420 and C5421:

NONE 0000 No sync event (nonsynchronization operation)
REVTO 0001 McBSP 0 receive event (REVTO)
XEVTO 0010 McBSP 0 transmit event (XEVTO)
REVT2 0011 McBSP 2 receive event (REVT2)
XEVT2 0100 McBSP 2 transmit event (XEVT2)
REVT1 0101 McBSP 1 receive event (REVT1)
XEVT1 0110 McBSP 1 transmit event (XEVT1)
FIFO_REVT 0111 FIFO receive buffer not empty event
FIFO_XEVT 1000 FIFO transmit buffer not full event

1001- Reserved

1111

For C5440 and C5441:

NONE 0000 No sync event (nonsynchronization operation)
REVTO 0001 McBSP 0 receive event (REVTO)
XEVTO 0010 McBSP 0 transmit event (XEVTO)
REVT2 0011 McBSP 2 receive event (REVT2)
XEVT2 0100 McBSP 2 transmit event (XEVT2)
REVT1 0101 McBSP 1 receive event (REVT1)
XEVT1 0110 McBSP 1 transmit event (XEVT1)

0111- Reserved

1100

Peripheral Registers A-5

DMA Registers

Table A—2. DMA Channel n Sync Select and Frame Count Register (DMSFCn)
Field Values (DMA_DMSFC field symval) (Continued)

Bit field symval Value Description
11 DBLW Double-word mode enable bit.
OFF 0 Single-word mode. DMA transfers 16-bit words.
ON 1 Double-word mode. Allows the DMA to transfer 32-bit words

in any index mode. Two consecutive 16-bit transfers are initi-
ated and the source and destination addresses are automati-
cally updated following each transfer.

10-8 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

7-0 FRAMECNT OF(value) 0-255 Frame count. Specifies the number of frames to be included in
a block transfer. The frame count is initialized to 1 less than the
desired number of frames.

A.1.3 DMA Channel n Transfer Mode Control Register (DMMCRn)
Figure A-3. DMA Channel n Transfer Mode Control Register (DMMCRn)

15 14 13 12 11 10 8 7 6 5 4 2 1 0
| AuToINIT | DINM [IMOD | cTMOD | staxst | sIND | DMs |pLaxst [DIND | DMD |
RW-0 R/MW-0 RMW-0 R/MW-0 R/MW-0 RIW-0 R/MW-0 R/W-0 RW-0 R/W-0

t Only available on specific devices with DMA extended data memory.

Note: R/W-x = Read/Write-Reset value

Table A—3. DMA Channel n Transfer Mode Control Register (DMMCRn) Field Values
(DMA_DMMCR_field_symval)

Bit field symval Value Description
15 AUTOINIT DMA autoinitialization mode enable bit.
OFF 0 Autoinitialization is disabled.
ON 1 Autoinitialization is enabled.
14 DINM DMA interrupt generation mask bit.
OFF 0 No interrupt is generated
ON 1 Interrupt is generated based on IMOD bit
13 IMOD DMA interrupt generation mode bit operates in

conjunction with CTMOD bit.
In ABU mode (CTMOD = 1):
FULL_ONLY 0 Interrupt at buffer full only.

HALF_AND_FULL 1 Interrupt at half full buffer and buffer full.

DMA Registers

Table A-3. DMA Channel n Transfer Mode Control Register (DMMCRn) Field Values
(DMA_DMMCR_field_symval) (Continued)

Bit field symval Value Description
IMOD In multiframe mode (CTMOD = 0):
BLOCK_ONLY 0 Interrupt at completion of block transfer.
FRAME_AND_BLOCK 1 Interrupt at end of frame and end of block.
12 CTMOD DMA transfer counter mode control bit.
MULTIFRAME 0 Multiframe mode
ABU 1 ABU mode
11 SLAXS For devices with DMA extended data memory:
DMA source space select bit.
OFF 0 No external access
ON 1 External access
10-8 SIND DMA source address transfer index mode bit.
NOMOD 000 No modification
POSTINC 001 Postincrement
POSTDEC 010 Postdecrement
DMIDX0 011 Postincrement with index offset (DMIDX0)
DMIDX1 100 Postincrement with index offset (DMIDX1)
DMFRIO 101 Postincrement with index offset (DMIDXO0 and
DMFRIO)
DMFRI1 110 Postincrement with index offset (DMIDX1 and
DMFRIL)
111 Reserved
7-6 DMS DMA source address space select bit.
PROGRAM 00 Program space
DATA 01 Data space
10 10 1/0O space
11 Reserved
5 DLAXS For devices with DMA extended data memory:
DMA destination space select bit.
OFF 0 No external access
ON 1 External access

Peripheral Registers A-7

DMA Registers

Table A-3. DMA Channel n Transfer Mode Control Register (DMMCRn) Field Values
(DMA_DMMCR _field_symval) (Continued)

Bit field symval Value Description
4-2 DIND DMA destination address transfer index mode bit.
NOMOD 000 No modification
POSTINC 001 Postincrement
POSTDEC 010 Postdecrement
DMIDXO0 011 Postincrement with index offset (DMIDX0)
DMIDX1 100 Postincrement with index offset (DMIDX1)
DMFRIO 101 Postincrement with index offset (DMIDXO0 and
DMFRIO)
DMFRI1 110 Postincrement with index offset (DMIDX1 and
DMFRIL)
111 Reserved
1-0 DMD DMA destination address space select bit.
PROGRAM 00 Program space
DATA 01 Data space
10 10 I/O space

11 Reserved

A.1.4 DMA Channel n Source Address Register (DMSRCn)

Figure A—4. DMA Channel n Source Address Register (DMSRCn)

15 0

| Source Address (SRC)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—4. DMA Channel n Source Address Register (DMSRCn) Field Values
(DMA_DMSRC_field_symval)

Bit field symval Value Description

15-0 SRC OF(value) 0-FFFFh Specifies the 16 least-significant bits of the extended address for the
source location. The source address register is initialized prior to
starting the DMA transfer in software, and updated automatically
during transfers by the DMA controller.

DMA Registers

A.1.5 DMA Global Source Address Reload Register (DMGSA)
Figure A-5. DMA Global Source Address Reload Register (DMGSA)

15
| Global Source Address (GSA)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—5. DMA Global Source Address Reload Register (DMGSA) Field Values
(DMA_DMGSA field _symval)

Bit field symval Value Description
15-0 GSA OF(value) 0-FFFFh A 16-bit source address used to reload DMSRCn.

A.1.6 DMA Source Program Page Address Register (DMSRCP)

Figure A—6. DMA Source Program Page Address Register (DMSRCP)

15 7 6 0

| reserved | Source Program Page Address (PAGE) |
R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—6. DMA Source Program Page Address Register (DMSRCP) Field Values
(DMA_DMSRCP_field_symval)

Bit field symval Value Description
Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

15-7 reserved

6-0 PAGE OF(value) 0-127 Specifies the 7 most-significant bits of the extended program page
address for the source location.

Peripheral Registers A-9

DMA Registers

A.1.7 DMA Channel n Destination Address Register (DMDSTn)

Figure A—7. DMA Channel n Destination Address Register (DMDSTn)

15 0

| Destination Address (DST)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—7. DMA Channel n Destination Address Register (DMDSTn) Field Values
(DMA_DMDST field_symval)

Bit field symval Value Description

15-0 DST OF(value) O-FFFFh Specifies the 16 least-significant bits of the extended address for the
destination location. The destination address register is initialized
prior to starting the DMA transfer in software, and updated
automatically during transfers by the DMA controller.

A.1.8 DMA Global Destination Address Reload Register (DMGDA)

Figure A-8. DMA Global Destination Address Reload Register (DMGDA)

15 0

| Global Destination Address (GDA)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—-8. DMA Global Destination Address Reload Register (DMGDA) Field Values
(DMA_DMGDA _field_symval)

Bit field symval Value Description

15-0 GDA OF(value) O0-FFFFh A 16-bit destination address used to reload DMDSTn.

A-10

DMA Registers

A.1.9 DMA Destination Program Page Address Register (DMDSTP)

Figure A-9. DMA Destination Program Page Address Register (DMDSTP)

15 7 6 0
| Destination Program Page Address (PAGE) |

| reserved
R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-9. DMA Destination Program Page Address Register (DMDSTP) Field Values
(DMA_DMDSTP_field _symval)

Bit field symval Value Description
Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

15-7 reserved

6-0 PAGE OF(value) 0-127 Specifies the 7 most-significant bits of the extended program page
address for the destination location.

A.1.10 DMA Channel n Element Count Register (DMCTRn)

Figure A-10. DMA Channel n Element Count Register (DMCTRn)

15
| Element Count (ELECNT)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-10. DMA Channel n Element Count Register (DMCTRn) Field Values
(DMA_DMCTR_field _symval)

Bit field symval Value Description

15-0 ELECNT OF(value) O-FFFFh A 16-bit element counter that keeps track of the number of DMA
transfers to be performed. The element count register should be
initialized to 1 less than the desired number of element transfers.

Peripheral Registers A-11

DMA Registers

A.1.11 DMA Global Element Count Reload Register (DMGCR)

Figure A-11. DMA Global Element Count Reload Register (DMGCR)

15 0

| Element Count (ELECNT)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-11. DMA Global Element Count Reload Register (DMGCR) Field Values
(DMA_DMGCR_field _symval)

Bit field symval Value Description

15-0 ELECNT OF(value) 0O-FFFFh A 16-bit unsigned element count value used to reload DMCTR.

A.1.12 DMA Global Frame Count Reload Register (DMGFR)

Figure A-12. DMA Global Frame Count Reload Register (DMGFR)

15 8 7 0

| reserved | Frame Count (FRAMECNT)

R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-12. DMA Global Frame Count Reload Register (DMGFR) Field Values
(DMA_DMGFR_field_symval)

Bit field symval Value Description

15-8 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

7-0 FRAMECNT OF(value) 0-FFFFh An 8-bit unsigned frame count value used to reload the Frame
Count field of DMSFCn.

A-12

DMA Registers

A.1.13 DMA Element Address Index Register 0 (DMIDXO0)

Figure A-13. DMA Element Address Index Register 0 (DMIDXO0)

15 0
| Element Index (ELEIDX)
RIW-0

Note: R/W-x = Read/Write-Reset value

Table A-13. DMA Element Address Index Register O (DMIDXO0) Field Values
(DMA_DMIDXO0 _field symval)

Bit field symval Value Description

15-0 ELEIDX OF(value) O-FFFFh A 16-bit unsigned index value used to modify the source or
destination address following the transfer of each element.

A.1.14 DMA Element Address Index Register 1 (DMIDX1)

Figure A—14. DMA Element Address Index Register 1 (DMIDX1)

15 0
| Element Index (ELEIDX)
RIW-0

Note: R/W-x = Read/Write-Reset value

Table A-14. DMA Element Address Index Register 1 (DMIDX1) Field Values
(DMA_DMIDX1_field_symval)

Bit field symval Value Description

15-0 ELEIDX OF(value) O-FFFFh A 16-bit unsigned index value used to modify the source or
destination address following the transfer of each element.

Peripheral Registers A-13

DMA Registers

A.1.15 DMA Frame Address Index Register 0 (DMFRIO)

Figure A—15. DMA Frame Address Index Register 0 (DMFRIO)

15 0

| Frame Index (FRAMEIDX)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-15. DMA Frame Address Index Register 0 (DMFRIO) Field Values
(DMA_DMFRIO_field_symval)

Bit field symval Value Description

15-0 FRAMEIDX OF(value) 0-FFFFh A 16-bit unsigned index value used to modify the source or
destination address following the completion of blocks (or
frames) of element transfers. When both element and frame
indexes are used, the address is modified by the element index
after each transfer and then modified by the frame index at the
end of each frame.

A.1.16 DMA Frame Address Index Register 1 (DMFRI1)

Figure A-16. DMA Frame Address Index Register 1 (DMFRI1)

15 0

| Frame Index (FRAMEIDX)

R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-16. DMA Frame Address Index Register 1 (DMFRI1) Field Values
(DMA_DMFRI1_field_symval)

Bit field symval Value Description

15-0 FRAMEIDX OF(value) 0-FFFFh A 16-bit unsigned index value used to modify the source or
destination address following the completion of blocks (or
frames) of element transfers. When both element and frame
indexes are used, the address is modified by the element index
after each transfer and then modified by the frame index at the
end of each frame.

A-14

DMA Registers

A.1.17 DMA Global Extended Source Data Page Register (DMSRCDP)

Figure A-17. DMA Global Extended Source Data Page Register (DMSRCDP)

15 7 6 0
| reserved | Extended Source Data Page (DMSRCDP) |
R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-17. DMA Global Extended Source Data Page Register (DMSRCDP)
Field Values (DMA_DMSRCDP _field symval)

Bit field symval Value Description

15-7 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

6-0 DMSRCDP OF(value) 0-127 Specifies 1 of the 128 extended source data pages.

A.1.18 DMA Global Extended Destination Data Page Register (DMDSTDP)

Figure A-18. DMA Global Extended Destination Data Page Register (DMDSTDP)

15 7 6 0
| reserved | Extended Destination Data Page (DMDSTDP) |
R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-18. DMA Global Extended Destination Data Page Register (DMDSTDP)
Field Values (DMA_DMDSTDP _field symval)

Bit field symval Value Description

15-7 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

6-0 DMDSTDP OF(value) 0-127 Specifies 1 of the 128 extended destination data pages.

Peripheral Registers A-15

Multichannel BSP (McBSP) Registers

A.2 Multichannel BSP (McBSP) Registers

A.2.1 McBSP Serial Port Control Register (SPCR1)

Figure A—19. McBSP Serial Port Control Register 1 (SPCR1)

15 14 13 12 11 10 8
| b8 | RJUST | CLKSTP | reserved
RIW-0 RIW-0 RIW-0 RIW-0
7 6 5 4 3 2 1 0
DXENA ABIST RINTM RSYNCERR | RFULL RRDY RRST
RIW-0 RIW-0 RIW-0 RIW-0 R-0 R-0 RIW-0

t Only available on specific devices.

Note: R/W-x = Read/Write-Reset value

Table A—19. McBSP Serial Port Control Register 1 (SPCR1) Field Values
(MCBSP_SPCR1_field_symval)

Bit field symval Value Description
15 DLB Digital loop back mode enable bit.
OFF 0 Digital loop back mode is disabled.
ON 1 Digital loop back mode is enabled.
14-13 RJUST Receive sign-extension and justification mode bit.
RZF 00 Right-justify and zero-fill MSBs in DRR[1, 2].
RSE 01 Right-justify and sign-extend MSBs in DRR[1, 2].
LZF 10 Left-justify and zero-fill LSBs in DRR[1, 2].
11 Reserved
12-11 CLKSTP Clock stop mode bit. In SPI mode, operates in conjunction with
CLKXP bit of Pin Control Register (PCR).
DISABLE 0x Clock stop mode is disabled. Normal clocking for non-SPI
mode.
In SPI mode with data sampled on rising edge (CLKXP =0) :
NODELAY 10 Clock starts with rising edge without delay.
DELAY 11 Clock starts with rising edge with delay.
In SPI mode with data sampled on falling edge (CLKXP =1) :
NODELAY 10 Clock starts with falling edge without delay.
DELAY 11 Clock starts with falling edge with delay.

A-16

Multichannel BSP (McBSP) Registers

Table A—19. McBSP Serial Port Control Register 1 (SPCR1) Field Values
(MCBSP_SPCR1_field_symval) (Continued)

Bit field symval Value Description
10-8 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.
7 DXENA DX enabler bit.
OFF 0 DX enabler is off.
ON 1 DX enabler is on.
6 ABIS For C5410, C5410A, and C5416: A-bis enable mode bit.
DISABLE 0 A-bis mode is disabled.
ENABLE 1 A-bis mode is enabled.
5-4 RINTM Receive interrupt (RINT) mode bit.
RRDY 00 RINT is driven by RRDY (end-of-word) and end-of-frame in
A-bis mode.
EOS 01 RINT is generated by end-of-block or end-of-frame in
multichannel operation.
FRM 10 RINT is generated by a new frame synchronization.
RSYNCERR 11 RINT is generated by RSYNCERR.
3 RSYNCERR Receive synchronization error bit.
NO 0 No synchronization error is detected.
YES 1 Synchronization error is detected.
2 RFULL Receive shift register full bit.
NO 0 RBR[1, 2] is not in overrun condition.
YES 1 DRR[1, 2] is not read, RBR[1, 2] is full, and RSR[1, 2] is also
full with new word.
1 RRDY Receiver ready bit.
NO 0 Receiver is not ready.
YES 1 Receiver is ready with data to be read from DRR[1, 2].
0 RRST Receiver reset bit resets or enables the receiver.
DISABLE 0 The serial port receiver is disabled and in reset state.
ENABLE 1 The serial port receiver is enabled.

Peripheral Registers A-17

Multichannel BSP (McBSP) Registers

A.2.2 McBSP Serial Port Control Register 2 (SPCR2)

Figure A-20. McBSP Serial Port Control Register 2 (SPCR2)

15 10 9 8
| reserved | FREE SOFT
RIW-0 RIW-0 RIW-0
7 6 5 4 3 2 1 0
FRST GRST XINTM XSYNCERR' [XEMPTY | XRDY XRST
RIW-0 RIW-0 RIW-0 RIW-0 R-0 R-0 RIW-0

T caution: Writing a 1 to this bit sets the error condition; thus, it is mainly used for testing purposes or if this operation is desired.

Note: R/W-x = Read/Write-Reset value

Table A—20. MCcBSP Serial Port Control Register 2 (SPCR?2) Field Values
(MCBSP_SPCRZ2_field_symval)

Bit field symval Value Description
15-10 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.
9 FREE Free-running enable mode bit.
NO 0 Free-running mode is disabled.
YES 1 Free-running mode is enabled.
8 SOFT Soft bit enable mode bit.
NO 0 Soft mode is disabled.
YES 1 Soft mode is enabled.
7 FRST Frame-sync generator reset.
RESET 0 Frame-synchronization logic is reset. Frame-sync signal (FSG)
is not generated by the sample-rate generator.
FSG 1 Frame-sync signal (FSG) is generated after (FPER + 1)

number of CLKG clocks; that is, all frame counters are loaded
with their programmed values.

6 GRST Sample-rate generator reset.
RESET 0 Sample-rate generator is reset.
CLKG 1 Sample-rate generator is taken out of reset. CLKG is driven as

per programmed value in sample-rate generator registers
(SRGRI1, 2)).

A-18

Multichannel BSP (McBSP) Registers

Table A-20. McBSP Serial Port Control Register 2 (SPCRZ2) Field Values
(MCBSP_SPCR2_field_symval) (Continued)

Bit field symval Value Description
5-4 XINTM Transmit interrupt (XINT) mode bit.
XRDY 00 XINT is driven by XRDY (end-of-word) and end-of-frame in
A-bis mode.
EOS 01 XINT is generated by end-of-block or end-of-frame in multi-
channel operation.

FRM 10 XINT is generated by a new frame synchronization.
XSYNCERR 11 XINT is generated by XSYNCERR.

3 XSYNCERR Transmit synchronization error bit.
NO 0 No synchronization error is detected.
YES 1 Synchronization error is detected.

2 XEMPTY Transmit shift register empty bit.
YES 0 XSR[1, 2] is empty.
NO 1 XSR[1, 2] is not empty.

1 XRDY Transmitter ready bit.
NO 0 Transmitter is not ready.
YES 1 Transmitter is ready for new data in DXR[1, 2].

0 XRST Transmitter reset bit resets or enables the transmitter.
DISABLE 0 Serial port transmitter is disabled and in reset state.
ENABLE 1 Serial port transmitter is enabled.

Peripheral Registers A-19

Multichannel BSP (McBSP) Registers

A.2.3 McBSP Pin Control Register (PCR)

Figure A-21. McBSP Pin Control Register (PCR)

15 14 13 12 11 10 9 8
| reserved | xI0EN [RIOEN | Fsxv | FSRM CLKXM CLKRM
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0

7 6 5 3 2 1 0
SCLKMET | CLKS_STAT | DX_STAT | DR_STAT FSXP FSRP CLKXP CLKRP
RIW-0 R-0 R-0 R-0 RIW-0 RIW-0 RIW-0 RIW-0

T Only available on specific devices with 128-channel selection capability.

Note: R/W-x = Read/Write-Reset value

Table A-21. MCcBSP Pin Control Register (PCR) Field Values
(MCBSP_PCR_field_symval)

Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

Transmit general-purpose I/O mode only when transmitter is
disabled (XRST =0 in SPCR2).

DX, FSX, and CLKX pins are configured as serial port pins and
do not function as general-purpose 1/O pins.

DX pin is configured as general-purpose output pin; FSX and
CLKX pins are configured as general-purpose I/O pins. These
serial port pins do not perform serial port operations.

Receive general-purpose 1/0 mode only when receiver is
disabled (RRST =0 in SPCR1).

DR, FSR, CLKR, and CLKS pins are configured as serial port
pins and do not function as general-purpose 1/O pins.

DR and CLKS pins are configured as general-purpose input
pins; FSR and CLKR pins are configured as general-purpose
I/0 pins. These serial port pins do not perform serial port

Transmit frame-synchronization mode bit.

Frame-synchronization signal is derived from an external

Bit field symval Value Description
15-14 reserved
13 XIOEN
SP 0
GPIO 1
12 RIOEN
SP 0
GPIO 1
operations.
11 FSXM
EXTERNAL 0
source.
INTERNAL 1

Frame-synchronization signal is determined by FSGM bit in
SRGR2.

A-20

Multichannel BSP (McBSP) Registers

Table A-21. McBSP Pin Control Register (PCR) Field Values
(MCBSP_PCR _field_symval) (Continued)

Bit

field

symval

Value Description

10

FSRM

EXTERNAL

INTERNAL

Receive frame-synchronization mode bit.

Frame-synchronization signal is derived from an external
source. FSR is an input pin.

Frame-synchronization signal is generated internally by the
sample-rate generator. FSR is an output pin, except when
GSYNC =1 in SRGR2.

9

CLKXM

INPUT
OUTPUT

Transmitter clock mode bit.
CLKX is an input pin and is driven by an external clock.

CLKX s an output pin and is driven by the internal sample-rate
generator.

INPUT

OUTPUT

In SPI mode when CLKSTP in SPCR1 is a non-zero value:

McBSP is a slave and clock (CLKX) is driven by the SPI master
in the system. CLKR is internally driven by CLKX.

McBSP is a master and generates the clock (CLKX) to drive
its receive clock (CLKR) and the shift clock of the
SPI-compliant slaves in the system.

8

CLKRM

INPUT
OUTPUT

Receiver clock mode bit.
Digital loop back mode is disabled (DLB = 0 in SPCR1):
CLKR is an input pin and is driven by an external clock.

CLKR s an output pin and is driven by the internal sample-rate
generator.

INPUT

OUTPUT

Digital loop back mode is enabled (DLB = 1 in SPCR1):

Receive clock (not the CLKR pin) is driven by transmit clock
(CLKX) that is based on CLKXM bit. CLKR pin is in
high-impedance state.

CLKR is an output pin and is driven by the transmit clock. The
transmit clock is based on CLKXM bit.

7

SCLKME

NO

BCLK

For devices with 128-channel selection capability:
Sample-rate clock mode extended enable bit.

BCLKR and BCLKX are not used by the sample-rate
generator for external synchronization.

BCLKR and BCLKX are used by the sample-rate generator for
external synchronization.

Peripheral Registers A-21

Multichannel BSP (McBSP) Registers

Table A-21. McBSP Pin Control Register (PCR) Field Values
(MCBSP_PCR_field_symval) (Continued)

Bit field symval Value Description
6 CLKSSTAT CLKS pin status reflects value on CLKS pin when configured
as a general-purpose input pin.
0 0 CLKS pin reflects a logic low.
1 1 CLKS pin reflects a logic high.
5 DXSTAT DX pin status reflects value driven to DX pin when configured
as a general-purpose output pin.
0 0 DX pin reflects a logic low.
1 1 DX pin reflects a logic high.
4 DRSTAT DR pin status reflects value on DR pin when configured as a
general-purpose input pin.
0 0 DR pin reflects a logic low.
1 1 DR pin reflects a logic high.
3 FSXP Transmit frame-synchronization polarity bit.
ACTIVEHIGH 0 Transmit frame-synchronization pulse is active high.
ACTIVELOW 1 Transmit frame-synchronization pulse is active low.
2 FSRP Receive frame-synchronization polarity bit.
ACTIVEHIGH 0 Receive frame-synchronization pulse is active high.
ACTIVELOW 1 Receive frame-synchronization pulse is active low.
1 CLKXP Transmit clock polarity bit.
RISING 0 Transmit data sampled on rising edge of CLKX.
FALLING 1 Transmit data sampled on falling edge of CLKX.
0 CLKRP Receive clock polarity bit.
FALLING 0 Receive data sampled on falling edge of CLKR.
RISING 1 Receive data sampled on rising edge of CLKR.

A-22

Multichannel BSP (McBSP) Registers

A.2.4 Receive Control Register 1 (RCR1)

Figure A-22. Receive Control Register 1 (RCR1)

15 14 8 7 5 4 0
| reserved | RFRLEN1 | RWDLEN1 reserved
R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-22. Receive Control Register 1 (RCR1) Field Values
(MCBSP_RCRI1_field symval)

Bit field symval Value Description

15 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

14-8 RFRLEN1 OF(value) 0-127 Specifies the number of words (length) in the receive frame.

7-5 RWDLEN1 Specifies the number of bits (length) in the receive word.
8BIT 000 Receive word length is 8 bits.
12BIT 001 Receive word length is 12 bits.
16BIT 010 Receive word length is 16 bits.
20BIT 011 Receive word length is 20 bits.
24BIT 100 Receive word length is 24 bits.
32BIT 101 Receive word length is 32 bits.

110 Reserved
111 Reserved

4-0 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

Peripheral Registers A-23

Multichannel BSP (McBSP) Registers

A.2.5 Receive Control Register 2 (RCR2)

Figure A-23. Receive Control Register 2 (RCR2)

15 14 8 7 5 4 3 2 1 0
|RPHASE | RFRLEN2 | RWDLEN2 | RCOMPAND | RFIG | RDATDLY
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-23. Receive Control Register 2 (RCR2) Field Values
(MCBSP_RCRZ2_field_symval)

Bit field symval Value Description
15 RPHASE Receive phases bit.
SINGLE 0 Single-phase frame
DUAL 1 Dual-phase frame
14-8 RFRLEN2 OF(value) 0-127 Specifies the number of words (length) in the receive frame.
7-5 RWDLEN2 Specifies the number of bits (length) in the receive word.
8BIT 000 Receive word length is 8 bits.
12BIT 001 Receive word length is 12 hits.
16BIT 010 Receive word length is 16 bits.
20BIT 011 Receive word length is 20 bits.
24BIT 100 Receive word length is 24 bits.
32BIT 101 Receive word length is 32 bits.

110 Reserved
111 Reserved

4-3 RCOMPAND Receive companding mode. Modes other than 00 are only

enabled when RWDLEN([1, 2] bit is 000 (indicating 8-bit data).

MSB 00 No companding, data transfer starts with MSB first.

8BITLSB 01 No companding, 8-bit data transfer starts with LSB first.

ULAW 10 Compand using p-law for receive data.

ALAW 11 Compand using A-law for receive data.

2 RFIG Receive frame ignore bit.

YES 0 Receive frame-synchronization pulses after the first pulse
restarts the transfer.

NO 1 Receive frame-synchronization pulses after the first pulse are
ignored.

A-24

Multichannel BSP (McBSP) Registers

Table A-23. Receive Control Register 2 (RCRZ2) Field Values
(MCBSP_RCRZ2_field _symval) (Continued)

Bit field symval Value Description

1-0 RDATDLY Receive data delay bit.
OBIT 00 0-bit data delay
1BIT 01 1-bit data delay
2BIT 10 2-bit data delay

11 Reserved

A.2.6 Transmit Control Register 1 (XCR1)

Figure A-24. Transmit Control Register 1 (XCR1)

15 14 8 7 5 4 0
| reserved | XFRLEN1 | XWDLEN1 reserved
R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-24. Transmit Control Register 1 (XCR1) Field Values
(MCBSP_XCR1_field_symval)

Bit field symval Value Description

15 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

14-8 XFRLEN1 OF(value) 0-127 Specifies the number of words (length) in the transmit frame.

7-5 XWDLEN1 Specifies the number of bits (length) in the transmit word.
8BIT 000 Transmit word length is 8 bits.
12BIT 001 Transmit word length is 12 bits.
16BIT 010 Transmit word length is 16 bits.
20BIT 011 Transmit word length is 20 bits.
24BIT 100 Transmit word length is 24 bits.
32BIT 101 Transmit word length is 32 bits.

110 Reserved
111 Reserved

4-0 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

Peripheral Registers A-25

Multichannel BSP (McBSP) Registers

A.2.7 Transmit Control Register 2 (XCR2)

Figure A-25. Transmit Control Register 2 (XCR2)

15 14 8 7 5 4 3 2 1 0
|XPHASE | XFRLEN2 | XWDLEN2 | XCOMPAND | XFIG | XDATDLY
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—25. Transmit Control Register 2 (XCRZ2) Field Values
(MCBSP_XCRZ2_field_symval)

Bit field symval Value Description
15 XPHASE Transmit phases bit.
SINGLE 0 Single-phase frame
DUAL 1 Dual-phase frame
14-8 XFRLEN2 OF(value) 0-127 Specifies the number of words (length) in the transmit frame.
7-5 XWDLEN2 Specifies the number of bits (length) in the transmit word.
8BIT 000 Transmit word length is 8 bits.
12BIT 001 Transmit word length is 12 bits.
16BIT 010 Transmit word length is 16 bits.
20BIT 011 Transmit word length is 20 bits.
24BIT 100 Transmit word length is 24 bits.
32BIT 101 Transmit word length is 32 bits.

110 Reserved
111 Reserved

4-3 XCOMPAND Transmit companding mode. Modes other than 00 are only

enabled when XWDLENT[1, 2] bit is 000 (indicating 8-bit data).

MSB 00 No companding, data transfer starts with MSB first.

8BITLSB 01 No companding, 8-bit data transfer starts with LSB first.

ULAW 10 Compand using p-law for transmit data.

ALAW 11 Compand using A-law for transmit data.

2 XFIG Transmit frame ignore bit.

YES 0 Transmit frame-synchronization pulses after the first pulse
restarts the transfer.

NO 1 Transmit frame-synchronization pulses after the first pulse are
ignored.

A-26

Multichannel BSP (McBSP) Registers

Table A-25. Transmit Control Register 2 (XCRZ2) Field Values
(MCBSP_XCR2_field_symval) (Continued)

Bit field symval Value Description

1-0 XDATDLY Transmit data delay bit.
OBIT 00 0-bit data delay
1BIT 01 1-bit data delay
2BIT 10 2-bit data delay

11 Reserved

A.2.8 Sample Rate Generator Register 1 (SRGR1)

Figure A-26. Sample Rate Generator Register 1 (SRGR1)

15 8 7 0
| FWID | CLKGDV
RIW-0 R/W-0000 0001b

Note: R/W-x = Read/Write-Reset value

Table A-26. Sample Rate Generator Register 1 (SRGR1) Field Values
(MCBSP_SRGR1_field_symval)

Bit field symval Value Description

15-8 FWID OF(value) 0-255 The value plus 1 specifies the width of the frame-sync pulse (FSG)
during its active period.

7-0 CLKGDV OF(value) 0-255 The value is used as the divide-down number to generate the
required sample-rate generator clock frequency.

Peripheral Registers A-27

Multichannel BSP (McBSP) Registers

A.2.9 Sample Rate Generator Register 2 (SRGR2)

Figure A-27. Sample Rate Generator Register 2 (SRGR2)

15 14 13 12 11 0
| GSYNC | CLKSP | CLkSM | FsGM | FPER
RW-0 RMW-0 RMW-1 R/MW-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A-27. Sample Rate Generator Register 2 (SRGR?2) Field Values
(MCBSP_SRGRZ2_field_symval)

Bit field symval Value Description
15 GSYNC Sample-rate generator clock synchronization bit only used when the
external clock (CLKS) drives the sample-rate generator clock
(CLKSM = 0).
FREE 0 The sample-rate generator clock (CLKG) is free running.
SYNC 1 The sample-rate generator clock (CLKG) is running; however, CLKG

is resynchronized and frame-sync signal (FSG) is generated only
after detecting the receive frame-synchronization signal (FSR). Also,
frame period (FPER) is a don't care because the period is dictated by
the external frame-sync pulse.

14 CLKSP CLKS polarity clock edge select bit only used when the external clock
(CLKS) drives the sample-rate generator clock (CLKSM = 0).
RISING 0 Rising edge of CLKS generates CLKG and FSG.
FALLING 1 Falling edge of CLKS generates CLKG and FSG.
13 CLKSM McBSP sample-rate generator clock mode bit.
CLKS 0 Sample-rate generator clock derived from the CLKS pin.

INTERNAL 1 Sample-rate generator clock derived from CPU clock.

12 FSGM Sample-rate generator transmit frame-synchronization mode bit
used when FSXM =1 in PCR.

DXR2XSR 0 Transmit frame-sync signal (FSX) due to DXR[1, 2]-to-XSR[1, 2]
copy. When FSGM = 0, FWID bit in SRGR1 and FPER bit are
ignored.

FSG 1 Transmit frame-sync signal (FSX) driven by the sample-rate
generator frame-sync signal (FSG).

11-0 FPER OF(value) 0-4095 The value plus 1 specifies when the next frame-sync signal be-
comes active. Range: 1 to 4096 sample-rate generator clock
(CLKG) periods.

A-28

Multichannel BSP (McBSP) Registers

A.2.10 Multichannel Control Register 1 (MCR1)
Figure A-28. Multichannel Control Register 1 (MCR1)

15 10 9 8 7 6 5 4 2 1 0
| reserved |RMCMET | RPBBLK | RPABLK | RCBLK reserved | RMCM |
R/W-0 R/W-0 R/W-0 R/W-0 R-0 RW-0 R/W-0

t Only available on specific devices that provide 128-channel selection capability.

Note:

R/W-x = Read/Write-Reset value

Table A-28. Multichannel Control Register 1 (MCR1) Field Values
(MCBSP_MCRI1_field _symval)

Bit field symval Value Description
15-10 reserved Reserved. The reserved bitlocation is always read as zero. A value
written to this field has no effect.
9 RMCME For devices with 128-channel selection capability: Receive
128-channel selection enable bit.
NO 0 Normal 32-channel selection is enabled.
ATOH 1 Six additional registers (RCERC-RCERH) are used to enable
128-channel selection.
8-7 RPBBLK Receive partition B block bit. Enables 16 contiguous channels in
each block.
SF1 00 Block 1. Channel 16 to channel 31
SF3 01 Block 3. Channel 48 to channel 63
SF5 10 Block 5. Channel 80 to channel 95
SF7 11 Block 7. Channel 112 to channel 127
6-5 RPABLK Receive partition A block bit. Enables 16 contiguous channels in
each block.
SFO 00 Block 0. Channel 0 to channel 15
SF2 01 Block 2. Channel 32 to channel 47
SF4 10 Block 4. Channel 64 to channel 79
SF6 11 Block 6. Channel 96 to channel 111
4-2 RCBLK Receive current block bit.
SFO 000 Block 0. Channel O to channel 15
SF1 001 Block 1. Channel 16 to channel 31
SF2 010 Block 2. Channel 32 to channel 47
SF3 011 Block 3. Channel 48 to channel 63
SF4 100 Block 4. Channel 64 to channel 79

Peripheral Registers A-29

Multichannel BSP (McBSP) Registers

Table A-28. Multichannel Control Register 1 (MCR1) Field Values
(MCBSP_MCR1_field symval) (Continued)

Bit field symval Value Description
RCBLK SF5 101 Block 5. Channel 80 to channel 95
SF6 110 Block 6. Channel 96 to channel 111
SF7 111 Block 7. Channel 112 to channel 127
1 reserved Reserved. The reserved bit location is always read as zero. Avalue

written to this field has no effect.

0 RMCM Receive multichannel selection enable bit.
CHENABLE 0 All 128 channels enabled.

ELDISABLE 1 All channels disabled by default. Required channels are selected
by enabling RP[A, B]BLK and RCERJA, B] appropriately.

A.2.11 Multichannel Control Register 2 (MCR2)

Figure A-29. Multichannel Control Register 2 (MCR2)

15 10 9 8 7 6 5 4 2 1 0
| reserved | XMCMET | XPBBLK | XPABLK XCBLK XMCM
R/W-0 RIW-0 R/W-0 RIW-0 R-0 RIW-0

t Only available on specific devices that provide 128-channel selection capability.

Note: R/W-x = Read/Write-Reset value

Table A-29. Multichannel Control Register 2 (MCR2) Field Values
(MCBSP_MCRZ_field_symval)

Bit field symval Value Description

15-10 reserved Reserved. The reserved bit location is always read as zero. Avalue
written to this field has no effect.

9 XMCME For devices with 128-channel selection capability: Transmit
128-channel selection enable bit.

NO 0 Normal 32-channel selection is enabled.

ATOH 1 Six additional registers (XCERC-XCERH) are used to enable
128-channel selection.

8-7 XPBBLK Transmit partition B block bit. Enables 16 contiguous channels in
each block.

SF1 00 Block 1. Channel 16 to channel 31
SF3 01 Block 3. Channel 48 to channel 63

A-30

Multichannel BSP (McBSP) Registers

Table A-29. Multichannel Control Register 2 (MCR?2) Field Values
(MCBSP_MCRZ2_field _symval) (Continued)

Bit field symval Value Description
XPBBLK SF5 10 Block 5. Channel 80 to channel 95
SF7 11 Block 7. Channel 112 to channel 127
6-5 XPABLK Transmit partition A block bit. Enables 16 contiguous channels in
each block.
SFO 00 Block 0. Channel 0 to channel 15
SF2 01 Block 2. Channel 32 to channel 47
SF4 10 Block 4. Channel 64 to channel 79
SF6 11 Block 6. Channel 96 to channel 111
4-2 XCBLK Transmit current block bit.
SFO 000 Block 0. Channel 0 to channel 15
SF1 001 Block 1. Channel 16 to channel 31
SF2 010 Block 2. Channel 32 to channel 47
SF3 011 Block 3. Channel 48 to channel 63
SF4 100 Block 4. Channel 64 to channel 79
SF5 101 Block 5. Channel 80 to channel 95
SF6 110 Block 6. Channel 96 to channel 111
SF7 111 Block 7. Channel 112 to channel 127
1-0 XMCM Transmit multichannel selection enable bit.
ENNOMASK 00 All channels enabled without masking (DX is always driven during
transmission of data™).
DISXP 01 All channels disabled and, therefore, masked by default. Required
channels are selected by enabling XP[A, B]BLK and XCER[A, B]
appropriately. Also, these selected channels are not masked and,
therefore, DX is always driven.
ENMASK 10 All channels enabled, but masked. Selected channels enabled
using XP[A, B]BLK and XCERJ[A, B] are unmasked.
DISRP 11 All channels disabled and, therefore, masked by default. Required

channels are selected by enabling RP[A, B]BLK and RCERJA, B]
appropriately. Selected channels can be unmasked by
RP[A, B]BLK and XCER[A, B]. This mode is used for symmetric
transmit and receive operation.

1 DX is masked or driven to a high-impedance state during (a) interpacket intervals, (b) when a channel is masked regardiess
of whether it is enabled, or (c) when a channel is disabled.

Peripheral Registers A-31

Multichannel BSP (McBSP) Registers

A.2.12 Receive Channel Enable Register (RCERN)

Figure A-30. Receive Channel Enable Register (RCERnN)

15 14 13 12 11 10 9 8
| RCE15 | RCE14 | RCE13 RCE12 | RCE1l | RCEW0 | RCE9 | RCE8
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
7 6 5 4 3 2 1 0
| RcE? | RcE6 | RCES RCE4 | RCE3 | RCE2 | RCEL | RCEO
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
Note: R/W-x = Read/Write-Reset value
Table A-30. Receive Channel Enable Register (RCERn) Field Values
(MCBSP_RCERn_field _symval)
Bit field symval Value Description
For devices with only 32-channel selection capability:

15-0 RCEA OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of the nth channel within the 16-channel-wide
block in partition A. The 16-channel-wide block is selected by the
RPABLK bit in MCRL1.

15-0 RCEB OF(value) 0O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of the nth channel within the 16-channel-wide
block in partition B. The 16-channel-wide block is selected by the
RPBBLK bit in MCRL.

For devices with 128-channel selection capability:

15-0 RCEA OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 0-15 within the 16-channel-wide
block.

15-0 RCEB OF(value) 0O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 16—31 within the 16-channel-wide
block.

15-0 RCEC OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 32-47 within the 16-channel-wide
block.

15-0 RCED OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 48-63 within the 16-channel-wide
block.

15-0 RCEE OF(value) 0-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit

value = 1) reception of channels 64—79 within the 16-channel-wide
block.

A-32

Multichannel BSP (McBSP) Registers

Table A-30. Receive Channel Enable Register (RCERn) Field Values
(MCBSP_RCERnN_field_symval) (Continued)

Bit field symval

Value

Description

15-0 RCEF OF(value)

0-FFFFh

A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 80-95 within the 16-channel-wide
block.

15-0 RCEG OF(value)

0-FFFFh

A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 96—111 within the 16-channel-wide
block.

15-0 RCEH OF(value)

0-FFFFh

A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) reception of channels 112-127 within the 16-channel-wide
block.

A.2.13 Transmit Channel Enable Register (XCERN)
Figure A-31. Transmit Channel Enable Register (XCERnN)

15 14 13 12 11 10 9 8
| xceis | xcei4 | xcei3 | xcew2z | xcemw | xcew [xce9 | xces
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0

7 6 5 4 3 2 1 0
| xce?z | xcee | xces | xce4 | xces | xcez [xcer | xcEo
RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0 RIW-0

Note: R/W-x = Read/Write-Reset value

Table A-31. Transmit Channel Enable Register (XCERn) Field Values
(MCBSP_XCERnN_field_symval)

Bit field symval

Value

Description

15-0 XCEA OF(value)

0-FFFFh

For devices with only 32-channel selection capability:

A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) transmission of the nth channel within the 16-channel-wide
block in partition A. The 16-channel-wide block is selected by the
XPABLK bit in MCR2.

15-0 XCEB OF(value)

0-FFFFh

A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) transmission of the nth channel within the 16-channel-wide
block in partition B. The 16-channel-wide block is selected by the
XPBBLK bit in MCR2.

15-0 XCEA OF(value)

0-FFFFh

For devices with 128-channel selection capability:

A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value = 1) transmission of channels 0—15 within the 16-channel-wide
block.

Peripheral Registers A-33

Multichannel BSP (McBSP) Registers

Table A-31. Transmit Channel Enable Register (XCERnN) Field Values
(MCBSP_XCERn_field_symval) (Continued)

Bit field symval Value Description

15-0 XCEB OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value =1) transmission of channels 16-31 within the
16-channel-wide block.

15-0 XCEC OF(value) 0O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value =1) transmission of channels 32-47 within the
16-channel-wide block.

15-0 XCED OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value =1) transmission of channels 48-63 within the
16-channel-wide block.

15-0 XCEE OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value =1) transmission of channels 64-79 within the
16-channel-wide block.

15-0 XCEF OF(value) 0O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value =1) transmission of channels 80-95 within the
16-channel-wide block.

15-0 XCEG OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit
value =1) transmission of channels 96-111 within the
16-channel-wide block.

15-0 XCEH OF(value) O-FFFFh A 16-bit unsigned value used to disable (bit value = 0) or enable (bit

value =1) transmission of channels 112-127 within the
16-channel-wide block.

A-34

A.3 Clock Mode Register (CLKMD)

Figure A-32. Clock Mode Register (CLKMD)

Clock Mode Register (CLKMD)

15 12 11 10 3 2 1 0
| PLLMUL | PLLDIV | PLLCOUNT PLLON/OFF | PLLNDIV |PLLSTATUST
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0

T When in DIV mode (PLLSTATUS is low), PLLMUL, PLLDIV, PLLCOUNT, and PLLON/OFF are don’t cares, and their contents

are indeterminate.

Note: R/W-x = Read/Write-Reset value

Table A-32. Clock Mode Register (CLKMD) Field Values

(PLL_CLKMD_field symval)

Bit field symval Value Description
15-12 PLLMUL OF(value) 0-15 This PLL multiplier value defines the frequency multiplier in
conjunction with the PLLDIV and PLLNDIV bits.
11 PLLDIV PLL divider. Defines the frequency multiplier in conjunction with
the PLLMUL and PLLNDIV bits.
OFF 0
ON 1

10-3 PLLCOUNT OF(value) 0-255 ThisPLL counter value specifies the number of input clock cycles
(in increments of 16 cycles) for the PLL lock timer to count before
the PLL begins clocking the processor after the PLL is started.
The PLL counter is a down-counter, which is driven by the input
clock divided by 16; therefore, for every 16 input clocks, the PLL
counter decrements by 1.

The PLL counter can be used to ensure that the processor is not
clocked until the PLL is locked, so that only valid clock signals are

sent to the device.

2 PLLONOFF PLL on/off mode bit. Enables or disables the PLL part of the clock
generator in conjunction with the PLLNDIV bit.
OFF 0 PLL is off unless PLLNDIV = 1.
ON 1 PLL is on regardless of the PLLNDIV bit status.
1 PLLNDIV PLL clock generator mode select bit. Determines whether the

clock generator works in PLL mode or in divider (DIV) mode, thus
defining the frequency multiplier in conjunction with the PLLMUL

and PLLDIV bits.
OFF 0 DIV mode is used.
ON 1 PLL mode is used.

Peripheral Registers A-35

Clock Mode Register (CLKMD)

Table A-32. Clock Mode Register (CLKMD) Field Values
(PLL_CLKMD_field symval) (Continued)

Bit field symval Value Description
0 PLLSTATUS

This read-only bit indicates the mode that the clock generator is
operating.

0 Divider (DIV) mode
1 PLL mode

A-36

A.4 Timer Registers

A.4.1 Timer Control Register (TCR)

Timer Registers

Figure A-33. Timer Control Register (TCR)

15 12 11 10 6 5 4 3 0
| reserved | SOFT | FREE | PSC | TRB | TsS | TDDR
RIW-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 RIW-0

Note: R/W-x = Read/Write-Reset value

Table A-33. Timer Control Register (TCR) Field Values
(TIMER_TCR_field_symval)

Bit field symval Value Description
15-12 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.
11 SOFT Used in conjunction with FREE bit to determine the state of the tim-
er when a breakpoint is encountered in the HLL debugger. When
FREE bit is cleared, SOFT bit selects the timer mode.
BRKPTNOW 0 The timer stops immediately.
WAITZERO 1 The timer stops when the counter decrements to 0.
10 FREE Used in conjunction with SOFT bit to determine the state of the
timerwhen abreakpointis encountered inthe HLL debugger. When
FREE bit is cleared, SOFT bit selects the timer mode.
WITHSOFT 0 SOFT bit selects the timer mode.
NOSOFT 1 The timer runs free regardless of SOFT bit status.
9-6 PSC Timer prescalar counter. This read-only bit specifies the count for
the on-chip timer when in direct mode (PREMD bit is cleared in the
TSCR). When PSC bit is decremented past O or the timer is reset,
PSC bit is loaded with the contents of TDDR bit and the TIM is
decremented.
5 TRB Timer reload bit. TRB bit is always read as a 0.
NORESET 0 The on-chip timer is not reset.
RESET 1 The on-chip timer is reset. When TRB bit is set, the TIM is loaded
with the value in the PRD and PSC bit is loaded with the value in
TDDR bitwhen in direct mode (PREMD bit is cleared in the TSCR).
4 TSS Timer stop status bit. Stops or starts the on-chip timer. Atreset, TSS
bit is cleared and the timer immediately starts timing.
START 0 The timer is started.
STOP 1 The timer is stopped.

Peripheral Registers A-37

Timer Registers

Table A-33. Timer Control Register (TCR) Field Values
(TIMER_TCR _field_symval) (Continued)

Bit field symval Value Description
3-0 TDDR The timer prescalar for the on-chip timer.
In prescalar direct mode (PREMD = 0 in TSCR):

OF(value) 0-15 Thisvalue specifies the prescalar count for the on-chip timer. When
PSC bit is decremented past 0, PSC bit is loaded with this TDDR
content.

In prescalar indirect mode (PREMD =1 in TSCR):

OF(value) This value relates to an indirect prescalar count, up to 65535, for
the on-chip timer. When PSC bit is decremented past 0, PSC bit is
loaded with this prescalar value.

0000 Prescalar value: 0001h
0001 Prescalar value: 0003h
0010 Prescalar value: 0007h
0011 Prescalar value: 000Fh
0100 Prescalar value: 001Fh
0101 Prescalar value: 003Fh
0110 Prescalar value: 007Fh
0111 Prescalar value: OOFFh
1000 Prescalar value: 01FFh
1001 Prescalar value: 03FFh
1010 Prescalar value: 07FFh
1011 Prescalar value: OFFFh
1100 Prescalar value: 1FFFh
1101 Prescalar value: 3FFFh
1110 Prescalar value: 7FFFh
1111 Prescalar value: FFFFh

A-38

Timer Registers

A.4.2 Timer Secondary Control Register (TSCR)

Figure A-34. Timer Secondary Control Register (TSCR) — C5440, C5441, and C5472

15 13 12 11 0
| reserved | PREMD | reserved
R/W-0 R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—-34. Timer Secondary Control Register (TSCR) Field Values
(TIMER_TSCR_field_symval)

Bit field symval Value Description
15-13 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.
12 PREMD Prescalar mode select bit.
DIRECT 0 Direct mode. When PSC bit in TCR is decremented past 0, PSC bit

is loaded with TDDR content in TCR.

INDIRECT 1 Indirect mode. When PSC bitin TCR is decremented past 0, PSC bit
is loaded with the prescalar value associated with TDDR bit in TCR.

11-0 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

Peripheral Registers A-39

Watchdog Timer Registers (C5440 and C5441)

A.5 Watchdog Timer Registers (C5440 and C5441)

A.5.1 Watchdog Timer Control Register (WDTCR)

Figure A-35. Watchdog Timer Control Register (WDTCR)

15 12 11 10 6 5 4 3 0
| reserved | SOFT [FREE | PSC | reserved TDDR
R/W-0 RIW-0 R/W-0 R-0 R/W-0 R/W-1111b

Note: R/W-x = Read/Write-Reset value

Table A-35. Watchdog Timer Control Register (WDTCR) Field Values
(WDTIM_WDTCR _field_symval)

Bit field symval Value

Description

15-12 reserved

Reserved. The reserved bit location is always read as zero. Avalue
written to this field has no effect.

11 SOFT

BRKPTNOW
WAITZERO

= O

Used in conjunction with FREE bit to determine the state of the
watchdog timer when a breakpoint is encountered in the HLL de-
bugger. When FREE bit is cleared, SOFT bit selects the watchdog
timer mode.

The watchdog timer stops immediately.

The watchdog timer stops when the counter decrements to 0.

10 FREE

WITHSOFT
NOSOFT

= O

Used in conjunction with SOFT bit to determine the state of the
watchdog timer when a breakpoint is encountered in the HLL
debugger. When FREE bit is cleared, SOFT bit selects the
watchdog timer mode.

SOFT bit selects the watchdog timer mode.

The watchdog timer runs free regardless of SOFT bit status.

96 PSC

Timer prescalar counter. This read-only bit specifies the count for
the on-chip watchdog timer when in direct mode (PREMD bit is
cleared in the WDTSCR). When PSC bit is decremented past 0 or
the watchdog timer is reset, PSC bit is loaded with the contents of
TDDR bit and the WDTIM is decremented.

5-4 reserved

Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

3-0 TDDR

The timer prescalar for the on-chip watchdog timer.

OF(value) 0-15

In prescalar direct mode (PREMD = 0 in WDTSCR):

This value specifies the prescalar count for the on-chip watchdog
timer. When PSC bit is decremented past 0, PSC bit is loaded with
this TDDR content.

A-40

Watchdog Timer Registers (C5440 and C5441)

Table A-35. Watchdog Timer Control Register (WDTCR) Field Values
(WDTIM_WDTCR_field_symval) (Continued)

Bit field symval Value Description
TDDR In prescalar indirect mode (PREMD =1 in WDTSCR):
OF(value) This value relates to an indirect prescalar count, up to 65535, for

the on-chip watchdog timer. When PSC bit is decremented past O,
PSC bit is loaded with this prescalar value.

0000 Prescalar value: 0001h
0001 Prescalar value: 0003h
0010 Prescalar value: 0007h
0011 Prescalar value: 000Fh
0100 Prescalar value: 001Fh
0101 Prescalar value: 003Fh
0110 Prescalar value: 007Fh
0111 Prescalar value: 00FFh
1000 Prescalar value: 01FFh
1001 Prescalar value: 03FFh
1010 Prescalar value: 07FFh
1011 Prescalar value: OFFFh
1100 Prescalar value: 1FFFh
1101 Prescalar value: 3FFFh
1110 Prescalar value: 7FFFh
1111 Prescalar value: FFFFh

Peripheral Registers A-41

Watchdog Timer Registers (C5440 and C5441)

A.5.2 Watchdog Timer Secondary Control Register (WDTSCR)

Figure A-36. Watchdog Timer Secondary Control Register (WDTSCR)

15 14 13 12 11 0
| WDFLAG | WDEN | reserved | PREMD | WDKEY
RW-0 RMW-0 RMW-0 RMW-1 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—-36. Watchdog Timer Secondary Control Register (WDTSCR) Field Values
(WDTIM_WDTSCR_field_symval)

Bit field symval Value Description
15 WDFLAG Watchdog timer flag bit. This bit can be cleared by enabling the
watchdog timer, by a device reset, or by being written with a 1.
TIMEOUT 0 No watchdog timer time-out event occurred.
NOTIMEOUT 1 Watchdog timer time-out event occurred.
14 WDEN Watchdog timer enable bit.

DISABLE 0 Watchdog timer is disabled. Watchdog timer output pin is discon-
nected from the watchdog timer time-out event and the counter
starts to run.

ENABLE 1 Watchdog timer is enabled. Watchdog timer output pin is
connected to the watchdog timer time-out event. Watchdog timer
can be disabled by a watchdog timer time-out event or by a device
reset.

13 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.
12 PREMD Prescalar mode select bit.

DIRECT 0 Direct mode. When PSC bit in WDTCR is decremented past 0,
PSC bit is loaded with TDDR content in WDTCR.

INDIRECT 1 Indirect mode. When PSC bit in WDTCR is decremented past 0,
PSC bit is loaded with the prescalar value associated with TDDR
bit in WDTCR.

11-0 WDKEY Watchdog timer reset key. A 12-bit value that before a watchdog
timer times out, only a write sequence of a 5C6h followed by an
AT7Eh services the watchdog timer. Any other writes triggers a
watchdog timer time-out event immediately.

PREACTIVE 5C6h

ACTIVE A7Eh

A-42

Software Wait-State Registers

A.6 Software Wait-State Registers

A.6.1 Software Wait-State Register (SWWSR)

Figure A-37. Software Wait-State Register (SWWSR)

15 14 12 11 9 8 6 5 3 2 0
XPAT 10 DATAHI | DATALO | PROGHI PROGLO
R/W-0 R/W-111b R/W-111b R/W-111b R/W-111b R/W-111b

T XPA bit only on selected devices with extended program memory.

Note: R/W-x = Read/Write-Reset value

Table A-37. Software Wait-State Register (SWWSR) Field Values
(EBUS_SWWSR_field_symval)

Bit field symval Value Description

15 XPA For devices with extended program memory: Extended
program address control bit. Selects the address ranges selected
by the program fields.

ADDRLO 0 Address range: xx0000 — xxFFFFh
ADDREXT 1 Address range: 000000h—7FFFFF

14-12 10 OF(value) 0—7 The value corresponds to the number of wait states for 1/O space
0000-FFFFh.

11-9 DATAHI OF(value) 0-7 The value corresponds to the number of wait states for data space
8000-FFFFh.

8-6 DATALO OF(value) 0-7 The value corresponds to the number of wait states for data space
0000-7FFFh.

5-3 PROGHI OF(value) 0—7 The value corresponds to the number of wait states for program
space 8000—FFFFh.

2-0 PROGLO OF(value) 0—7 The value corresponds to the number of wait states for program
space 0000—7FFFh.

Peripheral Registers A-43

Software Wait-State Registers

A.6.2 Software Wait-State Control Register (SWCR)

Figure A-38. Software Wait-State Control Register (SWCR)

15 1 0
| reserved SWSM
R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—-38. Software Wait-State Control Register (SWCR) Field Values
(EBUS_SWCR_field_symval)

Bit field symval Value Description
15-1 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.
0 SWSM Software wait-state multiplier bit.
NOMULT 0 The wait states specified in SWWSR are unchanged (not multiplied).

MULTBY?2 1 The wait states specified in SWWSR are multiplied by 2, extending
the maximum number of wait states from 7 to 14.

A-44

Bank-Switching Control Register (BSCR)

A.7 Bank-Switching Control Register (BSCR)

Figure A-39. Bank-Switching Control Register (BSCR) — C5402, C5409, and C5420

15 12 1 10 9 8 7 3 2 1 0
| BnkemP | PsDS | reserved | IPIRQY | reserved | HBHT | BH | EXiI0 |
R/W-1111b RIW-1 RIW-0 R/W-0 RIW-0 RW-0 R/W-0 RMW-0

tHBH and IPIRQ bits only on selected devices.

Note: R/W-x = Read/Write-Reset value

Table A—-39. Bank-Switching Control Register (BSCR) Field Values — C5402, C54009,
and C5420 (EBUS_BSCR_field_symval)

Bit field symval Value Description

15-12 BNKCMP Bank compare bit determines the number of MSBs of an address to
be compared and the external memory-bank size. Bank sizes from
4K words to 64K words are allowed.

64K 0000 No bits are compared, resulting in a bank size of 64K words.
0001- Reserved
0111
32K 1000 The MSB (bit 15) is compared, resulting in a bank size of 32K words.
1001- Reserved
1011
16K 1100 The 2 MSBs (bits 15-14) are compared, resulting in a bank size of 16K
words.
1101 Reserved
8K 1110 The 3 MSBs (bits 15-13) are compared, resulting in a bank size of 8K
words.
4K 1111 The 4 MSBs (bits 15-12) are compared, resulting in a bank size of 4K
words.

11 PSDS Program read—data read access bit controls the insertion of an
extra cycle between consecutive program and data reads, or data
and program reads.

NOEXCY 0 No extra cycles are inserted by this feature except when banks are
crossed.
INSCY 1 One extra cycle is inserted between consecutive program and data
reads, or data and program reads.
10-9 reserved Reserved. The reserved bit location is always read as zero. A value

written to this field has no effect.

Peripheral Registers A-45

Bank-Switching Control Register (BSCR)

Table A-39. Bank-Switching Control Register (BSCR) Field Values — C5402, C5409,
and C5420 (EBUS_BSCR _field_symval) (Continued)

Bit field

symval

Value Description

8 IPIRQ

CLR
INTR

For C5420: Interprocessor interrupt request enable bitis used to send
an interprocessor interrupt to the other subsystem. IPIRQ must be
cleared before any subsequent interrupts can be made.

No interprocessor interrupt request is sent.

An interprocessor interrupt request is sent.

7-3 reserved

Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

HBH

DISABLE

ENABLE

For C5402 and C5409:
HPI data bus holder enable bit.

The HPI data bus holder is disabled. When HPI16 pin is set to a logic
high, HPI data bus holder is enabled.

The HPI data bus holder is enabled. When not driven, the HPI data
bus, HD(7-0), is held in the previous logic level.

BH

DISABLE
ENABLE

For C5420:
Data bus holder enable bit.
The data bus holder is disabled.

The data bus holder is enabled. When not driven, the data bus,
PPD(15-0), is held in the previous logic level.

DISABLE

ENABLE

For C5402 and C5409: Bus holder enable bit.

The bus holder is disabled. When HPI16 pin is set to a logic high,
address bus holder is enabled.

The data bus holder is enabled. When not driven, the data bus,
D(15-0), is held in the previous logic level. When HPI16 pin is set to
a logic high, address bus holder is enabled.

0 EXIO

NORMAL
INACTIF

External bus interface off enable bit controls the external-bus-off
function.

The external-bus-off function is disabled.

The external-bus-off function is enabled. The address bus, data bus,
and control signals become inactive after completing the current bus
cycle. The DROM, MP/MC, and OVLY bits in PMST and the HM bit in
ST1 cannot be modified.

A-46

Bank-Switching Control Register (BSCR)

Figure A—40. Bank-Switching Control Register (BSCR) — C5410, C5410A, and C5416

15 14 13 12 11 3 2 1 0
CONSEC | DIVFCT | IACKOFF reserved | HBHT | BHT | reserved
RW-1 RMW-11b RS0 RIW-0 RW-0 RMW-0 RW-0

t BH and HBH bits only on selected devices.

Note: R/W-x = Read/Write-Reset value

Table A—40. Bank-Switching Control Register (BSCR) Field Values — C5410, C5410A,
and C5416 (EBUS_BSCR_field_symval)

Bit field symval Value Description

15 CONSEC Consecutive bank switching bit specifies the bank-switching
mode. This bit is cleared if fast access is desired for continu-
ous memory reads (that is, no starting and trailing cycles
between read cycles).

32KFASTREAD 0 Bank-switching on 32K bank boundaries only.

EXTMEM 1 Consecutive bank switches on external memory reads. Each
read cycle consists of 3 cycles: starting, read, and trailing.

14-13 DIVFCT CLKOUT output divide factor. The CLKOUT output is driven
by an on-chip source having a frequency equal to
1/(DIVFCT + 1) of the DSP clock.

ZERO 00 CLKOUT is not divided.
CLKBYTWO 01 CLKOUT is divided by 2 from the DSP clock.
CLKBYTHREE 10 CLKOUT is divided by 3 from the DSP clock.
CLKBYFOUR 11 CLKOUT is divided by 4 from the DSP clock.
12 IACK IACK signal output off enable bit controls the IACK signal
output off function.
ON 0 1ACK signal output off function is disabled.
OFF 1 1ACK signal output off function is enabled.
11-3 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.
2 HBH For C5416: HPI data bus holder enable bit.
DISABLE 0 The HPI data bus holder is disabled. When HPI16 pin is set to
a logic high, HPI data bus holder is enabled.
ENABLE 1 The HPI data bus holder is enabled. When not driven, the HPI

data bus, HD(7-0), is held in the previous logic level.

Peripheral Registers A-47

Bank-Switching Control Register (BSCR)

Table A—40. Bank-Switching Control Register (BSCR) Field Values — C5410, C5410A,
and C5416 (EBUS_BSCR _field_symval) (Continued)

Bit field symval Value Description
1 BH For C5416: Bus holder enable bit.
DISABLE 0 The bus holder is disabled. When HPI16 pin is set to a logic

high, address bus holder is enabled.

ENABLE 1 The data bus holder is enabled. When not driven, the data bus,
D(15-0), is held in the previous logic level. When HPI16 pin is
set to a logic high, address bus holder is enabled.

0 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

Figure A—41. Bank-Switching Control Register (BSCR) — C5440 and C5441

15 3 2 1 0
reserved | BHD | BHA |reserved
R/W-0 R/W-0 R/W-0 R/W-0

Note: R/W-x = Read/Write-Reset value

Table A—41. Bank-Switching Control Register (BSCR) Field Values — C5440 and
C5441 (EBUS_BSCR_field_symval)

Bit field symval Value Description
15-3 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.
2 BHD HPI data bus holder enable bit.
DISABLE 0 The HPI data bus holder is disabled.
ENABLE 1 The HPI data bus holder is enabled. When not driven, the HPI
data bus, HD(15-0), is held in the previous logic level.
1 BHA HPI address bus holder enable bit.
DISABLE 0 The HPI address bus holder is disabled.
ENABLE 1 The HPI address bus holder is enabled. When not driven, the

HPI address bus, HA(15-0), is held in the previous logic level.

0 reserved Reserved. The reserved bit location is always read as zero. A
value written to this field has no effect.

A-48

General Purpose I/O Registers

A.8 General Purpose I/0O Registers

A.8.1 General Purpose I/O Control Register (GPIOCR)
Figure A—42. General Purpose I/O Control Register (GPIOCR)

15 14 8 7 6 5 4 3 2 1 0
[TouTit | reserved | bIR7 | DIR6 | DIR5 | DIR4 | DIR3 | DIR2 | DIRL | DIRO |
RIW-0 RIW-0 RIW-0 R/MW-0 RMW-0 R/MW-0 RMW-0 R/MW-0 RMW-0 R/W-0

1t Only available on devices with a second on-chip timer.

Note: R/W-x = Read/Write-Reset value

Table A—42. General Purpose I/0O Control Register (GPIOCR) Field Values
(HPI_GPIOCR _field_symval)

Bit field symval Value Description

15 TOUT1 For C5402: Timerl output enable bit enables or disables the timerl
output on the HINT pin. The timerl output is only available when the
HPI-8 is disabled. This bit is reserved on devices that have only one
timer.

0 The timerl output is not available externally.
MASK 1 The timerl output is driven on the HINT pin.

14-8 reserved Reserved. The reserved bit location is always read as zero. A value
written to this field has no effect.

7 DIR7 I/O pin 7 direction bit configures the HD7 pin as input or output.
0 The HD7 pin is configured as an input.

MASK 1 The HD7 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.

6 DIR6 I/O pin 6 direction bit configures the HD6 pin as input or output.
0 The HD6 pin is configured as an input.

MASK 1 The HD6 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.

5 DIR5 I/O pin 5 direction bit configures the HD5 pin as input or output.
0 The HDS5 pin is configured as an input.

MASK 1 The HDS5 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.

4 DIR4 I/O pin 4 direction bit configures the HD4 pin as input or output.
0 The HD4 pin is configured as an input.

MASK 1 The HD4 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.

Peripheral Registers A-49

General Purpose I/0O Registers

Table A—42. General Purpose I/0O Control Register (GPIOCR) Field Values
(HPI_GPIOCR _field_symval) (Continued)

Bit field symval Value Description
3 DIR3 1/0O pin 3 direction bit configures the HD3 pin as input or output.
0 The HD3 pin is configured as an input.
MASK 1 The HD3 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.
2 DIR2 I/O pin 2 direction bit configures the HD2 pin as input or output.
0 The HD2 pin is configured as an input.
MASK 1 The HD2 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.
1 DIR1 1/0 pin 1 direction bit configures the HD1 pin as input or output.
0 The HD1 pin is configured as an input.
MASK 1 The HD1 pin is configured as an output. When the HPI-8 is enabled,
this bit is forced to 0 and is not affected by writes.
0 DIRO 1/0 pin 0O direction bit configures the HDO pin as input or output.
0 The HDO pin is configured as an input.
MASK 1 The HDO pin is configured as an output. When the HPI-8 is enabled,

this bit is forced to 0 and is not affected by writes.

A-50

General Purpose I/O Registers

A.8.2 General Purpose I/O Status Register (GPIOSR)

Figure A-43. General Purpose I/O Status Register (GPIOSR)

15 8 7 6 5 4 3 2 1 0
| reserved | 07 | 106 [105 [104 | 103 | 102 | 101 | 100 |
R/W-0 RIW-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x

Note: R/W-x = Read/Write-Reset value

Table A—43. General Purpose I/O Status Register (GPIOSR) Field Values
(HPI_GPIOSR_field_symval)

Bit field symval Value Description
15-8 reserved Reserved. Thereserved bitlocation is always read as zero. A value written
to this field has no effect.
7 107 I/O pin 7 status bit reflects the logic level on the HD7 pin. When the

HD?7 pin is configured as an input (DIR7 = 0 in GPIOCR), the 107 bit
latches the logic value (1 or 0) of the HD7 pin. Writes to the 107 bit
have no effect when the HD7 pin is configured as an input. When the
HD?7 pin is configured as an output (DIR7 =1 in GPIOCR), the HD7 pin
is driven to the logic level (1 or 0) written in the 107 bit.

0 The HD7 input is externally driven low, or the HD7 output is internally
driven low.

MASK 1 The HD7 input is externally driven high, or the HD7 output is internally
driven high.

6 106 I/O pin 6 status bit reflects the logic level on the HD6 pin. When the
HD6 pin is configured as an input (DIR6 = 0 in GPIOCR), the 106 bit
latches the logic value (1 or 0) of the HD6 pin. Writes to the 106 bit
have no effect when the HD6 pin is configured as an input. When the
HD6 pin is configured as an output (DIR6 =1 in GPIOCR), the HD6 pin
is driven to the logic level (1 or 0) written in the 106 bit.

0 The HDG6 input is externally driven low, or the HD6 output is internally
driven low.

MASK 1 The HD6 input is externally driven high, or the HD6 output is internally
driven high.

Peripheral Registers A-51

General Purpose I/0O Registers

Table A-43. General Purpose I/O Status Register (GPIOSR) Field Values
(HPI_GPIOSR _field symval) (Continued)

Bit field symval Value Description

5 105 I/0O pin 5 status bit reflects the logic level on the HD5 pin. When the
HD5 pin is configured as an input (DIR5 = 0 in GPIOCR), the 105 bit
latches the logic value (1 or 0) of the HD5 pin. Writes to the 105 bit
have no effect when the HD5 pin is configured as an input. When the
HD5 pin is configured as an output (DIR5 = 1 in GPIOCR), the HD5 pin
is driven to the logic level (1 or 0) written in the 105 bit.

0 The HD5 input is externally driven low, or the HD5 output is internally
driven low.

MASK 1 The HD5 input is externally driven high, or the HD5 output is internally
driven high.

4 104 I/0O pin 4 status bit reflects the logic level on the HD4 pin. When the
HD4 pin is configured as an input (DIR4 = 0 in GPIOCR), the 104 bit
latches the logic value (1 or 0) of the HD4 pin. Writes to the 104 bit
have no effect when the HD4 pin is configured as an input. When the
HD4 pin is configured as an output (DIR4 = 1 in GPIOCR), the HD4 pin
is driven to the logic level (1 or 0) written in the 104 bit.

0 The HD4 input is externally driven low, or the HD4 output is internally
driven low.

MASK 1 The HD4 input is externally driven high, or the HD4 output is internally
driven high.

3 103 I/O pin 3 status bit reflects the logic level on the HD3 pin. When the
HD3 pin is configured as an input (DIR3 = 0 in GPIOCR), the 103 bit
latches the logic value (1 or 0) of the HD3 pin. Writes to the 103 bit
have no effect when the HD3 pin is configured as an input. When the
HD3 pin is configured as an output (DIR3 =1 in GPIOCR), the HD3 pin
is driven to the logic level (1 or 0) written in the 103 bit.

0 The HD3 input is externally driven low, or the HD3 output is internally
driven low.

MASK 1 The HD3 input is externally driven high, or the HD3 output is internally
driven high.

2 102 I/0 pin 2 status bit reflects the logic level on the HD2 pin. When the
HD2 pin is configured as an input (DIR2 = 0 in GPIOCR), the 102 bit
latches the logic value (1 or 0) of the HD2 pin. Writes to the 102 bit
have no effect when the HD2 pin is configured as an input. When the
HD2 pin is configured as an output (DIR2 =1 in GPIOCR), the HD2 pin
is driven to the logic level (1 or 0) written in the 102 bit.

0 The HD2 input is externally driven low, or the HD2 output is internally
driven low.

MASK 1 The HD2 input is externally driven high, or the HD2 output is internally
driven high.

A-52

General Purpose I/O Registers

Table A—43. General Purpose I/O Status Register (GPIOSR) Field Values
(HPI_GPIOSR _field _symval) (Continued)

Bit

field

symval

Value Description

1

101

MASK

I/O pin 1 status bit reflects the logic level on the HD1 pin. When the
HD1 pin is configured as an input (DIR1 = 0 in GPIOCR), the 101 bit
latches the logic value (1 or 0) of the HD1 pin. Writes to the 101 bit
have no effect when the HD1 pin is configured as an input. When the
HD1 pin is configured as an output (DIR1 =1 in GPIOCR), the HD1 pin
is driven to the logic level (1 or 0) written in the 101 bit.

The HD1 input is externally driven low, or the HD1 output is internally
driven low.

The HD1 input is externally driven high, or the HD1 output is internally
driven high.

100

MASK

I/O pin O status bit reflects the logic level on the HDO pin. When the
HDO pin is configured as an input (DIRO = 0 in GPIOCR), the 100 bit
latches the logic value (1 or 0) of the HDO pin. Writes to the 100 bit
have no effect when the HDO pin is configured as an input. When the
HDO pin is configured as an output (DIR0O = 1 in GPIOCR), the HDO pin
is driven to the logic level (1 or 0) written in the 100 bit.

The HDO input is externally driven low, or the HDO output is internally
driven low.

The HDO input is externally driven high, or the HDO output is internally
driven high.

Peripheral Registers A-53

Advanced A and B Pages, B-4
API Modules, lllustration of, [1-3

Autoinit, 3-4

bank-switching control register (BSCR),
Body section, -9
Bool, description of, [L-6]
BSCR (bank-switching control register),
Build Options, [2-23
Adding the Include Search Path, [2-26]
Defining a Target Device,

Defining Far Mode, 2-25
Defining Library Paths,

C Code Generation for DMA Module, @
Header File,
Source File,

C Code Generation for GPIO Module,
Header File,|3-1
Source File, [3-1

C Code Generation for MCBSP Module,
Header File,|3-1
Source File, |3-1

C Code Generation for PLL Module,
Header File,|3-2
Source File, |3-2

C Code Generation for TIMER,

C Code Generation for TIMER Module
Header File,[3-2
Source File, [3-29]|3-34

Index

C Code Generation for WATCHDOG TIMER
Module,
Head File, 3-34

C File, mandatory include,

CHIP, overview, -2

CHIP, functions,
CHIP Functions
CHIP_getCpuld, -2, 4-3
CHIP_getEndian, [4-2] [4-3
CHIP_getMapMode,
CHIP_getRevID, 4-4)
CHIP_getSubsysld, 4-2, 4-5
Chip Module, Device ID Support, See also, Device
Specific Features, |1-1
Chip Support Library, , @
chip support library (CSL)
naming conventions, [1-5
notational conventions, fiv
CLKMD (clock mode register), |A-35
clock mode register (CLKMD),‘E
Code Composer Studio, @
Adding the Include Search Path,
Defining a Target Device, [2-24
Defining Far Mode,
Defining Library Paths, 2-27
Installing,
using the CCS Project Environment,
Compiling, with CSL,
Configuration Structure

Lo

mA

Configuring Peripherals Without GUI,[2-19)
Constant Values for Fields,

Index-1

Index

Constant Values for Registers,

CSL
Architecture, |1-3
Compiling and Linking with,
Data Types,
Destination Address, [2-19
Device Support, E
Directory Structure, [2-22
Introduction to,
Linking with,
Macros, generic,|1-10
Handle—based| 1-11
Modules and Include Files, IE
Rebuilding CSL,
Resource Management,
Source Address,
Symbolic Constants, [1-8
Transfer Size,

CSL (chip support library)
benefits of,
naming conventions,

CSL APIs, Generation of the C files, [2-§|

CSL APIs Generation (WATCHDOG TIMER Mod-
ule)
example of,
Generation of C Files, [2-16]
Header File projectcfg.h, illustration of,
Header File projectcfg_c.c, illustration of,
main.c File Using Data Generated by the Config-

uration Tool, illustration of,

CSL Benefits, [1-2

CSL Device Support
Device Support Symbols,
Devices,

Far—Mode Library,
Near—Mode Library,
CSL Functions, Generic,

CSL Handles, using with data types,

CSL Tree
csl header files, [2-§|
expanded illustration of, E
illustration of, P-4

CSL_cfginit, -9, [2-10[3-9} [3-11] B-17] [B-23]
CSL_init,
CSL_init(),

Index-2

DAT, -2
Functions,
overview, S

DAT Functions

5-2)

DAT close, 5-3

DAT_close(), @
DAT_open(), 5-2
DAT_wait(), 5-2
Data Types
Bool,
CSL, [1-6
DMA_Adr_Ptr, [L-6
Int16, %
Int32,
PER_Handle, [L-6]
Uchar, [1-6
uint16, [1-6
Uint32, [1-6
Using CSL Handles,
declaration list, variables handle and configuration
names,
Declaration section, description of, p-9|
Delete/Rename Options, illustration of, @

Destination address,
Device—Specific Features, support for,,
Directory Structure,
Documentation,
Examples,
Include files,
Libraries,
Source Library,
DMA
Configuration Structure, [6-7
Functions, 6-3)
Macros, using channel number, [6-20]
Macros, using handles,
overview,
DMA channel n destination address register
(DMDSTn),[A-10)
DMA channel n element count register (DMCTRn),

DMA channel n source address register (DMMCRn),

DMA channel n sync event and frame count register
(DMSFCn),

DMA channel n transfer mode control register
(DMMCRn), [A-6]

DMA channel priority and enable control register
(DMPREC), [A-9

DMA Configuration Manager,
Address Formats,
Configuring the Object Properties, B-4
Creating/Inserting a configuration,
Deleting/Renaming an Object, B-4
description of,

DMA Configuration Structure
DMA_Config, @
DMA_GblConfig, [6-3, [6-5

DMA destination program page address register
(DMDSTP),[A-11]

DMA element address index register 0 (DMIDXO0),

DMA element address index register 1 (DMIDX1),
A-1

DMA frame address index register 0 (DMFRIO),

>
E i
e w

DMA frame address index register 1 (DMFRI1),
A-1

DMA Functions
Auxillary, p-3
DMA_close, [6-3, [6-7
DMA_config,
DMA _configArgs, 6-3|, 6-
DMA_getChan, [6-3, |6-
DMA_getConfig, 6-3}|6-19
DMA_getEventld, |6-3, |6-10
DMA_getStatus, |6-3, [6-19
DMA_globalAlloc, 6-3} |6-1
DMA_globalConfig, [6-12|
DMA _globalConfigArgs, 6-1
DMA_globalFree, -3 [6-15
DMA_globalGetConfig,

N

DMA_open, ,16-16
DMA_pause, ,|6-18
DMA reset, ,16-17

DMA_resetGbl, [6-3, 16-17|
DMA_start, 6-3}[6-18
DMA _stop, [6-3,[6-18

Global R%:isster, 6-3

Primary,

Index

DMA global destination address reload register
(DMGDA),[A-10

DMA global element count reload register
(DMGCR),

DMA global extended destination data page register
(DMDSTDP),[A-15

DMA global extended source data page register
(DMSRCDP),[A-15

DMA global frame count reload register (DMGFR),

DMA global source address reload register
(DMGSA),

DMA Header File, example of, @

DMA Initialization

examples of,
using DMA_config(),
DMA Macros

DMA_FGET, p-20] |6-26|
DMA_FGET H,6-21]6

DMA_FSET_H, |6-21} 5-30

DMA_REG_RMK, [6-20,

DMA_ RGET,

DMA_RGET_H, |6-21l,[6-28

DMA_RSET, p-20] [6-23

DMA_RSET_H, [6-21], [6-29

to create value to write to a register and fields,
[6-20]

to create value to write to a register and fields
(using handles),[6-21]

to read a register address,

to read a register address (using handles), [6-21]

to read/write register field values, [6-20]

to r&ﬁdlwrite register field values (using handles),
6-21

to read/write register values,

to read/write register values (using handles),
6-21

DMA Module,

C Code Generation for,

Configuration Manager,

overview,

Resource Manager,

DMA Module—Channel Reload, See also, Device
Specific Features,

Index-3

Index

DMA Module-Extended Data Reach, See also,
Device Specific Features,

DMA Properties Page
illustration of, 3-5
With Handle Object Accessible, , illustration of,
3-7

DMA registers,

channel n destination address register
(DMDSTn), [A-10]

channel n element count register (DMCTRn),

channel n source address register (DMSRCn),

channel n sync event and frame count register
(DMSFCn),[A-3]

channel n transfer mode control register
(DMMCRn), [A-6

channel priority and enable control register
(DMPREC),[A-2]

destination program page address register
(DMDSTP), @I

element address index register 0 (DMIDXO0), |A-13

element address index register 1 (DMIDX1), |A-13

frame address index register 0 (DMFRIO0), A-14

frame address index register 1 (DMFRI1), |A-14

global destination address reload register
(DMGDA),

global element count reload register (DMGCR),

global extended destination data page register
(DMDSTDP),
global extended source data page register

(DMSRCDP),
global frame count reload register (DMGFR),
global source address reload register (DMGSA),
source program page address register
(DMSRCP),[A-9]

DMA Resource Manager, @
description of, B-3

Predefined Objects,

Properties Page,
DMA Resource Manager Menu, illustration of, @
DMA Sections Menu, illustration of,

DMA Source File, example of,[3-8] [3-9]

DMA source program page address register
(DMSRCP),

Index-4

DMA_AdrPtr, description of,
DMA_config, @
DMA_config()

Initializing a, DMA Channel With,

using,
DMA_configArgs, using to initialize registers,
DMA_configArgs(), Initializing a DMA Channel with,

DMA_open(),
DMAO, B-6]
DMAL, B-§]
DMA2, B-6]
DMA3, B-6]
DMAA4, B-6]
DMAS, B-6]

DMCTRn (channel n element count register,

DMDSTDP (DMA global extended destination data
page register),

DMDSTn (DMA channel n destination address
register),

DMDSTP (DMA destination program page address
register), [A-11]

DMFRIO (DMA frame address index register 0),

DMFRI1 (DMA frame address index register 1),
14

DMGCR (DMA global element count reload
register),[A-12]

DMGDA (DMA global destination address reload
register),

DMGFR (DMA global frame count reload register),

DMGSA (DMA global source address reload regis-
ter),

DMIDX0 (DMA element address index register 0),

DMIDX1 (DMA element address index register 1),

DMMCRnN (DMA channel n transfer mode control
register),

DMPREC (DMA channel priority and enable control
register),[A-2]

DMSFCn (DMA channel n sync event and frame
count register), [A-3

DMSRCDP (DMA global extended source data page
register), E

DMSRCn (DMA channel n source address register),

DMSRCP (DMA source program page address
register), @

Documentation, see also, Directory Structure, [2-22

documentation, related documents from Texas In-
struments, |4

DOS command line, using, See also, Compiling and
Linking with CSL,

DSP platform, configuration tools,

DSP/BIOS, B-1]

DSP/BIOS Configuration Tool
Creatin aconfiguration,
DMA,

GPIO,
MCBSP,
PLL, Iﬂ@
TIMER,

WATCHDOG TIMER,

EBUS
Configuration Structure,
Functions, [7-2
Macros, [7-6}
overview, [7-2

EBUS Configuration Structure, EBUS_Config, E

EBUS Functions
EBUS_config, [7-2) [7-4
EBUS_configArgs, [7-2, [7-5

For C544X devices,
For C54X devices,

EBUS Macros

EBUS_ADDR,
EBUS_FGET, [7-6
EBUS_FMK,
EBUS_FSET

ro read a register address of,
ti read/write EBUS register field values,
EBUS_REG_RMK,

EBUS RGET,
EBUS_RSET,
Examples

MCBSP,
see also, Directory Structure,|2-22

Index

Far Calls,
FIELD, [i-§
explanation of,

fieldval, explanation of,
funcArg,
Function, -5

Function Argument, |1-5
Function Inlining, using, 2-29]

Functions

general purpose 1/O control register (GPIOCR),
A-4
general purpose 1/O registers,
general purpose I/O control register (GPIOCR),
A-4
general purpose I/O status register (GPIOSR),
A-5
general purpose /O status register (GPIOSR),
Generation of the C Files,
Header files,
Source files,
Getting Started
Modification of C code,
Modification of the Project folder,
GPIO

Macros,
overview, |8-2
GPIO Configuration Manager,
description of,
GPIO Macros
GPIO_ADDR,[8-3
E

GPIO_FGET,
GPIO_FMK,

E

E

[y

Index-5

Index

GPIO_FSET
to read a register address, @
to read/write GPIQ register field values,
GPIO_REG_RMK,
GPIO_RGET,
GPIO_RSET,

GPIO Module, overview, 3-10

GPIO Properties Page, illustration of, [3-10]

GPIO Source File (Body Section), example of,
GPIO_RSET(),[3-11]

GPIOCR (general purpose I/O control register),
GPIOSR (general purpose I/O status register),
Guidelines, EBUS, [7-2]

Header file, Projectcfg.h,

Header File projectcfg.h, E
WATCHDOG TIMER Module, illustration of,

How To Use CSL, overview, -3
HPI, Macros,@

HPI Macros
HPI_ADDR, [9-2
HPI_FGET, p-2
HPI_FMK,
HPI_FSET, p-2
HPI_REG_RMK, -2

HPI_RGET, p-2|
HPI_RSET, P-2

Include Files, @
see also, Directory Structure,

Include section, description of, @

Initializing Registers, |1-13

Inserting a Configuration Object, illustration of, IE
Int16, description of, [L-§]

Int32, description of, IE

IRQ
Configuration Structure,

Functions,
overview,
IRQ Configuration Structure, IRQ_Config, [10-4]

Index-6

IRQ Functions)
IRQ_clear, |10_-4l m
IRQ_config,[10-4}/10-9
IRQ_configArgs, [10-4} [10-10|
IRQ _disable, [10-4] [10-10]|

IRQ_enable,|10-4}]10-11)
IRQ_getArg, |10-5,(10-11
IRQ_globalDisable,
IRQ_globalEnable,

IRQ_setArg,[10-5[10-14
IRQ_setVecs, [10-4} [10-15

IRQ_EVT NNNN,[10-5
Event List, [L0-5]

Libraries, see also, Directory Structure,
Linker Command File

creating,
requirements for,
using,

Linking, with CSL, -22]

Macro, [L-5]

Macros

Generic, handle-based, [1-11]

GPIO, 8-3
HPI, 9-2

REG#,
regval,

main.c File Using Data Generated by the

Configuration Tool, WATCHDOG TIMER Module,

illustration of,

MCBSP
Configuration Manager, :3-1
Configuration Structure, [11-
Example,
Functions,
Macros using handle,
Macros using port number,
overview, Iﬁ

MCBSP Configuration Manager, [3-12|
Configuring the Object Properties,

Creating/Inserting a Configuration Object,
Deleting/Renaming an Object,

MCBSP Configuration Structure, MCBSP_Config,

MCBSP Functions
Auxillary,m
Channel Control,{11-2
Interrupt Control,|11-2
MCBSP_channelDisable,|11-2
MCBSP_channelEnable,|1
MCBSP_channelStatus,|11-2
MCBSP_cIose,
MCBSP_config,|11-2
MCBSP_configArgs,[11-2,(11-13
MCBSP_getConf 11-22
MCBSP_getPort,[11-3}|11-2
MCBSP_getRcvEventID,|11-2} [11-15
MCBSP_getXmtEventID,|11-2},|11-15
MCBSP_open,|11-2| |11-16]
MCBSP_read16,[11-3}|11-16
MCBSP_read32,[11-3}|11-17
MCBSP_reset,|11-3] [11-17|
MCBSP_rfull,|11-3},|111-18,
MCBSP_rrdy,|11-3}|11-18
MCBSP_start,|11-2} [11-19|
MCBSP_writel6,[11-3}|11-20
MCBSP_write32,(11-3}|11-20
MCBSP_xempty, |11-3,|11-21

MCBSP eril gl 1 21 |
11-2

Prlmary,
MCBSP Header File, Example of,

MCBSP Macros
MCBSP_ADDR, 11-33

,|11-6

Index

,

MCBSP_FMK

MCBSP RSET_| H 11- 24 11 35

MCBSP Module, [3-12|
C Code Generation for,
overview,

MCBSP Module—C2KS Support, See also, Device
Specific Features,

MCBSP Module—Channel Support, See also, Device
Specific Features,

MCBSP Properties Page
illustration of,
With Handle Object Accessible, , illustration of,

3-16

McBSP registers, |A-16)
multichannel control register 1 (MCR1), |A-29
multichannel control register 2 (MCR2), |A-30
pin control register (PCR),
receive channel enable register (RCERn),m
receive control register 1 (RCR1), |A-23
receive control register 2 (RCR2), |A-24
sample rate generator register 1 (SRGR1),|A-27
sample rate generator register 2 (SRGR2),|A-2
serial port control register 1 (SPCR1),|A-16
serial port control register 2 (SPCR2),|A-18
transmit channel enable register (XCERN),|A-33]
transmit control register 1 (XCR1), |A-25
transmit control register 2 (XCR2), |A-26

MCBSP Resource Manager, m Fla
description of, 3-12|
Predefined Objec
Properties Page, 3-15

MCBSP Resource Manager Menu, illustration of,
[p-15]

MCBSP Sections Menu, illustration of,[3-12]

MCBSP Source File (Body Section), example of,
3-18

MCBSP Source File (Declaration Section), example
of,[3-17]

MCBSP_config,

MCBSP_open, [3-17]

MCBSPO, [3-15}

MCBSP1,[3-15

MCBSP2,(3-15

~J

e8]

Index-7

Index

mcbspCfg, PER_FGET_H,
MCR1 (multichannel control register 1), PER_FMK,
MCR2 (multichannel control register 2), PER_FSET,
memberName, [1-5 PER_FSET_H,[1-11]
Memory Spaces, PER_funcName(),
Modifying the C File, example of,[2-13 PER_Handle, description of,
Module PER_MACRO_NAME, [L-5]

DMA, PER_open,

GPIO, PER_open(), [1=13]

PLL, PER_REG_DEFAULT, [-g]

TIMER, PER_REG_FIELD_DEFAULT, [1-8

WATCHDOG TIMER, [3-39 PER_REG_FIELD_SYMVAL,
Module Support Symbols, [L-4] PER_REG_RMK,[L10,[-13
multichannel control register 1 (MCR1), PER_reset, [-13]
multichannel control register 2 (MCR2), PER RGET,
Multiplexing, B-2 PER_RGET_H,

PER_RSET,
PER_RSET_H,[1-11]
PER_start, [1-12]

notational conventions, E PER_Typename,

PER_varName(), E
PERIPHERAL Configuration Manager, description

of, -4
Object Types, [L-§ Peripheral Modules, [L-4
CHIP,
DAT, [L-4
Description of, @
PCR (pin control register),
PER, [L-§

as an indicated peripheral,

explanation of,
PER_ADDR,
PER_ADDR_H,[1-1]]
PER_close,

PER_Config
zxaggget. g; |cln:1§ - PERIPHERAL Resource Manager,
PERXIO] I , Peripheral_config,

_con !9, -12 -1 Peripheral_open,
PER_Conflg(), pin control register (PCR),
PER_ConfigArgs PLL, Macros, [L2-6]

example of, ’ ’

explanation of, PI_IE:onfiguration Structure, [12-2]
PER_configArgs, [1-12] Functions, [12-2) ’
PER_configArgs(), overview,
PER_FGET, Primary Summary,

Index-8

PLL Configuration Manager,
Configuring the Object Properties,
Creating/Inserting a configuration,
Deleting/Renaming an object,
description of,

PLL Configuration Structure, PLL_Config, [2-2,

PLL Functions
PLL_config, [12-2] [12-4
PLL_configArgs, [12-2}|12-4]

PLL Header File, example of,

PLL Macros

PLL_REG_RMK,
PLL_RGET,
PLL_RSET,|

PLL Module, overview,

PLL Properties Page, illustration of,
PLL Resource Manager, [3-21]

description of,

Properties page,
PLL Resource Manager Menu, illustration of,
PLL Sections Menu, illustration of, |3-10}

PLL Source File (Body Section), example of,
PLL Source File (Declaration Section), example of,

PLL_config,

Practice Summary, illustration of,

predefined handle and configuration objects, ac-
cessing,

Predefined Objects,
DMAO,
DMAL,
DMAZ2,
DMAS3,
DMA4,
DMADB,
MCBSPO, 3-15
MCBSP2, 3-15
TIMER, [3-27|
TIMERQO, 3-27
TIMER1, 3-27

project.cdb, @
projectcfg.h,
projectcfg_c.c, @

Index

Properties Page
TIMER, [3-27|
WATCHDOG TIMER, [3-32]
Properties Page Options, example of,
Properties Pages
Advanced A and B Pages, B-4
Autoinit, B-4
Source/Destination, B-4
Transfer Modes, B-4

Properties Pages of the Non—Multiplexed GPIO
Configuration, GPIO,

PWR
Functions, |13-2
overview,

PWR Functions, PWR_powerDown, [13-2} [13-3]

RCERnN (receive channel enable register),

RCRA1 (receive control register 1), |A-23

RCR?2 (receive control register 2), [A-24]

receive channel enable register (RCERnN),

receive control register 1 (RCR1), |A-23

receive control register 2 (RCR2), [A-24]

REG, [L-8

REG#, explanation of, [L-9

Registers
initializing,
PER_Config, [1-13
PER_ConfiArgs,

regval, explanation of, @

related documents from Texas Instruments, ﬂ

Resource Management, IE

Resource Manager
MCBSP,
TIMER, [3-27| [3-32

Resource Manager Properties Page, illustration of,
2-10

sample rate generator register 1 (SRGR1),|A-27
sample rate generator register 2 (SRGR2), A-28
serial port control register 1 (SPCR1),|A-16
serial port control register 2 (SPCRZ),‘A-_18
Show Dependency Option, illustration of, Ej

software wait-state control register (SWCR), [A-44]

[ef] | BN

>

Index-9

Index

software wait-state register (SWWSR),

software wait-state registers,
software wait-state control register (SWCR), |A-44
software wait-state register (SWWSR),

Source address, :2-19
Source File, @
Source file, Projectcfg_c.c,|2-8
Source File projectcfg_c.c, @

Body section ,|2-9

Declaration section, P-9

Include section, [2-8

WATCHDOG TIMER Module, illustration of,
Source Library, see also, Directory Structure,
Source/Destination, B-4
SPCR1 (serial port control register 1),
SPCR2 (serial port control register 2),
SRGR1 (sample rate generator register 1),
SRGR2 (sample rate generator register 2),
static inline,
Structure Member, [I-5
SWCR (software wait-state control register),
SWWSR (software wait-state register),
Symbolic Constant Values, @
Symbolic Constants, Generic, [1-§]
SYMVAL,

TCR (timer control register), [A-37]

TIMER
C Code Generation for,
Configuration Structure, [14-2)
Functions,
overview,

WATCHDOG TIMER, overview, [3-3

TIMER Configuration Manager, B-2
Configuring the Object Properties,_3-25|
Creating/Inserting a configuration, [3-2
Deleting/Renaming an Object, [3-2
description of,

TIMER Configuration Structure, TIMER_Config,
For C5440, C541 and C5472 devices only,

timer control register (TCR),

TIMER Functions

TIMER_close, [14-2]

Index-10

TIMER_config, [14-2
TIMER_configArgs,
TIMER_getEventID,
TIMER_open,

TIMER_reset,|14-2,
TIMER_start, [14-2} [14-7
TIMER_stop, |14-2} |14-7
Timer Header File, example of,
TIMER Macros
TIMER_ADDR,

TIMER_FMK, |1
TIMER_FSET,
TIMER_FSET_H,
TIMER_REG_RMK,
TIMER_RGET, [14-9
TIMER_RGET_H,
TIMER_RSET, [L4-9
TIMER_RSET_H,
Using Timer Port Number,
Timer Macros, using Handle,

TIMER Module, |3-24
overview, B-24

Timer Module, See also, Device Specific Features,
-1-1

TIMER Properties Page, illustration of,

Timer Properties Page With Handle Object Accessi-
ble, illustration of,
timer registers, [A-3
timer control register (TCR),[A-37]
timer secondary control register (TSCR),[A-39
TIMER Resource Manager,
description of,
Timer Resource Manager Menu, illustration of,
timer secondary control register (TSCR),:E
Timer Sections Menu, illustration of,
Timer Source File (Body Section), example of,
Timer Source File (Declaration Section), example of,
[B-29
TIMERQO, [3-27
TIMERL, [3-27
trademarks, [vi
Transfer Modes,
Transfer size,|2-19
transmit channel enable register (XCERnN),

~J

transmit control register 1 (XCR1), |A-25
transmit control register 2 (XCR2), [A-26]
TSCR (timer secondary control register),
Typedef,

Uchar, description of,
Uint16, description of,
Uint32, description of,

Variable,

Watch—dog Module, See also, Device Specific Fea-
tures, |[1-14

WATCHDOG TIMER Configuration Manager, [3-3q
Configuring the Object Properties,
Creating/Inserting a configuration,
Deleting/Renaming an Object,
description of,

watchdog timer control register (WDTCR),

WATCHDOG TIMER Header File, example of,

WATCHDOG TIMER Properties Page, illustration of,

WATCHDOG TIMER Properties Page With Handle
Object Accessible, illustration of, 3-33]

watchdog timer registers,
watchdog timer control register (WDTCR),
watchdog timer secondary control register

(WDTSCR),[A-42]

WATCHDOG TIMER Resource Manager,
description of,[3-30
illustration of,

watchdog timer secondary control register
(WDTSCR),[A-42]

WATCHDOG TIMER Sections Menu, illustration of,

WATCHDOG Timer Source File (Body Section),
example of,

Index

WATCHDOG TIMER Source File (Declaration Sec-
tion), example of,

WATCHDOG TIMERL1 Device
configuration of,

configuration of, illustration, |2-15|
WDTCR (watchdog timer control register),

WDTIM
Configuration Structure,|15-§|

Functions, |15-2
overview,
WDTIM Configuration Structure, WDTIM_Config,
WDTIM Functions
WDTIM_close, IF_
WDTIM_config, [15-2}, [15-4
WDTIM_configArgs, [15-2} [15-5|
WDTIM_open, [15-2} [L5-6

WDTIM_service, [15-2} [15-6
WDTIM_start, 15-7

WDTIM Macros
using Handle, [15-10

using Timer Port Number,
WDTIM_ADDR,

WDTIM_ADDR_H,
WDTIM_FGET, [15-9
WDTIM_FGET_H,
WDTIM_FMK, [15-9
WDTIM_FSET, [15-9
WDTIM_FSET_H,
WDTIM_REG_RMK,
WDTIM_RGET, [15-9
WDTIM_RGET_H,
WDTIM_RSET, [15-9
WDTIM_RSET_H,

WDTIMER_config,
WDTSCR (watchdog timer secondary control
register),

XCERRN (transmit channel enable register),[A-33
XCR1 (transmit control register 1),
XCR2 (transmit control register 2),

Index-11

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Contents
	Figures
	Tables
	Examples
	CSLOverview
	Introduction to CSL
	How the CSL Benefits You
	CSL Architecture

	Naming Conventions
	Data Types
	Resource Management
	Using CSL Handles

	Symbolic Constant Values
	Macros
	Functions
	Initializing Registers

	Support for Device-Specific Features

	How to Use CSL
	Installing the Chip Support Library
	Overview
	DSP/BIOS Configuration Tool: CSL Tree
	Generation of the C Files (CSL APIs)
	Header File cfg.h
	Source File cfg_c.c

	Creating a Configuration
	Modification of C code (main.c)

	Example of CSL APIs Generation (TIMER Module)
	Configuration of the TIMER1 Device
	Generation of C Files

	Configuring Peripherals Without GUI
	Using DMA_config()
	Using DMA_configArgs()

	Compiling and Linking With CSL
	Using the DOS Command Line
	Using the Code Composer Studio Project Environment
	Creating a Linker Command File

	Rebuilding CSL
	Using Function Inlining

	DSP/BIOS Configuration Tool: CSL Modules
	Overview
	DMA Module
	Overview
	DMA Configuration Manager
	Creating/Inserting a configuration
	Deleting/Renaming an Object
	Configuring the Object Properties
	Address Formats

	DMA Resource Manager
	Predefined Objects
	Properties Page

	C Code Generation for DMA Module
	Header File
	Source File

	GPIO Module
	Overview
	Non-Multiplexed GPIO Configuration Manager
	Properties Pages of the Non-Multiplexed GPIO Configuration

	C Code Generation for GPIO Module
	Header File
	Source File

	MCBSP Module
	Overview
	MCBSP Configuration Manager
	Creating/Inserting a Configuration Object
	Deleting/Renaming an Object
	Configuring the Object Properties

	MCBSP Resource Manager
	Predefined Objects
	Properties Page

	C Code Generation for MCBSP Module
	Header File
	Source File

	PLL Module
	Overview
	PLL Configuration Manager
	Creating/Inserting a configuration
	Deleting/Renaming and Object
	Configuring the Object Properties

	PLL Resource Manager
	Properties Page

	C Code Generation for PLL Module
	Header File
	Source File

	TIMER Module
	Overview
	TIMER Configuration Manager
	Creating/Inserting a configuration
	Deleting/Renaming an Object
	Configuring the Object Properties

	TIMER Resource Manager
	Predefined Objects
	Properties Page

	C Code Generation for TIMER
	Header File
	Source File

	WATCHDOG TIMER Module
	Overview
	WATCHDOG TIMER Configuration Manager
	Creating/Inserting a configuration
	Deleting/Renaming an Object
	Configuring the Object Properties

	WATCHDOG TIMER Resource Manager
	Properties Page

	C Code Generation for WATCHDOG TIMER
	Header File
	Source File

	CHIPModule
	Overview
	Functions
	CHIP_getCpuId
	CHIP_getEndian
	CHIP_getMapMode
	CHIP_getRevID
	CHIP_getSubsysid

	DAT Module
	Overview
	Functions
	DAT_close
	DAT_copy
	DAT_copy2D
	DAT_fill
	DAT_open
	DAT_wait

	DMA Module
	Overview
	Configuration Structure
	DMA_Config
	DMA_GblConfig

	Functions
	DMA_close
	DMA_config
	DMA_configArgs
	DMA_getChan
	DMA_getEventid
	DMA_globalAlloc
	DMA_globalConfig
	DMA_globalGetConfig
	DMA_globalConfigArgs
	DMA_globalFree
	DMA_open
	DMA_reset
	DMA_resetGbl
	DMA_start
	DMA_stop
	DMA_pause
	DMA_getStatus
	DMA_getConfig

	Macros
	DMA_RGET
	DMA_RSET
	DMA_REG_RMK
	DMA_FMK
	DMA_FGET
	DMA_FSET
	DMA_ADDR
	DMA_RGET_H
	DMA_RSET_H
	DMA_FGET_H
	DMA_FSET_H
	DMA_ADDR_H

	Examples

	EBUS Module
	Overview
	Configuration Structure
	EBUS_Config

	Functions
	EBUS_config
	EBUS_configArgs

	Macros

	GPIO Module
	Overview
	Macros

	HPI Module
	Macros

	IRQ Module
	Overview
	Configuration Structure
	IRQ_Config

	Functions
	IRQ_clear
	IRQ_config
	IRQ_configArgs
	IRQ_disable
	IRQ_enable
	IRQ_getArg
	IRQ_getConfig
	IRQ_globalDisable
	IRQ_globalEnable
	IRQ_globalRestore
	IRQ_map
	IRQ_plug
	IRQ_setArg
	IRQ_setVecs
	IRQ_test

	McBSP Module
	Overview
	Configuration Structure
	MCBSP_Config

	Functions
	MCBSP_channelDisable
	MCBSP_channelEnable
	MCBSP_channelStatus
	MCBSP_close
	MCBSP_config
	MCBSP_configArgs
	MCBSP_getXmt EvenID
	MCBSP_getRcv EventId
	MCBSP_open
	MCBSP_read16
	MCBSP_read32
	MCBSP_reset
	MCBSP_rfull
	MCBSP_rrdy
	MCBSP_start
	MCBSP_write16
	MCBSP_write32
	MCBSP_xempty
	MCBSP_xrdy
	MCBSP_getConfig
	MCBSP_getPort

	Macros
	MCBSP_RGET
	MCBSP_RSET
	MCBSP_REG_RMK
	MCBSP_FMK
	MCBSP_FGET
	MCBSP_FSET
	MCBSP_ADDR
	MCBSP_RGET_H
	MCBSP_RSET_H
	MCBSP_FGET_H
	MCBSP_FSET_H
	MCBSP_ADDR_H

	Examples

	PLL Module
	Overview
	Configuration Structure
	PLL_Config

	Functions
	PLL_config
	PLL_configArgs

	Macros

	PWR Module
	Overview
	Functions
	PWR_powerDown

	TIMER Module
	Overview
	Configuration Structure
	TIMER_Config

	Functions
	TIMER_close
	TIMER_config
	TIMER_configArgs
	TIMER_getEventId
	TIMER_open
	TIMER_reload
	TIMER_reset
	TIMER_start
	TIMER_stop

	Macros

	WDTIM Module
	Overview
	Configuration Structure
	WDTIM_Config

	Functions
	WDTIM_close
	WDTIM_config
	WDTIM_configArgs
	WDTIM_open
	WDTIM_service
	WDTIM_start

	Macros

	Peripheral Registers
	DMA Registers
	DMA Channel Priority and Enable Control Register (DMPREC)
	DMA Channel n Sync Select and Frame Count Register (DMSFCn)
	DMA Channel n Transfer Mode Control Register (DMMCRn)
	DMA Channel n Source Address Register (DMSRCn)
	DMA Global Source Address Reload Register (DMGSA)
	DMA Source Program Page Address Register (DMSRCP)
	DMA Channel n Destination Address Register (DMDSTn)
	DMA Global Destination Address Reload Register (DMGDA)
	DMA Destination Program Page Address Register (DMDSTP)
	DMA Channel n Element Count Register (DMCTRn)
	DMA Global Element Count Reload Register (DMGCR)
	DMA Global Frame Count Reload Register (DMGFR)
	DMA Element Address Index Register 0 (DMIDX0)
	DMA Element Address Index Register 1 (DMIDX1)
	DMA Frame Address Index Register 0 (DMFRI0)
	DMA Frame Address Index Register 1 (DMFRI1)
	DMA Global Extended Source Data Page Register (DMSRCDP)
	DMA Global Extended Destination Data Page Register (DMDSTDP)

	Multichannel BSP (McBSP) Registers
	McBSP Serial Port Control Register (SPCR1)
	McBSP Serial Port Control Register 2 (SPCR2)
	McBSP Pin Control Register (PCR)
	Receive Control Register 1 (RCR1)
	Receive Control Register 2 (RCR2)
	Transmit Control Register 1 (XCR1)
	Transmit Control Register 2 (XCR2)
	Sample Rate Generator Register 1 (SRGR1)
	Sample Rate Generator Register 2 (SRGR2)
	Multichannel Control Register 1 (MCR1)
	Multichannel Control Register 2 (MCR2)
	Receive Channel Enable Register (RCERn)
	Transmit Channel Enable Register (XCERn)

	Clock Mode Register (CLKMD)
	Timer Registers
	Timer Control Register (TCR)
	Timer Secondary Control Register (TSCR)

	Watchdog Timer Registers (C5440 and C5441)
	Watchdog Timer Control Register (WDTCR)
	Watchdog Timer Secondary Control Register (WDTSCR)

	Software Wait-State Registers
	Software Wait-State Register (SWWSR)
	Software Wait-State Control Register (SWCR)

	Bank-Switching Control Register (BSCR)
	General Purpose I/O Registers
	General Purpose I/O Control Register (GPIOCR)
	General Purpose I/O Status Register (GPIOSR)

	Index

