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Read This First

About This Manual

The Texas Instruments TMS320C55x  DSPLIB is an optimized DSP Function
Library for C programmers on TMS320C55x devices. It includes over 50
C-callable assembly-optimized general-purpose signal processing routines.
These routines are typically used in computationally intensive real-time
applications where optimal execution speed is critical. By using these routines
you can achieve execution speeds considerable faster than equivalent code
written in standard ANSI C language. In addition, by providing ready-to-use
DSP functions, TI DSPLIB can shorten significantly your DSP application
development time.

Related Documentation

� The MathWorks, Inc. Matlab Signal Processing Toolbox User’s Guide. Na-
tick, MA: The MathWorks, Inc., 1996. .

� Lehmer, D.H. “Mathematical Methods in large-scale computing units.”
Proc. 2nd Sympos. on Large-Scale Digital Calculating Machinery, Cam-
bridge, MA, 1949. Cambridge, MA: Harvard University Press, 1951.

� Oppenheim, Alan V. and Ronald W Schafer. Discrete-Time Signal Proces-
sing. Englewood Cliffs, NJ: Prentice Hall, 1989.

� Digital Signal Processing with the TMS320 Family (SPR012)

� TMS320C55x DSP CPU Reference Guide (SPRU371)

� TMS320C55x Optimizing C Compiler User’s Guide (SPRU281)

Trademarks

TMS320, TMS320C55x, and C55x are trademarks of Texas Instruments.

Matlab is a trademark of Mathworks, Inc.



Acknowledgments

iv  

Acknowledgments

DSPLIB includes code contributed by the following people:

David Alter

Tom Horner

Jelena Nikolic

Gunter Schmer

Douglas Hall

Adrienne Jaffe

Chuck Brokish

Syed Maroof

Nils Paz

Stephen Lau

Mark Adams

Rekha Radhakrishnan

Frank Vogler

David Smalley

Herve Marechal

Timo Kuisma

Karen Baldwin

Rosemarie Piedra

Yves Wenzinger

Cesar Iovescu

Aaron Aboagye

Ulrich Schmidt

Joe George

Dipa Rao

Li Yuan



Contents

v

Contents

1 Introduction 1-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.1 DSP Routines 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.2 Features and Benefits 1-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
1.3 DSPLIB: Quality Freeware That You can Build On and Contribute To 1-2. . . . . . . . . . . . . . 

2 Installing DSPLIB 2-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.1 DSPLIB Content 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.2 How to Install DSPLIB 2-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.2.1 Read README.1ST File for Specific Details of Release 2-2. . . . . . . . . . . . . . . . . . 
2.3 How to Rebuild DSPLIB 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

2.3.1 For Full Rebuild of 55xdsp.lib 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
2.3.2 For Partial Rebuild of 55xdsp.lib 2-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3 Using DSPLIB 3-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1 DSPLIB Arguments and Data Types 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.1.1 DSPLIB Arguments 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.1.2 DSPLIB Data Types 3-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

3.2 Calling a DSPLIB Function from C 3-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.3 Calling a DSPLIB Function from Assembly Language Source Code 3-4. . . . . . . . . . . . . . . 
3.4 Where to Find Sample Code 3-4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.5 How DSPLIB is Tested – Allowable Error 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.6 How DSPLIB Deals with Overflow and Scaling Issues 3-5. . . . . . . . . . . . . . . . . . . . . . . . . . . 
3.7 Where DSPLIB Goes from Here 3-7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

4 Function Descriptions 4-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.1 Arguments and Conventions Used 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4.2 DSPLIB Functions 4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

5 DSPLIB Benchmarks and Performance Issues 5-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.1 What DSPLIB Benchmarks are Provided 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
5.2 Performance Considerations 5-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

6 Licensing, Warranty, and Support 6-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.1 Licensing and Warranty 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.2 DSPLIB Software Updates 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
6.3 DSPLIB Customer Support 6-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A Overview of Fractional Q Formats A-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.1 Q3.12 Format A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.2 Q.15 Format A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A.3 Q.31 Format A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

B Calculating the Reciprocal of a Q15 Number B-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

C Texas Instruments License Agreement for DSP Code C-1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Figures

vi  

Figures

4–1 dbuffer Array in Memory at Time j 4-21. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2 x Array in Memory 4-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–3 r Array in Memory 4-22. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–4 x Array in Memory 4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–5 r Array in Memory 4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–6 h Array in Memory 4-26. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–7 x Array in Memory 4-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–8 r Array in Memory 4-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–9 h Array in Memory 4-28. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–10 x Array in Memory 4-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–11 r Array in Memory 4-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–12 h Array in Memory 4-30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–13 dbuffer Array in Memory at Time j 4-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–14 x Array in Memory 4-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–15 r Array in Memory 4-41. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–16 dbuffer Array in Memory at Time j 4-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–17 x Array in Memory 4-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–18 r Array in Memory 4-45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–19 dbuffer Array in Memory at Time j 4-56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–20 x Array in Memory 4-56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–21 r Array in Memory 4-56. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–22 dbuffer Array in Memory at Time j 4-62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–23 x Array in Memory 4-62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–24 r Array in Memory 4-62. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



Tables

viiContents

Tables

4–1 Function Descriptions 4-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
4–2 Summary Table  4-3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A–1 Q3.12 Bit Fields A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A–2 Q.15 Bit Fields A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A–3 Q.31 Low Memory Location Bit Fields A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
A–4 Q.31 High Memory Location Bit Fields A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 



1-1

Introduction

The Texas Instruments TMS320C55x  DSPLIB is an optimized DSP Function
Library for C programmers on TMS320C55x devices. It includes over 50
C-callable assembly-optimized general-purpose signal processing routines.
These routines are typically used in computationally intensive real-time ap-
plications where optimal execution speed is critical. By using these routines
you can achieve execution speeds considerable faster than equivalent code
written in standard ANSI C language. In addition, by providing ready-to-use
DSP functions, TI DSPLIB can shorten significantly your DSP application
development time.
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1.1 DSP Routines

The TI DSPLIB includes commonly used DSP routines. Source code is
provided to allow you to modify the functions to match your specific needs.

The routines included within the library are organized into eight different
functional categories:

� Fast-Fourier Transforms (FFT)

� Filtering and convolution

� Adaptive filtering

� Correlation

� Math

� Trigonometric

� Miscellaneous

� Matrix

1.2 Features and Benefits

� Hand-coded assembly optimized routines

� C-callable routines fully compatible with the TI C55x  compiler

� Fractional Q15-format operand supported

� Complete set of examples on usage provided

� Benchmarks (time and code) provided

� Tested against Matlab  scripts

1.3 DSPLIB: Quality Freeware That You Can Build On and Contribute To

DSPLIB is a free-of-charge product. You can use, modify, and distribute TI
C55x DSPLIB for usage on TI C55x DSPs with no royalty payments. See
Licensing and Warranty, section 6.1, and Where DSPLIB Goes from Here,
section 3.7, for details.

DSP Routines / Features and Benefits / DSPLIB: Quality Freeware That You Can Build On and Contribute To
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Installing DSPLIB
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2.1 DSPLIB Content

The TI DSPLIB software consists of 4 parts:

1) a header file for C programmers:

dsplib.h

2) One object library:

55xdsp.lib

3) One source library to allow function customization by the end user

55xdsp.src

4) Example programs and linker command files used under the “55x_test”
sub-directory.

2.2 How to Install DSPLIB

2.2.1 Read README.1ST File for Specific Details of Release

Step 1: De-archive DSPLIB

DSPLIB is distributed in the form of an executable self-extracting ZIP file
(55xdsplib.exe). The zip file automatically restores the DSPLIB individual
components in the same directory you execute the self extracting file. Follow-
ing is an example on how to install DSPLIB, just type:

55xdsplib.exe –d

The DSPLIB directory structure and content you will find is:

55xdsplib (dir)

55xdsp.lib : use for standards short-call mode

blt55x.bat : re-generate 55xdsp.lib based on 55xdsp.src

examples(dir) : contains one subdirectory for each routine included in
the library where you can find complete test cases

include(dir)

dsplib.h : include file with data types and function prototypes

tms320.h : include file with type definitions to increase TMS320
portability

misc.h : include file with useful miscellaneous definitions

doc(dir)

dsplib.pdf : DSPLIB Application Report in PDF format

55x_src (dir) : contains assembly source files for functions

DSPLIB Content / How to Install DSPLIB
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Step 2: Relocate library file

Copy the C55x DSPLIB object library file, 55xdsp.lib, to your C5500 runtime
support library folder.

For example, if your TI C5500 tools are located in c:\ti\c5500\cgtools\bin and
c runtime support libraries (rts55.lib etc.) in c:\ti\c5500\cgtools\lib, copy
55xdsplib.lib to this folder. This allows the C55x compiler/linker to find
55xdsp.lib.

2.3 How to Rebuild DSPLIB

2.3.1 For Full Rebuild of 55xdsp.lib

To rebuild 55xdsp.lib, execute the blt55x.bat. This will overwrite any existing
55xdsp.lib.

2.3.2 For Partial Rebuild of 55xdsp.lib
(modification of a specific DSPLIB function, for example fir.asm)

1) Extract the source for the selected function from the source archive:

ar55 x 55xdsp.src fir.asm

2) Re-assemble your new fir.asm assembly source file:

asm55 –g fir.asm

3) Replace the object , fir.obj, in the dsplib.lib object library with the newly
formed object:

ar55 r 55xdsp.lib fir.obj

How to Install DSPLIB / How to Rebuild DSPLIB
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Using DSPLIB
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3.1 DSPLIB Arguments and Data Types

3.1.1 DSPLIB Arguments

DSPLIB functions typically operate over vector operands for greater efficiency.
Though these routines can be used to process short arrays or scalars (unless
a minimum size requirement is noted) , the execution times will be longer in
those cases.

� Vector stride is always equal 1:  vector operands are composed of vector
elements held in consecutive memory locations (vector stride equal to 1).

� Complex elements  are assumed to be stored in a Re-Im format.

� In-place computation is allowed (unless specifically noted):  Source
operand can be equal to destination operand to conserve memory.

3.1.2 DSPLIB Data Types

DSPLIB handles the following fractional data types:

� Q.15 (DATA) : A Q.15 operand is represented by a short data type (16 bit)
that is predefined as DATA, in the dsplib.h header file.

� Q.31 (LDATA) : A Q.31 operand is represented by a long data type (32 bit)
that is predefined as LDATA, in the dsplib.h header file.

� Q.3.12 : Contains 3 integer bits and 12 fractional bits.

Unless specifically noted, DSPLIB operates on Q15-fractional data type
elements. Appendix A presents an overview of Fractional Q formats
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3.2 Calling a DSPLIB Function from C

In addition to installing the DSPLIB software, to include a DSPLIB function in
your code you have to:

� Include the dsplib.h include file

� Link your code with the DSPLIB object code library, 55xdsp.lib.

� Use a correct linker command file describing the memory configuration
available in your C55x board.

For example, the following code contains a call to the recip16 and q15tofl
routines in DSPLIB:

#include ”dsplib.h”

DATA x[3] = { 12398 , 23167, 564};

DATA  r[NX];
DATA  rexp[NX];
float rf1[NX];
float rf2[NX];

void main()
{
        short i;

        for (i=0;i<NX;i++) 
         {
               r[i] =0;
               rexp[i] = 0;
     }

        recip16(x, r, rexp, NX);
        q15tofl(r, rf1, NX);

        for (i=0; i<NX; i++)
        {
               rf2[i] = (float)rexp[i] * rf1[i];
        }

        return;
}
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In this example, the q15tofl DSPLIB function is used to convert Q15 fractional
values to floating point fractional values. However, in many applications, your
data is always maintained in Q15 format so that the conversion between float
and Q15 is not required.

The above code, ug.c , is available to you in the /doc/code subdirectory. To
compile and link this code with 55xdsp.lib, issue the following command:

cl55 –pk –g –o3 –i. ug.c –z –v0 ld3.cmd 55xdsp.lib –m ug.map –oug.out

The examples presented in this document have been tested using the Texas
Instruments C55x Simulator. Customization may be required to use it with a
different simulator or development board.

Refer to the TMS320C55x Optimizing C Compiler User’s Guide (SPRU281).

3.3 Calling a DSPLIB Function from Assembly Language Source Code

The TMS320C55x DSPLIB functions were written to be used from C. Calling
the functions from assembly language source code is possible as long as the
calling-function conforms with the Texas Instruments C55x C compiler calling
conventions. Refer to the TMS320C55x Optimizing C Compiler User’s Guide,
if a more in-depth explanation is required.

Realize that the TI DSPLIB is not an optimal solution for assembly-only
programmers. Even though DSPLIB functions can be invoked from an
assembly program, the result may not be optimal due to unnecessary C-calling
overhead.

3.4 Where to Find Sample Code

You can find examples on how to use every single function in DSPLIB, in the
examples subdirectory. This subdirectory contains one subdirectory for each
function. For example, the examples/araw subdirectory contains the following
files:

� araw_t.c: main driver for testing the DSPLIB acorr (raw) function.

� test.h: contains input data(a) and expected output data(yraw) for the acorr
(raw) function as. This test.h file is generated by using Matlab scripts.

� test.c: contains function used to compare the output of araw function with
the expected output data.

� ftest.c:  contains function used to compare two arrays of float data types.

� ltest.c:  contains function used to compare two arrays of long data types.

� ld3.cmd: an example of a linker command you can use for this function.

Calling a DSPLIB Function from Assembly Language Source Code / Where to Find Sample Code



How DSPLIB is Tested – Allowable Error

3-5Using DSPLIB

3.5 How DSPLIB is Tested – Allowable Error

Version 1.0 of DSPLIB is tested against Matlab scripts. Expected data output
has been generated from Matlab that uses double-precision (64-bit) floating-
point operations (default precision in Matlab). Test utilities have been added
to our test main drivers to automate this checking process. Note that a maxi-
mum absolute error value (MAXERROR) is passed to the test function, to set
the trigger point to flag a functional error.

We consider this testing methodology a good first pass approximation. Further
characterization of the quantization error ranges for each function (under ran-
dom input) as well as testing against a set of fixed-point C models is planned
for future releases. We welcome any suggestions you may have on this
respect.

3.6 How DSPLIB Deals with Overflow and Scaling Issues

One of the inherent difficulties of programming for fixed-point processors is
determining how to deal with overflow issues. Overflow occurs as a result of
addition and subtraction operations when the dynamic range of the resulting
data is larger than what the intermediate and final data types can contain.

The methodology used to deal with overflow should depend on the specifics
of your signal, the type of operation in your functions, and the DSP architecture
used. In general, overflow handling methodologies can be classified in five
categories: saturation, input scaling, fixed scaling, dynamic scaling, and
system design considerations.

It’s important to note that a TMS320C55x architectural feature that makes
overflow easier to deal with is the presence of guard bits in all four accumula-
tors. The 40-bit accumulators provide eight guard bits that allow up to 256 con-
secutive multiply-and-accumulate (MAC) operations before an accumulator
overrun – a very useful feature when implementing, for example, FIR filters.

There are 4 specific ways DSPLIB deals with overflow, as reflected in each
function description:

� Scaling implemented for overflow prevention : In this type of function,
DSPLIB scales the intermediate results to prevent overflow. Overflow
should not occur as a result. Precision is affected but not significantly. This
is the case of the FFT functions, in which scaling is used after each FFT
stage.

How DSPLIB is Tested — Allowable Error / How DSPLIB Deals with Overflow and Scaling Issues
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� No scaling implemented for overflow prevention : In this type of func-
tion, DSPLIB does not scale to prevent overflow due to the potentially
strong effect in data output precision or in the number of cycles required.
This is the case, for example, of the MAC-based operations like filtering,
correlation, or convolutions. The best solution on those cases is to design
your system , for example your filter coefficients with a gain less than 1 to
prevent overflow. In this case, overflow could happen unless you input
scale or you design for no overflow.

� Saturation implemented for overflow handling : In this type of function,
DSPLIB has enabled the TMS320C55x 32-bit saturation mode (SATD
bit = 1). This is the case of certain basic math functions that require the
saturation mode to be enabled.

� Not applicable : In this type of function, due to the nature of the function
operations, there is no overflow.

� DSPLIB reporting of overflow conditions (overflow flag) : Due to the
sometimes unpredictible overflow risk, most DSPLIB functions have been
written to return an overflow flag (oflag) as an indication of a potentially
dangerous 32-bit overflow. However, because of the guard-bits, the C55x
is capable of handling intermediate 32-bit overflows and still produce the
correct final result. Therefore, the oflag parameter should be taken in the
context of a warning but not a definitive error.

As a final note, DSPLIB is provided also in source format to allow customiza-
tion of DSPLIB functions to your specific system needs.
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3.7 Where DSPLIB Goes from Here

We anticipate DSPLIB to improve in future releases in the following areas:

� Increased number of functions : We anticipate the number of functions
in DSPLIB will increase. We welcome user-contributed code. If during the
process of developing your application you develop a DSP routine that
seems like a good fit to DSPLIB, let us know. We will review and test your
routine and possibly include it in the next DSPLIB software release. Your
contribution will be acknowledged and recognized by TI in the Acknowl-
edgments section. Use this opportunity to make your name known by your
DSP industry peers. Simply email your contribution To Whom It May Con-
cern: dsph@ti.com and we will contact you.

� Increased Code portability : DSPLIB looks to enhance code portability
across different TMS320-based platforms. It is our goal to provide similar
DSP libraries for other TMS320  devices, working in conjunction with
C55x compiler intrinsics to make C-developing easier for fixed-point
devices. However, it’s anticipated that a 100% portable library across
TMS320  devices may not be possible due to normal device architectural
differences. TI will continue monitoring DSP industry standardization acti-
vities in terms of DSP function libraries.
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4.1 Arguments and Conventions Used

The following convention has been followed when describing the arguments
for each individual function:

Table 4–1. Function Descriptions

Argument Description

x,y argument reflecting input data vector

r argument reflecting output data vector

nx,ny,nr arguments reflecting the size of vectors x,y, and r respectively. In
functions where nx = nr = nr, only nx has been used.

h Argument reflecting filter coefficient vector (filter routines only)

nh Argument reflecting the size of vector h

DATA data type definition equating a short, a 16-bit value representing a
Q15 number. Usage of DATA instead of short is recommended to
increase future portability across devices.

LDATA data type definition equating a long, a 32-bit value representing a
Q31 number. Usage of LDATA instead of long is recommended to
increase future portability across devices.

ushort Unsigned short (16 bit). You can use this data type directly,
because it has been defined in dsplib.h
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4.2 DSPLIB Functions

The routines included within the library are organized into 8 different functional
categories:

� FFT
� Filtering and convolution
� Adaptive filtering
� Correlation
� Math
� Trigonometric
� Miscellaneous
� Matrix

Table 4–2 lists the functions by these 8 functional catagories.

Table 4–2. Summary Table  

(a) FFT

Functions Description

void cfft (DATA *x, ushort nx, ushort scale) Radix-2 complex forward FFT – MACRO

void cifft (DATA *x, ushort nx, ushort scale) Radix-2 complex inverse FFT – MACRO

void cbrev (DATA *x, DATA *r, ushort n) Complex bit-reverse function

void rfft (DATA *x, ushort nx, ushort scale) Radix-2 real forward FFT – MACRO

void rifft (DATA *x, ushort nx, ushort scale) Radix-2 real inverse FFT – MACRO

(b) Filtering and Convolution

Functions Description

ushort fir (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

FIR direct form

ushort fir2 (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

FIR direct form (Optimized to use DUAL–MAC)

ushort firs (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh2)

Symmetric FIR direct form (generic routine)

ushort cfir (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

Complex FIR direct form

ushort convol (DATA *x, DATA *h, DATA *r, ushort nr,
ushort nh)

Convolution

ushort convol1 (DATA *x, DATA *h, DATA *r, ushort nr,
ushort nh)

Convolution (Optimized to use DUAL–MAC)
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Table 4–2. Summary Table (Continued)

Functions Description

ushort convol2 (DATA *x, DATA *h, DATA *r, ushort nr,
ushort nh)

Convolution (Optimized to use DUAL–MAC)

ushort iircas4 (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nbiq, ushort nx)

IIR cascade direct form II. 4 coefficients per
biquad.

ushort iircas5 (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nbiq, ushort nx)

IIR cascade direct form II. 5 coefficients per
biquad

ushort iircas51 (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nbiq, ushort nx)

IIR cascade direct form I. 5 coefficients per
biquad

ushort iirlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer,
int nx, int nh)

Lattice inverse IIR filter

ushort firlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer,
int nx, int nh)

Lattice forward FIR filter

ushort firdec (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nh, ushort nx, ushort D)

Decimating FIR filter

ushort firinterp (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nh, ushort nx, ushort I)

Interpolating FIR filter

ushort hilb16 (DATA *x, DATA *h, DATA *r, DATA *dbuffer,
ushort nx, ushort nh)

FIR Hilbert Transformer

ushort iir32 (DATA *x, LDATA *h, DATA *r, LDATA *dbuffer,
ushort nbiq, ushort nr)

Double-precision IIR filter

(c) Adaptive filtering

Functions Description

ushort dlms (DATA *x, DATA *h, DATA *r, DATA *des,
DATA *dbuffer, DATA step, ushort nh, ushort nx)

LMS FIR (delayed version)

(d) Correlation

Functions Description

ushort acorr (DATA *x, DATA *r, ushort nx, ushort nr, type) Autocorrelation (positive side only) – MACRO

ushort corr (DATA *x, DATA *y, DATA *r, ushort nx, ushort
ny, type)

Correlation (full-length)
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Table 4–2. Summary Table (Continued)

(e) Trigonometric

Functions Description

ushort sine (DATA *x, DATA *r, ushort nx) sine of a vector

ushort atan2_16 (DATA *i, DATA *q, DATA *r, ushort nx) Four quadrant inverse tangent of a vector

ushort atan16 (DATA *x, DATA *r, ushort nx) Arctan of a vector

(f) Math

Functions Description

ushort add (DATA *x, DATA *y, DATA *r, ushort nx,
ushort scale)

Optimized vector addition

ushort expn (DATA *x, DATA *r, ushort nx) Exponent of a vector

short bexp (DATA *x, ushort nx) Exponent of all values in a vector

ushort logn (DATA *x, LDATA *r, ushort nx) Natural log of a vector

ushort log_2 (DATA *x, LDATA *r, ushort nx) Log base 2 of a vector

ushort log_10 (DATA *x, LDATA *r, ushort nx) Log base 10 of a vector

short maxidx (DATA *x, ushort nx) Index for maximum magnitude in a vector

short maxval (DATA *x, ushort nx) Maximum magnitude in a vector

void maxvec (DATA *x, ushort nx, DATA *r_val,
DATA *r_idx)

Index and value of the maximum element of a
vector

short minidx (DATA *x, ushort nx) Index for minimum magnitude in a vector

short minval (DATA *x, ushort nx) Minimum element in a vector

void minvec (DATA *x, ushort nx, DATA *r_val,
DATA *r_idx)

Index and value of the minimum element of a
vector

ushort mul32 (LDATA *x, LDATA *y, LDATA *r, ushort nx) 32-bit vector multiply

short neg (DATA *x, DATA *r, ushort nx) 16-bit vector negate

short neg32 (LDATA *x, LDATA *r, ushort nx) 32-bit vector negate

short power (DATA *x, LDATA *r, ushort nx) sum of squares of a vector (power)

void recip16 (DATA *x, DATA *r, DATA *rexp, ushort nx) Vector reciprocal

void ldiv16 (LDATA *x, DATA *y, DATA *r, DATA *rexp,
ushort nx)

32-bit by 16-bit long division
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Table 4–2. Summary Table (Continued)

Functions Description

ushort sqrt_16 (DATA *x, DATA *r, short nx) Square root of a vector

short sub (DATA *x, DATA *y, DATA *r, ushort nx,
ushort scale)

Vector subtraction

(g) Matrix

Functions Description

ushort mmul (DATA *x1, short row1, short col1,
DATA *x2, short row2, short col2, DATA *r)

matrix multiply

ushort mtrans (DATA *x, short row, short col, DATA *r) matrix transponse

(h) Miscellaneous

Functions Description

ushort fltoq15 (float *x, DATA *r, ushort nx) Floating-point to Q15 conversion

ushort q15tofl (DATA *x, float *r, ushort nx) Q15 to floating-point conversion

ushort rand16 (DATA *r, ushort nr) Random number generation

void rand16init(void) Random number generation initialization
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Autocorrelationacorr

ushort oflag = acorr (DATA *x, DATA *r, ushort nx, ushort nr, type)

(defined in araw.asm, abias.asm , aubias.asm)

Arguments

x [nx] Pointer to real input vector of nx real elements. nx ≥ nr

r [nr] Pointer to real output vector containing the first nr elements
of the positive side of the autocorrelation function of vector
a. r must be different than a (in-place computation is not
allowed).

nx Number of real elements in vector x

nr Number of real elements in vector r

type Autocorrelation type selector. Types supported:

� If type = raw, r contains the raw autocorrelation of x

� If type = bias, r contains the biased autocorrelation of x

� If type = unbias, r contains the unbiased autocorrelation of
x

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description Computes the first nr points of the positive side of the autocorrelation of the
real vector x and stores the results in real output vector r. The full-length auto-
correlation of vector x will have 2*nx–1 points with even symmetry around the
lag 0 point (r[0]). This routine provides only the positive half of this for memory
and computational savings.

Algorithm Raw Autocorrelation

r [j] �
nx�j�1

�
k � 0

x[j � k] x[k] 0 � j � nr

Biased Autocorrelation

r [j] � 1
nx

nx�j�1

�
k � 0

x[j � k] x[k] 0 � j � nr
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Unbiased Autocorrelation

r [j] � 1
(nx � abs(j))

nx�j�1

�
k � 0

x[j � k] x[k] 0 � j � nr

Overflow Handling Methodology  No scaling implemented for overflow prevention

Special Requirements None

Implementation Notes

� Special debugging consideration: This function is implemented as a mac-
ro that invokes different autocorrelation routines according to the type
selected. As a consequence the acorr symbol is not defined. Instead the
acorr_raw, acorr_bias, acorr_unbias symbols are defined.

� Autocorrelation is implemented using time-domain techniques

Example See examples/abias, examples/aubias, examples/araw subdirectories

Benchmarks (preliminary)

Cycles† Abias:
Core:
nr even: [(4 * nx – nr * (nr + 2) + 20) / 8] * nr
nr odd: [(4 * nx – (nr – 1) * (nr + 1) + 20) / 8] * (nr – 1) + 10
nr = 1: (nx + 2)
Overhead:
nr even: 90
nr odd: 83
nr = 1: 59

Araw:
Core:
nr even: [(4 * nx – nr * (nr + 2) + 28) / 8] * nr
nr odd: [(4 * nx – (nr – 1) * (nr + 1) + 28) / 8] * (nr – 1) + 13
nr = 1: (nx + 1)
Overhead:
nr even: 34
nr odd: 35
nr = 1: 30

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Cycles† Aubias:
Core:
nreven: [(8 * nx – 3 * nr * (nr + 2) + 68) / 8] * nr
nr odd: [(8 * nx – 3 * (nr–1) * (nr+1) + 68)/8] * (nr – 1) + 33
nr = 1: nx + 26
Overhead:
nr even: 64
nr odd: 55
nr = 1: 47

Code size
(in bytes)

Abias: 251
Araw: 178
Aubias: 308

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Vector Addadd

ushort oflag = add (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale)

(defined in add.asm)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx containing

� (x+y) if scale = 0

� (x+y) /2 if scale = 1

nx Number of elements of input and output vectors.
nx ≥ 4

scale Scale selection

� If scale = 1, divide the result by 2 to prevent overflow

� If scale = 0, do not divide by 2

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description This function adds two vectors, element by element.

Algorithm for (i � 0; i � nx; i ��) z(i) � x(i) � y(i)

Overflow Handling Methodology  Scaling implemented for overflow prevention (User selectable)

Special Requirements None

Implementation Notes None

Example See examples/add subdirectory

Benchmarks (preliminary)

Cycles† Core: 3 * nx
Overhead: 23

Code size
(in bytes)

60

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Arctangent 2 Implementationatan2_16

ushort oflag = atan2_16 (DATA *i, DATA *q, DATA *r, ushort nx)

(defined in arct2.asm)

Arguments :

q[nx] Pointer to quadrature input vector of size nx.

i[nx] Pointer to in-phase input vector of size nx

r[nx] Pointer to output data vector (in Q15 format) number
representation of size nx containing. In-place processing
allowed (r can be equal to x ) on output, r contains the
arctangent of (q/I) /PI

nx Number of elements of input and output vectors.

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description This function calculates the arctangent of the ratio q/I, where –1 <=
atan2_16(Q/I) <= 1 representing an actual range of –PI < atan2_16(Q/I) < PI.
The result is placed in the resultant vector r. Output scale factor correction =
PI. For example, if:
y = [0x1999, 0x1999, 0x0, 0xe667, 0x1999] (equivalent to [0.2, 0.2, 0, –0.2,
0.2] float)
x = [0x1999, 0x3dcc, 0x7ffff, 0x3dcc c234] (equivalent to [0.2, 0.4828, 1,
0.4828, –0.4828] float)
atan2_16(y, x, r,4) should give: 
r = [0x2000, 0x1000, 0x0, 0xf000, 0x7000] equivalent to [0.25, 0.125, 0,
–0.125, 0.875]*pi

Algorithm for (j � 0; j � nx; j ��) r(j) � atan2(q[j], i[j])

Overflow Handling Methodology  Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial
coefficients)

Implementation Notes None

Example See examples/arct2 subdirectory
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Benchmarks (preliminary)

Cycles† 18 + 62 * nx

Code size
(in bytes)

170 program; 10 data; 4 stack

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Arctangent Implementationatan16

ushort oflag = atan16 (DATA *x, DATA *r, ushort nx)

(defined in atant.asm)

Arguments

x[nx] Pointer to input data vector of size nx. x contains the
tangent of r, where |x| < 1.

r[nx] Pointer to output data vector of size nx containing the
arctangent of x in the range [–pi/4, pi/4] radians. In-place
processing allowed (r can be equal to x)
atan(1.0) = 0.7854 or 6478h

nx Number of elements of input and output vectors.

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description This function calculates the arc tangent of each of the elements of vector x. The
result is placed in the resultant vector r and is in the range [–pi/2 to pi/2]
radians. For example,
if x = [0x7fff, 0x3505, 0x1976, 0x0] (equivalent to tan(PI/4), tan(PI/8),
tan(PI/16), 0 in float):
atan16(x,r,4) should give
r = [0x6478, 0x3243, 0x1921, 0x0] equivalent to [PI/4, PI/8, PI/16, 0]

Algorithm for (i � 0; i � nx; i ��) r(i) � atan(x(i))

Overflow Handling Methodology  Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial
coefficients)

Implementation Notes

� atan(x), with 0 <= x <= 1, output scaling factor = PI.

� Uses a polynomial to compute the arctan (x) for |x| <1. For |x| > 1, you can
express the number x as a ratio of 2 fractional numbers and use the
atan2_16 function.

Example See examples/atant subdirectory
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Benchmarks (preliminary)

Cycles† 14 + 8 * nx

Code size
(in bytes)

43 program; 6 data

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Block Exponent Implementationbexp

short r = bexp (DATA *x, ushort nx)

(defined in bexp.asm)

Arguments

x [nx] Pointer to input vector of size nx

r Return value. Maximum exponent that may be used in
scaling.

nx Length of input data vector

Description Computes the exponents (number of extra sign bits) of all values in the input
vector and returns the minimum exponent. This will be useful in determining
the maximum shift value that may be used in scaling a block of data.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/bexp subdirectory

Benchmarks (preliminary)

Cycles Core: 3 * nx
Overhead: 4

Code size
(in bytes)

19
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Complex Bit Reversecbrev

void cbrev (DATA *a, DATA *r, ushort n)

(defined in cbrev.asm)

Arguments

x[2*nx] Pointer to complex input vector x

r[2*nx] Pointer to complex output vector r.

nx Number of complex elements of vectors x and r.

� To bit-reverse the input of a complex FFT, nx should be the
complex FFT size.

� To bit-reverse the input of a real FFT, nx should be half the
real FFT size.

Description This function bit-reverses the position of elements in complex vector x into out-
put vector r. In-place bit-reversing is allowed. Use this function in conjunction
with FFT routines to provide the correct format for the FFT input or output data.
If you bit-reverse a linear-order array, you obtain a bit-reversed order array. If
you bit-reverse a bit-reversed order array, you obtain a linear-order array.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes

� x is read with bit-reversed addressing and r is written in normal linear ad-
dressing.

� Off-place bit-reversing (x = r) requires half as many cycles as in-place bit-
reversing (x <> r). However, this is at the expense of doubling the data
memory requirements.

Example See examples/cfft and examples/rfft subdirectories

Benchmarks (preliminary)

Cycles† Core:
2 * nx (off-place)
4 * nx + 6 (in-place)
Overhead: 17

Code size
(in bytes)

81 (includes support for both in-place and off-place
bit-reverse)

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Forward Complex FFT cfft

void cfft (DATA *x, ushort nx, ushort scale);

(defined in cfft.asm)

Arguments

x [2*nx] Pointer to input vector containing nx complex elements
(2*nx real elements) in bit-reversed order. On output, vector
a contains the nx complex elements of the FFT(x). Complex
numbers are stored in interleaved Re-Im format.

nx Number of complex elements in vector x. Must be between
8 and 1024.

scale Flag to indicate whether or not scaling should be
implemented during computation.
if (scale == 1)
    scale factor = nx;
else
    scale factor = 1;
end

Description Computes a complex nx-point FFT on vector x, which is in bit-reversed order.
The original content of vector x is destroyed in the process. The nx complex
elements of the result are stored in vector x in normal-order.

Algorithm (DFT)

y[k] � 1
(scale factor)

*
nx�1
�

i � 0
x[i] *�cos�2 * pi * i * k

nx �� j sin �2 * pi * i * k
nx ��

Overflow Handling Methodology

If scale==1, scaling before each stage is implemented for overflow prevention

Special Requirements

� Special linker command file sections required.

� This function requires the inclusion of file twiddle1024br.h that contains
the twiddle table (automatically included).
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Implementation Notes

� Radix-2 DIF version of the FFT algorithm is implemented. The
implementation is optimized for MIPS, not for code size. The first stage is
unrolled and the last two stages are implemented in radix-4, for MIPS
optimization.

� This routine prevents overflow by scaling by 2 before each FFT stage,
assuming that the parameter scale is set to 1.

Example See examples/cfft subdirectory

Benchmarks (preliminary)

� 5 cycles (radix-2 butterfly)

� 10 cycles (radix-4 butterfly)

� 1 cycle/complex value (scaling)

Cycles† FFT Core:
5 * (nx/2) + 5 * (nx/2) * (log2(nx) – 3) * 1.15 + 10 * (nx/4)
Scaling‡: 2 * nx * log2(nx)
Overhead: 71

Code size
(in bytes)

510

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).

‡ When scaling is used, this version of FFT has a separate scaling stage for each FFT stage. The
next release of this code will embed scaling as part of the butterfly core without adding extra cycle
penalty.
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Complex FIR Filtercfir

ushort oflag = cfir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh)

Arguments

x[2*nx] Pointer to input vector of nx complex elements.

h[2*nh] � Pointer to complex coefficient vector of size nh in
normal order. For example, if nh=6, then h[nh] =
{h0r, h0i, h1r, h1i h2r, h2i, h3r, h3i, h4r, h4i, h5r, h5i}
where h0 resides at the lowest memory address in
the array.

� This array must be located in internal memory since
it is accessed by the C55x coefficient bus.

r[2*nx] Pointer to output vector of nx complex elements.
In-place computation (r = x) is allowed.

dbuffer[2*nh + 2] Pointer to delay buffer of length nh =2 * nh + 2

� In the case of multiple-buffering schemes, this
array should be initialized to 0 for the first filter block
only. Between consecutive blocks, the delay buffer
preserves the previous r output elements needed.

� The first element in this array is present for align-
ment purposes, the second element is special in
that it contains the array index–1 of the oldest input
entry in the delay buffer. This is needed for multiple-
buffering schemes, and should be initialized to 0
(like all the other array entries) for the first block
only.

nx Number of complex input samples

nh The number of complex coefficients of the filter. For
example, if the filter coefficients are {h0, h1, h2, h3,
h4, h5}, then nh = 6. Must be a minimum value of 3.
For smaller filters, zero pad the coefficients to meet
the minimum value.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow has occurred in
an intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes a complex FIR filter (direct-form) using the coefficients stored in
vector h. The complex input data is stored in vector x. The filter output result
is stored in vector r. This function maintains the array dbuffer containing the
previous delayed input values to allow consecutive processing of input data
blocks. This function can be used for both block-by-block (nx ≥ 2) and sample-
by-sample filtering (nx = 1). In-place computation (r = x) is allowed.

Algorithm r [j] �
nh�1
�

k � 0
h[k] x[j � k] where 0 � j � nx

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

Implementation Notes The first element in the dbuffer array is present only for alignment purposes.
The second element in this array (index=0) is the entry index for the input
history. It is treated as an unsigned 16-bit value by the function even though
it has been declared as signed in C. The value of the entry index is equal to
the index – 1 of the oldest input entry in the array. The remaining elements
make up the input history. Figure 4–1 shows the array in memory with an entry
index of 2. The newest entry in the dbuffer is denoted by x(j–0), which in this
case would occupy index = 3 in the array. The next newest entry is x(j–1), and
so on. It is assumed that all x() entries were placed into the array by the
previous invocation of the function in a multiple-buffering scheme.

Figure 4–1, Figure 4–2, and Figure 4–3 show the dbuffer, x, and r arrays as
they appear in memory.
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Figure 4–1. dbuffer Array in Memory at Time j

•
•
•

xr(j–nh–3)

xi(j–nh–3)

lowest memory address

highest memory address

oldest x( ) entry

entry index = 2

xr(j–nh–2)

xi(j–nh–2)

xr(j–nh–1)

xi(j–nh–1)

xr(j–nh)

xi(j–nh)

dummy value

xr(j–0)

xi(j–0)

xr(j–1)

xi(j–1)

xr(j–2)

xi(j–2)

xr(j–nh–4)

xi(j–nh–4)

xr(j–nh–3)

xi(j–nh–3)

newest x( ) entry
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Figure 4–2. x Array in Memory

•
•
•

xr(0)

xi(0)

xi(nx–2)

xr(nx–2)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

xr(nx–1)

xi(nx–1)

xr(1)

xi(1)

Figure 4–3. r Array in Memory

•
•
•

ri(0)

rr(1)

rr(nx–1)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

rr(0)

rr(nx–2)

ri(nx–2)

ri(nx–1)

ri(1)

Example See examples/cfir subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (2 + 2 * nh)
Overhead: 51

Code size
(in bytes)

136

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Inverse Complex FFTcifft

void cifft (DATA *x, ushort nx, ushort scale);

(defined in cifft.asm)

Arguments

x [2*nx] Pointer to input vector containing nx complex elements
(2*nx real elements) in bit-reversed order. On output, vector
a contains the nx complex elements of the IFFT(x).
Complex numbers are stored in interleaved Re-Im format.

nx Number of complex elements in vector x. Must be between
8 and 1024.

scale Flag to indicate whether or not scaling should be
implemented during computation.
if (scale == 1)
    scale factor = nx;
else
    scale factor = 1;
end

Description Computes a complex nx-point IFFT on vector x, which is in bit-reversed order.
The original content of vector x is destroyed in the process. The nx complex
elements of the result are stored in vector x in normal-order.

Algorithm (IDFT)

y[k] � 1
(scale factor)

*
nx�1
�

i � 0
x[w] *�cos�2 * pi * i * k

nx �� j sin �2 * pi * i * k
nx ��

Overflow Handling Methodology

If scale==1, scaling before each stage is implemented for overflow prevention

Special Requirements

� Special linker command file sections required.

� This function requires the inclusion of file twiddle1024br.h that contains
the twiddle table (automatically included).
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Implementation Notes

� Radix-2 DIF version of the IFFT algorithm is implemented. The
implementation is optimized for MIPS, not for code size. The first stage is
unrolled and the last two stages are implemented in radix-4, for MIPS
optimization.

� This routine prevents overflow by scaling by 2 before each IFFT stage,
assuming that the parameter scale is set to 1.

� IFFT implementation is directly derived from FFT implementation by
changing signs (or replacing adds with subtracts or vice versa) where ap-
propriate.

Example See examples/cifft subdirectory

Benchmarks (preliminary)

� 5 cycles (radix-2 butterfly)

� 10 cycles (radix-4 butterfly)

� 1 cycle/complex value (scaling)

Cycles† IFFT Core(approx):
5 * (nx/2) + 5 * (nx/2) * (log2(nx) – 3) * 1.15 + 10 * (nx/4)
Scaling: 2*nx*log2(nx)
Overhead: 71

Code size
(in bytes)

510

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Convolutionconvol

ushort oflag = convol (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)

Arguments

x[nr+nh–1] Pointer to input vector of nr + nh – 1 real elements.

h[nh] Pointer to input vector of nh real elements.

r[nr] Pointer to output vector of nr real elements.

nr Number of elements in vector r. In-place computation
(r = x) is allowed (see Description section for comment).

nh Number of elements in vector h.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an inter-
mediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the real convolution of two real vectors x and h, and places the
results in vector r. Typically used for block FIR filter computation when there
is no need to retain an input delay buffer. This function can also be used to
implement single-sample FIR filters (nr = 1) provided the input delay history
for the filter is maintained external to this function. In-place computation (r = x)
is allowed, but be aware that the r output vector is shorter in length than the
x input vector; therefore, r will only overwrite the first nr elements of the x.

Algorithm r [j] �
nh�1
�

k � 0
h[k] x[j � k] where 0 � j � nr

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements none

Implementation Notes Figure 4–4, Figure 4–5, and Figure 4–6 show the x, r, and h arrays as they
appear in memory.
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Figure 4–4. x Array in Memory

•
•
•

x(0)

x(1)

x(nr+nh–2)

x(nr+nh–1)

lowest memory address

highest memory address

Figure 4–5. r Array in Memory

•
•
•

r(0)

r(1)

r(nr–2)

r(nr–1)

lowest memory address

highest memory address

Figure 4–6. h Array in Memory

•
•
•

h(0)

h(1)

h(nh–2)

h(nh–1)

lowest memory address

highest memory address

Example See examples/convol subdirectory

Benchmarks (preliminary)

Cycles† Core: nr * (1 + nh)
Overhead: 21

Code size
(in bytes)

88

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Convolution (fast)convol1

ushort oflag = convol1 (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)

Arguments

x[nr+nh–1] Pointer to input vector of nr+nh–1 real elements.

h[nh] Pointer to input vector of nh real elements.

r[nr] Pointer to output vector of nr real elements. In-place
computation (r = x) is allowed (see Description section for
comment).

nr Number of elements in vector r. Must be an even number.

nh Number of elements in vector h.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an inter-
mediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the real convolution of two real vectors x and h, and places the
results in vector r. This function utilizes the dual-MAC capability of the C55x
to process in parallel two output samples for each iteration of the inner function
loop. It is, therefore, roughly twice as fast as CONVOL, which implements only
a single-MAC approach. However, the number of output samples (nr) must be
even. Typically used for block FIR filter computation when there is no need to
retain an input delay buffer. This function can also be used to implement single-
sample FIR filters (nr = 1) provided the input delay history for the filter is main-
tained external to this function. In-place computation (r = x) is allowed, but be
aware that the r output vector is shorter in length than the x input vector; there-
fore, r will only overwrite the first nr elements of the x.

Algorithm r [j] �
nh�1
�

k � 0
h[k] x[j � k] where 0 � j � nr

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements

� nr must be an even value.

� The vector h[nh] must be located in internal memory since it is accessed
using the C55x coefficient bus, and that bus does not have access to exter-
nal memory.
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Implementation Notes Figure 4–7, Figure 4–8, and Figure 4–9 show the x, r, and h arrays as they
appear in memory.

Figure 4–7. x Array in Memory

•
•
•

x(0)

x(1)

x(nr+nh–2)

x(nr+nh–1)

lowest memory address

highest memory address

Figure 4–8. r Array in Memory

•
•
•

r(0)

r(1)

r(nr–2)

r(nr–1)

lowest memory address

highest memory address

Figure 4–9. h Array in Memory

•
•
•

h(0)

h(1)

h(nh–2)

h(nh–1)

lowest memory address

highest memory address

Example See examples/convol1 subdirectory

Benchmarks (preliminary)

Cycles† Core: nr/2 * (2 + nh)
Overhead: 24

Code size
(in bytes)

101

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Convolution (fastest)convol2

ushort oflag = convol2 (DATA *x, DATA *h, DATA *r, ushort nr, ushort nh)

Arguments

x[nr+nh–1] Pointer to input vector of nr + nh – 1 real elements.

h[nh] Pointer to input vector of nh real elements.

r[nr] Pointer to output vector of nr real elements. In-place
computation (r = x) is allowed (see Description section for
comment). This array must be aligned on a 32-bit
boundary in memory.

nr Number of elements in vector r. Must be an even number.

nh Number of elements in vector h.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow has occurred in an
intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the real convolution of two real vectors x and h, and places the
results in vector r. This function utilizes the dual-MAC capability of the C55x
to process in parallel two output samples for each iteration of the inner function
loop. It is, therefore, roughly twice as fast as CONVOL, which implements only
a single-MAC approach. However, the number of output samples (nr) must be
even. In addition, this function offers a small performance improvement over
CONVOL1 at the expense of requiring the r array to be 32-bit aligned in memo-
ry. Typically used for block FIR filter computation when there is no need to
retain an input delay buffer. This function can also be used to implement single-
sample FIR filters (nr = 1) provided the input delay history for the filter is main-
tained external to this function. In-place computation (r = x) is allowed, but be
aware that the r output vector is shorter in length than the x input vector; there-
fore, r will only overwrite the first nr elements of the x.

Algorithm r [j] �
nh�1
�

k � 0
h[k] x[j � k] where 0 � j � nr

Overflow Handling Methodology  No scaling implemented for overflow prevention.
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Special Requirements

� nr must be an even value.

� The vector h[nh] must be located in internal memory since it is accessed
using the C55x coefficient bus, and that bus does not have access to exter-
nal memory.

� The vector r[nr] must be 32-bit aligned in memory.

Implementation Notes Figure 4–10, Figure 4–11, and Figure 4–12 show the x, r, and h arrays as they
appear in memory.

Figure 4–10. x Array in Memory

•
•
•

x(0)

x(1)

x(nr+nh–2)

x(nr+nh–1)

lowest memory address

highest memory address

Figure 4–11.r Array in Memory

•
•
•

r(0)

r(1)

r(nr–2)

r(nr–1)

lowest memory address

highest memory address

Figure 4–12. h Array in Memory

•
•
•

h(0)

h(1)

h(nh–2)

h(nh–1)

lowest memory address

highest memory address
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Example See examples/convol2 subdirectory

Benchmarks (preliminary)

Cycles† Core: nr/2 * (1 + nh)
Overhead: 24

Code size
(in bytes)

100

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Correlation, full-lengthcorr

ushort oflag = corr (DATA *x, DATA *y, DATA *r, ushort nx, ushort ny, type)

Arguments

x [nx] Pointer to real input vector of nx real elements.

x [ny] Pointer to real input vector of ny real elements.

r[nx+ny–1] Pointer to real output vector containing the full-length
correlation (nx + ny – 1 elements) of vector x with y. r
must be different than both x and y (in-place
computation is not allowed).

nx Number of real elements in vector x

ny Number of real elements in vector y

type Correlation type selector. Types supported:

� If type = raw, r contains the raw correlation
� If type = bias, r contains the biased-correlation
� If type = unbias, r contains the unbiased-correlation

oflag Overflow flag

� If oflag = 1, a 32-bit overflow has occurred
� If oflag = 0, a 32-bit overflow has not occurred

Description Computes the full-length correlation of vectors x and y and stores the result
in vector r. using time-domain techniques.

Algorithm

Raw correlation

���� � �
������

���

����� �� � 	���������� � � � �� � ��� �	� �

Biased correlation

���� � ���� �
������

���
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Unbiased correlation
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Overflow Handling Methodology  No scaling implemented for overflow prevention

Special Requirements None

Implementation Notes

� Special debugging consideration: This function is implemented as a
macro that invokes different correlation routines according to the type
selected. As a consequence the corr symbol is not defined. Instead the
corr_raw, corr_bias, corr_unbias symbols are defined.

� Correlation is implemented using time-domain techniques

Benchmarks  (preliminary)

Cycles Raw: 2 times faster than C54x
Unbias: 2.14 times faster than C54x
Bias: 2.1 times faster than C54x

Code size 
(in bytes)

Raw: 318
Unbias: 417
Bias: 356
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Adaptive Delayed LMS Filterdlms

ushort oflag = dlms (DATA *x, DATA *h, DATA *r, DATA *des, DATA *dbuffer,
DATA step, ushort nh, ushort nx)

(defined in dlms.asm)

Arguments

x[nx] Pointer to input vector of size nx

h[nh] Pointer to filter coefficient vector of size nh.

� h is stored in reversed order : h(n–1), ... h(0) where
h[n] is at the lowest memory address.

� Memory alignment: h is a circular buffer and must start
in a k-bit boundary(that is, the k LSBs of the starting
address must be zeros) where k = log2(nh)

r[nx] Pointer to output data vector of size nx. r can be equal
to x.

des[nx] Pointer to expected output array

dbuffer[nh+2] Pointer to the delay buffer structure.
The delay buffer is a structure comprised of an index
register and a circular buffer of length nh + 1. The index
register is the index into the circular buffer of the oldest
data sample.

nh Number of filter coefficients. Filter order = nh – 1.
nh ≥ 3

nx Length of input and output data vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description Adaptive delayed least-mean-square (LMS) FIR filter using coefficients stored
in vector h. Coefficients are updated after each sample based on the LMS
algorithm and using a constant step = 2*mu. The real data input is stored in
vector dbuffer. The filter output result is stored in vector r .

LMS algorithm uses the previous error and the previous sample (delayed) to
take advantage of the C55x LMS instruction.
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The delay buffer used is the same delay buffer used for other functions in the
C55x DSP Library. There is one more data location in the circular delay buffer
than there are coefficients. Other C55x DSP Library functions use this delay
buffer to accommodate use of the dual-MAC architecture. In the DLMS func-
tion, we make use of the additional delay slot to allow coefficient updating as
well as FIR calculation without a need to update the circular buffer in the interim
operations.

The FIR output calculation is based on x(i) through x(i–nh+1). The coefficient
update for a delayed  LMS is based on x(i–1) through x(i–nh). Therefore, by
having a delay buffer of nh+1, we can perform all calculations with the given
delay buffer containing delay values of x(i) through x(i–nh). If the delay buffer
was of length nh, the oldest data sample, x(i–nh), would need to be updated
with the newest data sample, x(i), sometime after the calculation of the first co-
efficient update term, but before the calculation of the last FIR term.

Algorithm FIR portion

r [j] �
nh�1
�

k � 0
h[k] * x[i � k]               0 � i � nx � 1

Adaptation using the previous error and the previous sample:
e(i)� des(i � 1)� r (i � 1)

hk(i � 1)� hk(i)� 2 * mu * e(i � 1) * x(i � k � 1)

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements Minimum of 2 input and desired data samples. Minimum of 2 coefficients

Implementation Notes

� Delayed version implemented to take advantage of the C55x LMS instruc-
tion.

� Effect of using delayed error signal on convergence minimum: 
For reference, following is the algorithm for the regular LMS (non-
delayed):

FIR portion

r [j] �
nh�1
�

k � 0
h[k] * x[i � k] 0 � i � nx � 1

Adaptation using the current error and the current sample:
e(i) � des(i)� r (i)
hk(i � 1)� hk(i)� 2 * mu * e(i) * x(i � k)
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Example See examples/dlms subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (7 + 2*(nh – 1)) = nx * (5 + 2 * nh)
Overhead: 26

Code size
(in bytes)

122

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Exponential Base eexpn

ushort oflag = expn (DATA *x, DATA *r, ushort nx)

(defined in expn.asm)

Arguments

x[nx] Pointer to input vector of size nx. x contains the numbers
normalized between (–1,1) in q15 format

r[nx] Pointer to output data vector (Q3.12 format) of size nx. r can
be equal to x.

nx Length of input and output data vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred

Description Computes the exponent of elements of vector x using Taylor series.

Algorithm for (i � 0; i � nx; i ��) y(i) � ex(i) where –1 � x(i) � 1

Overflow Handling Methodology  Not applicable

Special Requirements Linker command file: you must allocate .data section (for polynomial coeffi-
cients)

Implementation Notes Computes the exponent of elements of vector x. It uses the following Taylor
series:
exp(x) � c0 � (c1 * x) � (c2 * x2) � (c3 * x3) � (c4 * x4) � (c5 * x5)

where
c0 = 1.0000
c1 = 1.0001
c2 = 0.4990
c3 = 0.1705
c4 = 0.0348
c5 = 0.0139
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Example See examples/expn subdirectory

Benchmarks (preliminary)

Cycles† Core: 11 * nx
Overhead: 18

Code size
(in bytes)

57

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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FIR Filterfir

ushort oflag = fir (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh)

Arguments

x[nx] Pointer to input vector of nx real elements.

h[nh] � Pointer to coefficient vector of size nh in normal order.
For example, if nh=6, then h[nh] = {h0, h1, h2, h3, h4,
h5} where h0 resides at the lowest memory address
in the array.

� This array must be located in internal memory since
it is accessed by the C55x coefficient bus.

r[nx] Pointer to output vector of nx real elements. In-place
computation (r = x) is allowed.

dbuffer[nh+2] Pointer to delay buffer of length nh = nh + 2

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first filter block only.
Between consecutive blocks, the delay buffer pre-
serves the previous r output elements needed.

� The first element in this array is special in that it con-
tains the array index–1 of the oldest input entry in the
delay buffer. This is needed for multiple-buffering
schemes, and should be initialized to 0 (like all the oth-
er array entries) for the first block only.

nx Number of input samples

nh The number of coefficients of the filter. For example, if
the filter coefficients are {h0, h1, h2, h3, h4, h5}, then nh
= 6. Must be a minimum value of 3. For smaller filters,
zero pad the coefficients to meet the minimum value.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an inter-
mediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes a real FIR filter (direct-form) using the coefficients stored in vector
h. The real input data is stored in vector x. The filter output result is stored in
vector r. This function maintains the array dbuffer containing the previous
delayed input values to allow consecutive processing of input data blocks. This
function can be used for both block-by-block (nx ≥ 2) and sample-by-sample
filtering (nx = 1). In place computation (r = x) is allowed.

Algorithm r [j] �
nh�1
�

k � 0
h[k] x[j � k] where 0 � j � nx

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

Implementation Notes  The first element in the dbuffer array (index = 0) is the entry index for the input
history. It is treated as an unsigned 16-bit value by the function even though
it has been declared as signed in C. The value of the entry index is equal to
the index – 1 of the oldest input entry in the array. The remaining elements
make up the input history. Figure 4–13 shows the array in memory with an
entry index of 2. The newest entry in the dbuffer is denoted by x(j–0), which
in this case would occupy index = 3 in the array. The next newest entry is
x(j–1), and so on. It is assumed that all x() entries were placed into the array
by the previous invocation of the function in a multiple-buffering scheme.

The dbuffer array actually contains one more history value than is needed to
implement this filter. The value x(j–nh) does not enter into the calculations for
for the output r(j). However, this value is required in other DSPLIB filter func-
tions that utilize the dual-MAC units on the C55x, such as FIR2. Including this
extra location ensures compatibility across all filter functions in the C55x
DSPLIB.

Figure 4–13, Figure 4–14, and Figure 4–15 show the dbuffer, x, and r arrays
as they appear in memory.
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Figure 4–13. dbuffer Array in Memory at Time j

•
•
•

x(j–nh–5)

lowest memory address

highest memory address

oldest x( ) entry

entry index = 2

x(j–nh–2)

x(j–nh–1)

x(j–nh–1)

x(j–nh)

x(j–0)

x(j–1)

x(j–2)

x(j–nh–4)

x(j–nh–3)

newest x( ) entry

Figure 4–14. x Array in Memory

•
•
•

x(0)

x(nx–2)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry x(nx–1)

x(1)

Figure 4–15. r Array in Memory

•
•
•

r(nx–1)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

r(0)

r(nx–2)

r(1)
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Example See examples/fir subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (2 + nh)
Overhead: 25

Code size
(in bytes)

107

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Block FIR Filter (fast)fir2

ushort oflag = fir2 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh)

Arguments

x[nx] Pointer to input vector of nx real elements.

r[nx] Pointer to output vector of nx real elements. In-place
computation (r = x) is allowed.

h[nh] � Pointer to coefficient vector of size nh in normal order.
For example, if nh=6, then h[nh] = {h0, h1, h2, h3, h4,
h5} where h0 resides at the lowest memory address
in the array.

� This array must be located in internal memory since
it is accessed by the C55x coefficient bus.

dbuffer[nh + 2] Pointer to delay buffer of length nh = nh + 2

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first filter block only.
Between consecutive blocks, the delay buffer pre-
serves the previous r output elements needed.

� The first element in this array is special in that it con-
tains the array index–1 of the oldest input entry in the
delay buffer. This is needed for multiple-buffering
schemes, and should be initialized to 0 (like all the oth-
er array entries) for the first block only.

nx Number of input samples. Must be an even number.

nh The number of coefficients of the filter. For example, if
the filter coefficients are {h0, h1, h2, h3, h4, h5}, then nh
= 6. Must be a minimum value of 3. For smaller filters,
zero pad the coefficients to meet the minimum value.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an inter-
mediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes a real block FIR filter (direct-form) using the coefficients stored in
vector h. This function utilizes the dual-MAC capability of the C55x to process
in parallel two output samples for each iteration of the inner function loop. It
is, therefore, roughly twice as fast as FIR, which implements only a single-
MAC approach. However, the number of input samples (nx) must be even The
real input data is stored in vector x. The filter output result is stored in vector
r. This function maintains the array dbuffer containing the previous delayed in-
put values to allow consecutive processing of input data blocks. This function
can be used for block-by-block filtering only (nx ≥ 2). It cannot be used for sam-
ple-by-sample filtering (nx = 1). In-place computation (r = x) is allowed.

Algorithm r [j] �
nh�1
�

k � 0
h[k] x[j � k] where 0 � j � nx

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements

� nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

� nx must be an even value.

� Coefficient array h[nh] must be located in internal memory since it is ac-
cessed using the C55x coefficient bus, and that bus does not have access
to external memory.

Implementation Notes The first element in the dbuffer array (index = 0) is the entry index for the input
history. It is treated as an unsigned 16-bit value by the function even though
it has been declared as signed in C. The value of the entry index is equal to
the index – 1 of the oldest input entry in the array. The remaining elements
make up the input history. Figure 4–16 shows the array in memory with an
entry index of 2. The newest entry in the dbuffer is denoted by x(j–0), which
in this case would occupy index = 3 in the array. The next newest entry is
x(j–1), and so on. It is assumed that all x() entries were placed into the array
by the previous invocation of the function in a multiple-buffering scheme.

Figure 4–16, Figure 4–17, and Figure 4–18 show the dbuffer, x, and r arrays
as they appear in memory.
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Figure 4–16. dbuffer Array in Memory at Time j

•
•
•

x(j–2*nh2–5)

lowest memory address

highest memory address

oldest x( ) entry

entry index = 2

x(j–2*nh2–2)

x(j–2*nh2–1)

x(j–2*nh2)

x(j–0)

x(j–1)

x(j–2)

x(j–2*nh2–4)

x(j–2*nh2–3)

newest x( ) entry

Figure 4–17. x Array in Memory

•
•
•

x(0)

x(nx–2)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry x(nx–1)

x(1)

Figure 4–18. r Array in Memory

•
•
•

r(nx–1)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

r(0)

r(nx–2)

r(1)
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Example See examples/fir2 subdirectory

Benchmarks (preliminary)

Cycles† Core: (nx/2) * (4 + nh)
Overhead: 32

Code size
(in bytes)

134

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Decimating FIR Filterfirdec

ushort oflag = firdec (DATA *x, DATA *h, DATA *r, DATA *dbuffer , ushort nh,
ushort nx, ushort D)

(defined in decimate.asm)

Arguments

x [nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to coefficient vector of size nh in normal order:
H = b0 b1 b2 b3 …

r[nx/D] Pointer to real input vector of nx/D real elements.
In-place computation (r = x) is allowed

dbuffer[nh+1] Delay buffer

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first block only. Be-
tween consecutive blocks, the delay buffer preserves
previous delayed input samples. It also preserves a
ptr to the next new entry into the dbuffer. This ptr is
preserved across function calls in dbuffer[0].

� Memory alignment: this is a circular buffer and must
start in a k-bit boundary(that is, the k LSBs of the start-
ing address must be zeros) where k = log2 (nh).

nx Number of real elements in vector x

nh Number of coefficients

D Decimation factor. For example a D = 2 means you drop
every other sample. Ideally, nx should be a multiple of
D. If not, the trailing samples will be lost in the process.

oflag Overflow error flag

� If oflag = 1, a 32-bit data overflow occurred in an inter-
mediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes a decimating real FIR filter (direct-form) using coefficient stored in
vector h. The real data input is stored in vector x. The filter output result is
stored in vector r. This function retains the address of the delay filter memory
d containing the previous delayed values to allow consecutive processing of
blocks. This function can be used for both block-by-block and sample-by-
sample filtering (nx = 1).
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Algorithm

���� ��
��

���

��������� ��� �������� � � � ��

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None

Example See examples/decim subdirectory

Benchmarks  (preliminary)

Cycles Core: (nx/D)*(10+nh+(D–1))
Overhead 67

Code size
(in bytes)

144
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Interpolating FIR Filterfirinterp

ushort oflag = firinterp (DATA *x, DATA *h, DATA *r, DATA *dbuffer , ushort nh,
ushort nx, ushort I)

(defined in interp.asm)

Arguments

x [nx] Pointer to real input vector of nx real elements.

h[nh] Pointer to coefficient vector of size nh in normal
order:
H = b0 b1 b2 b3 …

r[nx*I] Pointer to real output vector of nx real elements.
In-place computation (r = x) is allowed

dbuffer[(nh/I)+1] Delay buffer of (nh/I)+1 elements

� In the case of multiple-buffering schemes, this
array should be initialized to 0 for the first block
only. Between consecutive blocks, the delay buff-
er preserves delayed input samples in dbuf-
fer[1…(nh/I)+1]. It also preserves a ptr to the next
new entry into the dbuffer. This ptr is preserved
across function calls in dbuffer[0].

� The delay buffer is only nh/I elements and holds
only delayed x inputs. No zero-samples are in-
serted into dbuffer (since only non-zero products
contribute to the filter output)

nx Number of real elements in vector x and r

nh Number of coefficients, with (nh/I) � 3

I Interpolation factor. I is effectively the number of
output samples for every input sample. This routine
can be used with I=1.

oflag Overflow error flag

� If oflag = 1, a 32-bit data overflow occurred in an
intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes an interpolating real FIR filter (direct-form) using coefficient stored
in vector h. The real data input is stored in vector x. The filter output result is
stored in vector r. This function retains the address of the delay filter memory
d containing the previous delayed values to allow consecutive processing of
blocks. This function can be used for both block-by-block and sample-by-
sample filtering (nx = 1).

Algorithm

���� ��
��

���

� ���������� �������� � � � ��

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None

Example See examples/decimate subdirectory

Benchmarks  (preliminary)

Cycles Core:
If I > 1
nx*(2+I*(1+(nh/I)))

If  I=1 :
nx*(2+nh)

Overhead 72

Code size 
(in bytes)

164
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Lattice Forward (FIR) Filterfirlat

ushort oflag = firlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer, int nx, int nh)

Arguments

x [nx] Pointer to real input vector of nx real elements in normal
order:
x[0]
x[1]
.
.
x[nx–2]
x[nx–1]

h[nh] Pointer to lattice coefficient vector of size nh in normal
order:
h[0]
h[1]
.
.
h[nh–2]
h[nh–1]

r[nx] Pointer to output vector of nx real elements. In-place
computation (r = x) is allowed.
r[0]
r[1]
.
.
r[nx–2]
r[nx–1]
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pbuffer [nh] Delay buffer

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the pre-
vious r output elements needed.

� pbuffer: procession buffer of nh length in order:
e′0[n–1]
e′1[n–1]
.
.
e′nh–2[n–1]
e′nh–1[n–1]

nx Number of real elements in vector x (input samples)

nh Number of coefficients

oflag Overflow error flag

� If oflag = 1, a 32-bit data overflow has occurred in an
intermediate or final result

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes a real lattice FIR filter implementation using coefficient stored in
vector h. The real data input is stored in vector x. The filter output result is
stored in vector r. This function retains the address of the delay filter memory
d containing the previous delayed values to allow consecutive processing of
blocks. This function can be used for both block-by-block and sample-by-
sample filtering (nx=1)

Algorithm e0[n] � e�0[n] � x[n],
ei[n] � ei�1[n] � hie�i�1[n � 1], i � 1, 2, ��� , N
e�i[n] � hiei�1[n] � e�i�1[n � 1], i � 1, 2, ��� , N
y[n] � eN[n]

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None
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Example See examples/firlat subdirectory

Benchmarks (preliminary)

Cycles† Core: 4 * nh * nx + 1
Overhead: 23

Code size
(in bytes)

53

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Symmetric FIR Filterfirs

ushort oflag = firs (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh2)

Arguments

x[nx] Pointer to input vector of nx real elements.

r[nx] Pointer to output vector of nx real elements.
In-place computation (r = x) is allowed.

h[nh2] � Pointer to coefficient vector containing the first
half of the symmetric filter coefficients. For exam-
ple, if the filter coefficients are {h0, h1, h2, h2, h1,
h0}, then h[nh2] = {h0, h1, h2} where h0 resides
at the lowest memory address in the array.

� This array must be located in internal memory
since it is accessed by the C55x coefficient bus.

dbuffer[2*nh2 + 2] Pointer to delay buffer of length nh = 2*nh2 + 2

� In the case of multiple-buffering schemes, this
array should be initialized to 0 for the first filter
block only. Between consecutive blocks, the delay
buffer preserves the previous r output elements
needed.

� The first element in this array is special in that it
contains the array index of the oldest input entry
in the delay buffer. This is needed for multiple-
buffering schemes, and should be initialized to 0
(like all the other array entries) for the first block
only.

nx Number of input samples

nh2 Half the number of coefficients of the filter (due to
symmetry there is no need to provide the other
half). For example, if the filter coefficients are {h0,
h1, h2, h2, h1, h0}, then nh2 = 3. Must be a
minimum value of 3. For smaller filters, zero pad the
coefficients to meet the minimum value.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an
intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes a real FIR filter (direct-form) with nh2 symmetric coefficients using
the FIRS instruction approach. The filter is assumed to have a symmetric im-
pulse response, with the first half of the filter coefficients stored in the array h.
The real input data is stored in vector x. The filter output result is stored in vec-
tor r. This function maintains the array dbuffer containing the previous delayed
input values to allow consecutive processing of input data blocks. This function
can be used for both block-by-block (nx ≥ 2) and sample-by-sample filtering
(nx = 1). In-place computation (r = x) is allowed.

Algorithm r [j] �
nh2�1
�

k � 0
h, . . . , [k] * (x[j � k] � x[j � k � 2 * nh2 � 1] ) where

0 � j � nx

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements

� nh must be a minimum value of 3. For smaller filters, zero pad the h[] array.

� Coefficient array h[nh2] must be located in internal memory since it is ac-
cessed using the C55x coefficient bus, and that bus does not have access
to external memory.

Implementation Notes The first element in the dbuffer array (index = 0) is the entry index for the input
history. It is treated as an unsigned 16-bit value by the function even though
it has been declared as signed in C. The value of the entry index is equal to
the index – 1 of the oldest input entry in the array. The remaining elements
make up the input history. Figure 4–19 shows the array in memory with an
entry index of 2. The newest entry in the dbuffer is denoted by x(j–0), which
in this case would occupy index = 3 in the array. The next newest entry is
x(j–1), and so on. It is assumed that all x() entries were placed into the array
by the previous invocation of the function in a multiple-buffering scheme.

The dbuffer array actually contains one more history value than is needed to
implement this filter. The value x(j–2*nh2) does not enter into the calculations
for for the output r(j). However, this value is required in other DSPLIB filter func-
tions that utilize the dual-MAC units on the C55x, such as FIR2. Including this
extra location ensures compatibility across all filter functions in the C55x
DSPLIB.

Figure 4–19, Figure 4–20, and Figure 4–21 show the dbuffer, x, and r arrays
as they appear in memory.
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Figure 4–19. dbuffer Array in Memory at Time j

•
•
•

x(j–2*nh2–5)

lowest memory address

highest memory address

oldest x( ) entry

entry index = 2

x(j–2*nh2–2)

x(j–2*nh2–1)

x(j–2*nh2)

x(j–0)

x(j–1)

x(j–2)

x(j–2*nh2–4)

x(j–2*nh2–3)

newest x( ) entry

Figure 4–20. x Array in Memory

•
•
•

x(0)

x(nx–2)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry x(nx–1)

x(1)

Figure 4–21. r Array in Memory

•
•
•

r(nx–1)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

r(0)

r(nx–2)

r(1)
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Example See examples/firs subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (3 + nh2)
Overhead: 31

Code size
(in bytes)

133

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Floating-point to Q15 Conversionfltoq15

ushort errorcode = fltoq15 (float *x, DATA *r, ushort nx)

(defined in fltoq15.asm)

Arguments

x[nx] Pointer to floating-point input vector of size nx. x should
contain the numbers normalized between (–1,1). The
errorcode returned value will reflect if that condition is not
met.

r[nx] Pointer to output data vector of size nx containing the q15
equivalent of vector x.

nx Length of input and output data vectors

errorcode The function returns the following error codes:

� 1 – if any element is too large to represent in Q15 format

� 2 – if any element is too small to represent in Q15 format

� 3 – both conditions 1 and 2 were encountered

Description Convert the IEEE floating-point numbers stored in vector x into Q15 numbers
stored in vector r. The function returns the error codes if any element x[i] is not
representable in Q15 format.

All values that exceed the size limit will be saturated to a Q15 1 or –1 depend-
ing on sign (0x7fff if value is positive, 0x8000 if value is negative). All values
too small to be correctly represented will be truncated to 0.

Algorithm Not applicable

Overflow Handling Methodology  Saturation implemented for overflow handling

Special Requirements None

Implementation Notes None

Example See examples/expn subdirectory
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Benchmarks (preliminary)

Cycles† Core: 17 * nx (if x[n] ==0)
23 * nx (if x[n] is too small for Q15
representation)
32 * nx (if x[n] is too large for Q15
representation)
38 * nx (otherwise)

Overhead: 23

Code size
(in bytes)

157

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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FIR Hilbert Transformerhilb16

ushort oflag = hilb16 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nx,
ushort nh)

Arguments

x[nx] Pointer to input vector of nx real elements.

h[nh] � Pointer to coefficient vector of size nh in normal
order. H= {h0, h1, h2, h3, h4, …} Every odd valued
filter coefficient has to 0, i.e. h1 = h3 = … = 0. And
H = {h0, 0, h2, 0, h4, 0, …} where h0 resides at the
lowest memory address in the array.

� This array must be located in internal memory
since it is accessed by the C55x coefficient bus.

r[nx] Pointer to output vector of nx real elements.
In-place computation (r = x) is allowed.

dbuffer[nh + 2] Pointer to delay buffer of length nh = nh + 2

� In the case of multiple-buffering schemes, this
array should be initialized to 0 for the first filter
block only. Between consecutive blocks, the delay
buffer preserves the previous r output elements
needed.

� The first element in this array is special in that it
contains the array index-1 of the oldest input entry
in the delay buffer. This is needed for multiple-
buffering schemes, and should be initialized to
zero (like all the other array entries) for the first
block only.

nx Number of real elements in vector x (input samples)

nh The number of coefficients of the filter. For example
if the filter coefficients are {h0, h1, h2, h3, h4, h5},
then nh = 6. Must be a minimum value of 6. For
smaller filters, zero pad the coefficients to meet the
minimum value.

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an
intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes a real FIR filter (direct-form) using the coefficients stored in vector
h. The real input data is stored in vector x. The filter output result is stored in
vector r. This function maintains the array dbuffer containing the previous
delayed input values to allow consecutive processing of input data blocks. This
function can be used for both block-by-block (nx >= 2) and sample-by-sample
filtering (nx = 1). In place computation (r = x) is allowed.

Algorithm

���� � �
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Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements

� Every odd valued filter coefficient has to be 0. This is a requirement for the
Hilbert transformer. For example, a 6 tap filter may look like this: H = [0.867
0 –0.324 0 –0.002 0]

� Always pad 0 to make nh as a even number. For example, a 5 tap filter with
a zero pad may look like this: H = [0.867 0 –0.324 0 –0.002 0]

� nh must be a minimum value of 6. For smaller filters, zero pad the H[] array.

Implementation Notes The first element in the dbuffer array (index = 0) is the entry index for the input
history. It is treated as an unsigned 16-bit value by the function even though
it has been declared as signed in C. The value of the entry index is equal to
the index – 1 of the oldest input entry in the array. The remaining elements
make up the input history. Figure 4–22 shows the array in memory with an
entry index of 2. The newest entry in the dbuffer is denoted by x(j–0), which
in this case would occupy index = 3 in the array. The next newest entry is
x(j–1), and so on. It is assumed that all x() entries were placed into the array
by the previous invocation of the function in a multiple-buffering scheme.

The dbuffer array actually contains one more history value than is needed to
implement this filter. The value x(j–nh) does not enter into the calculations for
for the output r(j). However, this value is required in other DSPLIB filter func-
tions that utilize the dual-MAC units on the C55x, such as FIR2. Including this
extra location ensures compatibility across all filter functions in the C55x
DSPLIB.
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Figure 4–22, Figure 4–23, and Figure 4–24 show the dbuffer, x, and r arrays
as they appear in memory.

Figure 4–22. dbuffer Array in Memory at Time j

•
•
•

x(j–nh–5)

lowest memory address

highest memory address

oldest x( ) entry

entry index = 2

x(j–nh–2)

x(j–nh–1)

x(j–nh)

x(j–0)

x(j–1)

x(j–2)

x(j–nh–4)

x(j–nh–3)

newest x( ) entry

Figure 4–23. x Array in Memory

•
•
•

x(0)

x(nx–2)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry x(nx–1)

x(1)

Figure 4–24. r Array in Memory

•
•
•

r(nx–1)

lowest memory address

highest memory address

oldest x( ) entry

newest x( ) entry

r(0)

r(nx–2)

r(1)
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Example See examples/hilb16 subdirectory

Benchmarks (preliminary)

Cycles Core: nx*(2+nh/2)
Overhead: 28

Code size
(in bytes)

108
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Double-precision IIR Filteriir32

ushort oflag = iir32 (DATA *x, LDATA *h, DATA *r, LDATA *dbuffer, ushort nbiq,
ushort nr)

(defined in iir32.asm)

Arguments

x [nr] Pointer to input data vector of size nr

h[5*nbiq] Pointer to the 32-bit filter coefficient vector with the
following format. For example for nbiq= 2, h is equal
to:

b21 – high
b21 – low
b11 – high
b11 – low
b01 – high
b01 – low
a21 – high
a21 – low
a11 – high
a11 – low

beginning of biquad 1

b22 – high
b22 – low
b12 – high
b12 – low
b02 – high
b02 – low
a22 – high
a22 – low
a12 – high
a12 – low

beginning of biquad 2 coefs

r[nr] Pointer to output data vector of size nr. r can be
equal or less than x.
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dbuffer[2*nbiq+2] Pointer to address of 32-bit delay line dbuffer. Each
biquad has 3 consecutive delay line elements. For
example for nbiq = 2:

d1(n–2) – low
d1(n–2) – high
d1(n–1) – low
d1(n–1) – high

beginning of biquad 1

d2(n–2) – low
d2(n–2) – high
d2(n–1) – low
d2(n–1) – high

beginning of biquad 2

� In the case of multiple-buffering schemes, this
array should be initialized to 0 for the first block
only. Between consecutive blocks, the delay buffer
preserves the previous r output elements needed.

� Memory alignment: None required for C5510.
This is a group of circular buffers. Each biquad’s
delay buffer is treated separately. The Buffer Start
Address (BSAxx) updated to a new location for
each biquad.

nbiq Number of biquads

nr Number of elements of input and output vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred
� If oflag = 0, a 32-bit overflow has not occurred

Description Computes a cascaded IIR filter of nbiquad biquad sections using 32-bit coeffi-
cients and 32-bit delay buffers. The input data is assumed to be single-preci-
sion (16 bits).

Each biquad section is implemented using Direct-form II. All biquad coeffi-
cients (5 per biquad) are stored in vector h. The real data input is stored in vec-
tor x. The filter output result is stored in vector r .

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx = 1).
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Algorithm (for biquad)

d(n) = x(n) – a1*d(n–1) – a2*d(n–2)
y(n) = b0*d(n) + b1*d(n–1) + b2*d(n–2)

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes See program iircas32.asm

Example See examples/iir32 subdirectory

Benchmarks (preliminary)

Cycles Core: nx*(7+ 31*nbiq)
Overhead: 77

Code size
(in bytes)

203
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Cascaded IIR Direct Form II Using 4 Coefficients per Biquadiircas4

ushort oflag = iircas4 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq,
ushort nx)

(defined in iir4cas4.asm)

Arguments

x [nx] Pointer to input data vector of size nx

h[4*nbiq] Pointer to filter coefficient vector with the following
format:
h = a11 a21 b21 b11 ....a1i a2i b2i b1i
where i is the biquad index (a21 is the a2 coefficient of
biquad 1). Pole (recursive) coefficients = a. Zero
(non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[2*nbiq] Pointer to address of delay line d.
Each biquad has 2 delay line elements separated by
nbiq locations in the following format:
d1(n–1), d2(n–1),..di(n–1) d1(n–2), d2(n–2)...di(n–2)
where i is the biquad index (d2(n–1) is the (n–1)th
delay element for biquad 2).

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first block only. Be-
tween consecutive blocks, the delay buffer pre-
serves the previous r output elements needed.

� Memory alignment: this is a circular buffer and must
start in a k-bit boundary(that is, the k LSBs of the
starting address must be zeros) where k = log2
(2*nbiq).

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred
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Description Computes a cascade IIR filter of nbiq biquad sections. Each biquad section is
implemented using Direct-form II. All biquad coefficients (4 per biquad) are
stored in vector h. The real data input is stored in vector x. The filter output
result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx = 1).

Algorithm (for biquad)
d(n) � x(n) � a1 * d(n � 1) � a2 * d(n � 2)
y(n) � d(n) � b1 * d(n � 1) � b2 * d(n � 2)

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None

Example See examples/iircas4 subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (5 + 4 * nbiq)
Overhead: 58

Code size
(in bytes)

122

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Cascaded IIR Direct Form II (5 Coefficients per Biquad)iircas5

ushort oflag = iircas5 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq,
ushort nx)

(defined in iircas5.asm)

Arguments

x [nx] Pointer to input data vector of size nx

h[5*nbiq] Pointer to filter coefficient vector with the following
format:
h = a11 a21 b21 b01 b11 ... a1i a2i b2i b0i b1i
where i is the biquad index a21 is the a2 coefficient of
biquad 1). Pole (recursive) coefficients = a. Zero
(non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[2*nbiq] Pointer to address of delay line d. Each biquad has 2
delay line elements separated by nbiq locations in the
following format:
d1(n–1), d2(n–1),..di(n–1) d1(n–2), d2(n–2)...di(n–2)
where i is the biquad index(d2(n–1) is the (n–1)th
delay element for biquad 2).

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first block only. Be-
tween consecutive blocks, the delay buffer pre-
serves the previous r output elements needed.

� Memory alignment: this is a circular buffer and must
start in a k-bit boundary(that is, the k LSBs of the
starting address must be zeros) where k = log2
(2*nbiq).

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred

� If oflag = 0, a 32-bit overflow has not occurred
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Description Computes a cascade IIR filter of nbiq biquad sections. Each biquad section is
implemented using Direct-form II. All biquad coefficients (5 per biquad) are
stored in vector h. The real data input is stored in vector x. The filter output
result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx = 1).

The usage of 5 coefficients instead of 4 facilitates the design of filters with a
unit gain of less than 1 (for overflow avoidance), typically achieved by filter
coefficient scaling.

Algorithm (for biquad)

d(n) � x(n) � a1 * d(n � 1) � a2 * d(n � 2)
y(n) � b0 * d(n) � b1 * d(n � 1) � b2 * d(n � 2)

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None

Example See examples/iircas5 subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (5 + 5 * nbiq)
Overhead: 60

Code size
(in bytes)

126

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Cascaded IIR Direct Form I (5 Coefficients per Biquad)iircas51

ushort oflag = iircas51 (DATA *x, DATA *h, DATA *r, DATA *dbuffer, ushort nbiq,
ushort nx)

(defined in iircas51.asm)

Arguments

x [nx] Pointer to input data vector of size nx

h[5*nbiq] Pointer to filter coefficient vector with the following
format:
h = b01 b11 b21 a11 a21 ....b0i b1i b2i a1i a2I
where i is the biquad index (a21 is the a2 coefficient of
biquad 1). Pole (recursive) coefficients = a. Zero
(non-recursive) coefficients = b

r[nx] Pointer to output data vector of size nx. r can be equal
than x.

dbuffer[4*nbiq] Pointer to address of delay line dbuffer. Each biquad
has 4 delay line elements stored consecutively in
memory in the following format:
x1(n–1), x1(n–2), y1(n–1), y1(n–2) ... xi(n–2), xi(n–2),
yi(n–1),yi(n–2)
where i is the biquad index(x1(n–1) is the (n–1)th
delay element for biquad 1).

� In the case of multiple-buffering schemes, this array
should be initialized to 0 for the first block only. Be-
tween consecutive blocks, the delay buffer pre-
serves the previous r output elements needed.

� Memory alignment: No need for memory alignment.

nbiq Number of biquads

nx Number of elements of input and output vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.
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Description Computes a cascade IIR filter of nbiq biquad sections. Each biquad section is
implemented using Direct-form I. All biquad coefficients (5 per biquad) are
stored in vector h. The real data input is stored in vector x. The filter output
result is stored in vector r.

This function retains the address of the delay filter memory d containing the
previous delayed values to allow consecutive processing of blocks. This func-
tion is more efficient for block-by-block filter implementation due to the C-call-
ing overhead. However, it can be used for sample-by-sample filtering (nx = 1).

The usage of 5 coefficients instead of 4 facilitates the design of filters with a
unit gain of less than 1 (for overflow avoidance), typically achieved by filter
coefficient scaling.

Algorithm (for biquad)
y(n) � b0 * x(n) � b1 * x(n � 1) � b2 * x(n � 2) � a1 * y(n � 1) � a2 * y(n � 2)

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None

Example See examples/iircas51 subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * (5 + 8 * nbiq)
Overhead: 68

Code size
(in bytes)

154

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Lattice Inverse (IIR) Filteriirlat

ushort oflag = iirlat (DATA *x, DATA *h, DATA *r, DATA *pbuffer, int nx, int nh)

Arguments

x [nx] Pointer to real input vector of nx real elements in normal
order:
x[0]
x[1]
.
.
x[nx–2]
x[nx–1]

h[nh] Pointer to lattice coefficient vector of size nh in normal
order with the first element zero-padded:
0
h[0]
h[1]
.
.
h[nh–2]
h[nh–1]

r[nx] Pointer to output vector of nx real elements. In-place
computation (r = x) is allowed.
r[0]
r[1]
.
.
r[nx–2]
r[nx–1]

pbuffer[nh] Delay buffer
In the case of multiple-buffering schemes, this array should
be initialized to 0 for the first block only. Between
consecutive blocks, the delay buffer preserves the
previous r output elements needed.

nx Number of real elements in vector x (input samples)



iirlat Lattice Inverse (IIR) Filter

4-74  

nh Number of coefficients

oflag Overflow error flag

� If oflag = 1, a 32-bit data overflow has occurred in an
intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes a real lattice IIR filter implementation using coefficient stored in vec-
tor h. The real data input is stored in vector x. The filter output result is stored
in vector r . This function retains the address of the delay filter memory d con-
taining the previous delayed values to allow consecutive processing of blocks.
This function can be used for both block-by-block and sample-by-sample filter-
ing (nx = 1)

Algorithm eN[n] � x[n],
ei�1[n] � ei[n] � hie�i�1[n � 1], i � N, (N�1), ��� , 1

e�i[n] � –kiei�1 � e�i�1[n � 1], i � N, (N�1), ��� , 1

y[n] � e0[n] � e�0[n]

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements None

Implementation Notes None

Example See examples/iirlat subdirectory

Benchmarks (preliminary)

Cycles† Core: 4 * (nh – 1) * nx
Overhead: 24

Code size
(in bytes)

54

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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32-bit by 16-bit Long Division Functionldiv16

void ldiv16 (LDATA *x, DATA *y, DATA *r, DATA *rexp, ushort nx)

Arguments

x [nx] Pointer to input data vector 1 of size nx
x[0]
x[1]
.
.
x[nx–2]
x[nx–1]

r[nx] Pointer to output data buffer
r[0]
r[1]
.
.
r[nx–2]
r[nx–1]

rexp[nx] Pointer to exponent buffer for output values. These
exponent values are in integer format.
rexp[0]
rexp[1]
.
.
rexp[nx–2]
rexp[nx–1]

nx Number of elements of input and output vectors

Description This routine implements a long division function of a Q31 value divided by a
Q15 value. The reciprocal of the Q15 value, y, is calculated then multiplied by
the Q31 value, x. The result is returned as an exponent such that:

r[i] * rexp[i] = true reciprocal in floating-point

Algorithm The reciprocal of the Q15 number is calculated using the following equation:
Ym � 2 * Ym � Ym2 * Xnorm

If we start with an initial estimate of Ym, the equation converges to a solution
very rapidly (typically 3 iterations for 16-bit resolution).
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The initial estimate can be obtained from a look-up table, from choosing a mid-
point, or simply from linear interpolation. The method chosen for this problem
is linear interpolation and is accomplished by taking the complement of the
least significant bits of the Xnorm value.

The reciprocal is multiplied by the Q31 number to generate the output.

Overflow Handling Methodology  None

Special Requirements None

Implementation Notes None

Example See examples/ldiv16 subdirectory

Benchmarks (preliminary)

Cycles† Core: 4 * nx
Overhead: 14

Code size
(in bytes)

91

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Base 10 Logarithmlog_10

ushort oflag = log_10 (DATA *x, LDATA *r, ushort nx)

(defined in log_10.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r[nx] Pointer to output data vector (Q31 format) of size nx.

nx Length of input and output data vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the log base 10 of elements of vector x using Taylor series.

Algorithm for (i � 0; i � nx; i ��) y(i) � log 10x(i) where –1 � x(i) � 1

Overflow Handling Methodology  No scaling implemented for overflow prevention

Special Requirements None

Implementation Notes y = 0.4343 * ln(x) with x = M(x)*2^P(x) = M*2^P
y = 0.4343 * (ln(M) + ln(2)*P)
y = 0.4343 * (ln(2*M) + (P–1)*ln(2))
y = 0.4343 * (ln((2*M–1)+1) + (P–1)*ln(2))
y = 0.4343 * (f(2*M–1) + (P–1)*ln(2))
with f(u) = ln(1+u).

We use a polynomial approximation for f(u) :
f(u) = (((((C6*u+C5)*u+C4)*u+C3)*u+C2)*u+C1)*u+C0
for 0<= u <= 1.

The polynomial coefficients Ci are as follows :
C0 = 0.000 001 472
C1 = 0.999 847 766
C2 = –0.497 373 368
C3 = 0.315 747 760
C4 = –0.190 354 944
C5 = 0.082 691 584
C6 = –0.017 414 144
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The coefficients Bi used in the calculation are derived from the Ci as follows:

B0 Q30 1581d 0062Dh
B1 Q14 16381d 03FFDh
B2 Q15 –16298d 0C056h
B3 Q16 20693d 050D5h
B4 Q17 –24950d 09E8Ah
B5 Q18 21677d 054ADh
B6 Q19 –9130d 0DC56h

Example See examples/log_10 subdirectory

Benchmarks (preliminary)

Cycles† Core: 35 * nx
Overhead: 40

Code size
(in bytes)

162

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Base 2 Logarithmlog_2

ushort oflag = log_2 (DATA *x, LDATA *r, ushort nx)

(defined in log_2.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r[nx] Pointer to output data vector (Q31 format) of size nx.

nx Length of input and output data vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the log base 2 of elements of vector x using Taylor series.

Algorithm for (i � 0; i � nx; i ��) y(i) � log 12x(i) where 0 � x(i) � 1

Overflow Handling Methodology  No scaling implemented for overflow prevention

Special Requirements None

Implementation Notes y = 1.4427 * ln(x) with x = M(x)*2^P(x) = M*2^P
y = 1.4427 * (ln(M) + ln(2)*P)
y = 1.4427 * (ln(2*M) + (P–1)*ln(2))
y = 1.4427 * (ln((2*M–1)+1) + (P–1)*ln(2))
y = 1.4427 * (f(2*M–1) + (P–1)*ln(2))
with f(u) = ln(1+u).

We use a polynomial approximation for f(u) :
f(u) = (((((C6*u+C5)*u+C4)*u+C3)*u+C2)*u+C1)*u+C0
for 0<= u <= 1.

The polynomial coefficients Ci are as follows:
C0 = 0.000 001 472
C1 = 0.999 847 766
C2 = –0.497 373 368
C3 = 0.315 747 760
C4 = –0.190 354 944
C5 = 0.082 691 584
C6 = –0.017 414 144
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The coefficients Bi used in the calculation are derived from the Ci as follows:

B0 Q30 1581d 0062Dh
B1 Q14 16381d 03FFDh
B2 Q15 –16298d 0C056h
B3 Q16 20693d 050D5h
B4 Q17 –24950d 09E8Ah
B5 Q18 21677d 054ADh
B6 Q19 –9130d 0DC56h

Example See examples/log_2 subdirectory

Benchmarks (preliminary)

Cycles† Core: 37 * nx
Overhead: 35

Code size
(in bytes)

166

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Base e Logarithm (natural logarithm)logn

ushort oflag = logn (DATA *x, LDATA *r, ushort nx)

(defined in logn.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r[nx] Pointer to output data vector (Q31 format) of size nx.

nx Length of input and output data vectors

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the log base e of elements of vector x using Taylor series.

Algorithm for (i � 0; i � nx; i ��) y(i) � log nx(i) where –1 � x(i) � 1

Overflow Handling Methodology  No scaling implemented for overflow prevention

Special Requirements None

Implementation Notes y = 0.4343 * ln(x) with x = M(x)*2^P(x) = M*2^P
y = 0.4343 * (ln(M) + ln(2)*P)
y = 0.4343 * (ln(2*M) + (P–1)*ln(2))
y = 0.4343 * (ln((2*M–1)+1) + (P–1)*ln(2))
y = 0.4343 * (f(2*M–1) + (P–1)*ln(2))
with f(u) = ln(1+u).

We use a polynomial approximation for f(u):
f(u) = (((((C6*u+C5)*u+C4)*u+C3)*u+C2)*u+C1)*u+C0
for 0<= u <= 1.

The polynomial coefficients Ci are as follows:
C0 = 0.000 001 472
C1 = 0.999 847 766
C2 = –0.497 373 368
C3 = 0.315 747 760
C4 = –0.190 354 944
C5 = 0.082 691 584
C6 = –0.017 414 144
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The coefficients Bi used in the calculation are derived from the Ci as follows:

B0 Q30 1581d 0062Dh
B1 Q14 16381d 03FFDh
B2 Q15 –16298d 0C056h
B3 Q16 20693d 050D5h
B4 Q17 –24950d 09E8Ah
B5 Q18 21677d 054ADh
B6 Q19 –9130d 0DC56h

Example See examples/logn subdirectory

Benchmarks (preliminary)

Cycles† Core: 25 * nx
Overhead: 35

Code size
(in bytes)

132

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Index of the Maximum Element of a Vectormaxidx

short r = maxidx (DATA *x, ushort nx)

(defined in maxidx.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r Index for vector element with maximum value.

nx Length of input data vector (nx ≥ 6)

Description Returns the index of the maximum element of a vector x. In case of multiple
maximum elements, r contains the index of the first maximum element found

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes  None

Example See examples/maxidx subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * 3
Overhead: 7

Code size
(in bytes)

26

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Maximum Value of a Vectormaxval

short r = maxval (DATA *x, ushort nx)

(defined in maxval.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r Maximum value of a vector

nx Length of input data vector

Description Returns the maximum element of a vector x.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/maxval subdirectory

Benchmarks (preliminary)

Cycles† Core: nx
Overhead: 3

Code size
(in bytes)

20

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Index and Value of the Maximum Element of a Vectormaxvec

void maxvec (DATA *x, ushort nx, DATA *r_val, DATA *r_idx)

(defined in maxvec.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r_val maximum value

r_idx Index for vector element with maximum value

nx Lenght of input data vector (nx � 6)

Description This function finds the index for vector element with maximum value. In case
of multiple maximum elements, r_idx contains the index of the first maximum
element found. r_val contains the maximum value.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/maxvec subdirectory

Benchmarks (preliminary)

Cycles Core:  nx*3
Overhead: 8

Code size
(in bytes)

26
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Index of the Minimum Element of a Vectorminidx

short r = minidx (DATA *x, ushort nx)

(defined in minidx.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r Index for vector element with minimum value

nx Length of input data vector

Description Returns the index of the minimum element of a vector x. In case of multiple
minimum elements, r contains the index of the first minimum element found.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/minidx subdirectory

Benchmarks (preliminary)

Cycles† Core: nx * 3
Overhead: 7

Code size
(in bytes)

26

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Minimum Value of a Vectorminval

short r = minval (DATA *x, ushort nx)

 (defined in minval.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r Minimum value of a vector

nx Length of input data vector

Description Returns the minimum element of a vector x.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/minval subdirectory

Benchmarks (preliminary)

Cycles† Core: nx
Overhead: 3

Code size
(in bytes)

20

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Index and Value of the Minimum Element of a Vectorminvec

void minvec (DATA *x, ushort nx, DATA *r_val, DATA *r_idx)

(defined in minvec.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r_val Minimum value

r_idx Index for vector element with minimum value

nx Length of input data vector (nx � 6)

Description This function finds the index for vector element with minimum value. In case
of multiple minimum elements, r_idx contains the index of the first minimum
element found. r_val contains the minimum value.

Algorithm Not applicable

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/minvec subdirectory

Benchmarks (preliminary)

Cycles Core: nx*3
Overhead: 8

Code size
(bytes)

26
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Matrix Multiplicationmmul

ushort oflag = mmul (DATA *x1,short row1,short col1,DATA *x2,short
row2,short col2,DATA *r)

(defined in mmul.asm)

Arguments

x1[row1*col1]: Pointer to input vector of size nx
Pointer to input matrix of size row1*col1
; row1 :
; :
; :
; r[row1*col2] : Pointer to output data vector of size
row1*col2

row1 number of rows in matrix 1

col1 number of columns in matrix 1

x2[row2*col2]: Pointer to input matrix of size row2*col2

row2 number of rows in matrix 2

col2 number of columns in matrix 2

r[row1*col2] Pointer to output matrix of size row1*col2

Description This function multiplies two matrices

Algorithm Multiply input matrix A (M by N) by input matrix B (N by P) using 2 nested loops:
for i = 1 to M
    for k = 1 to P
    {
        temp = 0
        for j = 1 to N
            temp = temp + A(i,j) * B(j,k)
        C(i,k) = temp
        }

Overflow Handling Methodology  Not applicable

Special Requirements Verify that the dimensions of input matrices are legal, i.e. col1 == row2

Implementation Notes In order to take advantage of the dual MAC architecture of the C55x, this imple-
mentation checks the size of the matrix x1. For small matrices x1 (row1 < 4 or
col1 < 2), single MAC loops are used. For larger matrices x1 (row1 ≥ 4 and
col1 ≥ 2), Dual MAC loops are more efficient and quickly make up for the addi-
tional initialization overhead.
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Example See examples/mmul subdirectory

Benchmarks (preliminary)

Cycles† Core:

� if(row1 < 4 || col1 < 2), use single MAC
((col1 + 2)*row1 + 4)*col2

� if((row1==even)&&(row1 ≥ 4)&&(col1 ≥ 2)), use dual MAC
((col1 + 4)*0.5*row1 + 10)col2

� if((row1==odd)&&(row1 ≥ 4)&&(col1 ≥ 2), use dual MAC
((col1 + 4)*0.5*(row1 – 1) + col1 + 12)col2

Overhead: 30

Code size
(in bytes)

215

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Matrix Transposemtrans

ushort oflag = mtrans (DATA *x, short row, short col, DATA *r)

(defined in mtrans.asm)

Arguments

x[row*col] Pointer to input matrix. In-place processing is not allowed.

row number of rows in matrix

col number of columns in matrix

r[row*col] Pointer to output data vector

Description This function transposes matrix x

Algorithm for i = 1 to M
    for j = 1 to N
        C(j,i) = A(i,j)

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes None

Example See examples/mtrans subdirectory

Benchmarks (preliminary)

Cycles† Core: (1 + col) * row
Overhead: 23

Code size
(in bytes)

65

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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32-bit Vector Multiplicationmul32

ushort oflag = mul32 (LDATA *x, LDATA *y, LDATA *r, ushort nx)

(defined in mul32.asm)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx containing

nx Number of elements of input and output vectors. Nx � 4

oflag Overflow flag

� If oflag = 1, a 32-bit overflow has occurred
� If oflag = 0, a 32-bit overflow has not occurred

Description This function multiplies two 32-bit Q31 vectors, element by element, and
produces a 32-bit Q31 vector.

Algorithm for (i=0; i < nx; i++)
z (i) = x (i) * y (i)

Overflow Handling Methodology  Scaling implemented for overflow prevention (user selectable)

Special Requirements None

Implementation Notes None

Example See examples/add subdirectory

Benchmarks

Cycles Core: 4*nx + 4
Overhead 21

Code size
(in bytes)

73
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Vector Negateneg

ushort oflag = neg (DATA *x, DATA *r, ushort nx)

(defined in neg.asm)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

r[nx] Pointer to output data vector of size nx. In-place processing
allowed
Special cases:

� if x[I] = –1 = 32768 , then r = 1 = 321767 with oflag = 1

� if x= 1 = 32767 , then r = –1 = 321768 with oflag = 1

nx Number of elements of input and output vectors.
nx ≥ 4

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.
Caution: overflow in negation of a Q15 number can happen
naturally when negating (–1).

Description This function negates each of the elements of a vector (fractional values).

Algorithm for (i � 0; i � nx; i ��) x(i) � –x(i)

Overflow Handling Methodology  Saturation implemented for overflow handling

Special Requirements None

Implementation Notes None

Example See examples/neg subdirectory

Benchmarks (preliminary)

Cycles† Core: 4 * nx
Overhead: 13

Code size
(in bytes)

61

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Vector Negate (double precision)neg32

ushort oflag = neg32 (LDATA *x, LDATA *r, ushort nx)

(defined in neg.asm)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

r[nx] Pointer to output data vector of size nx. In-place processing
allowed
Special cases:

� if x = –1 = 32768 * 216, then r = 1 = 321767 * 216 with oflag
= 1

� if x= 1 = 32767 * 216, then r = –1 = 321768 * 216 with oflag
= 1

nx Number of elements of input and output vectors.
nx ≥ 4

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.
Caution: overflow in negation of a Q31 number can happen
naturally when negating (–1).

Description This function negates each of the elements of a vector (fractional values).

Algorithm for (i � 0; i � nx; i ��) x(i) � –x(i)

Overflow Handling Methodology  Saturation implemented for overflow handling

Special Requirements None

Implementation Notes None

Example See examples/neg32 subdirectory

Benchmarks (preliminary)

Cycles† Core: 4 * nx
Overhead: 13

Code size
(in bytes)

61

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Vector Powerpower

ushort oflag = power (DATA *x, LDATA *r, ushort nx)

(defined in power.asm)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

r[1] Pointer to output data vector element in Q31 format
Special cases:

� if x= –1 = 32768*216 , then r = 1 = 321767*216  
with oflag = 1

� if x= 1 = 32767*216 , then r = –1 = 321768*216 
with oflag = 1

nx Number of elements of input vectors.
nx ≥ 4

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description This function calculates the power (sum of products) of a vector.

Algorithm Power = 0     for (i � 0; i � nx; i ��)     power �� x(i) * x(I)

Overflow Handling Methodology  No scaling implemented for overflow handling

Special Requirements None

Implementation Notes None

Example See examples/power subdirectory

Benchmarks (preliminary)

Cycles† Core: nx – 1
Overhead: 12

Code size
(in bytes)

54

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Q15 to Floating-point Conversionq15tofl

ushort q15tofl (DATA *x, float *r, ushort nx)

(defined in q152fl.asm)

Arguments

x[nx] Pointer to Q15 input vector of size nx.

r[nx] Pointer to floating-point output data vector of size nx
containing the floating-point equivalent of vector x.

nx Length of input and output data vectors

Description Converts the Q15 stored in vector x to IEEE floating-point numbers stored in
vector r.

Algorithm Not applicable

Overflow Handling Methodology  Saturation implemented for overflow handling

Special Requirements None

Implementation Notes None

Example See examples/ug subdirectory

Benchmarks (preliminary)

Cycles† Core: 7 * nx (if x[n] ==0)
29 * nx (otherwise)

Overhead: 19

Code size
(in bytes)

124

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Random Number Generation Algorithmrand16

ushort oflag= rand16 (DATA *r, ushort nr)

Arguments

*r Pointer to the array where the 16-bit random numbers are
stored

nr Number of random numbers that are generated

oflag Overflow error flag (returned value)

� If oflag = 1, a 32-bit data overflow occurred in an
intermediate or final result.

� If oflag = 0, a 32-bit overflow has not occurred.

Description This algorithm computes an array of random numbers based on the linear con-
gruential method introduced by D. Lehmer in 1951. This is one of the fastest
and simplest techniques of generating random numbers. The code shown
here generates 16-bit integers, however, if a 32-bit value is desired the code
can be modified to perform 32-bit multiplies using the defined constants
RNDMULT and RNDINC. The disadvantage of this technique is that it is very
sensitive to the choice of RANDMULT and RNDINC.

Algorithm r [n] = [(r[n–1]*RNDMULT) + RNDINC ] % M
   where  0 � n � nr and 0 � M � 65536

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements No special requirements.

Implementation Notes Rand16() is written so that it can be called from a C program. Prior to calling
rand16(), rand16i() can be called to initialize the random number generator
seed value. The C routine passes two parameters to rand16(): A pointer to the
random number array *r and the count of random numbers (nr) desired. The
random numbers are declared as short or 16 bit values. Two constants
RNDMULT and RNDINC are defined in the function. The algorithm is sensitive
to the choice of RNDMULT and RNDINC so exercise caution when changing
these.
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M This value is based on the system that the routine runs. This
routine returns a random number from 0 to 65536 (64K) and
is NOT internally bounded. If you need a min/max limit, this
must be coded externally to this routine.

RNDSEED An arbitrary constant that can be any value between 0 and
64K. If 0 (zero) is chosen, then RNDINC should be some
value greater than 1. Otherwise, the first two values will be 0
and 1. To change the set of random numbers generated by
this routine, change the RNDSEED value. In this routine,
RNDSEED is initialized to 21845, which is 65536/3.

RNDMULT Should be chosen such that the last three digits fall in the
pattern even_digit–2–1 such as xx821, xx421 etc.
RNDMULT = 31821 is used in this routine.

RNDINC In general, this constant can be any prime number related to
M. Research shows that RNDINC (the increment value)
should be chosen by the following formula:
RNDINC = ((1/2 – (1/6 * SQRT(3))) * M). Using M=65536,
RNDINC was picked as 13849.

The random seed initialized in rand16i() is used to generate the first random
number. Each random number generated is used to generate the next number
in the series. The random number is generated in the accumulator (32 bits) by
using the multiply-accumulate (MAC) unit to do the computation. In the course
of the algorithm if there is intermediate overflow, the overflow flag bit in status
register is set. At the end of the algorithm, the overflow flag is tested for any
intermediate overflow conditions.

Example See examples/rand16 subdirectory

Benchmarks

Cycles Core: 13 + nr*2
Overhead: 10

Code size
(in bytes)

49

C54x Benchmark for Comparison

Cycles Core: 10 + nr*4
Overhead: 16

Code size
(in bytes)

56
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Random Number Generation Initializationrand16init

void rand16init(void)

Arguments None

Description Initializes seed for 16-bit random number generator.

Algorithm Not applicable

Overflow Handling Methodology  No scaling implemented for overflow prevention.

Special Requirements Allocation of .bss section is required in linker command file.

Implementation Notes This function initializes a global variable rndseed in global memory to be used
for the 16 bit random number generation routine (rand16)

Example See examples/rand16i subdirectory

Benchmarks

Cycles 6

Code size
(in bytes)

9

C54x Benchmark for Comparison

Cycles 7

Code size
(in bytes)

10
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16-bit Reciprocal Functionrecip16

void recip16 (DATA *x, DATA *r, DATA *rexp, ushort nx)

Arguments

x[nx] Pointer to input data vector 1 of size nx.
x[0]
x[1]
.
.
x[nx–2]
x[nx–1]

r[nx] Pointer to output data buffer
r[0]
r[1]
.
.
r[nx–2]
r[nx–1]

rexp[nx] Pointer to exponent buffer for output values. These
exponent values are in integer format.
rexp[0]
rexp[1]
.
.
rexp[nx–2]
rexp[nx–1]

nx Number of elements of input and output vectors

Description This routine returns the fractional and exponential portion of the reciprocal of
a Q15 number. Since the reciprocal is always greater than 1, it returns an expo-
nent such that:

r[i] * rexp[i] = true reciprocal in floating-point

Algorithm Ym � 2 * Ym � Ym2 * Xnorm

If we start with an initial estimate of Ym, the equation converges to a solution
very rapidly (typically 3 iterations for 16-bit resolution).
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The initial estimate can be obtained from a look-up table, from choosing a mid-
point, or simply from linear interpolation. The method chosen for this problem
is linear interpolation and is accomplished by taking the complement of the
least significant bits of the Xnorm value.

Overflow Handling Methodology  None

Special Requirements None

Implementation Notes None

Example See examples/recip16 subdirectory

Benchmarks (preliminary)

Cycles† Core: 33 * nx
Overhead: 12

Code size
(in bytes)

69

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Forward Real FFT (in-place)rfft

void rfft (DATA *x, ushort nx, ushort scale);

(reference cfft.asm and unpack.asm)

Arguments

x [nx] Pointer to input vector containing nx real elements. On output,
vector x contains the first half (nx/2 complex elements) of the
FFT output in the following order. Real FFT is a symmetric
function around the Nyquist point, and for this reason only half
of the FFT(x) elements are required.

On output x will contain the FFT(x) = y in the following format:

y(0)Re y(nx/2)im → DC and Nyquist

y(1)Re y(1)Im

y(2)Re y(2)Im

....

y(nx/2)Re y(nx/2)Im

Complex numbers are stored in Re-Im format

nx Number of real elements in vector x. can take the following
values.

nx   = 16, 32, 64, 128, 256, 512, 1024

scale Flag to indicate whether or not scaling should be implemented
during computation.

if (scale == 0)

  scale factor = nx;

else

  scale factor = 1;

end

Description Computes a Radix-2 real DIT FFT of the nx real elements stored in vector x
in bit-reversed order. The original content of vector x is destroyed in the
process. The first nx/2 complex elements of the FFT(x) are stored in vector x
in normal-order.

Algorithm (DFT)
See CFFT
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Special Requirements

� All above mentioned functions are required for the FFT

� unpack.asm (containing code to for unpacking results)

Implementation Notes Implemented as a complex FFT of size nx/2 followed by an unpack stage to
unpack the real FFT results. Therefore, Implementation Notes for the cfft func-
tion apply to this case.

Notice that normally an FFT of a real sequence of size N, produces a complex
sequence of size N (or 2*N real numbers) that will not fit in the input sequence.
To accommodate all the results without requiring extra memory locations, the
output reflects only half of the spectrum (complex output). This still provides
the full information because an FFT of a real sequence has even symmetry
around the center or nyquist point(N/2).

When scale = 1, this routine prevents overflow by scaling by 2 at each FFT
intermediate stages and at the unpacking stage.

Example See examples/rfft Zip file
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Inverse Real FFT (in-place)rifft

void rifft (DATA *x, ushort nx, ushort scale);

(reference cifft.asm)

Arguments

x [nx] Pointer to input vector x containing nx real elements. The
unpacki routine should be called to unpack the rfft sequence
before calling the bit reversal routine. (See examples directory
for calling sequence)

On output, the vector x contains nx complex elements
corresponding to RIFFT(x) or the signal itself.

nx Number of real elements in vector x. nx can take the following
values.

nx =16, 32, 64, 128, 256, 512, 1024

scale Flag to indicate whether or not scaling should be implemented
during computation.

If (scale == 0)

  scale factor = nx;

else

  scale factor = 1;

end

Description Computes a Radix-2 real DIT IFFT of the nx real elements stored in vector x
in bit-reversed order. The original content of vector x is destroyed in the
process. The first nx/2 complex elements of the IFFT(x) are stored in vector
x in normal-order.

Algorithm (IDFT)
See CIFFT

Special Requirements This function should work with unpacki.asm and/or cbrev.asm for proper
result. See example in examples/rifft directory.
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Implementation Notes Implemented as a complex IFFT of size nx/2 followed by an unpack stage to
unpack the real IFFT results. Therefore, Implementation Notes for the cfft
function apply to this case.

Notice that normally an IFFT of a real sequence of size N, produces a complex
sequence of size N (or 2*N real numbers) that will not fit in the input sequence.
To accommodate all the results without requiring extra memory locations, the
output reflects only half of the spectrum (complex output). This still provides
the full information because an IFFT of a real sequence has even symmetry
around the center or nyquist point(N/2).

When scale = 1, this routine prevents overflow by scaling by 2 at each IFFT
intermediate stages and at the unpacking stage.

Example See examples/rifft subdirectory
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Sinesine

ushort oflag = sine (DATA *x, DATA *r, ushort nx) 

(defined in sine.asm)

Arguments

x[nx] Pointer to input vector of size nx. x contains the angle in
radians between [–pi, pi] normalized between (–1,1) in q15
format
x = xrad /pi
For example:
45o = pi/4 is equivalent to x = 1/4 = 0.25 = 0x200 in q15
format.

r[nx] Pointer to output vector containing the sine of vector x in
q15 format

nx Number of elements of input and output vectors.
nx ≥ 4

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Computes the sine of elements of vector x. It uses Taylor series to compute
the sine of angle x.

Algorithm for (i � 0; i � nx; i ��) y(i) � sin(x(i)) where x(i) � xrad
pi

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes Computes the sine of elements of vector x. It uses the following Taylor series
to compute the angle x in quadrant 1 (0–pi/2).

sin(x) = c1*x + c2*x^2 + c3*x^3 + c4*x^4 + c5*x^5

c1 = 3.140625x
c2 = 0.02026367
c3 = – 5.3251
c4 = 0.5446778
c5 = 1.800293

The angle x in other quadrant is calculated by using symmetries that map the
angle x into quadrant 1.
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Example See examples/sine subdirectory

Benchmarks (preliminary)

Cycles† Core: 19 * nx
Overhead: 17

Code size
(in bytes)

93 program; 3 data

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Square Root of a 16-bit Numbersqrt_16

ushort oflag = sqrt_16 (DATA *x, DATA *r, short nx)

(defined in sqrtv.asm)

Arguments

x[nx] Pointer to input vector of size nx.

r[nx] Pointer to output vector of size nx containing the sqrt(x).

nx Number of elements of input and output vectors.

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description Calculates the square root for each element in input vector x, storing results
in output vector r.

Algorithm for (i � 0; i � nx; i ��) r [i] � (x(i)�  where 0 � i � nx

Overflow Handling Methodology  Not applicable

Special Requirements None

Implementation Notes The square root of a number(x) can be calculated using Newton’s method. An
initial approximation is guessed and then the approximation gets recomputed
using the formula,

new approximation � old approximation �
(old approximation2 � x)

2
.

The new approximation then becomes the old approximation and the process
is repeated until the desired accuracy is reached.

Example See examples/sqrtv subdirectory

Benchmarks (preliminary)

Cycles† Core: 35 * nx
Overhead: 14

Code size
(in bytes)

84 program; 5 data

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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Vector Subtractsub

short oflag = sub (DATA *x, DATA *y, DATA *r, ushort nx, ushort scale)

(defined in sub.asm)

Arguments

x[nx] Pointer to input data vector 1 of size nx. In-place processing
allowed (r can be = x = y)

y[nx] Pointer to input data vector 2 of size nx

r[nx] Pointer to output data vector of size nx containing

� (x–y) if scale =0

� (x–y)/2 if scale =1

nx Number of elements of input and output vectors.
nx ≥ 4

scale Scale selection

� If scale = 1, divide the result by 2 to prevent overflow.

� If scale = 0, do not divide by 2.

oflag Overflow flag.

� If oflag = 1, a 32-bit overflow has occurred.

� If oflag = 0, a 32-bit overflow has not occurred.

Description This function subtracts two vectors, element by element.

Algorithm for (i � 0; i � nx; i ��) z(i) � x(i) � y(i)

Overflow Handling Methodology  Scaling implemented for overflow prevention (User selectable)

Special Requirements None

Implementation Notes None

Example See examples/sub subdirectory

Benchmarks (preliminary)

Cycles† Core: 3 * nx
Overhead: 23

Code size
(in bytes)

60

† Assumes all data is in on-chip dual-access RAM and that there is no bus conflict due to twiddle
table reads and instruction fetches (provided linker command file reflects those conditions).
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DSPLIB Benchmarks and Performance Issues

All functions in the DSPLIB are provided with execution time and code size
benchmarks. While developing the included functions, we tried to compromise
between speed, code size, and ease of use. However, with few exceptions, the
highest priority was given to optimize for speed and ease of use, and last for
code size.

Even though DSPLIB can be used as a first estimation of processor perfor-
mance for a specific function, you should know that the generic nature of
DSPLIB may add extra cycles not required for customer specific usage.
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5.1 What DSPLIB Benchmarks are Provided

DSPLIB documentation includes benchmarks for instruction cycles and
memory consumption. The following benchmarks are typically included:

� Calling and register initialization overhead

� Number of cycles in the kernel code: Typically provided in the form of an
equation that is a function of the data size parameters. We consider the
kernel (or core) code, the instructions contained between the _start and
_end labels that you can see in each of the functions.

� Memory consumption: Typically program size in bytes is reported. For
functions requiring significant internal data allocation, data memory con-
sumption is also provided. When stack usage for local variables is mini-
mum, that data consumption is not reported.

For functions in which it is difficult to determine the number of cycles in the ker-
nel code as a function of the data size parameters, we have included direct
cycle count for specific data sizes.

5.2 Performance Considerations

Benchmark cycles presented assume best case conditions, typically assum-
ing:

� 0 wait-state memory external memory for program and data

� data allocation to on-chip DARAM

� no pipeline hits

A linker command file showing the memory allocation used during testing and
benchmarking in the Code Composer C55x Simulator is included under the
example subdirectory.

Remember, execution speed in a system is dependent on where the different
sections of program and data are located in memory. Be sure to account for
such differences, when trying to explain why a routine is taking more time that
the reported DSPLIB benchmarks.

What DSPLIB Benchmarks are Provided / Performance Considerations
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Licensing, Warranty, and Support
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6.1 Licensing and Warranty

C55x DSPLIB is distributed as a free-of-charge product under the generic Tex-
as Instrument License Form presented in Appendix C.

BETA RELEASE SPECIAL DISCLAIMER: This DSPLIB software release is
preliminary (Beta), it is intended for evaluation only. Testing and characteriza-
tion has not been fully completed. Production release will typically follow after
a month of the Beta release but no explicit guarantees are paced on that date.

6.2 DSPLIB Software Updates

C55x DSPLIB Software updates will be periodically released, incorporating
product enhancement and fixes.

DSPLIB Software Updates will be posted as they become available in the
same location you download this information. Source Code for previous re-
leases will be kept public to prevent any customer problem in case we decide
to discontinue or change the functionality of one of the DSPLIB functions.
Make sure to read the readme.1st file available in the root directory of every
release.

6.3 DSPLIB Customer Support

If you have any questions or want to report problems or suggestions regarding
the C55x DSPLIB, contact Texas Instruments at dsph@ti.com.

We encourage the use of the software report form (report.txt) contained in the
DSPLIB root directory to report any problem associated with the C55x
DSPLIB.

Licensing and Warranty / DSPLIB Software Updates / DSPLIB Customer Support
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Appendix A

Overview of Fractional Q Formats

Unless specifically noted, DSPLIB functions use Q15 format or to be more ex-
act Q0.15. In a Qm.n format, there are m bits used to represent the two’s com-
plement integer portion of the number, and n bits used to represent the two’s
complement fractional portion. m+n+1 bits are needed to store a general Qm.n
number. The extra bit is needed to store the sign of the number in the most-sig-
nificant bit position. The representable integer range is specified by (–2m, 2m)
and the finest fractional resolution is 2�n .

For example, the most commonly used format is Q.15. Q.15 means that a
16-bit word is used to express a signed number between positive and negative
1. The most-significant binary digit is interpreted as the sign bit in any Q format
number. Thus in Q.15 format, the decimal point is placed immediately to the
right of the sign bit. The fractional portion to the right of the sign bit is stored
in regular two’s complement format.

Topic Page

A.1 Q3.12 Format A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

A.2 Q.15 Format A-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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A.1 Q3.12 Format

Q.3.12 format places the sign bit after the fourth binary digit from the right, and
the next 12 bits contain the two’s complement fractional component. The
approximate allowable range of numbers in Q.3.12 representation is (–8,8)
and the finest fractional resolution is 2�12 � 2.441 � 10�4 .

Table A–1. Q3.12 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S I3 I2 I1 Q11 Q10 Q9 … Q0

A.2 Q.15 Format

Q.15 format places the sign bit at the leftmost binary digit, and the next 15 leftmost
bits contain the two’s complement fractional component. The approximate allowable
range of numbers in Q.15 representation is (–1,1) and the finest fractional resolution
is 2�15 � 3.05 � 10�5.

Table A–2. Q.15 Bit Fields

Bit 15 14 13 12 11 10 9 … 0

Value S Q14 Q13 Q12 Q11 Q10 Q9 … Q0

A.3 Q.31 Format

Q.31 format spans two 16-bit memory words. The 16-bit word stored in the lower
memory location contains the 16 least-significant bits, and the higher memory
location contains the most-significant 15 bits and the sign bit. The approximate
allowable range of numbers in Q.31 representation is (–1,1) and the finest fractional
resolution is 2�31 � 4.66 � 10�10.

Table A–3. Q.31 Low Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value Q15 Q14 Q13 Q12 … Q3 Q2 Q1 Q0

Table A–4. Q.31 High Memory Location Bit Fields

Bit 15 14 13 12 … 3 2 1 0

Value S Q30 Q29 Q28 … Q19 Q18 Q17 Q16

Q3.12 Format / Q.15 Format / Q.31 Format
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Appendix A

Calculating the Reciprocal of a Q15 Number

The most optimal method for calculating the inverse of a fractional number
(Y=1/X) is to normalize the number first. This limits the range of the number
as follows:

0.5 � Xnorm � 1
–1 � Xnorm � –0.5 (1)

The resulting equation becomes

Y � 1
(Xnorm * 2�n )

or

Y � 2n

Xnorm
(2)

where n = 1, 2, 3, …, 14, 15

Letting Ye � 2n:

Ye � 2n (3)

Substituting (3) into equation (2):

Y � Ye * 1
Xnorm

(4)

Letting Ym � 1
Xnorm

:

Ym � 1
Xnorm

(5)

Substituting (5) into equation (4):

Y � Ye * Ym (6)

For the given range of Xnorm, the range of Ym is:

1 � Ym � 2
–2 � Ym � –1 (7)

To calculate the value of Ym, various options are possible:

a) Taylor Series Expansion

b) 2nd,3rd,4th,.. Order Polynomial (Line Of Best Fit)

c) Successive Approximation

Appendix B
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The method chosen in this example is (c). Successive approximation yields
the most optimum code versus speed versus accuracy option. The method
outlined below yields an accuracy of 15 bits.

Assume Ym(new)� exact value of 1
Xnorm

:

Ym(new)� 1
Xnorm

(c1)

or

Ym(new)* X � 1 (c2)

Assume Ym(old)� estimate of value 1
X

:

Ym(old) * Xnorm � 1 � Dyx

or

Dxy � Ym(old) * Xnorm � 1 (c3)

where Dyx = error in calculation

Assume that Ym(new) and Ym(old) are related as follows:

Ym(new)� Ym(old)� Dy (c4)

where Dy = difference in values

Substituting (c2) and (c4) into (c3):

Ym(old) * Xnorm � Ym(new)* Xnorm � Dxy

(Ym(new)� Dy) * Xnorm � Ym(new)* Xnorm � Dxy

Ym(new)* Xnorm � Dy * Xnorm � Ym(new)* Xnorm � Dxy

Dy * Xnorm � Dxy

Dy � Dxy * 1
Xnorm

(c5)

Assume that 1/Xnorm is approximately equal to Ym(old):

Dy � Dxy * Ym(old) (approx) (c6)

Substituting (c6) into (c4):

Ym(new)� Ym(old)� Dxy * Ym(old) (c7)

Substituting for Dxy from (c3) into (c7):

Ym(new)� Ym(old)� (Ym(old) * Xnorm � 1) * Ym(old)

Ym(new)� Ym(old)� Ym(old)2 * Xnorm � Ym(old)

Ym(new)� 2 * Ym(old)� Ym(old)2 * Xnorm (c8)

Calculating the Reciprocal of a Q15 Number
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If after each calculation we equate Ym(old) to Ym(new):

Ym(old)� Ym(new)� Ym

Then equation (c8) evaluates to:

Ym � 2 * Ym � Ym2 * Xnorm (c9)

If we start with an initial estimate of Ym, then equation (c9) converges to a solu-
tion very rapidly (typically 3 iterations for 16-bit resolution).

The initial estimate can be obtained from a look-up table, from choosing a mid-
point, or simply from linear interpolation. The method chosen for this problem
is linear interpolation and accomplished by taking the complement of the least
significant bits of the Xnorm value.

Calculating the Reciprocal of a Q15 Number
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Appendix A

Texas Instruments License Agreement
for DSP Code

Texas Instruments License Agreement for DSP Code IF YOU DOWNLOAD
OR USE THIS PROGRAM YOU AGREE TO THESE TERMS.

Texas Instruments Incorporated grants you a license to use the Program only
in the country where you acquired it. The Program is copyrighted and licensed
(not sold). We do not transfer title to the Program to you. You obtain no rights
other than those granted you under this license.

Under this license, you may:

1) use the Program on one or more machines at a time;

2) make copies of the Program for use or backup purposes within your Enter-
prise;

3) modify the Program and merge it into another program; and

4) make copies of the original file you downloaded and distribute it, provided
that you transfer a copy of this license to the other party. The other party
agrees to these terms by its first use of the Program.

You must reproduce the copyright notice and any other legend of ownership
on each copy or partial copy, of the Program.

You may NOT:

1) sublicense, rent, lease, or assign the Program; and

2) reverse assemble, reverse compile, or otherwise translate the Program.

3) Use it in non-TI DSPs

We do not warrant that the Program is free from claims by a third party of copy-
right, patent, trademark, trade secret, or any other intellectual property in-
fringement.

Under no circumstances are we liable for any of the following:

1) third-party claims against you for losses or damages;

2) loss of, or damage to, your records or data; or

3) economic consequential damages (including lost profits or savings) or in-
cidental damages, even if we are informed of their possibility.
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Some jurisdictions do not allow these limitations or exclusions, so they may not
apply to you.

We do not warrant uninterrupted or error free operation of the Program. We
have no obligation to provide service, defect correction, or any maintenance
for the Program. We have no obligation to supply any Program updates or en-
hancements to you even if such are or later become available.

IF YOU DOWNLOAD OR USE THIS PROGRAM YOU AGREE TO THESE
TERMS.

THERE ARE NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

Some jurisdictions do not allow the exclusion of implied warranties, so the
above exclusion may not apply to you.

You may terminate this license at any time. We may terminate this license if
you fail to comply with any of its terms. In either event, you must destroy all your
copies of the Program.

You are responsible for the payment of any taxes resulting from this license.

You may not sell, transfer, assign, or subcontract any of your rights or obliga-
tions under this license. Any attempt to do so is void.

Neither of us may bring a legal action more than two years after the cause of
action arose.

This license is governed by the laws of the State of Texas.

Texas Instruments License Agreement for DSP Code
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