
C54x-to-C55x Code Migration
 Reference Guide

Preliminary Draft
This document contains preliminary data

current as of the publication date and is

subject to change without notice.

Literature Number: SPRU429
March 2001



IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized
to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such  products or services might be or are used. TI’s
publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations and
notices.  Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated
by TI for that products or service voids all express and any implied warranties for the associated
TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor
liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. 
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright   2001, Texas Instruments Incorporated



iiiContents

Preface

Read This First

About This Manual

This manual describes techniques for migrating code from a TMS320C54x
(C54x ) DSP to a TMS320C55x  (C55x ) DSP. It also describes techniques
for optimizing your code during and after the migration.

Notational Conventions

This document uses the following conventions.

� The device number TMS320C55x is often abbreviated as C55x.

� If an overbar is above the name of a signal (for example, BIO), the signal
is active low.

� Code examples are shown in a special typeface .

� In most cases, hexadecimal numbers are shown with the suffix h. For ex-
ample, the following number is a hexadecimal 40 (decimal 64):

40h

Similarly, binary numbers usually are shown with the suffix b. For example,
the following number is the decimal number 4 shown in binary form:

0100b

� Bits and signals are sometimes referenced with the following notations:

Notation Description Example

Register(n–m) Bits n through m of Register AC0(15–0) represents the 16
least significant bits of the regis-
ter AC0.

Bus[n:m] Signals n through m of Bus A[21:1] represents signals 21
through 1 of the external ad-
dress bus.
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� The following terms are used to name portions of data:

Term Description Example

LSB Least significant bit In AC0(15–0), bit 0 is the LSB.

MSB Most significant bit In AC0(15–0), bit 15 is the MSB.

LSByte Least significant byte In AC0(15–0), bits 7–0 are the LSByte.

MSByte Most significant byte In AC0(15–0), bits 15–8 are the MSByte.

LSW Least significant word In AC0(31–0), bits 15–0 are the LSW.

MSW Most significant word In AC0(31–0), bits 31–16 are the MSW.

Related Documentation From Texas Instruments

The following books describe the TMS320C55x  (C55x ) DSP generation
and related support tools. To obtain a copy of any of these TI documents, call
the Texas Instruments Literature Response Center at (800) 477–8924. When
ordering, please identify the book by its title and literature number.

TMS320C55x Technical Overview (literature number SPRU393). This over-
view is an introduction to the TMS320C55x  digital signal processor
(DSP). The TMS320C55x is the latest generation of fixed-point DSPs in
the TMS320C5000  DSP platform.  Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features of the TMS320C55x DSPs.

TMS320C55x DSP CPU Reference Guide  (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x  digital signal processors (DSPs).

TMS320C55x DSP Peripherals Reference Guide  (literature number
SPRU317) describes the peripherals, interfaces, and related hardware
that are available on TMS320C55x  (C55x ) DSPs. It also describes
how you can use software (idle configurations) to turn on or off individual
portions of the DSP, so that you can manage power consumption.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide  (literature
number SPRU374) describes the TMS320C55x  DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.
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TMS320C55x DSP Algebraic Instruction Set Reference Guide  (literature
number SPRU375) describes the TMS320C55x  DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

TMS320C55x Programmer’s Guide  (literature number SPRU376) describes
ways to optimize C and assembly code for the TMS320C55x  DSPs and
explains how to write code that uses special features and instructions of
the DSP.

TMS320C55x Assembly Language Tools User’s Guide  (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x  devices.

TMS320C55x Optimizing C Compiler User’s Guide  (literature number
SPRU281) describes the TMS320C55x  C Compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for TMS320C55x devices.

TMS320 Third-Party Support Reference Guide  (literature number
SPRU052) alphabetically lists over 100 third parties that provide various
products that serve the TMS320  DSP family. A myriad of products and
applications are offered—software and hardware development tools,
speech recognition, image processing, noise cancellation, modems, etc.

Trademarks

TMS320C5x, C5x, TMS320C54x, C54x, TMS320C55x, and C55x are
trademarks of Texas Instruments.

All other trademarks are the property of their respective owners.
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1.1 About This Document

This document provides code migration examples that illustrate the recom-
mended C54x-to-C55x code porting process. This document complements but
does not replace the code migration information contained in the TMS320C55x
Assembly Language Tools User’s Guide (SPRU280). SPRU280 includes the
minimum steps required to run your C54x code on a C55x DSP and presents the
software system-level issues that need to be addressed as part of the application
code porting.

This document does not cover hardware migration or differences between the
C54x and C55x peripherals and external memory interfaces. While performing
a hardware system migration, you may want to consult the TMS320C55x DSP
CPU Reference Guide (SPRU371) and the TMS320VC5510 Fixed-Point
Digital Signal Processor data sheet (SPRS076).
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1.2 The C54x-to-C55x Code Porting Process

The TMS320C55x  (C55x ) DSPs are source compatible with the
TMS320C54x  (C54x ) DSPs and are able to run C54x code, producing bit-
exact results. Migration of C54x mnemonic code to C55x mnemonic code can
be achieved with minimal user intervention through the use of the C55x
mnemonic assembler, MASM55. MASM55 assembles both C54x and the new
C55x native instruction. To take full advantage of the C55x architecture,
manual code modification of medium/high MIPS functions using C55x native
instructions is suggested.

The recommended approach to migrate a C54x application code to C55x is
the partial native/code re-assembly approach  described below. This
should be seen as a recommendation not as the only possible code porting
methodology.

� Phase 1: Code re-assembly using MASM55

The mnemonic C55x assembler (MASM55) can be used to port a C54x
algorithm to the C55x. MASM55 assembles the C54x mnemonic source
and produces C55x object code. This approach saves time as it requires
minimal user intervention. The effort involved is typically independent of
the size of the C54x code. User intervention may be required to:

� Port system level code: C54x and C55x are source compatible in
terms of the CPU instruction set. However, C54x and C55x are differ-
ent in their memory maps, peripherals, stack management, and inter-
rupts. Manual modification of system initialization code may be
required.

� Remove non-portable code: MASM55 will port all C54x code with few
exceptions related to hard-coding of addresses and open pipeline
tricks

� Phase 2: Selected code optimization of medium MIPS functions
(Optional)

The original C54x code does not exploit all the C55x architectural features.
Limited code modification of the C54x medium MIPS functions is sug-
gested to quickly get better cycle count and code size. For example, you
can quickly make the C54x code more optimal by:

� Using MASM55 special optimization switches

� Using few C55x native instructions in your original C54x code

� Phase 3: Code optimization of high MIPS functions via C55x native
implementation (Optional)
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To optimize further, high MIPS consuming functions that could take advan-
tage of the new C55x features should be implemented using C55x native
instructions. The idea is to cycle profile all the functions and optimize a
subset of the functions covering 80% of the algorithm MIPS. The reason is
that in most applications, the high MIPS consuming modules represent
only a small portion of the code size. Therefore, the effort is considerably
less and the payback is substantial. However, the impact of new C55x ar-
chitectural features, such as such as dual mac, dual store/load capability,
nested block repeats and additional circular buffers, in those functions
need to be analyzed to make a decision on native coding.

The C54x/C55x code porting process is illustrated in the flowchart pre-
sented in Figure 1–1. It is important to note that Phase 2 and Phase 3
steps are optional depending on your performance optimization goals. For
example, you might be satisfied with the code performance that you obtain
with just Phase 1, given the higher clock rate of C55x DSPs.
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Figure 1–1. Flowchart of the C54x-to-C55x Code Porting Process
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1.3 What Performance to Expect in C54x Ported Code

The performance of C54x code ported to the C55x depends on 3 main factors:

1) The approach selected when porting assembly code

2) The type of assembly code being ported

3) The mix of assembly code versus C code

1.3.1 The Approach Selected When Porting Assembly Code

There are three possible approaches when porting C54x assembly code to the
C55x: code re-assembly using MASM55, a full C55x native coding approach,
and a partial native/code re-assembly approach. In this document we recom-
mend and cover the partial native/code re-assembly approach that is a mix of
the other two approaches. However, it is important to decide on the approach
with a clear understanding of the trade-offs involved.

� Code re-assembly using MASM55 approach:  A C54x mnemonic as-
sembly implementation can be ported to the C55x by using the mnemonic
C55x assembler (MASM55). MASM55 assembles the C54x mnemonic
source and produces C55x object code. This approach corresponds to the
Phase 1 of the C54x-to-C55x code porting process presented in this docu-
ment.

Advantages

It is not a time consuming process and the effort involved is independent of
the size of the C54x code being ported in most cases.

Disadvantages

� Manual code modification may be required to address differences be-
tween C54x and C55x in system-level code (interrupt and peripheral
register initialization mostly)

� Masm55 does not exploit all the C55x architectural features and se-
lected code modification may be required to get better cycle count and
code size

Expected Performance

Table 1 shows a typical code size and cycle performance using the code
re-assembly using MASM55 approach. After some of the C54x code opti-
mization techniques presented in this document, an average
C54x/MASM55 ratio of 0.8 and 0.95 in cycle and code size respective-
ly can be expected . C55x performance have some degradation and for
this reason this approach is typically recommended for less MIPS con-
suming functions.
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� full C55x native coding approach:  This approach involves a code re-
write using C55x native instructions. This approach corresponds to the
Phase 3 of the C54x-to-C55x code porting process presented in this docu-
ment.

Advantages

� All architectural features of C55x can be exploited.

� Developer has complete control over code size and cycles

Disadvantages

Time consuming process.

Expected Performance

Table 1–1 shows a typical code size and cycle performance using a full
C55x native approach. With this method an average C54x/ C55x ratio
of 1.4 to 1.8 can be achieved depending on the type of code.  The more
MAC intensive the code is the better the ratio would be. Refer to this docu-
ment and the TMS320C55x Programmer’s Guide (SPR376) for
recommended C55x programming techniques.

� Partial native/code re-assembly approach (Recommended Method):
In C55x, it is possible to mix re-assembled C54x code with code using new
C55x native instructions. Hence, to port an algorithm to the C55x, a mix
of migrating techniques using MASM55 and native implementation can be
used which can ensure quick migration with a good memory and MIPS
performance gain.

Advantages

Enables the developer to exploit C55x new architectural features for MIPS
intensive functions and quickly port the remaining less MIPS consuming
functions via MASM55.

Expected Performance

Memory and cycle performance with this approach is application code
specific. It depends on the code characteristics and on the mix of MASM55
re-assembled code versus C55x native code used. Table 1–1 shows that
an average C54x/ C55x cycle ratio of 1.35 to 1.6 can be achieved de-
pending on the kind of code.  The more MAC intensive the code is the
better would be the ratio.

The use of MASM55 re-assembled code versus C55x native code should
be decided on a function by function basis. The following recommenda-
tions apply when selecting what functions to implement in C55x native
code:
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� Functions that consume 80% of MIPS of the algorithm are good candi-
dates for C55x native coding. The reason is that in most applications,
the high MIPS consuming modules represent only a small portion of
the code size. Therefore, the effort is considerably less and the pay-
back is substantial. However, as explained below the type of opera-
tions in these functions needs also to be considered.

� The impact of new C55x architectural features on the function needs
to be analyzed to make a decision on native coding. MIPS consuming
functions that could take advantage of new C55x architectural fea-
tures such as dual mac, dual store/load capability, nested block re-
peats and additional circular buffers are candidates for native coding.
You can quickly make this analysis from the fixed-point C model of the
algorithm if available.

In summary,

Partial native/code re-assembly approach following the 80% MIPS rule
is the recommended method. Non-critical functions of the algorithm
(less MIPS consuming functions) can be ported using MASM55 (with se-
lected code changes) while the MIPS consuming functions can be imple-
mented using C55x native instructions.

Table 1–1. C54x vs. C55x Code Porting Performance Average

C54x/C55x Cycle Ratio C54x/C55x Code Size Ratio

MASM55 0.8 0.9–0.95

MASM55 with
selected code
changes

0.9 0.95

C55x Native 1.4–1.8 0.95–1.1 (for DSP loop-type code)

1.25–1.3 (for control-type code)

C not available 1.3–1.4

Note: Larger means better performance for the C55x.

1.3.2 The Type of Assembly Code Being Ported

A typical application consists of a mix of control code and DSP-loop code. Con-
trol code tends to dominate in size, while DSP-loop code tends to dominate
in cycles. Therefore an optimal DSP processor architecture should concen-
trate on decreasing code size for control code and decreasing cycle count for
DSP code. The C55x architecture was designed to achieve just that.
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C55x control code will shrink in size compared with C54x control code, as seen
in Table 1–1. Assembly code can get larger by 10-25% with DSP loop code
because the C55x DSP generation offers a more powerful and orthogonal in-
struction set than the C54x DSP generation, and this requires more instruction
encoding bits. This increase in code size is balanced by a decrease in cycle
count, which can be seen in Table 1–2.

Table 1–2. C54x Versus C55x Cycle Comparison in DSPLIB Code

Benchmark C55x Cycle Count C54x Cycle Count

Real block FIR nx/2 (4+nh) 4+nx(4+nh)

complex block FIR nx(2+ 2*nh) nx(13 + 8*nh)

iircas4 nx(5+4*nbiq) nx(11 + 4*nbiq)

dlms kernel 5+ 2*nh 12 + 2*nh

maxval nx 2*nx

Notes: 1) nx = number of elements in the vector

2) nh = number of filter coefficients

3) nbiq = number of filter biquads

4) These kernels reflect a small subset of the C55x and C54x DSPLIB kernels. A
complete set of C54x and C55x DSPLIB benchmarks can be found in the API de-
scriptions in the Optimized DSP Library for C Programmers on the TMS320C54x
(SPRA480) and the TMS320C55x DSP Library Programmer’s Reference
(SPRU422).

1.3.3 The Mix of Assembly Code Versus C Code

The C55x DSP generation has a more efficient compiler engine than the C54x
DSP generation. Benchmarks on the C55x C compiler show a 30–40% code
size reduction compared with those on the C54x C compiler (see Figure 1–2).
The more C code your application has, the better code size and cycle improve-
ments your ported code will see.

Combined C and assembly code usually gets smaller as shown in Figure 1–3,
an example of a G.723 code porting. The analysis above assumes 50% C
code, 50% assembly code and C54x code ported using MASM55 and the
C55x compiler tools.

In Figure 1–3 (second bar), the G.723 assembly portion ported with MASM55
code re-assembly expanded by 22%, while the G.723 C portion shrunk by
–21.67%, giving you an overall C-plus-assembly code growth of 6.38%.

Using C55x compiler optimization switches, the C code size can shrink to
30–40% of the C54x C code size. This is illustrated in Figure 1–3 (third bar).
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Figure 1–2. C-Compiler Benchmarks
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Figure 1–3. Effect of Migration on Code-Size in G.723 Code Porting
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2.1 Overview

The first Phase of the C54x-to-C55x code porting process is to achieve func-
tional code using the C55x mnemonic assembler MASM55. MASM55 can port
C54x mnemonic code to C55x with minimal user intervention. User interven-
tion is required to:

� Address system-level issues such as differences in memory maps, pe-
ripherals, stack management, and interrupts

� Replace code that might not be portable

This chapter covers, in detail, these two steps. The steps are summarized in
Table 2–1.

Table 2–1. Phase 1: Code Re-assembly Using MASM55

STEP 1: 
Dealing with Non-Portable Code

STEP 2: 
Porting System-Level Code

� Modify code that uses hard-coded
addresses and offsets.

� Modify code that takes advantage of the
C54x non-protected pipeline.

� Replace code that depends on the
condition of the C54x BIO pin.

� Modify code that uses reserved symbols of
the C55x code generation tools.

� Modify code that uses the ARP register.

Stack

� Add code to initialize the system stack.

Interrupts

� Rewrite the interrupt vector table (IVT).

� Rewrite code that initializes the interrupt vector pointer (IPTR).

� Modify code that initializes the IMR and IFR registers.

� Modify the operands of the TRAP and INTR instructions.

� Preserve MASM55 temporary register values in nterrupt service
routines.

Peripherals

� Rewrite code that accesses peripheral and EMIF (external memory
interface) registers.

� Replace code that accesses the C54x I/O space.

C-Callable Assembly

� Use C54x_CALL/C54x_FAR_CALL pragmas for C54x C-callable
assembly code.

Special Case

� Inspect instructions that use the same auxiliary register (AR) for
Xmem and Ymem and that modify the AR of the Ymem operand.

Linker Command File Changes

� Allocate the data stack and the system stack in the same
64K-word page.

� Allocate all data in memory page 0 (the first 64K words of
memory).

� Make sure DP addressing arrays maintain the same C54x
128-word page boundary.

� Keep code being called by CALA in memory page 0 (the first 64K
words of memory).

� Keep code reached by BACC in the same 64K-word page as the
calling code.

� Adjust for differences in the memory map and for byte addressing.
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To execute C54x code ported with MASM55 correctly, a C55x DSP needs to
be in the  C54x-compatible mode (C54CM = 1) and must meet all the associat-
ed conditions shown in Table 2–2. All of the conditions except the stack mode
condition are the defaults forced by a DSP hardware reset. The stack mode is
determined by the first byte of the reset vector, as described in the TMS320C55x
DSP CPU Reference Guide (SPRU371).

Table 2–2. MASM55 C54x Compatibility Context Requirements

Required Condition Description

ST1(C54CM) = 1 The C54x-compatible mode is enabled.

ST1(M40) = 0 The D-unit of the CPU is in the 32-bit mode rather
than the 40-bit mode.

ST2(ARMS) = 0 C54x-compatible options are available for indirect
addressing.

ST2(RDM) = 0 C54x-compatible rounding is used.

ST2(7–0) = 0 Circular addressing is not forced for any of the
auxiliary registers, AR0–AR7.

DPH = 0,  SPH = 0, 
AR0H–AR7H = 0,
CDPH = 0

All data is accessed in the first 64K words of memory.

BSA01 = 0, BSA23 = 0,
BSA45 = 0, BSA67 = 0,
BSAC = 0

The C55x circular buffer start address registers are
cleared so that they do not affect circular addressing.

Stack mode = 32-bit The data stack and the system stack act as a single
32-bit stack: When you access the data stack, the
pointers for both stacks are modified by the same
increment. The C55x fast-return registers (RETA and
CFCT) are not used.
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2.2 Step 1: Dealing with Non-Portable Code

Certain C54x instructions/code practices are not portable to the C55x DSPs.
MASM55 flags most of these cases with “ERROR” or “REMARK” (indicating
a weaker error), with the exception of open pipeline tricks. In this step, we must
remove/replace those pieces of code to allow MASM55 to complete the C54x
code assembly process.

Table 2–3 summarizes the cases in which C54x code is not portable, and the
sections that follow the table describe how to handle such code.

Table 2–3. Cases in Which C54x Code is Not Portable

Case Example MASM55 Behavior

Hard-coded addresses/offsets
(see section 2.2.1)

B #1233h REMARK

Open-pipeline tricking
(see section 2.2.2)

LD #1, A
XC 1, AEQ

REMARK (for XC)

(Does not detect other cases)

BIO-pin-related code
(see section 2.2.3)

XC 1, BIO ERROR

New reserved symbols
(see section 2.2.4)

B $ ERROR

ARP-related code
(see section 2.2.5)

LD #3, ARP ERROR

2.2.1 Modify Code That Uses Hard-Coded Addresses and Offsets

In C55x DSPs, addresses in program space are given in bytes, while those in
C54x DSPs are given in words. Therefore, instructions that use hard-coded
addresses/offsets (for example, #1000h) will not address the correct values,
and for that reason, are flagged as MASM55 errors.

WHAT TO DO:  It is good programming practice to avoid using hard-coded ad-
dresses or offsets. If hard-coded values have been used, replace them with
labels so that the linker will resolve them at link time.

2.2.2 Modify Code That Takes Advantage of the C54x Non-Protected Pipeline

The C54x instruction pipeline was not protected, and therefore had the poten-
tial to cause some out-of-order instruction execution. Although rarely done in
practice, it was possible to take advantage of the open pipeline to save cycles.
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As an example, consider the following C54x code. When the C54x CPU exe-
cutes the XC (conditional execute) instruction, the content of accumulator A
is sampled two cycles before the XC instruction is executed. Therefore, the ac-
tion taken by the XC instruction depends on the LD instruction, not on the ADD
instruction. Because the LD instruction makes the content of A equal to 0, the
SUB instruction is executed.

LD 0, A
NOP
ADD #1, A
XC 1, AEQ
SUB #5, B

To make programming easier, each C55x DSP offers a protected pipeline to
ensure in-order execution of instructions. In a C55x pipeline, the action taken
by the XC instruction above would depend on the ADD instruction. As a result,
the SUB instruction would not be executed.

WHAT TO DO:  MASM55 does not detect the usage of all nonprotected pipe-
line cycles. For this reason, we suggest you pre-process your C54x assembly
file by running the C54x assembly with the pipeline open detection enabled
(asm500 –pw). However, be aware that asm500 –pw can detect only some
open pipeline cases (not all).

2.2.3 Replace Code That Depends on the Condition of the C54x BIO  Pin

C54x devices have a BIO pin, but C55x devices do not. As a result, conditional
instructions that test the condition of the BIO pin cannot be ported to C55x de-
vices. MASM55 flags an error in those cases.

WHAT TO DO:  Change the C54x code that tests the BIO pin to test something
else, such as one of the pins of the C55x general-purpose I/O port (GPIO).
Example 2–1 shows code that tests the C55x IO0 pin. Replacing the C54x BIO
code also means modifying the hardware design to use the newly chosen pin.
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Example 2–1. C55x Native Code to Test a GPIO Pin (IO0 Pin)

;...

IODIR .set 0x3400

IODATA .set 0x3401

.text

start:
AND #0FFFEh, port(#IODIR) ; Configure IO0 pin as input
MOV port(#IODATA), T3 ; Read GPIO data register into T3
AND #0001h, T3 ; Mask off all bits except the one for IO0
BCC start, T3 == 0 ; If T3=0 => IO0 is low, goto start

;...

2.2.4 Modify Code That Uses Reserved Symbols of the
C55x Code Generation Tools

C55x code generation tools use some new reserved symbols. Appendix A
provides a list of the symbols.

WHAT TO DO:  If your C54x code uses any reserved symbols, you must re-
name them.

2.2.5 Modify Code That Uses the ARP Register

The ARP (auxiliary register pointer) of the TMS320C5x  and C54x DSPs is
not supported in C55x DSPs.

WHAT TO DO:  Unless you ported code from a C5x  DSP to the C54x DSP,
you should not be encountering this problem. If this issue does arise, you can
replace ARP addressing with ARn addressing. For example if the code makes
ARP = 3 and then uses *+, you can remove the instruction that loads ARP and
then replace *+ with *AR3+.
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2.3 Step 2: Porting System-Level Code
C55x DSPs are instruction source compatible with C54x DSPs. However, de-
vice differences related to interrupts, stack operation, peripherals, and
memory mapping make code modification required to achieve fully functional
application code.

Table 2–4 lists the steps required to make your code functional on a C55x DSP
that is running under the conditions listed in Table 2–2. When you run MASM55,
you will get REMARKs for some (but not all) of the issues presented in Table 2–4.
To correct any of the issues mentioned in the table, manual inspection and code
modification are required.

Most of the steps in Table 2–4 are illustrated through the software counter
code of Example 2–2 (page 2-8). This simple example increments a low res-
olution counter until a certain value is reached and then triggers an interrupt
to increment a high resolution counter.

Table 2–4. Step 2: Porting System-Level Code  

Category
MASM55
Behavior † See ...

Stack Section 2.3.1,
page 2 9

� Add code to initialize the system stack. REMARK page 2-9

Interrupts

� Rewrite the interrupt vector table (IVT). REMARK Page 2-9

� Rewrite code that initializes the interrupt vector pointer (IPTR) in
the PMST register.

REMARK Page 2-12

� Modify code that initializes the IMR and IFR registers. REMARK Page 2-14

� Modify the operands of the TRAP and INTR instructions. Does not detect Page 2-15

� Preserve MASM55 temporary register values during interrupt
service routines.

REMARK on
RETE instruction

Page 2-16

Peripherals and I/O Space Accesses Section 2.3.7,
page 2 18

� Rewrite code that accesses peripheral and EMIF registers. REMARK page 2-18

� Replace code that accesses the C54x I/O space. REMARK

C-Callable Assembly Section 2.3.8,
page 2 20

� Use the C54x_CALL or C54x_FAR_CALL pragma for C54x C-call-
able assembly code.

Does not detect page 2-20

Special Case Section 2.3.9,
page 2 21

� Inspect instructions that use the same AR for Xmem and Ymem
operands and that modify the AR in the Ymem operand.

REMARK page 2-21

† MASM55 generates REMARK messages to flag most places in C54x code that require changes to make your code functional.
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Table 2–4. Step 2: Porting System-Level Code (Continued)

Category See ...
MASM55
Behavior †

Linker Command File Changes Section 2.3.10,
page 2 22

� Allocate the data stack and the system stack in same 64K-word
page

– page 2-22

� Allocate all data sections in memory page 0 (the first 64K words
of memory)

–

� Allocate function code being called by CALA in memory page 0
(the first 64K words of memory)

–

� Allocate code reached by using BACC in the same
64K-word page as the calling code

–

� Modify the interrupt vector table alignment requirement –

† MASM55 generates REMARK messages to flag most places in C54x code that require changes to make your code functional.

Example 2–2. C54x Software Counter Code (Original)

;...
start:

STM #TOS, SP ; Initialize stack pointer
STM #0FFFFh, IFR ; Clear all pending interrupts
SSBX INTM ; Disable interrupts
RSBX SXM ; Turn sign extension mode off
LD #RSV, A ; Load address of interrupt vector table

;   into A
;...

AND #0FF80h, A ; Clear lower 7 bits of address
;   (only upper 9 bits are needed for IPTR)

;...
OR #0020h, A ; Set overlay bit
STLM A, PMST ; Load PMST with result in A
LD #lowcnt, DP ; Load DP to point to lowcnt page
STM #0010h, IMR ; Unmask SINT4 interrupt
RSBX INTM ; Enable interrupts

count_loop:
LD lowcnt, A ; Load lowcnt into A
ADD #1, A ; Add 1 to A
STL A, lowcnt ; Store A to lowcnt
SUB #0500h, A ; Subtract 0x0500 from A
BC count_loop, ANEQ ; If (A != 0) goto count_loop
ST #0, lowcnt ;  else, reset lowcnt
INTR 20 ; Trigger SINT4
B count_loop ; Goto count_loop

;...
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2.3.1 Add Code to Initialize the System Stack

Background

� Each C54x DSP has a single stack that is referenced by the 16-bit SP reg-
ister. Each C55x DSP has an additional stack (the system stack) that is
referenced by the 16-bit SSP register.

� In a C55x DSP, SP holds the 16 least significant bits (LSBs) of the 23-bit
extended data stack pointer (XSP), and SSP holds the 16 LSBs of the
23-bit extended system stack pointer (XSSP). A single register, SPH, pro-
vides the 7 most significant bits (MSBs) of XSP and the 7 MSBs of XSSP.
For that reason, both stacks must be located in the same 64K-word me-
page of memory.

Example: XSSP Initialization in the Software Counter Code

It is important to initialize the system stack pointer in the software counter code
(Example 2–2 on page 2-8) because the code calls an interrupt service rou-
tine (ISR) and thus will need to use the stacks to store and retreive data. The
linker command file in Example 2–6 on page 2-14 shows how a section is allo-
cated for the system stack on the same 64K-word page as the data stack.
XSSP must be initialized to hold the address of this section. The modification
for Example 2–2 is shown in the code below. Note that the write to XSSP loads
a memory page into SPH, which is used for both stacks. Both stack memory
sections can be placed on any page of data memory.

Before (C54x) After manual modification (C55x)

STM #TOS, SP STM #TOS, SP

AMOV #TOSS, mmap(XSSP)

Note: TOS = Top of (data) stack; TOSS = Top of system stack

2.3.2 Rewrite the Interrupt Vector Table (IVT)

Background

� Interrupt vector locations:  Both C54x and C55x devices have 32 inter-
rupt vector locations, each consisting of eight bytes. In C54x DSPs the in-
terrupt vector location includes a branch instruction to lead to the ISR. In
C55x DSPs, the interrupt vector location includes the ISR address, and
the CPU uses that address to branch to the ISR.
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A C55x DSP ignores the first byte of each interrupt vector location except
the reset vector location, whose first byte defines the stack mode. Use the
.ivec directive supported by MASM55 to select the appropriate value for
that first byte and to insert the 3-byte ISR address in the second, third, and
fourth byte locations. If no instruction follows this, MASM55 inserts NOPs
to fill the remaining bytes. However, you can insert one instruction within
the fifth through eighth byte locations. Any second instruction in bytes 5
through 8 is ignored.

� Rearranging interrupt vector locations:  The interrupt vector offsets
within the C55x interrupt vector table are different from those in a C54x
DSP. For example, the INT0 vector is at word-offset 40h (byte-offset 0x80)
in a C54x DSP but is at byte-offset 10h in a C55x DSP.

Also, a C55x DSP dedicates one interrupt vector to each peripheral event.
There is no multiplexing of peripheral interrupt vectors like there is in C54x
DSPs.

� Relative priorities of interrupts:  There is a difference between C54x and
C55x interrupt priorities in some cases. For example in a C54x DSP, INT3
has a higher priority than the interrupt for McBSP 1. In a C55x DSP, the
opposite is true. If ignored, the priority differences could have an unex-
pected impact on real-time systems.

Example: Interrupt Vector Table for the Software Counter Code

Example 2–3 and Example 2–4 show the C54x and C55x interrupt vector
tables, respectively, for the software counter code (Example 2–2 on page
2-8). Note the use of the .ivec directive in the C55x version. Also, the size of
the .space allocation and the parameters for .loop are different because of dif-
ferences in the mapping of software interrupts within the vector table. The
C54x interrupt vector for the RINT0/SINT4 ISR is at byte-offset A0h, but the
corresponding VC5510 vector (for RINT0/SINT5) is at byte-offset 28h.
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Example 2–3. C54x Interrupt Vector Table

;...
.sect ”vectors”

;...
RSV: BD start ; Reset

NOP
NOP

;...
; Method 1: using .space

.space  16*4*19 ; 16 bits/word * 4 word/interrupt vector * 19 vector spaces

; Method 2: Using .loop and a dummy isr
; .loop 19 ; 19 ”empty” vectors
;    bd  dummy_isr
;    nop
;    nop
; .endloop
;
; where dummy_isr could be defined as
; .text
;  dummy_isr b dummy_isr
; Note: Use this dummy isr to detect and trap in code errors produced by
; an unexpected interrupt vector fetch.

SINT4 BD SWI_4_isr ; Software Interrupt #4
NOP
NOP

;...
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Example 2–4. C55x Interrupt Vector Table (After Manual Modification)

;...
.sect ”vectors”

;...

RSV: .ivec start ; Reset
;...
; Method 1: using .space

.space 8*8*4 ; 8 bits/byte * 8 bytes/interrupt vector * 4 vector spaces

; Method 2: Using .loop and a dummy isr
; .loop 4 ; 4 ”empty” vectors
;    .ivec  dummy_isr
; .endloop
;
; where dummy_isr could be defined as
; .text
;  dummy_isr b dummy_isr
; Note: Use this dummy isr to detect and trap in code errors produced by
; an unexpected interrupt vector fetch.

SINT5 .ivec SWI_5_isr ; Software Interrupt #5
;...

2.3.3 Rewrite Code That Init ializes the Interrupt Vector Pointer (IPTR)
in the PMST Register

Background

� The location of the interrupt vector table (IVT) after reset is word address
FF80h in a C54x DSP and byte address FF FF00h in a C55x DSP. As
shown in Figure 2–1, relocation of the IVT from its reset location is
achieved by changing the value of the 9-bit PMST(IPTR) field in a C54x
DSP and by changing the 16-bit IVPD (interrupt vector pointer-DSP) regis-
ter in a C55x DSP. The “intr number” mentioned in the figure is the 5-bit
binary number for the sequential position of the vector in the IVT. For ex-
ample, the first vector in the IVT, the reset vector, is vector 0. Thus, for the
reset vector, intr number = 0000b.

Figure 2–1. Formation of an Interrupt Vector Address

Base address (intr number = 0)
C54x vector address PMST(IPTR)  intr number zero

Base address (intr number = 0)
is 128-word aligned

( l FF h)(16 bits) 9 bits 5 bits 2 bits

g
(reset value = FF80h)

Base address (intr number = 0)
C55x vector address IVPD  intr number zero

Base address (intr number = 0)
is 256-byte aligned

( t l FF FF00h)
(24 bits) 16 bits 5 bits 3 bits

(reset value = FF FF00h)
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� The IVT alignment requirement stays the same: 128 16-bit words in a C54x
DSP and the equivalent, 256 bytes, in a C55x DSP. However, because the
C55x .align directive is given in bytes, we need to change the number used
for the directive.

� A C55x device has separate host and DSP interrupt vector pointers (IVPH
and IVPD) for the host and DSP interrupt vector tables, respectively, and
they both need to be initialized if they are used. Special treatment is re-
quired when decoding with HPI-related interrupts.

Example: Initializing an Interrupt Vector Pointer in C55x Code

The C54x code that initializes PMST(IPTR) must be modified for C55x DSPs
as shown below. Notice that in both the C54x case and the C55x case, a label
(RSV) has been used for the reset vector address to avoid a hard-coded ad-
dress. In the C55x code, the 24-bit address is shifted right by 8 bits so that the
16 MSBs are isolated and stored in IVPD (look back to Figure 2–1).

Before (C54x) After (C55x)

STM  #(RSV & 0FF80h | 20h), PMST MOV  #(RSV >> 8), mmap(IVPD)

Compare the “vectors” section declarations in Example 2–5 (C54x code) and
Example 2–6 (C55x code). Because C55x code is byte addressed, the inter-
rupt vector table should be aligned on a 256-byte page (the 8 LSBs of the base
address should be 0s). The linker command file in Example 2–6 reflects this
fact by using the .align 256 directive rather than the .align 128 directive shown
in Example 2–5.

Example 2–5. C54x Linker Command File

/***********************************************************************/
/* C54x Linker Command File                                            */
/***********************************************************************/
;...
SECTIONS
{
    .text     :> PRAM    PAGE 0
    vectors   :> VECS    PAGE 0, align 128     /* align given in words */
    .bss      :> SPRAM   PAGE 1
    .data     :> DARAM   PAGE 1
    stack     :> DARAM   PAGE 1
}
;...
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Example 2–6. C55x Linker Command File

/***********************************************************************/
/* C55x Linker Command File                                            */
/***********************************************************************/
;...
SECTIONS
{
    .text     :> PRAM
    vectors   :> VECS, align 256     /* align now given in bytes */
    .bss      :> SPRAM
    .data     :> DARAM
    stack     :> DARAM
    sysstack  :> DARAM
}
;...

2.3.4 Modify Code That Initializes the IMR and IFR Registers

Background

A C54x DSP has two registers to flag and mask interrupts (IFR and IMR). To
avoid the interrupt multiplexing done for peripherals in C54x DSPs, the C55x
architecture expands the number of registers to four: two for flag bits (IFR0 and
IFR1) and two for mask/enable bits (IER0 and IER1). In addition, relative bit
locations for interrupts in the flag registers and mask/enable registers are dif-
ferent in C54x and C55x DSPs. Due to these differences, C54x code that in-
itializes the interrupt registers must be rewritten.

Example: Initializing Interrupt Registers in the Software Counter Code

In the software counter code (Example 2–2 on page 2-8), all interrupt flags
are cleared and only the interrupt SINT4 is left unmasked. The code below
shows the modifications required for porting to a C55x device. The flags in both
flag registers, IFR0 and IFR1, are cleared. The interrupt to be unmasked (cor-
responding to SINT4) is in IER0. Note that in Example 2–2, there was no need
to unmask the interrupt because the IER0 bits do not affect the INTR instruc-
tion; it was done to show the changes required for a C55x DSP.
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Note also that the value to be written to the IERs depends on how the interrupts
are assigned to the bits in the IERs. Writing 0010h to IER0, as in the example,
might not have the same effect as writing 0010h to IMR.

Before (C54x) After Manual Modification (C55x)

STM #0FFFFh, IFR MOV #0FFFFh, mmap(@IFR0)

MOV #0FFFFh, mmap(@IFR1)

STM #0010h, IMR MOV #0010h, mmap(@IER0)

MOV #0000h, mmap(@IER1)

2.3.5 Modify the Operands of the TRAP and INTR Instructions

C54x and C55x DSPs offer the same TRAP and INTR insruction mechanisms.
However, due to the differences in the relative positions of the hardware inter-
rupt vectors, you may need to modify the “K” operand value to avoid clashes
between hardware and software interrupts (hardware and software interrupt
tables overlap in both C54x and C55x devices). In the case of the software
counter code (Example 2–2 on page 2-8), INTR 20 must be changed to
INTR 5, as they both share the vector with RINT0.

Note:

MASM55 does not warn you that INTR/TRAP values may need to change.
Manual inspection and code change is required.
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2.3.6 Preserve MASM55 Temporary Register Values During
Interrupt Service Routines

Background

� A ported C54x interrupt service routine (ISR) needs to preserve on entry
the following C55x registers, if they are used as temporary registers by
MASM55 during the ISR assembly process. MASM55 uses temporary
registers when one C54x instruction ports to more than one C55x instruc-
tion.

T1
AC2
AC3
XCDP
CSR
ST0_55 (TC1 bit only)
ST2_55

You must manually add code to your C54x ISR to preserve in the stack the
C55x temporary registers used. Version 1.5 and later versions of MASM55
identify the temporary registers used by listing them at the top of the listing
file. For example the listing file may have the following statement, indicat-
ing that you must preserve T1, AC2, AC3:

; Temporary Registers Used: AC2, AC3, T1.

In addition, the specific line of code that uses temporary registers is
marked by !REG! . If looking in the listing files is troublesome, simply add
the TEMP_SAVE and TEMP_RESTORE macros shown in Figure 2–2 at
the beginning and at the end of the C54x ISR, to save and restore all of the
possible temporary registers.
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Figure 2–2. TEMP_SAVE and TEMP_RESTORE Macros

TEMP_SAVE .macro
PSH mmap(@T1)
PSH dbl(AC2)
PSH dbl(AC3)
PSH mmap(@AC2G)
PSH mmap(@AC3G)
PSH mmap(@CDP)
PSH mmap(@CDPH)
PSH mmap(@CSR)
PSH mmap(@ST0_55)
PSH mmap(@ST2_55)
.endm

TEMP_RESTORE .macro
POP map(@ST2_55)
POP mmap(@ST0_55)
POP mmap(@CSR)
POP mmap(@CDPH)
POP mmap(@CDP)
POP mmap (@AC3G)
POP mmap(@AC2G)
POP dbl(AC3)
POP dbl(AC2)
POP mmap(@T1)
.endm

� In applications containing a mix of C54x and C55x instructions, if a C55x-
native ISR uses MASM55 temporary registers, then the ISR must pre-
serve on entry those registers. This would normally be done by the ISR,
anyway, except in cases where one or more of these registers has been
reserved for exclusive use by the ISR (not used in any other part of your
code).

Example: XCDP Used as a Temporary Register by MASM55

In the software counter code (Example 2–2 on page 2-8), an INTR 20 instruc-
tion forces a branch to an ISR. The code for the ISR is shown in Example 2–7.
When MASM55 assembles this ISR, there is one case of a multi-instruction
porting that uses the XCDP register. An inspection of the ISR listing file reveals
that XCDP is used as a temporary register in the porting of an MVDK instruc-
tion (XCDP is used because C55x DSPs do not support the C54x dmad type
of addressing):

Before (C54x) After MASM55  – Listing File

MVDK *(highcnt), #globcnt AMOV #globcnt, XCDP

MOV *(highcnt), *CDP
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The original XCDP value should be saved before XCDP is used in the ISR, and
the original XCDP value should be restored before the CPU returns from the
ISR. In preparation for another pass through MASM55, the ISR can be modi-
fied as shown in Example 2–8:

� Before the MVDK instruction, the modified ISR saves XCDP, by pushing
its high part (CDPH) and its low part (CDP) onto the stack.

� Before ending, the modified ISR restores XCDP, by popping the two parts
of XCDP off the stack.

Example 2–7. Original C54x ISR

SWI_4_isr:
;...

LD highcnt, A ; load highcnt into A
ADD #1, A ; add 1 to A
STL A, highcnt ; store A to highcnt
MVDK highcnt, #globcnt ; copy highcnt to globcnt

;...
RETE ; return with interrupts enabled

Example 2–8. ISR of Example 2–7 (After Manual Modification)

SWI_5_isr:
;...

PSH mmap(CDPH) ; save CDPH (upper 7 bits)
PSH mmap(CDP) ; save CDP (lower 16 bits)
LD highcnt, A ; load highcnt into A
ADD #1, A ; add 1 to A
STL A, highcnt ; store A to highcnt
MVDK highcnt, #globcnt ; copy highcnt to globcnt

;...
POP mmap(CDP) ; restore CDP (lower 16 bits)
POP mmap(CDPH) ; restore CDPH (upper 7 bits)

RETE ; return with interrupts enabled

2.3.7 Porting of C54x Peripheral and I/O Code to C55x DSPs

Background

C54x code that initializes or controls peripherals cannot be ported correctly to
a C55x device by MASM55.The same is true for C54x code that accesses I/O
space. You must re-write the code because:

� The peripheral registers in a C55x device are located in the I/O space,
while in a C54x device, they are located in the data space.

� Some C54x DSPs use sub-addressing schemes for peripherals, while in
C55x DSPs, each peripheral register has its own address.
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� C55x and C54x peripheral features are different.

� The C54x I/O space is dedicated to external peripherals, while the C55x
I/O space is dedicated to internal peripherals. A C55x DSP does not offer
an external I/O space; it offers only an internal I/O space. C54x PORTR
and PORTW instructions are ported by MASM55 to access the new C55x
internal I/O space, and they require manual modification. This also means
that the hardware design must be modified to use, for example, C55x data
memory space instead of C54x I/O space.

Example

Example 2–9 shows generic C54x code that initializes McBSP 0. The equiva-
lent code to initialize McBSP 0 of the TMS320VC5510 (VC5510) DSP is
shown in Example 2–10.

Example 2–9. C54x McBSP 0 Initialization

;...
SPSA1 .set 0x0038 ; Address of subbank address register
SPSD1 .set 0x0039 ; Address of subbank data register
;...
_mcbsp_54_init:
;...

STM #SPCR1_0, SPSA1 ; Set McBSP 0 Port Control Register 1 (SPCR1)
STM #0010000000000000b, SPSD1

STM #SPCR2_0, SPSA1 ; Set McBSP 0 Port Control Register 2 (SPCR2)
STM #0000001000000000b, SPSD1

STM #RCR1_0, SPSA1 ; Set McBSP 0 Receive Control Register 1 (RCR1)
STM #0000000001000000b, SPSD1

STM #RCR2_0, SPSA1 ; Set McBSP 0 Receive Control Register 2 (RCR2)
STM #0000000001000001b, SPSD1

STM #XCR1_0, SPSA1 ; Set McBSP 0 Transmit Control Register 1 (XCR1)
STM #0000000001000000b, SPSD1

STM #XCR2_0, SPSA1 ; Set McBSP 0 Transmit Control Register 2 (XCR2)
STM #0000000001000001b, SPSD1

STM #PCR_0, SPSA1 ; Set McBSP 0 Pin Control Register (PCR)
STM #0000000000000000b, SPSD1

STM #SPCR1_0, SPSA1 ; Enable/Unreset McBSP 0 Receiver
ORM #0000000000000001b, *(SPSD1)
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Example 2–10. C55x McBSP 0 Initialization

SPCR1_0 .set 0x0000
SPCR2_0 .set 0x0001
RCR1_0 .set 0x0002
RCR2_0 .set 0x0003
XCR1_0 .set 0x0004
XCR2_0 .set 0x0005
PCR_0 .set 0x000E
;...
_mcbsp_55_init:
;...

MOV #0010000000000000b, port(#SPCR1_0); Set McBSP 0 Port Control Register 1

MOV #0000001000000000b, port(#SPCR2_0); Set McBSP 0 Port Control Register 2

MOV #0000000001000000b, port(#RCR1_0) ; Set McBSP 0 Receive Control Register 1

MOV #0000000001000001b, port(#RCR2_0) ; Set McBSP 0 Receive Control Register 2

MOV #0000000001000000b, port(#XCR1_0) ; Set McBSP 0 Transmit Control Register 1

MOV #0000000001000001b, port(#XCR2_0) ; Set McBSP 0 Transmit Control Register 2

MOV #0000000000000000b, port(#PCR_0) ; Set McBSP 0 Pin Control Register

OR #0000000000000001b, port(#SPCR1_0); Enable/Unreset McBSP 0 Receiver

2.3.8 Use the C 54x_CALL or C54x_FAR_CALL Pragma for
C54x C-Callable Assembly Code

Calling conventions for the C54x and C55x compilers are different. Parame-
ters are passed mainly through the stack in C54x compiling and mainly through
registers in C55x compiling. If you are porting C54x C-callable assembly code,
use the C54x_CALL () pragma (for near calls) or the C54x_FAR_CALL () prag-
ma (for far calls) to identify C54x functions in your C code:

#pragma C54X_CALL (function)
                  or
#pragma C54X_FAR_CALL (function)

The use of one of these pragmas allows the compiler to set up the C54x-com-
patible mode environment before the call as well as using the C54x calling con-
vention (the C55x C compiler assumes the C55x native mode by default). In
this way, no changes are required in the C54x assembly code to adjust for the
different parameter passing.
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To determine when to use the C54X_CALL () pragma and when to use the
C54X_FAR_CALL () pragma, use the following rules:

� Ported C54x assembly code that supports both near and far modes via
conditional compilation, using the __far_mode symbol, will default to near
mode operation. This is because the C55x code generation tools define
the __far_mode symbol to equal 0. The C54X_CALL () pragma should be
used in this case.

� Ported C54x assembly code that supports only far mode, should use the
C54x_FAR_CALL () pragma.

The usage of the C54X_CALL () pragma to call a C54x assembly function is
illustrated in the block FIR code shown in Example 3–1 and Example 3–2 (see
page 3-3). Notice the use of the __far_mode symbol in Example 3–2.

2.3.9 Special Case: Instructions that use the Same AR for Xmem and Ymem
and that Modify the AR in the Ymem operand.

Background

You must inspect the execution of instructions that use the same  auxiliary reg-
ister (AR) for Xmem and Ymem operands and also include a post-increment/
decrement for the AR in the Ymem operand. In C54x devices, the Ymem post-
modification does not occur. In C55x devices, the post-modification does oc-
cur.

Example

Syntax: ADD Xmem, Ymem, A
Instruction: ADD *AR3, *AR3+, A

When this instruction is executed in C54x devices, the CPU does not incre-
ment AR3. In C55x devices, the CPU does increment AR3. MASM55 cannot
differentiate between C54x or C55x behavior because the same mnemonic,
ADD, is used for both C54x and C55x instruction syntaxes. MASM55 defaults
to C55x behavior and as a result, AR3 is incremented by 1.

This special case is not a problem for C54x MAC instructions because the
equivalent C55x mnemonic is MACM. The different mnemonics allow
MASM55 to treat the instructions differently.

WHAT TO DO:  Although though this case is rare, MASM55 detects it and flags
it with a REMARK. If you want the original C54x behavior, simply remove the
+ sign from the Ymem operand.
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2.3.10 Change the Linker Command File

Background

Changes in the linker command file are required because:

� C54x devices offer a modified Harvard architecture with separate code
and data memory spaces. C55x devices offer a unified memory architec-
ture in which code and data share the same address space.

� C54x devices uses 16-bit word addresses and lengths in the linker com-
mand file. A C55x linker command file uses byte addresses and byte
lengths for both program and data sections. However, notice that the C55x
map file lists program addresses in bytes and data addresses in 16-bit
words. Also, be aware that a section is categorized as a program section
if it contains any instruction.

� The C54x and C55x memory maps are different (see section 2.3.10.1).

� The porting of C54x code imposes special restrictions on where you map
data and program sections (see Table 2–5). These restrictions can be re-
moved by changing the C54x code, as covered in section 3.6, Code and
Data Placement Considerations.

� The C55x linker directives –heap and –stack specify size in bytes. C54x
directives use 16-bit words for size. For the .sysmem and .stack sections
to have the original C54x size, sizes will have to be multiplied by 2. Also,
a .sysstack section should now be included. Assuming the use of the
32-bit stack mode, you should use the same size for both .stack and .syss-
tack sections.

Table 2–5. Linker Section Mapping Restrictions for C54x Ported Code 

Restrictions Explanation

Stack and system stack must be in same
64K-word page

The stack pointers (XSP and XSSP) share the same upper 7
bits (SPH) address space. This is not only a C54x ported
code restriction; C55x native code requires the same.

All data sections must be in memory page
0 (the first 64K words of memory)

MASM55 does not initialize the upper 7 bits of the ARn regis-
ters because C54x data existed only in the first 64K-word
data page.

DP addressing arrays must maintain the
same C54x 128-word page boundary

MASM55 does not initialize the upper 7 bits of the DP regis-
ter because C54x data existed only in the first 64K-word data
page.
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Table 2–5. Linker Section Mapping Restrictions for C54x Ported Code (Continued)

Restrictions Explanation

Function code being called by CALA
should be in memory page 0 (the first 64K
words of memory)

In C54x devices, the CALA instruction only uses the lower
16-bits of the accumulator (src) to make the call. This means
that the called function must be within the first 64K words of
memory. When ported to a C55x DSP by MASM55, this in-
struction emulates C54x behavior exactly. However, we run
into the constraint of having to limit called functions to the
first 64K bytes of memory.

Code reached by using BACC must be in
the same page as the calling code

The BACC instruction suffers a slightly different limitation.
The ported BACC[D] instruction maintains the value of the
XPC (upper 8 bits of the program counter). Thus, the branch
is always to 16-bit address within the same 64K memory
page where the BACC[D] instruction is being executed.

Example: The Linker Command File Used to Port
the Software Counter Code

Example 2–5 (page 2-13) shows the original C54x linker command file for the
C54x software counter code (Example 2–2 on page 2-8). Example 2–6
(page 2-14) shows the C55x linker command file that is used to port the C54x
software counter code to a C55x DSP. Notice that:

� The .align 128 directive in the C54x code was changed to the .align 256
in the C55x code. In the C55x environment, the .align specifies bytes, not
16-bit words.

� In the C55x code, the data stack and the system stack are assigned to the
same memory section (DARAM). You must also initialize the stack point-
ers such that both stacks are in the same 64K-word page.

2.3.10.1 Comparison of the C54x and C55x Memory Maps

The C54x and C55x memory maps have differences that have a direct effect
on the linker command file. Consider Figure 2–3, which compares the
TMS320VC5416 (VC5416) and TMS320VC5510 (VC5510) memory maps
when the microprocessor mode is selected (the MPNMC bit is 1: on-chip ROM
is not accessible in the memory map). Notice that:

� The location of the CPU memory-mapped registers (MMRs) was kept the
same to ease code porting.

� The C54x scratch pad DARAM corresponds to the C55x DARAM area to
ease code porting.



Step 2: Porting System-Level Code

 2-24

� C54x peripheral registers are located in data space. C55x peripheral reg-
isters are located in I/O space, and an instruction that accesses them
should include the port() instruction qualifier.

� The VC5510 device offers more DARAM and SARAM than most of the
C54x devices. C54x block sizes are 8K 16-bit words, while C55x block
sizes are smaller (8K bytes), giving you extra parallelism in data accesses.
Changes in memory section mapping should not create any problem.

� The default location of the reset vector and the rest of the interrupt vector
table (IVT) is different. In C54x DSPs, the default address of the reset vec-
tor is the word address FF80h, while in C55x DSPs, the default address
is the byte address FF FF00h (word address 7F FF80h). In the micropro-
cessor mode (on-chip ROM disabled), this could imply changes in the
location of external flash memory or ROM.

Figure 2–3. Comparison of the VC5416 and VC5510 Memory Maps
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3.1 Overview

After achieving functional code, the next phase is to optimize selected pieces
of code (medium MIPS functions). This optimization phase is optional but can
be implemented to:

� Correct some MASM55 code porting inefficiencies
� Take advantage of C55x instruction-level parallelism
� Improve stack memory usage

The possible optimizations are shown in Table 3–1.

Table 3–1. Phase 2: Selected Code Optimization of Medium MIPS Functions (Optional)

Steps See ...

Step 1: Use MASM55 Selected Optimization Switches
� –mh (optimize for speed instead of size)

� –mt (save code space and cycles if SST=0 throughout your
code)

� –mn (remove NOPs in branch and call delay slots)

� – –purecirc (optimize porting of circular addressing code)

Page 3-6

Step 2: Use native C55x Instructions and Code Modification

� Replace RPT with RPTBLOCAL if MASM55 translates the
repeated C54x instruction into multiple C55x instructions.

� Replace RPTB or RPTBD with RPTBLOCAL when possible.

� Rearrange code to reduce C55x pipeline stalls.

� Replace C54x ASM load instructions with equivalent C55x
instructions.

� Delete useless NOPs (used for pipeline latency in C54x
DSPs).

� Remove the circular addressing % when BK = 0.

Page 3-7

Page 3-8

Page 3-9

Page 3-9

Page 3-10

Page 3-10

Step 3: Use C55x Instruction-Level Parallelism with
C54x Instructions

Page 3-11

Step 4: Evaluate Whether the 32-Bit Stack Mode
is Required

Page 3-13

Step 5: Code and Data Placement Considerations Page 3-14
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This section uses code for a block FIR to illustrate the Phase 2 optimization
process. This code is a mix of C and assembly that computes an FIR filter on
a block of data stored in memory. The calling C function (after Phase 1 adjust-
ments) and the C54x assembly code are shown in Example 3–1 and
Example 3–2, respectively. Notice the use of the C54x_CALL pragma
introduced as part of the Phase 1 code porting process. Example 3–3 shows
the FIR assembly code after Phase 2 adjustments.

Example 3–1. C54x Calling C Function (After Phase 1 Changes)

//...
ushort fir(DATA *x, DATA *h, DATA *r,DATA **d, ushort nh, ushort nx);

#pragma C54X_CALL(fir);
;...
void main()
{
//...

/* compute FIR */
fir(x, h, r, &dbptr, NH, NX);

//...
}

Note: “ushort” has been previously defined as “unsigned short”.
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Example 3–2. Original C54x FIR Assembly Function

_fir:
;...

STLM A, x_ptr
MVDK *sp(h), h_ptr
MVDK *sp(r), r_ptr
MVDK *sp(db), db_ptr

;...
RPTBD END_LOOP – 1
STM #1, AR0

MVDD *x_ptr+, *db_ptr
MPY *h_ptr+0%, *db_ptr+0%, A
RPT *sp(nc)
MAC *h_ptr+0% , *db_ptr+0%, A
MACR *h_ptr+0% , *db_ptr, A

STH A, *r_ptr+
END_LOOP:

RETURN_FXN:

LDM db_ptr, B
MVDK *sp(db), db_ptr

LD #0, A
XC 1, AOV
LD #1, A
FRAME #(FRAME_SZ)

POPM ST1
POPM ST0

.if __far_mode ; __far_mode = 0 in C55x assembler
FRETD

.else
RETD

.endif
NOP
STL B, *db_ptr
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Example 3–3. Optimized C54x FIR Assembly Function (After Phase 2 Changes)

_fir:
;...

STLM A, x_ptr
||MVDK *sp(h), h_ptr ; use instruction–level parallelism

MVDK *sp(r), r_ptr
MVDK *sp(db), db_ptr

;...
STM #1, AR0 ; replace RPTBD with RPTBLOCAL and
||RPTBLOCAL END_LOOP–1 ;  use instruction–level parallelism

MVDD *x_ptr+, *db_ptr
MPY *h_ptr+0%, *db_ptr+0%, A
RPT *sp(nc)
MAC *h_ptr+0% , *db_ptr+0%, A
MACR *h_ptr+0% , *db_ptr, A

STH A, *r_ptr+
END_LOOP:

RETURN_FXN:

LDM db_ptr, B

MVDK *sp(db), db_ptr ; use instruction-level paralellism
||LD #0, A

XC 1, AOV ; use instruction-level paralellism
||LD #1, A

FRAME #(FRAME_SZ)

POPM ST1
POPM ST0

STL B, *db_ptr ; instruction moved from delay slot

.if __far_mode ; __far_mode = 0 in C55x assembler
FRET ; Not delayed

.else
RET ; Not delayed

.endif
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3.2 Step 1: Use MASM55 Selected Optimization Switches

Version 1.5 and later versions of MASM55 implement additional code opti-
mization switches that in certain code-specific situations can improve the per-
formance of your code. Refer to the MASM55 readme.1st file and
TMS320C55x Assembly Language Tools User’s Guide (SPRU280) for a
detailed description of these switches.

In this step, you should evaluate if the following switches can be used to benefit
the performance of your ported code:

� –mh  (speed over size): MASM55 by default optimizes for size over speed.
When you use the –ms switch, MASM55 uses certain instructions that ex-
ecute in the address phase of the pipeline instead of the execute phase,
giving you the possibility of faster code, but also potentially larger code.

� –mt  (if PMST(SST)=0): This switch could save code space and cycles if
your code always keeps SST=0. SST is the saturate-on-store bit in PMST.
When SST=0, the CPU does not perform automatic saturation during ac-
cumulator store operations. C54x instructions that are potentially affected
by SST include STL, STH, STLM, DST, ST||ADD, ST||LD, ST||MACR[R],
ST||MAS[R], ST||MPY and ST||SUB. If you cannot verify that SST is al-
ways 0, proceed with caution, verifying correct code functionality after ap-
plying the switch.

� –mn : This switch tells MASM55 to remove NOP in delay slots.

� – –purecirc : The C55x and C54x implementations of circular addressing
are different. Use this switch for additional cycle and code size savings
if only the C54x circular mode is used in the file (that is, no C55x linear/cir-
cular mode bits are used).

The optimization of these switches should be explored typically on a file-by-file
basis. However, MASM55 offers equivalent MASM55 directives (for example:
.sst_on and .sst_off for the case of the –mt switch) that you could embed in
your code to achieve a finer degree of granularity within each file. Refer to the
TMS320C55x Assembly Language Tools User’s Guide (SPRU280) for details.
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3.3 Step 2: Use C55x Instructions Selectively in C54x Source Code

It is possible to further optimize the performance of your C54x code running
on a C55x DSP by selectively using C55x instructions. Mixing of C55x and
C54x instruction syntaxes in the same file is allowed. MASM55 understands
both C54x and C55x assembly source instruction sets. The following general
rules apply:

� Code should run in the C54x-compatible mode (C54CM=1). You can use
the C55x instruction set and have full access to new C55x registers and
resources, even in the C54x-compatible mode. Specific differences be-
tween the C54x-compatible mode and the C55x native mode are covered
in section 4.1.

� C55x native instructions should not use MASM55 temporary registers and
should not use C55x registers that are used in the C54x code, such as AC0
(C54x A) and T3 (C54x T). Otherwise, corruption of temporary registers
could occur when a C54x interrupt service routine (ISR) executes.

� Make sure not to disturb the original behavior of your C54x code.

This step is considered optional because even though you can achieve very
quick optimizations through Step 2, the mixing of C54x and C55x instruction
syntaxes could create confusion.

In the following subsections, we provide examples of some of the techniques.

3.3.1 Replace RPT with RPTBLOCAL if MASM55 Translates the
Repeated C54x Instruction into Multiple C55x Instructions

Background

� When MASM55 encounters a C54x RPT single instruction and the C54x
instruction to be repeated ports into multiple C55x instructions, MASM55
replaces the RPT with a conditional branch and decrement. This results
in a considerable code size and cycle count increase.

� A C55x DSP provides registers to automatically service two levels of re-
peat loops, one loop nested inside another in the C55x native mode
(C54CM = 0). Only one level is supported by dedicated registers in
the C54x-compatible mode (C54CM = 1).

Recommendation

If code porting results are not optimal enough, inspect key code kernels for the
occurrence of this RPT expansion to multiple instructions. You can do this by
manually inspecting the corresponding listing file for a !REG! associated with
a RPT instruction porting. When you find cases of RPT expansion, the solution
depends on whether C55x native mode or C54x-compatible mode is selected:
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� In the C55x native mode (C54CM = 0), you can manually replace the RPT
instruction with a C55x RPTBLOCAL instruction if there is an available
block repeat counter (that is, if BRC0 or BRC1 is unused). If you are only
dealing with C54x ported code, and if no nested C54x RPTB loops are
used, then BRC1 should be available.

� In the C54x-compatible mode (C54CM = 1), you can manually replace the
RPT instruction with a C55x RPTBLOCAL instruction if this will not create
a nested block-repeat loop.

Example: Replacing RPT with RPTBLOCAL to Prevent Code Size Growth

In the following example, the Original C54x Code repeats an instruction that
MASM5 translates into multiple C55x instructions. The MASM55 code shows
that the RPT instruction has been replaced by a conditional branch and decre-
ment. To fix this, you can replace the RPT instruction with a RPTBLOCAL in-
struction (as shown in the Modified C54x Code) and then run the code through
MASM55 again.

Origial C54x Code MASM55 Code (listing file) Modified C54x Code
RPT #4 MOV #5, T0 MOV #4, BRC1
LDR *AR3+, A P4_4: RPTBLOCAL endloop

MOV *AR3+ << #16, AC0 endloop: LDR *AR3+, A
ADD #1 << #15, AC0, AC0
SUB #1, T0
BCC P4_4, T0 != #0

3.3.2 Replace RPTB or RPTBD with RPTBLOCAL When Possible

Background

� MASM55 always replaces a C54x RPTB/RPTBD with a RPTB instruction
regardless if the loop contains less than 56 bytes. RPTBLOCAL instruc-
tions are not generated. This will be improved in upcoming MASM55 re-
leases.

� RPTBLOCAL can be used in C55x loop code when the loop code is small-
er than 56 bytes and  there is no backward jumping inside the loop.

Recommendation

Replace the RPTB or RPTBD instruction with a RPTBLOCAL instruction in
loops that contain less than 56 bytes. The size of the ported C54x loop can be
determined by looking at the MASM55 listing file. If you are replacing a RPTBD
loop, the instructions in the delay slot need to be placed above the RPTBLO-
CAL instruction.
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3.3.3 Rearrange Code to Reduce C55x Pipeline Stalls

Background

The C54x and C55x execution pipelines are different. The C55x execution
pipeline has seven stages (D, AD, AC1, AC2, R, X, W), while the C54x execu-
tion pipeline has four stages (D, AC, R, X). As a consequence, pipeline delay
conflicts in the two devices will be different.

Recommendation

Single step with the simulator through the ported C55x code to identify poten-
tial pipeline stalls. Remove the stalls by rearranging the instructions carefully.

As an example, consider one of the most common pipeline conflicts related to
the auxiliary registers (AR0–AR7): ARn (or any address generation register)
post-modification during indirect addressing takes place in the access (AC)
phase in a C54x device and in the address (AD) phase in a C55x device. Con-
sider the following C54x code:

STLM A, AR2
LD *AR2+, 16, B
LD #8, A
ADD *AR5, A
STL A, 8, *AR7+
STL A, 7, *AR4–

A C55x device introduces four stalls during the execution of the first LD instruc-
tion, so that AR2 is loaded by the STLM instruction before being used by the
LD instruction. We can remove these stalls by rearranging the instructions:

STLM A, AR2
LD #8, A
ADD *AR5, A
STL A, 8, *AR7+
STL A, 7, *AR4–
LD *AR2+, 16, B

3.3.4 Replace C54x ASM Load Instructions with Equivalent C55x Instructions

Background

C55x devices use T2 instead of ASM to implement accumulator shifting. To
support C54x code, a C55x DSP has special hardware logic that automatically
copies the ASM field value to the T2 register.

To make sure that C54x code ports correctly to C55x code, MASM55 ports
ASM load instructions (LD #k5/Smem, ASM) to multiple C55x instructions that
initialize T2 and ASM to the same value.
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Recommendation

Under most conditions, you may be able to avoid those extra C55x instructions
by replacing the C54x ASM instruction with a C55x native instruction as shown
below.

Before (C54x) Recommended C55x Replacement

LD *AR2,ASM MOV *AR2,T2

Before making this replacement you should check whether a direct modifica-
tion of the ST1 register is changing the value of ASM. For example, in the fol-
lowing code, applying the instruction replacement above will produce wrong
code:

; Assume initial condition ASM = 0, T2 = 0
LD *AR2,ASM ; This instruction changes both ASM and T2

;   For example to ASM = T2 = 2
; If replaced with ”mov *ar2, T2”, only T2
;   is initialized (i.e., ASM = 0, T2 = 2)

OR #8000h, ST1 ; This instruction changes BOTH T2 and ASM 
; to ASM = T2 = 0 (C55x hardware logic)
; end-result ==> T2 = 0 (wrong)

3.3.5 Delete Useless NOPs

In C54x, NOPs were used as place holders to prevent incorrect functionality
due to open pipeline cases. Because C55x offers now a fully protected pipe-
line, there is no reason to keep those NOPs. Manual removal of NOPs is
required.

3.3.6 Remove Circular Addressing Symbol (%) When it is Not Necessary

When the circular addressing symbol (%) is not necessary—that is, when
BK = 0—remove it from your code along with the code that initializes the BK
register. In C54x code, due to Xmem/Ymem restrictions, the % modifier was
used with BK=0 even if there was no need for circular addressing. In C55x
code, this is not required.
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3.4 Step 3: Use C55x Instruction-Level Parallelism with C54x Instructions

Background

The new C55x instruction-level parallelism can be applied to C54x instruction
code before it is ported to the C55x environment. Please refer to the
TMS320C55x DSP Programmer’s Guide (SPRU376) for the rules and guide-
lines for instruction-level parallelism.

Example: Adding Parallelism to the Block FIR Code

Consider the block FIR code in Example 3–2 (page 3-4) and the parallelism
applied in Example 3–3 (page 3-5). One pair of instructions that was placed
in parallel is:

STLM A, x_ptr
||MVDK *sp(h), h_ptr

It was possible to place these two C54x instructions in parallel because they
each mapped into a single C55x instruction. Another pair of instructions in
Example 3–2 are:

RPTBD END_LOOP – 1
STM #1, AR0

Because there are no delayed instructions in the C55 instruction set, MASM55
would create a RPTB instruction and would automatically move the STM in-
struction ahead of it. In Example 3–3, the STM instruction is moved manually
and, in addition, RPTB is changed to RPTBLOCAL to take advantage of in-
struction-level parallelism:

STM #1, AR0
||RPTBLOCAL END_LOOP–1

This saves one cycle. The change from RPTB to RPTBLOCAL is required in
this case because two instructions in parallel cannot be longer than six bytes.
With a length of three bytes, RPTB cannot be placed in parallel with the four
bytes of the STM instruction. RPTLOCAL is used because it is has only two
bytes.

Example 3–3 shows three more optimizations. Two were achieved by placing
the following instruction pairs in parallel:

MVDK *sp(db), db_ptr
||LD #0, A

XC 1, AOV
||LD #1, A
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The last change implemented (FRETD and RETD replacement by FRET and
RET) was due to the fact that delayed instructions are not supported in the
C55x environment. The STL instruction in the delay slot of the return instruc-
tion was moved ahead of the return instruction. MASM55 normally moves
delay-slot instructions automatically; however, MASM55 will not remove the
NOP unless the –mn option is used. In the C54x code, one NOP was used to
fill the delay slot. This NOP is now manually removed because it is of no use.



Step 4: Evaluate Whether the 32-Bit Stack Mode is Required

3-13Phase 2: Selected Code Optimization of Medium MIPS Functions (Optional)

3.5 Step 4: Evaluate Whether the 32-Bit Stack Mode is Required

Background

The C55x 32-bit stack mode is required only  when you have a C54x C-callable
FAR mode assembly function that passes arguments through the stack, or in
cases of stack unwinding (typical stack manipulation in a multi-tasking operat-
ing system). However, in the 32-bit stack mode, system-stack memory re-
quirements increase because SSP is kept aligned with SP.

Example

In the block FIR code of Example 3–1 through Example 3–3 (pages 3-3
through 3-5), there is no reason to use the 32-bit stack mode because the
C55x assembler makes the __far_mode symbol equal to 0 as explained in sec-
tion 2.3.8 (page 2-20). For this reason, the 16-bit fast-return mode can be se-
lected by specifying USE_RETA in the .ivec directive that declares the reset
vector:

RSV: .ivec _c_int00, USE_RETA

This directive places a code in a portion the reset vector location, and during
a DSP reset, the CPU reads the code to determine the chosen stack mode.
Refer to the TMS320C55x Assembly Language Tools User’s Guide (SPRU280)
for a complete description of .ivec.
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3.6 Step 5: Code and Data Placement Considerations

Table 2–5 (page 2-22) lists section mapping restrictions for C54x ported code.
There are ways to remove some of those restrictions, so that you can take ad-
vantage of the larger data addressing range of the C55x DSPs. The main re-
striction is that MASM55 assumes that all data sections reside in the first 64K
words (page 0) of memory. This limits the range of memory in which data sec-
tions of migrated code can be placed. The following discussion addresses this
issue and offers some workarounds.

3.6.1 Indirect Addressing Considerations

Background

� C54x auxiliary registers are 16 bits wide. Data addressed via indirect ad-
dressing had to reside within the first 64K words of memory (page 0).

� C55x auxiliary registers are 23 bits wide. Data addressed via indirect ad-
dressing can be located in any 64K-word page but must reside entirely
within the page boundary. A C55x DSP has a 23-bit address space that
is segmented into 64K-word pages. Auxiliary registers incremented be-
yond the current page will wrap around.

� MASM55 does not initialize the upper 7 bits of the 23-bit extended auxiliary
registers (XAR0–XAR7). MASM55 assumes data resides in memory page
0, and for this reason, all auxiliary register loads are 16-bit loads as op-
posed to 23-bit loads. This means that indirect accesses that use the auxil-
iary registers are limited to page 0.

Recommendation

It is possible to move data sections outside of the first 64K words of memory
by changing the C54x 16-bit load instructions to native C55x instructions that
load an effective 23-bit address. This is illustrated in Case 1 below. The C54x
Code loads 16 bits into AR1, leaving the 7 MSBs of XAR1 unaffected. The Rec-
ommended C55x Code loads all 23 bits of XAR1.

Case 1. Simple initialization of ARn

C54x Code Modified C54x Code

STM #myVar, AR1 AMOV #myVar, XAR1

It is important to note that these changes need to be applied for all loads of aux-
iliary registers. Once this is done, data located in any section beyond the first
64K will be correctly accessed via indirect addressing.
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Case 1 is a simple case in which only a direct load with a data label is required.
The assembler/linker will simply resolve the now 23-bit value of myVar at link
time, and the result will be correct.

However, when the initial ARn value is computed at run time, the computation
now must involve 23-bit math operations. In this case, achieving 23-bit XARn
initialization is not the straight-forward instruction-replacement process shown
in Case 1. The following cases involve doing auxiliary-register computations
at run time.

In Case 2, imm is now a 23-bit base of an array and @var is a 16-bit offset taken
from memory. Because a C55x device does not have a “MOV #k23, A” instruc-
tion to replace “LD #imm, A”, one solution is to take advantage of the C55x
16-bit A-unit ALU as shown.

Case 2. ARn computation via accumulator

C54x Code

LD #imm, A ; imm = potential 23-bit value
ADD @var, A ; @var provides a 16-bit value from memory
STLM A, AR2
ADD *AR2, B

One Solution

AMOV #imm, XAR2 ; load 23-bit value
ADD @var, AR2 ; add only in the lower 16-bit

Now consider Case 3 below. In a C54x DSP, base_of_an_array could be a
16-bit constant value. Unfortunately, you cannot relocate the base of a C54x
array beyond memory page 0 (the first 64K words of memory) because the
C55x DSPs have no addressing modes that allow the base of the array to be
23 bits wide.

Case 3. A case with no solution

.global base_of_an_array

LD *AR3(base_of_an_array), A
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In summary:

� It is possible to relocate data accessed via indirect addressing beyond the
first 64K-word page, but the required code changes should be analyzed
on a case-by-case basis. Special considerations need to be observed
when the initial ARn value is computed at run time.

� Data can be relocated to any page, but the entire data array must fit within
a 64K-word page boundary. The C55x architecture offers 23-bit address-
es for a data space that is segmented into 64K-word pages.

3.6.2 DP Direct Addressing Considerations

Background

� The C54x DP (data page register) is a 9-bit field in status register ST1. An
array accessed via direct addressing must start on a 7-bit (128-word)
memory boundary (in other words, the lower 7 bits of the base address
must be 0s). Each data page that is referenced by DP contains 128 16-bit
words.

� The C55x XDP (extended data page register) is a 23-bit register. An array
accessed via direct addressing can start in any memory location; the
128-word boundary is not required. Each data page that is referenced by
DP contains 128 16-bit words (the dma addressing field still has 7 bits).

� MASM55 does not initialize the upper 7-bits of the XDP register. MASM55
assumes that data resides in memory page 0. In addition, MASM55 as-
sumes that the DP data sections in C54x ported code keep their 128-word
alignment. For this reason, no .dp directive is added by MASM55 on a DP
load. (The .dp directive tells the assembler what value the DP register has
at that point in the code, so that the correct dma offset can be encoded in
the instruction.)

Recommendation to Remove the Page 0 Requirement

It is possible to remove the page 0 requirement for C54x ported code by replac-
ing the typical C54x 9-bit DP load instruction (LD #var, DP) instruction with a
C55x native 23-bit XDP load instruction:

C54x Code Recommended C55x Code

LD #var1, DP AMOV #var1, XDP

You need to make this change to every DP load instruction in your code. The
128-word alignment requirement is maintained (no .dp directive is used).
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Recommendation to Remove the 128-Word Alignment Requirement

The changes presented above remove the page 0 requirement but not the
128-word page alignment requirement. Removal of the 128-word page align-
ment is more difficult, as it implies:

� Adding the .dp directive next to every load DP instruction (See Case 1 be-
low)

� Adding the .dp directive at the top of every file that uses the same DP refer-
ence value (See Case 2 below)

� Making sure that the variable used to load DP references the first variable
in the 128-word DP page (See Case 3 and Case 4 and the paragraph fol-
lowing each)

Case 1. Removal of 128-Word and Page 0 Requirements (Simplest Case)

C54x Code Modified Code

.global base .global base
.dp base ; removes 128-word requirement

LD #base, DP AMOV #base, XDP ; removes Page 0 requirement

Case 2. Handling of Same DP Reference in Multiple Files

C54x Code Modified Code

file 1 file 1
.global base, func_in_file_2 .global base, func_in_file_2

.dp base
LD #base, DP LD #base, DP
CALL func_in_file_2 CALL func_in_file_2

file 2 file 2
.global base, func_in_file_2 .global base, func_in_file_2

.dp base
func_in_file_2: func_in_file_2:

ADD @symbol, A ADD @symbol, A
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Case 3. Initialization of the DP Using a Variable That Does Not Point to the Array Base

C54x Code Modified Code
.sect ”my_array” .sect ”my_array”

var1 .word 1 var1 .word 1
var2 .word 2 var2 .word 2
var3 .word 3 var3 .word 3
var4 .word 4 var4 .word 4

;... ;...

.dp var1
LD #var1, DP AMOV #var1, XDP
LD @var4, A LD @var4, A

;... ;...
.dp var1

LD #var3, DP AMOV #var1, XDP
LD @var2, A LD @var2, A

; AMOV #var3, XDP would make
;  @var2 fail.

In the modified code of Case 3, DP must be initialized with var1, so that DP
points to the base (first word) of the array. Otherwise, there is the risk of pro-
ducing invalid offsets. The access made with @var2 will fail if
AMOV #var3, XDP is used instead of AMOV #var1, XDP. The @var2 works
in the C54x code because of the 128-word alignment requirement. In a C54x
device, the DP will get initialized to the correct value regardless of which varx

we use in LD #varx, DP.

Case 4. Initialization of the DP Using a Variable That Does Not Point to the Array Base

C54x Code Modified Code
.bss local, 5 .bss local, 5

;... ;...
.bss temp, 4 .bss temp, 4

;... ;...
.dp local

LD #temp, DP AMOV #local, XDP
ADD @local, B ADD @local, B

The code in Case 4 works in a C54x device if the address labeled “temp” is no
greater than 127 words from the address labeled “local” and the entire
.bss section is contained within an aligned DP page. As in Case 3, DP must
initialized with a value that points the DP to the top of the reference memory
section. Therefore, #temp must be replaced with #local to avoid negative off-
sets. In addition, the .dp directive must be used.
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3.6.3 SP (Stack) Direct Addressing

Stack memory (.stack or .sysstack) or any data section being accessed via
stack direct addressing can be located anywhere in the 23-bit C55x data space
memory range as long as the changes recommended in section 2.3.1 (page
2-9) are implemented. Remember that .stack and .systack must be in the
same 64K-word page of memory because they share the upper 7 bits.

3.6.4 Dmad, Pmad, and *(lk) Addressing Considerations

These types of memory addressing are ported by MASM55 to support the full
data memory reach of the C55x device, and no extra work is required to relo-
cate data or program sections.

3.6.5 Indirect Call/ Branch Considerations

If you want to create code sections that are fully portable across pages of
memory, you must manually replace the following two instructions:

CALA[D]  src

BACC[D]  src

Replacing the CALA[D] Instruction

In C54x devices, the CALA instruction only uses the lower 16-bits if the accu-
mulator (src) to make the call. This means that the called function must be with-
in the first 64K words of memory. When ported to a C55x DSP by MASM55,
this instruction emulates the C54x behavior, but because C55x program ad-
dress are byte addresses, the limitation on a C55x DSP is the first 64K bytes.
To overcome this limitation, it is recommended that all CALA instructions be
replaced with the CALL ACx instruction of the C55x instruction set. This ensur-
es that the full 24-bit address in the ACx accumulator is used.

Important:  Bits 23–16 of ACx must contain a valid value; otherwise, the call
will be incorrect. This means that if the original C54x code relied on the fact
that the bits in the high part of the accumulator were ignored, it is necessary
to ensure that those bits are correctly set to 0. The following example shows
the use of CALL ACx.

C54x Code MASM55 (listing file) Recommended C55x Code

CALA A MOV AC0, AC2 CALL AC0
AND #65535, AC2, AC2
CALL AC2

In the case of CALAD (delayed), you must also move the instructions that are
in the delay slot to a new position preceding the CALL AC0 instruction.
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Replacing the BACC[D] Instruction

In a C55x DSP, the ported BACC[D] instruction maintains the value of the XPC
(upper 8 bits of the program counter). Thus, the branch is always to a 16-bit
address within the same 64K-byte memory page where the BACC[D] instruc-
tion is being executed.

To overcome this limitation, it is recommended that all BACC instructions be
replaced with the B ACx instruction of the C55x instruction set. Important:  Bits
23–16 of ACx must have correct address values or the branch will be incorrect.

In the case of BACCD (delayed), you must also move the instructions that are
in the delay slot to a new position preceding the B ACx instruction.
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4.1 Overview

In order to take advantage of all C55x architectural features, MIPS intensive
functions of the algorithm should use C55x native instructions and if required ,
should run under C55x native mode (C54CM=0).

As explained in section 1.2 The C54x-to-C55x Code Porting Process, func-
tions that consume 80% of MIPS of the algorithm and that could take advan-
tage of C55x new features are good candidates for native coding. These func-
tions are typically leaf functions. Leaf functions are defined as functions that
call no other functions (like the end-terminals or leaves in a tree). It is recom-
mended that you start with leaf functions because they are the inner functions
with a higher potential to impact your cycle benchmarks.

This section shows how you could take advantage of some of the new C55x
architectural features listed in Table 4–2. Because native code optimization is
to be implemented in a function-by-function basis, C54x native functions must
coexist with C55x native functions. Special C54x/C55x context switching be-
tween functions might be required. This is the focus of section 4.2.

It’s important to note that using C55x native instructions does not neces-
sarily implies that you have to set C54CM=0 (C55x native mode) . All C55x
architectural features (new registers, new instructions,…) are also available
under C54x compatibility mode (C54CM=1) with the differences noted in
Table 4–1.  However, to make the code porting process more orthogonal, we
advise, in this Phase of the C54x-to-C55x code porting process, to switch to
C55x native mode (C54CM=0) as part of the function context switching.

Table 4–1. Differences Between C54x Compatibility Mode and C55x Native Mode

Feature
Behavior Under C54CM=0

(C55x native)
Behavior Under C54CM=1

(C54x compatibility)

Nested block
repeats

supported not supported

Circular
addressing

BKO3 used BK used

Register indexing T0 used AR0 used
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Table 4–2. New C55x Architectural Features to Use in C55x Native Coding

New C55x Features Reference

� Dual-mac capability See section 4.3, page 4-7.

� New circular addressing features See section 4.4, page 4-9.

� Optimal loop implementations See section 4.5, page 4-14.

� A-unit ALU See section 4.6, page 4-17.

� Instruction-level parallelism The new user-defined instruction parallel-
ism is covered in detail in the TMS20C55x
DSP Programmer’s Guide (SPRU376).

� Additional accumulators and T
registers

See section 4.7, page 4-18.

� Improved dual read/writes See section 4.8, page4-18.

� Less restrictive xmem/ymem
addressing

See section 4.9, page 4-19.

� Additional TC bits See section 4.10, page 4-19.
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4.2 Safe C54x/C55x Context Swapping

When switching between the C54x native codes (ported using masm55) and the
C55x native code, you must make sure there is a context swap (a save, switch,
and restore sequence).

We recommend that the switching to C55x native code should happen in a
function-by-function basis.The context-swap code can reside in either the call-
ing function or the called function:

� If context swapping is done in the calling function (the way the C55x compiler
does it), the original called function can be used. The drawback is potentially
larger code size because the context-swap code has to be duplicated in ev-
ery calling function.

� If context swapping is done in the called function, changes in the C54x call-
ing function (like inserting C55x native instructions) are avoided. In addi-
tion, overall code size is potentially reduced because this approach pre-
vents the duplication of context-swap code in each calling function.

The examples in sections 4.2.1 and 4.2.2 implement context swapping in the
called function.

4.2.1 Calling a C55x Native Function from C54x Code

Example 4–1 shows how C54x assembly code can call a C55x-native assem-
bly function. If you follow the suggestion to convert to C55x native code in the
C54x leaf functions first (page 4-2), it is expected that a C54x assembly func-
tion calling a C55x assembly function will be the most common operation. As
shown in Example 4–1, the overhead in context switching depends on the
C55x function code itself. Example 4–2 shows the C55x_ENTRY and
C55x_EXIT macros that are used in Example 4–1.

Example 4–1. Calling a C55x Native Function from C54x Code

c54x_code:
;...

CALL c55x_func
;...

c55x_func:
; Code to adjust parameter passing (if required)
; and save to the stack the C54x registers that
; need to survive the call to c55x_func.
C55X_ENTRY
; Your code. You can use/set any C55x register.
; This includes C55x registers used as MASM55 
; temporary registers because they do not need
; to survive across calls.
C55X_EXIT
; If applicable, code restores C54x registers
; from the stack.
RET
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Example 4–2. Macros to Use When Calling a C55x Native Function from C54x Code

C55x_ENTRY .macro
BCLR C54CM
; See Note 3
.endm

C55x_EXIT .macro
BSET C54CM ; See Note 3
BCLR ARMS ; See Note 1
BCLR M40 ; See Note 1
BCLR RDM ; See Note 1
AND #00FF00h, *(ST2_55) ; See Note 1
MOV #0, mmap (@DPH) ; See Note 2
MOV #0, mmap (@CDPH) ; See Note 2
MOV #0, mmap (@BSA01) ; See Note 2
MOV #0, mmap (@BSA23) ; See Note 2
MOV #0, mmap (@BSA45) ; See Note 2
MOV #0, mmap (@BSA67) ; See Note 2
.endm

Notes: 1) This instruction is needed only if ARMS/M40/RDM/ARnLC is set to 1 inside the c55x native function.

2) This instruction is needed only if DPH/CDPH/BSAxx is set to a nonzero value inside the C55x native function.

3) This instruction is needed only if nested loops or C55x circular addresing is used inside the C55x native functions.

4.2.2 Calling a C54x Routine from C55x Native Code

Example 4–3 shows how C55x assembly native code can also call C54x
ported code. As shown below the overhead in context switching depends on
the code of the C55x function itself. Example 4–4 shows the C54x_ENTRY
and C54x_EXIT macros used in Example 4–3.

Example 4–3. Calling a Ported C54x Function from Native C55x Code

c55x_code:
;...

CALL c54x_func
;...

c54x_func:
; Code to adjust parameter passing (if required)
; and save to the stack the C55x registers that
; need to survive the call to c54x_func. C54x to
; C55x Register mapping is covered in the
; the C55x Assembly Language Tools User’s Guide.
C54X_ENTRY
; Your code. You can use/set any C54x register.
C54X_EXIT
; If applicable, code restores C54x registers from
; the stack.
RET
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Example 4–4. Macros to Use When Calling a C54x Function from C55x Code

C54X_ENTRY .macro
PSH mmap(@ST1_55) ; See Note 1
PSH mmap(@ST2_55) ; See Note 1
PSH mmap(@BSA01) ; See Note 1
PSH mmap(@BSA23) ; See Note 1
PSH mmap(@BSA45) ; See Note 1
PSH mmap(@BSA67) ; See Note 1
PSH mmap(@DPH) ; See Note 1
PSH mmap(@CDPH)  ; See Note 1

BSET C54CM  ; See Note 2
BCLR M40  ; See Note 1
BCLR ARMS  ; See Note 1
BCLR RDM  ; See Note 1
AND #0FF00h,*(ST2_55) ; See Note 1
MOV #0, mmap(@DPH)  ; See Note 1
MOV #0, mmap(@CDPH)  ; See Note 1
MOV #0, mmap(@BSA01)  ; See Note 1
MOV #0, mmap(@BSA23)  ; See Note 1
MOV #0, mmap(@BSA45)  ; See Note 1
MOV #0, mmap(@BSA67)  ; See Note 1

.endm

C54X_EXIT .macro
BCLR C54CM ; See Note 2
POP mmap(@CDPH) ; See Note 1
POP mmap(@DPH) ; See Note 1
POP mmap(@BSA67) ; See Note 1
POP mmap(@BSA45) ; See Note 1
POP mmap(@BSA23) ; See Note 1
POP mmap(@BSA01) ; See Note 1
POP mmap(@ST2_55) ; See Note 1
POP mmap(@ST1_55) ; See Note 1

.endm

Notes: 1) This instruction is required only if the C55x code assumes a value for this register or bit other than the value required
for “C54x masm55 compatibility” (refer to the masm55 C54x context requirements in Table 2–2 on page 2-3).

2) This instruction is needed only if nested loops or C55x circular addresing is used inside the C55x native functions.
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4.3 Dual MAC Optimizations

Background

� A C54x DSP can implement one multiply-and-accumulate (MAC) opera-
tion per cycle with two independent data operands coming from the C and
D buses of the CPU, as shown below:

MAC*AR2+, AR3+, A ; A = A + (  *AR2   x   *AR3)

Where AR2  uses the C bus and AR3 uses the D bus

� A C55x DSP can implement two MAC operations per cycle with three inde-
pendent operands coming from the C, D, and B buses. The data provided
by the B bus is used by both MAC units of the CPU; therefore, the third and
fourth operands of the dual-MAC instruction must be the same, as shown
in the C55x dual-MAC instruction below:

MAC*AR2+, *CDP+, AC0  ::  MAC  *AR3+, *CDP+, AC1

Where AR2, AR3 and CDP use the C, D and B bus respectively. CDP
points to the common operand, typically a filter coefficient when dual MAC
is used to implement a typical block FIR. Also the common operand
(pointed by CDP) must be located in internal memory, as the B bus is not
connected to external memory.

Recommendation

When possible, replace C54x functions that perform single-MAC operations
with C55x native functions that perform dual-MAC operations. It could give you
a 2:1 cycle improvement ratio.

The TMS320C55x DSP Programmer’s Guide (SPRU376) provides extensive
examples on how to take advantage of the C55x dual-MAC hardware when
writing code for such things as FIR filters, multichannel applications, complex
vector multiplication, symmetrical/anti-symmetrical filters, and matrix
multiplication.

Example 4–5 and Example 4–6 show equivalent C55x native code (single-
and dual-MAC versions) for the original C54x block FIR code shown in
Example 3–2 (page 3-4). The dual-MAC implementation shown in
Example 4–6 provides a great reduction in execution cycles but some
increase in code size. It is up to the programmer to make the trade-off between
code size and speed. Both versions of the code use the new C55x calling con-
vention as well as the C55x circular addressing scheme (which is discussed
in section 4.4). Table 4–3 shows benchmarks on the C54x block FIR code
from the initial C54x version through to the native C55x dual-MAC
implementation.
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Table 4–3. Block FIR Example Cycle Benchmarks

Native C54x
(Example 3–2)

MASM55
(Phase 1)

Modified
MASM55
(Phase 2)

Native C55x 
Using Single MAC
(Phase 3)

Native C55x 
Using Dual MAC
(Phase 3)

Code Size (Bytes)

fir.asm 94 102 (8.5%) 98 (4.2%) 109 135 (43.6%)

(NX = 256, NH = 64)

fir.asm 9410 (0%) 9672 (2.78%) 9542 (1.4%) 8767 (–6.8%) 4555 (–51.6%)

Note: A positive percentage indicates C55x cycle growth.

Example 4–5. Native C55x FIR Assembly Function (Single MAC)

;...
_fir:
;...

||RPTBLOCAL END_LOOP

MOV *x_ptr+, *db_ptr

MPYM *db_ptr+, *h_ptr+, AC0
||RPT #inner_cnt

MACM *db_ptr+, *h_ptr+, AC0, AC0
MACMR *(db_ptr–T1), *h_ptr+, AC0, AC0

END_LOOP:
MOV HI(AC0), *r_ptr+

;...

Example 4–6. Native C55x FIR Assembly Function (Dual MAC)

;...
_fir:
;...

||RPTBLOCAL END_LOOP

MOV *x_ptr+, *db_ptr1
MOV *x_ptr+, *db_ptr2

MPY *db_ptr1+, *h_ptr+, AC0
::MPY *db_ptr2+, *h_ptr+, AC1
||RPT #inner_cnt

MAC *db_ptr1+, *h_ptr+, AC0
::MAC *db_ptr2+, *h_ptr+, AC1

MACR *(db_ptr1–T1), *h_ptr+, AC0
::MACR *(db_ptr2–T1), *h_ptr+, AC1

END_LOOP:
MOV pair(HI(AC0)), dbl(*r_ptr+)

;...
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4.4 Circular Addressing Optimization

Background

� C55x native circular addressing is different from C54x circular addressing.
First, C55x devices require no circular buffer memory alignment and can
support up to five different buffers and three sizes of circular buffers. This
allows you to simplify memory mapping and increase flexibility. Second,
in C54x ARn contained the absolute data address. In C55x native circular
addressing, ARn is now an index (offset) into the data buffer pointed by a
BSAxx register. This implies software changes.

� There are two ways of circularly modifying ARn on a C55x DSP: You can
set the corresponding linear/circular mode bit in ST2_55, or you can use
the circ() instruction qualifier. However, circ() makes all AR addressing in
the instruction circular.

� In the C54x-compatible mode, the C55x native circular addressing
scheme is not accessible and the alignment requirements of the C54x cir-
cular buffering scheme need to be respected. You must set C54CM=0
when wanting to use the C55x native circular mode. However, the
C54x circular mode will run in both C54CM=0 and C54CM=1.

Recommendation

If your original C54x code uses circular addressing, you should use
– –purecirc (see section 3.2 on page 3-6) for more efficient code porting. How-
ever, in a few cases, MASM55 porting of C54x circular addressing code still
might not be cycle and code size efficient. You can inspect how MASM55 ports
your specific circular addressing code by looking at the listing file and deciding
whether manual code replacement with C55x native circular mode is required.
An example of manual replacement is shown below.

Example: Manual Code Replacement for C55x Circular Addressing

Example 4–7 and Example 4–8 show equivalent circular buffer implementa-
tions in C54x code and in C55x code, respectively. Sections 4.4.1 through
4.4.3 describe the steps used to produce the C55x circular addressing code
of Example 4–8.
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Example 4–7. C54x Implementation of a Circular Buffer

cbuffer .sect ”.cbuffer” ; circular buffer (memory aligned)
.word 1
.word 2

;...
.word 256

lbuffer .usect ”.lbuffer”, 256 ; linear buffer
.text

;...

STM #256, BK ; BK = block size
STM #1,AR0 ; AR0 = index through circular buffer
STM #cbuffer, AR1 ; AR1 = circular buffer pointer
STM #lbuffer, AR3 ; AR3 = linear buffer pointer
RPT #255 ; copy 256 data
MVDD *AR1+0%,*AR3+

;...

Example 4–8. C55x Native Implementation of a Circular Buffer

cbuffer .sect ”.cbuffer” ; circular buffer (no memory aligned)
.word 1
.word 2

;...
.word 256

lbuffer .usect ”.lbuffer”, 256 ; linear buffer
.text

;...

MOV #256, BK03 ; set block size
OR #2, mmap(ST2_55) ; configure AR1 as circular, AR3 as linear
AMOV #cbuffer, XAR1 ; set main data page in AR1H (bits 23–16)
MOV #(cbuffer & 0ffffh), BSA01 ; set buffer start address (bits 15–0)
MOV #0, AR1 ; AR1 = index within buffer (initially 0)
AMOV #lbuffer, XAR3 ; AR3 = linear buffer pointer
RPT #255 ; copy 256 data
MOV *AR1+,*AR3+ ; no need of AR0 as a index

;...
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4.4.1 Step 1: Load the Buffer Size Register

Store the buffer size in the buffer size register that corresponds to the chosen
circular pointer:

For This Pointer ... Use This Buffer Size Register ...

AR0, AR1, AR2, or AR3 BK03

AR4, AR5, AR6, or AR7 BK47

CDP BKC

In Example 4–8 (page 4-10), BK03 is used because AR1 is the circular pointer:

C54x Code C55x Code

STM #256, BK MOV #256, BK03

4.4.2 Step 2: Tell the CPU to Modify the Pointer Circularly

Write to the ST2_55 circular/linear bits for the ARn used, or use the circ( ) mod-
ifier. Default (reset) behavior for the pointers is linear addressing. The OR in-
struction shown below (from Example 4–8) writes to ST2_55 bits: AR1LC=1
(AR1 circular) and AR3LC=0 (AR3 linear). The circ() modifier cannot be used
with the MOV instruction here because AR3 must be modified as a linear point-
er.

C54x Code C55x Code

STM #0, AR0

MVDD *AR1+0%, *AR3+ OR #2, mmap(ST2_55)

MOV *AR1+, *AR3+

Note that C55x DSPs offer a more flexible Xmem/Ymem addressing and do
not require the use of AR0 as an index.



Circular Addressing Optimization

 4-12

4.4.3 Step 3: Load the Buffer Start Address Register and the Pointer

For This Pointer ... Load This Start Address Register  ... Load this Auxiliary Register Extender ...

AR0 BSA01 XAR0

AR1 BSA01 XAR1

AR2 BSA23 XAR2

AR3 BSA23 XAR3

AR4 BSA45 XAR4

AR5 BSA45 XAR5

AR6 BSA67 XAR6

AR7 BSA67 XAR7

CDP BSAC XCDP

In C54x DSPs, there are no buffer start address (BSA) registers, and a circular
buffer requires memory alignment in all cases. ARn is initialized to the absolute
address inside the buffer, typically to the beginning of the circular buffer.

In C55x DSPs, the 23-bit starting address of the buffer consists of the 7 most-
significant bits(ARxH) of the corresponding auxiliary register extender concate-
nated with the corresponding 16-bit BSAxx register. As shown in the following
tables, for AR1, the corresponding auxiliary register extender and BSAxx regis-
ter are XAR1 and BSA01 respectively. Therefore, you must initialize the BSA
register, the pointer, and the corresponding auxiliary register extender, as
shown in Example 4–8 (page 4-10) and reproduced below. The buffer start ad-
dress (cbuffer) is written to the BSA register (BSA01) and to the auxiliary regis-
ter extender (XAR1). AR1 is then initialized to 0 (it points to the top of the
buffer).

C54x Code C55x Code

AMOV #cbuffer, XAR1

STM #cbuffer,AR1 MOV #(cbuffer & 0fffh), BSA01

MOV #0, AR1

Special case: C54x ARn Does Not Initially Point to the Base of the Buffer

If in the original C54x code, ARn is not initially pointing to the buffer start ad-
dress, but a different value inside the circular buffer, additional rework is nec-
essary.
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The start address of the buffer must be stored in BSA01, and the buffer offset
to store in AR1 is the original value minus the start address.

If after using ARn for circular addressing, you need the original value back
in ARn, you can add the start address to ARn. For example:

ADD BSA01, AR1
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4.5 Optimal Loop Implementations

C54x and C55x DSPs offer similar repeat/repeat block mechanisms with the
following differences and improvements in the C55x DSPs:

� 2-level repeat block loop nesting supported (under C54CM = 0)
� Different end-of-loop label positioning (see section 4.5.1)
� New RPTBLOCAL instruction
� New repeat single with CSR instructions

The TMS320C55x DSP Programmer’s Guide (SPRU376) gives details and
examples on the general usage of the new RPTBLOCAL and repeat single
with CSR instructions. When replacing C54x code with C55x native code, you
can take advantage of these new features if you:

� Replace the C54x RPTB instruction with the C55x RPTBLOCAL instruc-
tion when possible (less than 56 bytes and no backwards jumping inside
the code). This will ensure that the code inside the loop gets executed in-
side the instruction buffer queue (IBQ), avoiding instruction stalls that
could occur while accessing memory. By reducing the number of memory
accesses, you also save power in the DSP.

� Use RPT/RPTADD/RPTSUB (with CSR) looping when a C54x repeat
single count is computed at run time inside an outer loop (see sec-
tion 4.5.3).

� Use RPTB or RPTBLOCAL instead of BANZ to implement an outer loop
(see section 4.5.2).

4.5.1 Differences in End-of-Loop Label Positioning

In C54x code, the end-of-loop label (as in RPTB label) must point to the last
word of the last instruction inside the loop. A common C54x practice to meet
this requirement, even in the case of the last instruction being a multi-word in-
struction, is to use “label–1” instead of “label” as shown in the code below.

In C55x code, the end-of-loop label position is different. The label must point
to the first byte of the last instruction inside the loop. Even though MASM55
understands and adjusts for the use of “label–1”, the correct, and more intu-
itive, way to use end-of-loop label in C55x is shown below. In this code, the loop
repeats instruction inst 1 through inst n, and inst_out is the first instruction out-
side the loop.
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C54x Code C55x Code

RPTB label–1 RPTB label
inst 1 inst 1
inst 2 inst 2
;... ;...
inst n label inst n

label inst_out inst_out

4.5.2 Use RPTB or RPTBLOCAL Instead of BANZ to Implement an Outer Loop

You can replace an outer loop implemented via BANZ with a RPTB or
RPTBLOCAL loop using BRC0, as shown in the following example. Notice that
even though MASM55 maps BRC into BRC0, the usage of BRC0 and BRC1
was reversed to allow for this optimization. The C55x devices use BRC1 for
inner loops and BRC0 for outer loops. As mentioned in section 3.3.1
(page 3-7), automatic handling of nested RPTB/RPTBLOCAL operations with
dedicated registers is only supported in the C55x native mode (C54CM = 0).

C54x Code C55x Code

LD *AR2, ASM MOV *AR2,T2
STM #6, AR5 MOV #5, BRC0

MOV #4, BRC1
loop0:

;... RPTB newloop0–1
STM #4, BRC ;...
RPTB loop1–1 RPTB loop1–1
;... ;...

loop1 loop1
;... ;...
BANZ loop0, *AR5–

newloop0

4.5.3 Use of RPTSUB and RPTADD Instructions

Compared with C54x, C55x offers new repeat single instructions with CSR
(RPTADD and RPTSUB) that can be used efficiently when an instruction has
to be repeated for variable number of times in a loop. The instruction repeats
the number of times specified by the CSR register.

Consider a block, which is repeated 10 times. In this block, the MAC operation
has to be performed 10 times in the first iteration, 9 times in the second iteration
and so on…. and it has to be performed once for last iteration. This can be writ-
ten as follows:
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MOV          #9, BRC0 ; load BRC0 with 10 – 1 = 9 count

MOV          #9, CSR  ; load CSR with 10–1 = 9 count for the

                      ; first MAC operation

…

RPTBLOCAL loop

     …
     …

     RPTSUB   CSR, #1

     MACM      *AR2+, *AR3+, AC0

     …

     …

loop:

In the above example MACM will be performed 10 times in first iteration since
CSR = 9 and then CSR value will be modified as CSR = CSR – 1, i.e., CSR = 8.
Thus for next iteration MACM will be repeated nine (CSR + 1) times.  Similarly,
we can use RPTADD where the CSR needs to be added with a constant.  In
this way, these instructions provide us with a way of modifying the count value
without consuming any extra cycles.
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4.6 Use of the A-Unit ALU

Compared with C54x, C55x offers a new A-unit 16-bit ALU that can be used for:

� More efficient ARn computation . In C54x DSPs, ARn arithmetic was im-
plemented by using accumulators. In C55x DSPs, such a practice is not
required, as the device offers a separate 16-bit A-unit ALU. This translates
into cycle and code size savings. For example:

C54x Code C55x Code

MOV #imm,AR2

LD #imm, A ADD AR3,AR2
ADD AR3, A
STLM A, AR2

� Efficient A-unit register initialization through the AMOV instruction.
TMS320C55x provides us with two types of move instructions, MOV (that
executes in the execute phase of the pipeline) and AMOV (that executes
in the address phase of the pipeline). With the new AMOV instruction,
C55x can initialize A-unit registers earlier in the pipeline and in this way
minimizes potential pipeline stalls. This is shown in the following case :

Code with 4 Pipeline stalls Code with no Pipeline stalls

MOV      #y, AR1 AMOV      #y, AR1

MOV      *AR1,  AC0 MOV       *AR1, AC0

For a detailed explanation, refer to the TMS320C55x Programmer’s Guide
(SPRU376).
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4.7 Use of the Additional Accumulators and T Registers

C54x has two accumulators (A and B) and one Temporary register T. C55x
added two accumulators (now, AC0, AC1, AC2, and AC3) and one temporary
register ( now T0, and T1). The extra accumulators and registers can be used
effectively for temporary storage, to avoid pipeline stalls and in some cases to
enable parallelism.

For temporary storage, for example, the accumulators and T registers could
be used instead of data memory to store intermediate results. In this way un-
necessary load/store operations to memory are avoided. Also, the additional
C55x T registers can be used as ARx pointer indexes facilitating pointer ma-
nipulation. The TMS320C55x Programmer’s Guide (SPR376) provides with
examples on efficient accumulator and T register usage.

4.8 Use of Improved Dual Reads and Writes for Faster Data Movement

C54x offered two 16-bit read buses (C and D) but only one 16-bit write bus (E).
C55x adds one read bus (B) and one write bus (F). This allows the C55x to
achieve a 32-bit write in one cycle compared with the C54x that takes two
cycles. The TMS320C55x Programmer’s Guide (SPR376) provides with ex-
amples on efficient data movement.
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4.9 Using the Less Restrictive xmem/ymem Addressing

In both C54x and C55x, the special dual AR indirect addressing mode (xmem/
ymem) enables you to make two 16-bit data memory accesses. However, the
C55x offers cycle savings opportunities with a more orthogonal xmem/ymem
addressing:

� C54x xmem/ymem addressing was limited to only four possible combina-
tions (*ARx, *ARx+, *ARx–, *ARx+0%). The only register indexing pos-
sible was through AR0 and has to be used under circular addressing mode
(*ARx+0%), forcing the extra initialization of the BK register to zero in order
to achieve linear mode indexing. C55x expands xmem/ymem register in-
dexing to T0 and T1 and allows register indexing with or without modifica-
tion of the auxiliary register involved.

� C54x xmem/ymem addressing was restricted to only a subset of the eight
auxiliary registers available. Only AR2, AR3, AR4 and AR5 were allowed.
Instead, C55x xmem/ymem addressing can use any of  the eight auxiliary
registers (AR0 to AR7) with no restrictions.

4.10 Use of the Additional TC Bits

C54x offered one single TC bit that stores the results of the ALU operations
for later usage in conditional program flow instructions . C55x now offers two
TC bits (TC1 and TC2) that can be used for example with the XCCPART in-
struction to execute code based on a logical operation between two conditions
evaluated in TC1 and TC2, avoiding extra cycles. An example is shown below.

BTST    @#adpcm_cod_c_31, AC2, TC1

...

BTST    #1, *AR3+, TC2

...

XCCPART secomp_WB6MAG, TC1^TC2

The TMS320C55x Programmer’s Guide (SPR376) provides with other exam-
ples on efficient usage of the TC bits.
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4.11 Other Potential Optimizations

Table 4–2 covered some of the most important C55x architectural features to
be exploid during C55x native coding. The following are some other new C55x
instructions worth mentioning:

� Use of XCC and XCCPART Instructions: The Conditional Execute
Instructions are  powerful instructions that can be used to avoid branches
while implementing if-else sort of operations. Compared with C54x,
branches are more expensive than in C55x (between 4–6 cycles) as the
C54x delayed branches do not exist in the C55x. C55x supports two types
of conditional instructions, XCC and XCCPART, both taking one cycle.
Depending on the code characteristics, it may be more cycle efficient to
use couple of XCC (or XCCPART) instructions in sequence rather than us-
ing branches. Refer to the C55x Programmers Reference Guide for a de-
tailed explanation of the pipeline differences between XCC and XCCPART
and their use on pipeline stall avoidance.

� Use of parallel MANT :: NEXP instruction:  The Calculation of Exponent
Value (EXP) and normalization of the Accumulator (NORM) with respect
to exponent value  takes two cycles in the C54x. Now in the C55x this can
be performed in a single cycle in C55x by the use of the MANT ACx, ACy::
NEXP ACx, Tx instruction. This instruction computes the exponent and
mantissa of the source accumulator ACx and store the exponent (ne-
gated) and mantissa in Tx and ACy respectively.
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Appendix A

Reserved Symbols of the
TMS320C55x Code Generation Tools

This appendix lists symbols that are reserved in the code generation tools for
the TMS320C55x  (C55x ) DSPs. You cannot assign your own values to
these symbols.
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A.1 Operand Modifiers

ABS16
AR0B
BLOCK
COEF
DBL
DR0B
HI
LO
M40
MMR
PAIR
RND
SHORT
T0B
UNS
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A.2 Register Names and Other Special Operands

AC0
AC1
AC2
AC3
AD_UNIT
AR0
AR1
AR2
AR3
AR4
AR5
AR6
AR7

BK03
BK47
BKC
BOF01
BOF23
BOF45
BOF67
BOFC
BORROW
BRC0
BRC1
BSA01
BSA23
BSA45
BSA67
BSAC

CARRY
CDP
CSR

D_UNIT
DP
DPH
DR0
DR1
DR2
DR3

HIGH_BYTE

LCRPC
LOW_BYTE

MDP
MDP05
MDP67

OVERFLOW

PC
PDP
PORT

RETA
RPTC

SP
SSP
ST0
ST1
ST2
ST3

T0
T1
T2

T3
TC1
TC2
TRN0
TRN1

XAR0
XAR1
XAR2
XAR3
XAR4
XAR5
XAR6
XAR7
XCDP
XDP
XSP
XSSP
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A.3 Instruction Keywords

ABDST
ABORTI
ADSC
ADS2C

BIT
BLOCKREPEAT
BLOCKREPEATLABEL

CALL
CBIT
CIRCULAR
COMPARE
COPR
COUNT

DELAY

ESTOP_0
EALLOW
EDIS
ESTOP_1
EXECUTE
EXP

FAR
FIELD_EXPAND
FIELD_EXTRACT
FIRS
FIRSN

GOTO

IDLE
IF
INTR

LINEAR
LMS
LOCAL
LOCALREPEAT
LOCALREPEATLABEL

MANT
MAR
MAX
MAX_DIFF
MAX_DIFF_DBL
MIN
MIN_DIFF
MIN_DIFF_DBL
MMAP

NOP
NOP_16

POP
POPBOTH
PUSH
PSHBOTH

READPORT
REPEAT
RESET
RETURN
RETURN_INT

SATURATE
SFTC
SIM_TRIG
SQDST
SUBC
SWAP

TRAP

WHILE
WRITEPORT
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A.4 Status Register Bit Names

ACOV0
ACOV1
ACOV2
ACOV3
ARMS
AR0LC
AR1LC
AR2LC
AR3LC
AR4LC
AR5LC
AR6LC
AR7LC
AVIS

BRAF

C16
C54CM
CACLR
CAEN
CAFRZ
CARRY
CBERR
CDPLC
CLKOFF
CPL

DBGM

EALLOW

FRCT

HINT
HM

INTM

M40
MPNMC

RDM

SATA
SATD
SMUL
SST
SXMD

TC1
TC2

XF
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