
Code Composer Studio
Getting Started Guide

Literature Number: SPRU509
May 2001

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products
or to discontinue any product or service without notice, and advise customers to obtain the latest
version of relevant information to verify, before placing orders, that information being relied on
is current and complete. All products are sold subject to the terms and conditions of sale supplied
at the time of order acknowledgment, including those pertaining to warranty, patent infringement,
and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized
to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards must be provided by the customer to minimize inherent or procedural
hazards.

TI assumes no liability for applications assistance or customer product design. TI does not
warrant or represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to any
combination, machine, or process in which such products or services might be or are used. TI’s
publication of information regarding any third party’s products or services does not constitute TI’s
approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction
is without alteration and is accompanied by all associated warranties, conditions, limitations and
notices. Representation or reproduction of this information with alteration voids all warranties
provided for an associated TI product or service, is an unfair and deceptive business practice,
and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated
by TI for that products or service voids all express and any implied warranties for the associated
TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor
liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products.
www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright 2001, Texas Instruments Incorporated

iiiRead This First

Preface

Read This First

About This Manual

To get started with Code Composer Studio � (CCS) IDE, you must go through
the first two chapters of this book. The remaining chapters contain information
that can be useful to you, depending on your needs and the tools you are using.
To determine whether you can utilize the features in these chapters, please
review the online help provided with Code Composer Studio.

How to Use This Manual

This document contains the following chapters:

Chapter Title Description

1 Getting Started with Code Com-
poser Studio IDE

Walks you through the steps of
setting up the CCS IDE and
shows you how to access docu-
mentation.

2 Code Composer Studio Project
Management and Editing Tools

Instructions on the basic func-
tionality of the CCS IDE.

3 Code Composer Studio Code
Generation Tools

Reviews development tools pro-
vided with CCS IDE.

4 Code Composer Studio Debug
Tools

Reviews the available debug
tools and the device generations
to which they apply.

5 Code Composer Studio Opti-
mization Tools

Provides information on profiling
code and the ‘C6000 PBC.

6 Code Composer Studio Real
Time Components

Overview of the real-time compo-
nents featured in CCS IDE.

7 Code Composer Studio Chip
Support Library Overview

Provides and overview of the
features and architecture of CSL.

8 TMS320 DSP Algorithm Stan-
dard

Reviews the TMS320 DSP Algo-
rithm Standard, and explains the
resources available to algorithm
writers.

Notational Conventions

iv

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

Related Documentation From Texas Instruments

For additional information on your target processor and related support tools,
see the online manuals provided with the CCS IDE.

To access the online manuals:

Help→CCS Documentation→Manuals

Related Documentation

You can use the following books to supplement this user’s guide:

American National Standard for Information Systems-Programming
Language C X3.159-1989 , American National Standards Institute (ANSI
standard for C)

The C Programming Language (second edition) , by Brian W. Kernighan
and Dennis M. Ritchie, published by Prentice-Hall, Englewood Cliffs, New
Jersey, 1988

Programming in C , Kochan, Steve G., Hayden Book Company

Related Documentation From Texas Instruments

vRead This First

Trademarks

Code Composer Studio, DSP/BIOS, Probe Point(s), RTDX, TMS320C6000,
and TMS320C5000 are trademarks of Texas Instruments Incorporated.

Pentium is a registered trademark of Intel Corporation.

Windows and Windows NT are registered trademarks of Microsoft
Corporation.

All trademarks are the property of their respective owners.

To Help Us Improve Our Documentation . . .

If you would like to make suggestions or report errors in documentation, please
email us. Be sure to include the following information that is on the title page:
the full title of the book, the publication date, and the literature number.

Email: support@ti.com

Contents

vii

Contents

1 Getting Started with Code Composer Studio IDE 1-1.
Instructions on setting up the CCS IDE and tools that aid you in using CCS IDE, such as docu-
mentation.

1.1 Development Flow 1-2.
1.2 Creating a System Configuration 1-3.
1.3 Getting Started with CCS Tutorial 1-6.
1.4 Accessing CCS Documentation 1-7.

Accessing Documentation from the Start Menu 1-7.
1.5 Update Advisor 1-8.

To Check for Tool Updates 1-8.
To Uninstall the Updates 1-9.
To Automatically Check for Tool Updates 1-9.

1.6 Component Manager 1-10.
Opening Component Manager 1-11.
Multiple Versions of the CCS IDE 1-11.

2 Code Composer Studio Project Management and Editing Tools 2-1.
Instructions on using the basic functionality of the CCS IDE.

2.1 Creating a New Project 2-2.
2.2 Adding Files to a Project 2-4.
2.3 Using Source Control 2-6.
2.4 Building and Running the Program 2-8.
2.5 Selecting a Project Configuration 2-10.

Change the Active Project Configuration 2-10.
Add a New Project Configuration 2-11.

2.6 Building Projects From the Command Line 2-11.
2.7 Importing an External Makefile 2-12.

Limitations and Restrictions 2-12.
2.8 Reviewing Your Source Code Using the Editor 2-13.

CodeMaestro Settings 2-14.
External Editor 2-15.

Contents

viii

3 Code Compose r Studio Cod e Generatio n Tools 3-1.
Code Composer Studio Code Generation Tools.

3.1 Code Generation Tools 3-2.
3.2 Code Generation Tools and Code Composer Studio 3-3.

Build Options 3-4.
Set Project Level Options 3-5.
Set File-Specific Options 3-5.

3.3 Compiler Overview 3-6.
Interfacing with Code Composer Studio 3-6.

3.4 Assembly Language Development Tools 3-7.
3.5 Assembler Overview 3-8.
3.6 Linker Overview 3-9.
3.7 Visual Linker 3-10.

Getting Started with the Visual LInker 3-10.
3.8 C/C++ Code Development Tools 3-13.

4 Code Compose r Studi o Debug Tools 4-1.
Reviews the available debug tools and the device generations to which they apply.

4.1 Overview of Applicable Debug Tools 4-2.
4.2 Introduction to Breakpoints 4-3.

Software Breakpoints 4-4.
Hardware Breakpoints 4-5.

4.3 Watch Window 4-6.
4.4 Probe Points 4-10.
4.5 Simulator Analysis 4-14.
4.6 Emulator Analysis 4-16.
4.7 Advanced Event Triggering 4-17.

Event Analysis 4-17.
Event Sequencer 4-20.

4.8 Displaying Graphs 4-21.
4.9 Symbol Browser 4-23.
4.10 General Extension Language (GEL) 4-24.
4.11 Command Window 4-25.
4.12 Pin Connect 4-26.
4.13 Port Connect 4-27.
4.14 Data Converter 4-29.

Open the Data Converter Support Window 4-29.
Configure Your System to Use the Data Converter Plug-in 4-30.

Contents

ixContents

5 Code Composer Studio Optimization Tools 5-1.
Reviews optimization tools provided with CCS IDE.

5.1 Profiler 5-2.
5.2 Profile Based Compiler (PBC) 5-4.

Enabling Profile Configurations 5-5.
Building Profile Configurations 5-6.

6 Code Composer Studio Real-time Kernel and Analysis 6-1.
Overview of the real-time components featured in CCS IDE.

6.1 DSP/BIOS Kernel 6-2.
DSP/BIOS Configuration Tool 6-3.
Creating DSP/BIOS Configuration Files 6-5.
Adding DSP/BIOS Configuration files to your project 6-7.
DSP/BIOS Real-time Analysis Tools 6-8.
DSP/BIOS Kernel 6-11.

6.2 RTDX Technology 6-13.
RTDX Data Flow 6-14.
Configuring RTDX Graphically 6-14.
Transmit a Single Integer to the Host 6-18.
Transmit Data from the Host to the Target 6-19.

7 Code Composer Studio Chip Support Library Overview 7-1.
An overview of the features and architecture of the Chip Support Library.

7.1 Introduction to CSL 7-2.
How the CSL Benefits You 7-2.

7.2 Introduction to the DSP/BIOS Configuration Tool: CSL Tree 7-3.
Header file 7-6.
Source file 7-7.

8 TMS320 DSP Algorithm Standard 8-1.
Overview of the TMS320 DSP Algorithm Standard and its association with CCS IDE.

8.1 TMS320 DSP Algorithm Standard 8-2.
8.2 Resources for Algorithm Writers 8-3.

Figures

x

Figures

1–1 Simplified CCS Development Flow 1-2.
1–2 Component Manager 1-11.
2–1 CCS IDE Basic Window 2-3.
2–2 Project View 2-5.
2–3 Source Control Pop-Up Menu 2-7.
2–4 Change Active Project Configuration 2-10.
2–5 View Source Code 2-13.
2–6 CodeMaestro Settings Window 2-14.
2–7 External Editor Icon 2-15.
3–1 Code Development Flow 3-2.
3–2 Build Options Dialog Box 3-4.
4–1 Watch Window Toolbar 4-6.
4–2 Watch Window 4-6.
4–3 Emulator Analysis Window 4-16.
4–4 Symbol Browser Window 4-23.
4–5 Command Window 4-25.
4–6 Data Converter Support Window 4-29.
5–1 Finished PBC Application 5-7.
6–1 DSP/BIOS Configuration Window 6-3.
6–2 Real-Time Capture and Analysis 6-8.
6–3 DSP/BIOS Toolbar 6-9.
6–4 DSP/BIOS Execution Threads 6-12.
6–5 RTDX Data Flow 6-14.
6–6 RTDX Menu 6-15.
6–7 RTDX Diagnostics Window 6-15.
6–8 RTDX Config Window 6-16.
6–9 RTDX Channel Viewer Window 6-17.

1-1

Getting Started with
Code Composer Studio IDE

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE.

This chapter gives you a short overview of the CCS development flow, and
then walks you through the steps of setting it up. It also shows you how to use
the CCS IDE and access the documentation.

Topic Page

1.1 Development Flow 1-2.

1.2 Creating A System Configuration 1-3.

1.3 Getting Started with CCS Tutorial 1-6.

1.4 Accessing CCS Documentation 1-7.

1.5 Update Advisor 1-8.

1.6 Component Manager 1-10.

Chapter 1

 1-2

1.1 Development Flow

Understanding the development flow helps you understand how to use the dif-
ferent components of the CCS IDE.

The CCS IDE extends the basic code generation tools with a set of debugging
and real-time analysis capabilities. The CCS IDE supports all phases of the
development cycle shown here:

Figure 1–1. Simplified CCS Development Flow

Design

conceptual
planning

Code & build
create project, write
source code, con-

figuration file

Debug
syntax checking,

probe points,
logging, etc.

Analyze
real-time

debugging,
statistics, tracing

Creating a System Configuration

1-3Getting Started with Code Composer Studio IDE

1.2 Creating a System Configuration

CCS Setup allows you to configure the CCS IDE software to work with different
hardware or simulator targets. You can quickly begin working using the default
configuration or one of the standard configuration files supplied with CCS IDE.
For the C5000� system, the default configuration is the C55x� simulator, and
for the C6000� system, the C64x� simulator is the default configuration.

CCS Setup provides you with the option of creating a configuration using stan-
dard configuration files, or creating a customized configuration using your own
configuration files. For the purposes of this example, the standard configura-
tion files are used. (If you want to create a customized system configuration
file, see the online help and/or the tutorial provided with the CCS product.)

To create a system configuration using a standard configuration file:

Step 1: Start CCS Setup by double clicking on the Setup CCS desktop icon.

Step 2: Click the Clear button in the Import Configuration dialog box to re-
move any previously defined configuration.

Clear button
removes
previous
configuration

Creating a System Configuration

 1-4

Step 3: Click Yes to confirm the Clear command.

Step 4: Select the standard configuration that matches your system from the
list of Available Configurations.

Standard
Configurations

Description of
highlighted
configuration

Read the information displayed in the Configuration Description por-
tion of the dialog box to help you determine if one of the available
configurations matches your system.

If none of the standard configurations adequately describe your sys-
tem, you must create a customized configuration (see the online help
and/or the tutorial provided with the CCS product).

Step 5: Click the Import button to import your selection to the system config-
uration currently being created in the CCS Setup window.

The configuration you selected now displays under the My System
icon in the System Configuration pane of the Setup window.

If your configuration has more than one target, repeat steps 4 and
5 until you have selected a configuration for each board.

Creating a System Configuration

1-5Getting Started with Code Composer Studio IDE

Step 6: Click the Save and Quit button to save the configuration in the Sys-
tem Registry.

Step 7: Click the Yes button to start the CCS IDE when you exit CCS Setup.

The CCS Setup closes and the CCS IDE automatically opens using
the configuration you just created.

You can now start a project in the CCS IDE.

See Chapter 2 of this book, or the online help and tutorial provided with the
CCS IDE, for information on starting a project.

Getting Started with CCS Tutorial

 1-6

1.3 Getting Started with CCS Tutorial

When you have completed the installation and setup process, run the CCS Tu-
torial. This tutorial familiarizes you with the CCS features, including what is
new in this version. Performing this tutorial before you use the CCS IDE can
help shorten your learning time and provides information on many fundamen-
tal procedures.

To access the CCS Tutorial, follow these steps:

1) Start the CCS IDE by double-clicking on the “CCS 2” icon located on the
desktop.

2) From the CCS Help menu, select Tutorial.

Accessing CCS Documentation

1-7Getting Started with Code Composer Studio IDE

1.4 Accessing CCS Documentation

The CCS online help provides access to platform-specific documentation. To
open the CCS Help, select Help→Contents. The Welcome page of the CCS
Help displays. The table below lists the links on the Welcome page that provide
important information:

For this information... click this link.

New features available in CCS IDE v2 What’s New

CCS IDE v2 release notes Release Notes

User’s guides, reference guides, and
application reports (in PDF format)

Online Manuals

Use F1 to obtain help on components within the CCS interface:

� To obtain the description of an instruction or register while editing your
source code in a CCS document window, double-click or click-and-drag
to highlight an instruction name or register name, then press F1.

� To obtain the description of a CCS window or dialog box, click in the win-
dow or dialog box to make it active, then press F1.

� To obtain the description of a menu bar or toolbar command, pause the
cursor over the command, then press F1.

Accessing Documentation from the Start Menu

To access the customer support guides, license agreement, and the CCS on-
line help:

Step 1: From the Start menu, choose Start → Programs → Texas
Instruments → Code Composer Studio 2 → Documentation.

Step 2: Select the document you want to view.

Update Advisor

 1-8

1.5 Update Advisor

The Update Advisor allows you to download updated versions of the CCS IDE
and related tools. The Update Advisor accesses the Available Updates web
site. This site displays a list of CCS patches, drivers, and tools available for
downloading.

Note:

To use the Update Advisor, you must have Internet access and a browser
installed on your machine. See the CCS IDE Quick Start for complete system
requirements.

You must register online and have a valid subscription plan in place to re-
ceive downloads through update advisor. You receive a 90 day free subscrip-
tion service with the CCS product. At the end of this period, you must pur-
chase an annual subscription service. Annual subscriptions are only avail-
able for the full CCS product.

If you did not register your product during installation, you can access the on-
line registration form from the CCS help menu: Help→CCS on the Web→
Register.

To Check for Tool Updates

In the CCS IDE, select Help→CCS on the Web→Update Advisor.

Important! The first time you use Update Advisor, your browser may display
the TI&ME web page. You must be registered with TI&ME before you can ac-
cess the Available Updates web site. To register, follow the directions dis-
played on the page. If you are already registered with TI&ME, and have ac-
cepted the cookie necessary for automatic log-in, your browser will go directly
to the Available Updates web site.

In order to query the Available Updates web site, the Update Advisor passes
certain information from your machine:

� CCS product registration number
� CCS installation version
� a text description of the installed product
� the list of installed plug-ins

The Available Updates web site will then list any updates appropriate for your
CCS installation.

You have the opportunity to just download the updates, or to download and
install them immediately.

You can also configure the Update Advisor to automatically check for updates.

Update Advisor

1-9Getting Started with Code Composer Studio IDE

To Uninstall the Updates

Any installed update can be uninstalled to restore the previous version of the
CCS IDE.

Note that only the previous version of a tool can be restored. If you install one
update for a tool, and then install a second update for the same tool, the first
update can be restored. The original version of the tool cannot be restored,
even if you uninstall both the second update and the first update.

To Automatically Check for Tool Updates

With the Update Advisor, you may check for tool updates at any time, or you
can configure the Update Advisor to automatically check for updates.

Step 1: Select Help→CCS on the Web→Update Setting. The Web Settings
dialog box appears:

Step 2: In the Check for Update field, specify how often the Update Advisor
should check the Available Updates web site.

Step 3: To enable the automatic update feature, click the checkbox to the left
of the “Enable timed check for update upon startup” field.

When this field is enabled, the Update Advisor automatically checks
for web updates according to the schedule specified in step 2.

Step 4: Click OK to save your changes and close the dialog box.

Component Manager

 1-10

1.6 Component Manager

Multiple installations of the CCS IDE can share installed tools. The Component
Manager provides an interface for handling multiple versions of tools with mul-
tiple installations of the CCS IDE.

The Component Manager window displays a listing of all CCS installations,
build tools, Texas Instruments plug-in tools, and third-party plug-in tools. When
a node is selected in the tree (the left pane of the Component Manager), its
properties are displayed in the Properties pane (the right pane).

With the Component Manager, you can enable or disable tools for a particular
CCS installation. This functionality allows you to create a custom combination
of tools contained within a CCS system. The Component Manager also allows
you to access the Update Advisor to download the most recent version of the
tools from the web. To use the Update Advisor, you must have Internet access
and a browser installed on your machine.

Note:

The component manager is an advanced tool use primarily to customize or
modify your installation. Use this tool only to resolve component interaction
in a custom or multiple installation environment.

Component Manager

1-11Getting Started with Code Composer Studio IDE

Figure 1–2. Component Manager

Tree listing of all CCS
installations and tools

Properties of the item highlighted
in the CCS installation pane

Opening Component Manager

To open the Component Manager:

Step 1: From the Help menu in the CCS IDE, select About.

The About CCS dialog box appears.

Step 2: In the About dialog box, click the Component Manager button.

The Component Manager window displays.

Multiple Versions of the CCS IDE

The following is a list of requirements for maintaining multiple versions of the
CCS IDE and related tools:

� If you install an additional version of the CCS IDE, or an additional version
of a tool, in the same directory as its previous installation, the original
installation will be overwritten. To keep more than one version of the CCS
IDE or a related tool, you must install each version in a different directory.

� You cannot enable multiple versions of the same tool within one CCS IDE
installation.

2-1

Code Composer Studio
Project Management and Editing Tools

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE.

This chapter reviews the tools and options available to you for creating and
managing your programs and projects. For more information, see the online
help and online manuals provided with the CCS IDE.

Topic Page

2.1 Creating a New Project 2-2.

2.2 Adding Files to a Project 2-4.

2.3 Using Source Control 2-6.

2.4 Building and Running the Program 2-8.

2.5 Selecting a Project Configuration 2-10.

2.6 Building Projects From the Command Line 2-11.

2.7 Importing an External Makefile 2-12.

2.8 Reviewing Your Source Code Using the Editor 2-13.

Chapter 2

Creating a New Project

 2-2

2.1 Creating a New Project

The information for a project is stored in a single project file (*.pjt). Use the fol-
lowing procedure to create new projects, one at a time. When multiple projects
are created, each project’s filename must be unique .

TIP: It is possible to have multiple projects open at the same time.

Step 1: From the Project menu, choose New.

The Project Creation wizard window displays.

Step 2: In the Project Name field, type the name you want for your project.

Each project you create must have a unique name.

Step 3: In the Location field, specify a directory to store the project file.

You can type the full path in the Location field or click the Browse but-
ton and use the Choose Directory dialog box.

It is a good idea to use a different directory for each new project. Use
this directory to store project files and the object files generated by
the compiler and assembler.

Step 4: In the Project Type field, select a Project Type from the drop-down
list.

Choose either Executable (.out) or Library (lib). Executable indicates
that the project generates an executable file. Library indicates that
you are building an object library.

Creating a New Project

2-3Code Composer Studio Project Management and Editing Tools

Step 5: In the Target field, select the Target Family that identifies your CPU.
This information is necessary when tools are installed for multiple
targets.

Step 6: Click Finish.

The CCS IDE creates a project file called projectname.pjt. This file
stores your project settings and references the various files used by
your project.

The new project automatically becomes the active project. The first project
configuration (in alphabetical order) is set active. The new project inherits TI
supplied default compiler and linker options for debug and release configura-
tions. For information on how to change these settings, see section 2.5, Selec-
tion a Project Configuration, found on page 2-10.

After creating a new project file, add the filenames of your source code, object
libraries, and linker command file to the project list.

Figure 2–1. CCS IDE Basic Window

Active
project

Project
View
Window

Build Toolbar

DSP/BIOS
Toolbar

Adding Files to a Project

 2-4

2.2 Adding Files to a Project

Step 1: Select Project→Add Files to Project, or or right-click on the project’s
filename in the Project View window and select Add Files.

The Add Files to Project dialog box displays.

Drop-down list
of file types

Step 2: In the Add Files to Project dialog box, specify a file to add. If the file
does not exist in the current directory, browse to the correct location.
Use the Files of type drop-down list to set the type of files that appear
in the File name field.

Note:

Do not try to manually add header/include files (*.h) to the project. These files
are automatically added when the source files are scanned for dependen-
cies as part of the build process.

Step 3: Click Open to add the specified file to your project.

The Project View is automatically updated when a file is added to the current
project.

Adding Files to a Project

2-5Code Composer Studio Project Management and Editing Tools

Figure 2–2. Project View

Active
project

Project
View
Window

Note:

The project manager organizes files into folders for source files, include files,
libraries, and DSP/BIOS configuration files. Source files that are generated
by DSP/BIOS are placed in the Generated files folder.

If you need to remove a file from the project, right-click on the file in the Project
View and choose Remove from project in the pop-up menu.

When building the program, the CCS IDE finds files by searching for project
files in the following path order:

� The folder that contains the source file.

� The folders listed in the Include Search Path for the compiler or assembler
options (from left to right).

� The folders listed in the definitions of the optional DSP_C_DIR (compiler)
and DSP_A_DIR (assembler) environment variables (from left to right).

Using Source Control

 2-6

2.3 Using Source Control

The project manager enables you to connect your projects to a variety of
source control providers. The CCS IDE automatically detects compatible pro-
viders that are installed on your computer.

Step 1: From the Project menu, choose Source Control.

Step 2: From the Source Control submenu, choose Select Provider...

Step 3: Select the Source Control Provider that you want to use and press
OK.

NOTE: If no source control providers are listed, please ensure that
you have correctly installed the client software for the provider on
your machine.

Step 4: Open a project and select Add to Source Control from Pro-
ject→Source Control.

Step 5: Add your source files to Source Control.

Using Source Control

2-7Code Composer Studio Project Management and Editing Tools

You can check files in and out of source control by selecting a file in the Project
View window and right clicking on the file.

Figure 2–3. Source Control Pop-Up Menu

Building and Running the Program

 2-8

2.4 Building and Running the Program

To build and run a program, follow these steps:

TIP: You can use the supplied “timake.exe” utility to build a CCS project from
the DOS shell. See section 2.6, Building Projects From the Command Line,
found on page 2-11, for more information on timake.exe.

Step 1: Choose Project→Rebuild All or click the (Rebuild All) toolbar
button.

The CCS IDE recompiles, reassembles, and relinks all the files in
your project. Messages about this process are shown in a frame at
the bottom of the window.

Step 2: By default, the .out file is built into a debug directory located under
your current project folder. To change this location, select a different
one from the CCS toolbar.

Name of the
current project

Project
Configuration

Step 3: Choose File→Load Program.

Select the program you just rebuilt, and click Open.

The CCS IDE loads the program onto the target DSP and opens a
Dis-Assembly window that shows the disassembled instructions that
make up the program. (Notice that the CCS IDE also automatically
opens a tabbed area at the bottom of the window to show the output
that the program sends to stdout.)

Step 4: Choose View→Mixed Source/ASM.

This allows you to simultaneously view your c source and the result-
ing assembly code .

Step 5: Click on an assembly instruction in the mixed-mode window. (Click
on the actual instruction, not the address of the instruction or the
fields passed to the instruction.)

Press the F1 key. The CCS IDE searches for help on that instruction.
This is a good way to get help on an unfamiliar assembly instruction.

Building and Running the Program

2-9Code Composer Studio Project Management and Editing Tools

Step 6: Choose Debug→Go Main to begin execution from the main function.

The execution halts at main and is identified by .

Step 7: Choose Debug→Run or click the (Run) toolbar button to run the
program.

Step 8: Choose Debug→Halt to quit running the program.

Selecting a Project Configuration

 2-10

2.5 Selecting a Project Configuration

A project configuration defines a set of project level build options. Options spe-
cified at this level apply to every file in the project.

Project configurations enable you to define build options for the different
phases of program development. For example, you can define a Debug con-
figuration to use while debugging your program and a Release configuration
for building the finished product.

Each project is created with two default configurations: Debug and Release.
Additional configurations can be defined. Whenever a project is created or an
existing project is initially opened, the first configuration (in alphabetical order)
is set active.

The active configuration setting is preserved in the CCS workspace.

When you build your program, the output files generated by the software tools
are placed in a configuration-specific subdirectory. For example, if you have
created a project in the directory MyProject, the output files for the Debug con-
figuration are placed in MyProject\Debug. Similarly, the output files for the Re-
lease configuration are placed in MyProject\Release.

Change the Active Project Configuration

Click on the Select Active Configuration field in the Project toolbar and select
a configuration from the drop-down list.

Figure 2–4. Change Active Project Configuration

Select Active
Project

Select Active
Configuration

Building Projects From the Command Line

2-11Code Composer Studio Project Management and Editing Tools

Add a New Project Configuration

Step 1: Select Project→Configurations, or right-click on the project’s file-
name in the Project View window and select Configurations.

Step 2: In the Project Configurations dialog box, click Add.

The Add Project Configuration window displays.

Step 3: In the Add Project Configuration dialog box, specify the name of the
new configuration in the Create Configuration field, and choose to
Use Default Settings (build options) or Copy Settings from an exist-
ing configuration to populate your new configuration.

Step 4: Click OK to accept your selections and exit the Add Project Configu-
ration dialog.

Step 5: Click Close to exit the Project Configurations dialog.

Step 6: Modify your new configuration using the build options dialog found
in the Project menu.

2.6 Building Projects From the Command Line

The timake.exe utility located in the <Installdir>\cc\bin directory provides a
way to build Code Composer Studio projects outside of the main application.
This utility can be used to accomplish batch builds.

Selecting a Project Configuration / Building Projects From the Command Line

Importing an External Makefile

 2-12

2.7 Importing an External Makefile

The CCS IDE supports the use of external makefiles (*.mak) and an associat-
ed external make utility for project management and build process customiza-
tion.

To enable the CCS IDE to build a program using a makefile, a CCS project
must be created that wraps the makefile. After a CCS project is associated with
the makefile, the project and its contents can be displayed in the Project View
window and the Project→Build and Project→Rebuild All commands can be
used to build the program.

Double-clicking on the name of the makefile in the Project View window opens
the file for editing.

Special dialogs enable you to modify the makefile build commands and make-
file options. The normal CCS Build Options dialogs are not available when
working with makefiles.

Multiple configurations can be created, each with its own build commands and
options.

Limitations and Restrictions

Source files can be added to or removed from the project in the Project View.
However, changes made in the Project View do not change the contents of the
makefile. These source files do not affect the build process nor are they re-
flected in the contents of the makefile. Similarly, editing the makefile does not
change the contents in the Project View. File-specific options for source files
that are added in the Project View are disabled. The Project→Compile File
command is also disabled. However, when the project is saved, the current
state of the Project View is preserved.

Note:

Before using CCS IDE commands to build your program using a makefile,
it is necessary to set the necessary environment variables. To set environ-
ment variables, run the batch file

DosRun.bat

The batch file is located in the directory c:\ti. If you installed CCS IDE in a di-
rectory other than c:\ti, the batch file will be located in the directory you speci-
fied during installation.

Reviewing Your Source Code Using the Editor

2-13Code Composer Studio Project Management and Editing Tools

2.8 Reviewing Your Source Code Using the Editor

Double-click on the filename.c file in the Project View to display the source
code in the right half of the CCS window.

Figure 2–5. View Source Code

Selection
Margin

Bookmarks Mixed Mode
(Assembly and
C source)

Program
Counter

Divider

� Selection Margin. By default, a Selection Margin is displayed on the left-
hand side of integrated editor and Disassembly windows. Colored icons
in the Selection Margin indicate that a breakpoint (red) or Probe Point
(blue) is set at this location. A yellow arrow identifies the location of the
Program Counter (PC).

TIP: The Selection Margin can be resized by dragging the divider.

� Keywords. The integrated editor features keyword highlighting. Key-
words, comments, strings, assembler directives, and GEL commands are
highlighted in different colors.

TIP: In addition, new sets of keywords can be created, or the default key-
word sets can be customized and saved in keyword files (*.kwd).

Reviewing Your Source Code Using the Editor

 2-14

� Keyboard Shortcuts. The default keyboard shortcuts can be changed
and new keyboard shortcuts can be created for any editing or debugging
commands that can be invoked from a document window. Keyboard short-
cuts can be modified through the customize dialog box in the Options
menu.

� Bookmarks. Use bookmarks to find an maintain key locations within your
source files. A bookmark can be set on any line of any source file.

CodeMaestro Settings

The CodeMaestro settings included in the CCS editor can help you be more
productive.

Figure 2–6. CodeMaestro Settings Window

Reviewing Your Source Code Using the Editor

2-15Code Composer Studio Project Management and Editing Tools

� Automatically Suggest Word: Helps you by suggesting a word or sym-
bol that you have started typing.

� Complete Word: Allows you to select from a list of valid symbols.

� Automatically correct case: Corrects the case of your code.

� Automatically List Members: Displays a list containing all of the valid
members of a structure or object.

� Automatically Display Parameter Information: Displays a tool-tip con-
taining the parameter information for the function that you have started
typing.

� Line Limit: Allows you to set a maximum number of lines per file, and if
the file has more lines than the number you set, CodeMaestro is not in-
voked for that file.

External Editor

The CCS IDE supports the use of an external (third-party) text editor in place
of the default integrated editor. When an external editor is configured and en-
abled, the external editor is launched whenever a new blank document is
created or an existing file is opened. You can configure an external editor by
selecting Options→Customize→Editor Properties.

An external editor can only be used to edit files. The CCS integrated editor
must be used to debug your program.

Figure 2–7. External Editor Icon

External Editor icon:
toggle between an
external editor and the
CCS integrated editor

3-1

Code Composer Studio
Code Generation Tools

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE. Some of the Code Generation Tool sets discussed in this chapter
may not be available for your ISA. For a complete listing of the tools available
to you, see the online help and online documentation provided with the CCS
IDE.

The different platforms offered with the CCS IDE are supported by a set of soft-
ware development tools. These tools include an optimizing C/C++ compiler,
an assembler, a linker, and assorted utilities. This chapter discusses these
tools and shows you how to use them.

Topic Page

3.1 Code Generation Tools 3-2.

3.2 Code Generation Tools and Code Composer Studio 3-3.

3.3 Compiler Overview 3-6.

3.4 Assembly Language Development Tools 3-7.

3.5 Assembler Overview 3-8.

3.6 Linker Overview 3-9.

3.7 Visual Linker 3-10.

3.8 C/C++ Code Development Tools 3-13.

Chapter 3

Code Generation Tools

 3-2

3.1 Code Generation Tools

Figure 3–1. Code Development Flow

Linker

C or C/C++
source files

Executable
COFF file
.out file

C/C++ compiler

Parser

Optimizer
(optional)

Code
generator

Assembler

Assembler
source

.asm files

COFF
object

(.obj) files

With the linker option (–z)

Assembly
preprocessor

Assembly optimizer:
ONLY applies to C6000

Code Generation Tools and Code Composer Studio

3-3Code Composer Studio Code Generation Tools

3.2 Code Generation Tools and Code Composer Studio

The CCS IDE provides a graphical interface for using the code generation
tools.

A CCS project keeps track of all information needed to build a target program
or library. A project records:

� Filenames of source code and object libraries
� Compiler, assembler, and linker options
� Include file dependencies

When you build a project with the CCS IDE, the appropriate code generation
tools are invoked to compile, assemble, and/or link your program.

The compiler, assembler, and linker options can be specified within CCS’s
Build Options dialog box. Nearly all command line options are represented
within this dialog box. Options that are not represented can be specified by typ-
ing the option directly into the editable text box that appears at the top of the
dialog box.

Code Generation Tools and Code Composer Studio

 3-4

Figure 3–2. Build Options Dialog Box

Build Options

You can set the compiler and linker options that are used when the CCS IDE
builds your program.

Define a set of project level options that apply to all files in your project. Then,
optimize your program by defining file-specific options for individual source
code files.

TIP: For options that are commonly used together, you can set project level
configurations, rather than have to set the same individual options repeatedly.
For more information on setting project configurations, see section 2.5, Select-
ing a Project Configuration, on page 2-10. You can also look for this informa-
tion in the online help and tutorial provided with the CCS IDE.

Code Generation Tools and Code Composer Studio

3-5Code Composer Studio Code Generation Tools

Set Project Level Options

Step 1: Select Project→Build Options.

Step 2: In the Build Options Dialog Box, select the appropriate tab.

Step 3: Select the options to be used when building your program.

Step 4: Click OK to accept your selections.

Set File-Specific Options

Step 1: Right-click on the name of the source file in the Project View window
and select File Specific Options from the context menu.

Step 2: Select the options to be used when compiling this file.

Step 3: Click OK to accept your selections.

File-specific options are stored in the project file by recording only the differ-
ences between the project options and those set for the file.

Compiler Overview

 3-6

3.3 Compiler Overview

The C and C++ compilers (for C5000� and C6000�) are full-featured
optimizing compilers that translate standard ANSI C programs into assembly
language source. The following subsections describe the key features of the
compilers.

Interfacing with Code Composer Studio

The following features pertain to interfacing with the compiler:

� Compiler shell program

The compiler tools include a shell program that you use to compile,
assembly optimize, assemble, and link programs in a single step. For
more information, see the About the Shell Program section in the Optimiz-
ing Compiler User’s Guide appropriate for your device.

� Flexible assembly language interface

The compiler has straightforward calling conventions, so you can write
assembly and C functions that call each other. For more information, see
Chapter 8, Run-Time Environment, in the Optimizing Compiler User’s
Guide appropriate for your device.

Assembly Language Development Tools

3-7Code Composer Studio Code Generation Tools

3.4 Assembly Language Development Tools

The following is a list of the assembly language development tools:

� Assembler. The assembler translates assembly language source files
into machine language object files. The machine language is based on
common object file format (COFF).

� Archiver. The archiver allows you to collect a group of files into a single
archive file called a library. Additionally, the archiver allows you to modify
a library by deleting, replacing, extracting, or adding members. One of the
most useful applications of the archiver is building a library of object mod-
ules.

� Linker. The linker combines object files into a single executable object
module. As it creates the executable module, it performs relocation and
resolves external references. The linker accepts relocatable COFF object
files and object libraries as input.

� Absolute Lister. The absolute lister accepts linked object files as input
and creates .abs files as output. You can assemble these .abs files to
produce a listing that contains absolute, rather than relative, addresses.
Without the absolute lister, producing such a listing would be tedious and
would require many manual operations.

� Cross-reference Lister. The cross-reference lister uses object files to
produce a cross-reference listing showing symbols, their definitions, and
their references in the linked source files.

� Hex-conversion Utility. The hex-conversion utility converts a COFF ob-
ject file into TI-Tagged, ASCII-hex, Intel, Motorola-S, or Tektronix object
format. You can download the converted file to an EPROM programmer.

� With the TMS320C54x device, the mnemonic-to-algebraic translator
utility converts assembly language source files. The utility accepts an as-
sembly language source file containing mnemonic instructions. It converts
the mnemonic instructions to algebraic instructions, producing an assem-
bly language source file containing algebraic instructions.

Assembler Overview

 3-8

3.5 Assembler Overview

The assembler translates assembly language source files into machine lan-
guage object files. These files are in common object file format (COFF).

The two-pass assembler does the following:

� Processes the source statements in a text file to produce a relocatable ob-
ject file

� Produces a source listing (if requested) and provides you with control over
this listing

� Allows you to segment your code into sections and maintains a section
program counter (SPC) for each section of object code

� Defines and references global symbols and appends a cross-reference
listing to the source listing (if requested)

� Assembles conditional blocks

� Supports macros, allowing you to define macros inline or in a library

Linker Overview

3-9Code Composer Studio Code Generation Tools

3.6 Linker Overview

The linker allows you to configure system memory by allocating output sec-
tions efficiently into the memory map. As the linker combines object files, it per-
forms the following tasks:

� Allocates sections into the target system’s configured memory

� Relocates symbols and sections to assign them to final addresses

� Resolves undefined external references between input files

The linker command language controls memory configuration, output section
definition, and address binding. The language supports expression assign-
ment and evaluation. You configure system memory by defining and creating
a memory module that you design. Two powerful directives, MEMORY and
SECTIONS, allow you to:

� Allocate sections into specific areas of memory

� Combine object file sections

� Define or redefine global symbols at link time

Visual Linker

 3-10

3.7 Visual Linker

There are two ways to link your code in the CCS IDE. One is textually using
the linker command file and the other is graphically using the visual linker. The
linker command file is a text file used explicitly by the standard linker to create
the links automatically. The visual linker allows you to manually create these
links in a graphical setting.

The Visual Linker is an interactive, extensible linker. Taking your application’s
object files/libraries and the target memory description as input, the Visual
Linker provides a graphical means to configure system memory. You can use
drag-and-drop manipulation to arrange the object files within a graphical
representation of the memory layout. When you are satisfied with the memory
layout, you can then generate the executable (.out) file.

Some features of the Visual Linker include:

� Visual drag-and-drop of program components into device-specific
memory maps

� Immediate visual feedback on memory allocation to discover areas of opti-
mization

� Reduced application size with elimination of unused code and data

� Wizards to ease migration from existing text linker control files

Getting Started with the Visual LInker

Before using the Visual Linker, go through the Visual Linker tutorial. In the CCS
IDE, select Help→Tutorial. Choose the Visual Linker tutorial module.

Step 1: Select the Visual Linker as your project’s linker.

Select Tools→Linker Configuration. In the Linker Configuration dia-
log box, select Use the Visual Linker and click OK.

Visual Linker

3-11Code Composer Studio Code Generation Tools

Step 2: Generate object files for your application before creating a recipe.

Open your CCS project. Select Project→Rebuild All. You will receive
an error message in the CCS output window. Simply double-click on
the error message to open the New Recipe wizard.

Step 3: Use the New Recipe wizard to create a recipe for the Visual Linker.

A recipe describes how to build an application. It is made up of:

� Ingredients . The ingredients include a list of input files and a
hardware description.

� Directions. The directions come from a strategy for combining
the ingredients. The strategy can be a file that was previously
created, or it can be generated as you manipulate input files and
other items within the Visual Linker.

Step 4: Use the Visual Linker’s views to arrange your program in memory.

The left pane of the Visual Linker is the tree view . The pane to the
right of the tree view is the list view . The ingredients of the recipe
appear as graphical elements within the Visual Linker’s interface.

You can use drag-and-drop manipulation within these windows to ar-
range the components of your program in memory. After each drag

Visual Linker

 3-12

and drop manipulation, you see the effect immediately: the space
used by each section, the space left over, etc.

Tree view List View

Graphical Elements
of the Recipe

Step 5: After you have arranged your program in memory, you can generate
the executable file.

To generate an executable file, select Project→Rebuild All or click

the (Rebuild All) toolbar button button on the CCS toolbar.

Step 6: You can then use the recipe when you run the Visual Linker from
within a makefile or from the command line.

Note:

Use the vlnk command to run the Visual Linker from within a makefile or from
the command line.

Some of the tasks that you will want to complete within the Visual Linker are:

� Placing input sections in memory
� Viewing portions of memory
� Specifying load and run addresses
� Avoiding allocation of reserved hardware addresses

C/C++ Code Development Tools

3-13Code Composer Studio Code Generation Tools

3.8 C/C++ Code Development Tools

The following is a list of the C/C++ development tools:

� C/C++ Compiler. The C/C++ compiler accepts C/C++ source code and
produces assembly language source code. A shell program , an opti-
mizer , and an interlist utility are parts of the compiler.

� The shell program enables you to compile, assemble, and link source
modules in one step. If any input file has a .sa extension, the shell pro-
gram invokes the assembly optimizer.

� The optimizer modifies code to improve the efficiency of C programs.

� The interlist utility interweaves C/C++ source statements with assem-
bly language output.

� Assembly Optimizer (C6000 only). The assembly optimizer allows
you to write linear assembly code without being concerned with the
pipeline structure or with assigning registers. It accepts assembly code
that has not been register-allocated and is unscheduled. The assembly
optimizer assigns registers and uses loop optimization to turn linear
assembly into highly parallel assembly that takes advantage of software
pipelining.

� Library-build Utility. You can use the library-build utility to build your own
customized run-time-support library. Standard run-time-support library
functions are provided as source code in rts.src and rstcpp.src. The object
code for the run-time-support functions is compiled for little-endian mode
versus big-endian mode and C code versus C++ code into standard li-
braries.

The run-time-support libraries contain the ANSI standard run-time-sup-
port functions, compiler-utility functions, floating-point arithmetic func-
tions, and C I/O functions that are supported by the compiler.

� C++ Name Demangling Utility. The C++ compiler implements function
overloading, operator overloading, and type-safe linking by encoding a
function’s signature in its link-level name. The process of encoding the sig-
nature into the linkname is often referred to as name mangling. When you
inspect mangled names, such as in assembly files or linker output, it can
be difficult to associate a mangled name with its corresponding name in
the C++ source code. The C++ name demangler is a debugging aid that
translates each mangled name it detects to its original name found in the
C++ source code.

C/C++ Code Development Tools

 3-14

The following is a list of available products for refining and correcting your
code:

� TMS320C6000 devices:

� An instruction-accurate and clock-accurate software simulator
� An extended development system (XDS510�) emulator

� TMS320C54x devices:

� An instruction-accurate software simulator
� An extended development system (XDS510) emulator
� An evaluation module (EVM)

� TMS320C55x devices:

� An instruction-accurate software simulator
� An extended development system (XDS510) emulator

These tools are accessed within the CCS IDE. For more information, see the
online help provided with the CCS IDE.

4-1

Code Composer Studio Debug Tools

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE. However, not all devices have access to all of the tools discussed
in this chapter. For a complete listing of the tools available to you, see the on-
line help and online documentation provided with the CCS IDE.

The CCS IDE comes with a number of tools that help you debug your pro-
grams. This chapter discusses these tools and shows you how to use them.

Topic Page

4.1 Overview of Applicable Debug Tools 4-2.

4.2 Introduction to Breakpoints 4-3.

4.3 Watch Window 4-6.

4.4 Probe Points 4-10.

4.5 Simulator Analysis 4-14.

4.6 Emulator Analysis 4-16.

4.7 Advanced Event Triggering 4-17.

4.8 Displaying Graphs 4-21.

4.9 Symbol Browser 4-23.

4.10 General Extension Language (GEL) 4-24.

4.11 Command Window 4-25.

4.12 Pin Connect 4-26.

4.13 Port Connect 4-27.

4.14 Data Converter 4-29.

Chapter 4

Overview of Applicable Debug Tools

 4-2

4.1 Overview of Applicable Debug Tools

The following table shows the debug tools discussed in this chapter that are
used by different generations of devices. However, the specific devices that
fall in each generation may or may not have access to these debug tools. To
see a complete list of debug tools available for your device, access the online
help provided with the CCS IDE.

Table 4–1. Debug Tools

Platform/Device B
re

ak
po

in
ts

W
at

ch
 W

in
do

w

P
ro

be
 P

oi
nt

s

S
im

ul
at

or
 A

na
ly

si
s

E
m

ul
at

or
 A

na
ly

si
s

E
ve

nt
 T

rig
ge

rin
g

G
ra

ph
s

S
ym

bo
l B

ro
w

se
r

C
om

m
an

d
W

in
do

w

P
in

 c
on

ne
ct

P
or

t C
on

ne
ct

D
at

a
C

on
ve

rt
er

TMS320C62x � � � � � � � � � � � �

TMS320C64x � � � � � �

TMS320C67x � � � � � � � � � � �

TMS320C54x � � � � � � � � � �

TMS320C55x � � � � � � � � �

Introduction to Breakpoints

4-3Code Composer Studio Debug Tools

4.2 Introduction to Breakpoints

Breakpoints are an essential component of any debugging session.

Breakpoints stop the execution of the program. While the program is stopped,
you can examine the state of the program, examine or modify variables, ex-
amine the call stack, etc. Breakpoints can be set on a line of source code in
an Editor window or a disassembled instruction in the Disassembly window.
After a breakpoint is set, it can be enabled or disabled.

For breakpoints set on source lines it is necessary that there be an associated
line of dissassembly code. When compiler optimization is turned on, many
source lines cannot have breakpoints set. To see allowable lines, use mixed
mode in the editor window.

Note:

CCS IDE tries to relocate a breakpoint to a valid line in your source window.
CCS IDE places a breakpoint icon in the selection margin beside the lineon
which it locates the breakpoint. If CCS IDE cannot determine an allowable
line, it reports an error in the message window.

Breakpoints are saved in the project workspace. For information on analyzing
breakpoints, see section 4.5, Simulator Analysis, on page 4-14, and section
4.6, Emulator Analysis, on page 4-16.

Note:

Composer Studio briefly halts the target whenever it reaches a Breakpoint
or Probe Point. Therefore, the target application may not meet real-time
deadlines if you are using Probe Points. At this stage of development, you
are testing the algorithm. Later, you can analyze real-time behavior using
RTDX and DSP/BIOS.

For real-time debugging information, see Chapter 6, Code Composer Studio
Real Time Components.

Introduction to Breakpoints

 4-4

Software Breakpoints

Breakpoints can be set in any Disassembly window or document window con-
taining C/C++ source code. There is no limit to the number of software break-
points that can be set, provided they are set at writable memory locations
(RAM). Software breakpoints operate by modifying the target program to add
a breakpoint instruction at the desired location.

The fastest way to set a breakpoint is to simply double-click on the desired line
of code.

Step 1: In a document window or Disassembly window, move the cursor
over the line where you want to place a breakpoint.

Step 2: In a document window, double-click in the Selection Margin immedi-
ately preceding the line.

In a Disassembly window, double–click on the desired line.

A breakpoint icon in the Selection Margin indicates that a breakpoint has been
set at the desired location.

The Toggle Breakpoint command and the Toggle Breakpoint button also en-
able you to quickly set and clear breakpoints.

Step 1: In a document window or Disassembly window, put the cursor in the
line where you want to set the breakpoint.

Step 2: Right-click and select Toggle Breakpoint, or click the Toggle Break-
point button on the Project toolbar.

Toggle Breakpoint:

Introduction to Breakpoints

4-5Code Composer Studio Debug Tools

Hardware Breakpoints

Hardware breakpoints differ from software breakpoints in that they do not
modify the target program; they use hardware resources available on the chip.
Hardware breakpoints are useful for setting breakpoints in ROM memory or
breaking on memory accesses instead of instruction acquisitions. A break-
point can be set for a particular memory read, memory write, or memory read
or write. Memory access breakpoints are not shown in the source or memory
windows.

Hardware breakpoints can also have a count, which determines the number
of times a location is encountered before a breakpoint is generated. If the count
is 1, a breakpoint is generated every time.

Hardware breakpoints cannot be implemented on a simulated target.

To set a hardware breakpoint:

Step 1: Select Debug→Breakpoints. The Break/Probe Points dialog box ap-
pears with the Breakpoints tab selected.

Step 2: In the Breakpoint type field, choose “H/W Break at location” for in-
struction acquisition breakpoints or choose “Break on <bus>
<Read|Write|R/W>” at location for a memory access breakpoint.

Step 3: Enter the program or memory location where you want to set the
breakpoint. Use one of the following methods:

� For an absolute address, you can enter any valid C expression,
the name of a C function, or a symbol name.

� Enter a breakpoint location based on your C source file. This is
convenient when you do not know where the C instruction is in
the executable. The format for entering in a location based on
the C source file is as follows: fileName line lineNumber.

Step 4: Enter the number of times the location is hit before a breakpoint is
generated, in the Count field. Set the count to 1 if you wish to break
every time.

Step 5: Click the Add button to create a new breakpoint. This causes a new
breakpoint to be created and enabled.

Step 6: Click OK.

Watch Window

 4-6

4.3 Watch Window

When debugging a program, it is often helpful to understand how the value of
a variable changes during program execution. The Watch window allows you
to monitor the values of local and global variables and C/C++ expressions.

To open the Watch window:

Select View→Watch Window, or click the Watch Window button on the Watch
toolbar.

Figure 4–1. Watch Window Toolbar

Open the Watch window

Open Quick Watch

The Watch window contains two tabs labeled: Watch Locals and Watch.

� In the Watch Locals tab, the debugger automatically displays the Name,
Value, and Type of the variables that are local to the currently executing
function.

� In the Watch tab, the debugger displays the Name, Value, and Type of the
local and global variables and expressions that you specify.

Figure 4–2. Watch Window

For detailed information on the Watch Window, see the Watch Window topics
provided in the online help: Help→Contents→Watch Window.

Watch Window

4-7Code Composer Studio Debug Tools

When you are developing and testing programs, you often need to check the
value of a variable during program execution. In this section, you use break-
points and the Watch Window to view such values. You also use the step com-
mands after reaching the breakpoint.

Step 1: Choose File→Load Program.

Step 2: Double–click on the filename.c file in the Project View.

Step 3: Put your cursor in a line that allows breakpoints.

Step 4: Click the (Toggle Breakpoint) toolbar button or press F9.

The selection margin indicates that a breakpoint has been set (red
icon). If you disable the selection margin (Options→Customize) the
line is highlighted in magenta.

Step 5: Choose View→Watch Window.

A separate area in the lower–right corner of the CCS window ap-
pears. At run time, this area shows the values of watched variables.

By default, the Locals tab is selected and displays Local variables
that are local to the function being executed.

Step 6: If not at main, choose Debug→Go Main.

Step 7: Choose Debug→Run, or press F5, or press the Icon.

Step 8: Select the Watch tab.

Step 9: Click on the expression icon in the Name column and type the
name of the variable to watch.

Watch Window

 4-8

Step 10: Click on the white space in the watch window to save the change.
The value should immediately appear, similar to this example.

Step 11: Click the (Step Over) toolbar button or press F10 to step over
the call to your watched variable.

Other commands you can use are:

 Step Into (F8)

 Step Over (F10)

 Step Out (Shift F7)

 Run to Cursor (Ctrl F10)

Watch Window

4-9Code Composer Studio Debug Tools

In addition to watching the value of a simple variable, you can watch the values
of the elements of a structure.

Step 1: Select the Watch tab.

Step 2: Click on the expression icon in the Name column and type the
name of the expression to watch.

Step 3: Click on the white space in the watch window to save the change.

Step 4: Click once on the + sign. The CCS IDE expands this line to list all the
elements of the structure and their values. (The address shown for
Link may vary.)

Step 5: Double-click on the Value of any element in the structure to edit the
value for that element.

Step 6: Change the value of a variable.

Notice that the value changes in the Watch Window. The value also
changes color to red, indicating that you have changed it manually.

 Probe Points

 4-10

4.4 Probe Points

In this section, you add a Probe Point, which reads data from a file on your PC.
Probe Points are a useful tool for algorithm development. You can use probe
points to:

� transfer input data from a file on the host PC to a buffer on the target for
use by the algorithm.

� transfer output data from a buffer on the target to a file on the host PC for
analysis.

� update a window, such as a graph, with data.

More Information About Probe Points

Probe Points are similar to breakpoints in that they both halt the target to per-
form their action. However, Probe Points differ from breakpoints in the follow-
ing ways:

� Probe Points halt the target momentarily, perform a single action, and re-
sume target execution.

� Breakpoints halt the CPU until execution is manually resumed and cause
all open windows to be updated.

� Probe Points permit automatic file input or output to be performed; break-
points do not.

 Probe Points

4-11Code Composer Studio Debug Tools

This section shows how to use a Probe Point to transfer the contents of a PC
file to the target for use as test data. It also uses a breakpoint to update all the
open windows when the Probe Point is reached.

Step 1: Choose File→Load Program. Select filename.out, and click Open.

Step 2: Double-click on the filename.c file in the Project View.

Step 3: Put your cursor in a line of the main function to which you want to add
a probe point.

Step 4: Click the (Toggle Probe Point) toolbar button.

Step 5: From the File menu, choose File I/O. The File I/O dialog appears so
that you can select input and output files.

Step 6: In the File Input tab, click Add File.

Step 7: Browse to your project folder, select filename.dat and click Open.

A control window for the filename.dat file appears. When you run the
program, you can use this window to start, stop, rewind, or fast for-
ward within the data file.

 Probe Points

 4-12

Step 8: In the File I/O dialog, change the Address and the Length values.
Also, put a check mark in the Wrap Around box.

Wrap
Around
Box

Change
Address

Change
Length

� The Address field specifies where the data from the file is to be
placed.

� The Length field specifies how many samples from the data file
are read each time the Probe Point is reached.

� The Wrap Around option causes the CCS IDE to start reading
from the beginning of the file when it reaches the end of the file.
This allows the data file to be treated as a continuous stream of
data.

Step 9: Click Add Probe Point. The Probe Points tab of the Break/Probe
Points dialog appears.

 Probe Points

4-13Code Composer Studio Debug Tools

Step 10: In the Probe Point list, highlight a line.

Step 11: In the Connect To field, click the down arrow and select a file from
the list.

Step 12: Click Replace. The Probe Point list changes to show that this Probe
Point is connected to the sine.dat file.

Step 13: Click OK. The File I/O dialog shows that the file is now connected to
a Probe Point.

Step 14: Click OK to close the File I/O dialog.

Simulator Analysis

 4-14

4.5 Simulator Analysis

The Simulator Analysis tool reports the occurrence of particular system events
so you can accurately monitor and measure the performance of your program.

User Options:

� Enable/disable analysis
� Count the occurrence of selected events
� Halt execution whenever a selected event occurs
� Delete count or break events
� Create a log file
� Reset event counter

To use the Simulator Analysis tool:

Step 1: Load your program using the CCS IDE.

Step 2: Start the analysis tool. Select Tools→Simulator Analysis for your de-
vice.

Step 3: Right-click in the Simulator Analysis window and select Enable anal-
ysis.

Simulator Analysis

4-15Code Composer Studio Debug Tools

Step 4: Specify your analysis parameters (count events or break events).

Step 5: Use the CCS IDE to run or step through your program.

Step 6: Analyze the output of the analysis tool.

For detailed information on the Simulator Analysis tool, see the Simulator
Analysis topics provided in the online help: Help→Contents→Simulator Analy-
sis.

Emulator Analysis

 4-16

4.6 Emulator Analysis

The Emulator Analysis tool allows you to set up, monitor, and count events and
hardware breakpoints.

Figure 4–3. Emulator Analysis Window

To start the Emulator Analysis tool:

Step 1: Load your program using the CCS IDE.

Step 2: Select Tools→Emulator Analysis for your device from the CCS menu
bar.

The Emulator Analysis window contains the following information:

This column. . . displays. . .

Event the event name.

Type whether the event is a break or count event.

Count the number of times the event occurred before the
program halted.

Break Address the address at which the break event occurred.

Routine the routine in which the break event occurred.

Note:

You cannot use the analysis features while you are using the profiling clock.

For detailed information on the Emulator Analysis tool, see the Emulator Anal-
ysis topics provided in the online help: Help→Contents→Emulator Analysis.

Advanced Event Triggering

4-17Code Composer Studio Debug Tools

4.7 Advanced Event Triggering

Advanced Event Triggering (AET) is supported by a group of tools that makes
hardware analysis easier than before. Advanced Event Triggering uses Event
Analysis and State Sequencer to simplify hardware analysis.

Event Analysis uses a simple interface to help you configure common hard-
ware debug tasks called jobs. Setting breakpoints, action points, and counters
is easy using a right-click menu and simple drag-and-drop. You can access
Event Analysis from the tools menu, or by right-clicking in a source file.

Event Sequencer allows you to look for conditions that you specify in your tar-
get program and initiates specific actions when these conditions are detected.
While the CPU is halted, you define the conditions and actions, then run your
target program. The sequence program then looks for the condition you speci-
fied and performs the action you requested.

Event Analysis

The following jobs can be performed using Event Analysis:

� Setting Breakpoints
� Hardware Breakpoint
� Hardware Breakpoint With Count
� Chained Breakpoint
� Global Hardware Breakpoint

� Setting Action/Watch Points
� Data Actionpoint
� Program Actionpoint
� Watchpoint
� Watchpoint With Data

� Setting Counters
� Data Access Counter
� Profile Counter
� Watchdog Timer
� Generic Counter

� Other
� Benchmark to Here
� Emulation Pin Configuration

For detailed information on the Event Analysis tool, see the Event Analysis top-
ics provided in the online help: Help→Contents→Advanced Event Triggering.

Advanced Event Triggering

 4-18

To configure a job using the Event Analysis Tool, CCS IDE must be configured
for a target processor that contains on-chip analysis features. You can use
Event Analysis by selecting it from the Tools menu or by right-clicking in a
source file. Once you configure a job, it is enabled and will perform analysis
when you run code on your target. For information about how to enable or dis-
able a job that is already configured, see the Advance Event Triggering online
help.

Step 1: Select Tools→Advanced Event Triggering→Event Analysis.

The Event Analysis window displays.

Advanced Event Triggering

4-19Code Composer Studio Debug Tools

Step 2: Right-click in the Event Analysis Window and choose Event Trigger-
ing→Job Type→Job.

The job menu is dynamically built and dependent on the target con-
figuration. If a job is not supported on your target, the job is grayed
out.

Step 3: Type your information in the Job dialog box.

Step 4: Click Apply to program the job and save your changes.

Advanced Event Triggering

 4-20

Event Sequencer

The Event Sequencer allows you to look for conditions that you specify in your
target program and initiates specific actions when these conditions are de-
tected. While the CPU is halted, you define the actions, then run your target
program. The sequencer program then looks for the condition that you speci-
fied and performs the action you requested.

To use the Event Sequencer, CCS IDE must be configured for a target proces-
sor that contains on-chip analysis features. You can use the Event Sequencer
by selecting it from the Tools menu. Once you create an Event Sequencer pro-
gram, it is enabled and performs analysis when you run code on your target.
For information on creating an Event Sequencer program, see the Advanced
Event Triggering online help.

To enable the Event Sequencer:

Step 1: Select Tools→Advanced Event Triggering→Event Sequencer.

The Event Sequencer window displays.

Add a Global
Action

Add a Global
If statement

Add a state

Add a boolean
“and” operator

Add open and
close parenthesis

Erase the Sequencer
program

Launch online help

Step 2: Right-click in the Event Sequencer window or use the Event Se-
quencer toolbar buttons to create a sequencer program.

Displaying Graphs

4-21Code Composer Studio Debug Tools

4.8 Displaying Graphs

If you ran a program using only breakpoints and watch windows, you would
not see much information about what the program was doing. You could set
watch variables on addresses within the inp_buffer and out_buffer arrays, but
you would need to watch a lot of variables and the display would be numeric
rather than visual.

CCS IDE provides a variety of ways to graph data processed by your program.
In this example, you view a signal plotted against time.

Step 1: Choose View→Graph→Time/Frequency.

Step 2: In the Graph Property Dialog, change the Graph Title, Start Address,
Acquisition Buffer Size, Display Data Size, DSP Data Type, Auto-
scale, and Maximum Y-value properties to the values shown here.
Scroll down or resize the dialog box to see all the properties.

Step 3: Click OK. A graph window for the Input Buffer appears.

Step 4: Right-click on the Input window and choose Clear Display from the
pop-up menu.

Displaying Graphs

 4-22

Step 5: Choose View→Graph→Time/Frequency again.

Step 6: This time, change the Graph Title to Output and the Start Address
to out_buffer. All the other settings are correct.

Step 7: Click OK to display the graph window for the Output. Right-click on
the graph window and choose Clear Display from the pop-up menu.

Symbol Browser

4-23Code Composer Studio Debug Tools

4.9 Symbol Browser

The Symbol Browser displays all of the associated files, functions, global vari-
ables, types, and labels of a loaded COFF output file (*.out). The Symbol
Browser contains five tabbed windows:

� Files
� Functions
� Globals
� Types
� Labels

Each tabbed window contains nodes representing various symbols. A plus
sign (+) preceding a node indicates that the node can be further expanded. To
expand the node, simply click the + sign. A minus sign (–) precedes an expand-
ed node. Click the – sign to hide the contents of that node.

To open the Symbol Browser, select Tools→Symbol Browser.

Figure 4–4. Symbol Browser Window

For detailed information on the Symbol Browser tool, see the Symbol Browser
topics provided in the online help: Help→Contents→Symbol Browser.

General Extension Language (GEL)

 4-24

4.10 General Extension Language (GEL)

The General Extension Language (GEL) is an interpretive language, similar
to C, that lets you create functions to extend CCS IDE’s usefulness.

You create your GEL functions using the GEL grammar, and then load them
into CCS IDE. With GEL, you can access actual/simulated target memory
locations and add options to CCS IDE’s GEL menu. GEL is particularly useful
for automated testing and user workspace customization.

You can call GEL functions from anywhere that you can enter an expression.
You can also add GEL functions to the Watch window so they execute at every
breakpoint.

CCS IDE comes equipped with many built-in GEL functions to help you auto-
mate common debugging tasks.

Command Window

4-25Code Composer Studio Debug Tools

4.11 Command Window

The Command Window enables you to specify commands to the CCS debug-
ger using the TI Debugger command syntax.

Many of the commands accept C expressions as parameters. This allows the
instruction set to be relatively small, yet powerful. Because C expressions can
have side effects (that is, the evaluation of some types of expressions can af-
fect existing values) you can use the same command to display or change a
value.

To open the Command Window:

Select Tools→Command Window from the CCS menu bar.

Figure 4–5. Command Window

Output
window

Command
field

Execution
(or halt)
button

For detailed information on the Command Window, see the Command Win-
dow topics provided in the online help: Help→Contents→Command Window.

Pin Connect

 4-26

4.12 Pin Connect

The Pin Connect tool enables you to specify the interval at which selected ex-
ternal interrupts occur.

To simulate external interrupts:

Step 1: Create a data file that specifies interrupt intervals.

Step 2: Start the Pin Connect tool. From the Tools menu, choose Pin Con-
nect.

Pin name

File name

Step 3: Select the Pin name and click Connect.

Step 4: Load your program.

Step 5: Run your program.

For detailed information on the Pin Connect tool, see the Pin Connect topics
provided in the online help: Help→Contents→Pin Connect.

Port Connect

4-27Code Composer Studio Debug Tools

4.13 Port Connect

You can use the Port Connect tool to access a file through a memory address.
Then, by connecting to the memory (port) address, you can read data in from
a file, and/or write data out to a file.

To connect a memory (port) address to a data file, follow these steps:

Step 1: From the Tools menu, select Port Connect.

This action displays the Port Connect window and starts the Port
Connect tool.

Step 2: Click the Connect button.

This action opens the Connect dialog box.

Port Connect

 4-28

Step 3: In the Port Address field, enter the memory address.

This parameter can be an absolute address, any C expression, the
name of a C function, or an assembly language label. If you want to
specify a hex address, be sure to prefix the address number with 0x;
otherwise, CCS IDE treats the number as a decimal address.

Step 4: In the Length field, enter the length of the memory range.

The length can be any C expression.

Step 5: In the Page field (C5000 only), choose type of memory (program or
data) that the address occupies:

To identify this page. . . use this value.

Program memory Prog

Data memory Data

I/O space I/O

Step 6: In the Type field, select the Write or Read radio button, depending
on whether you want to read data from a file or write data to a file.

Step 7: Click OK.

This action displays the Open Port File window.

Step 8: Select the data file to which you want to connect and click Open.

The file is accessed during an assembly language read or write of the associat-
ed memory address. Any memory address can be connected to a file. A maxi-
mum of one input and one output file can be connected to a single memory
address; multiple addresses can be connected to a single file.

For detailed information on the Port Connect tool, see the Port Connect topics
provided in the online help: Help→Contents→Port Connect.

Data Converter

4-29Code Composer Studio Debug Tools

4.14 Data Converter

The Data Converter Plug–In (DCP) from Texas Instruments allows fast and
easy software development for data converters attached to a Digital Signal
Processor (DSP).

Open the Data Converter Support Window

Select Tools→Data Converter Support.

Figure 4–6. Data Converter Support Window

For additional information, see the Data Converter portion of the CCS online
help.

Data Converter

 4-30

Configure Your System to Use the Data Converter Plug-in

To configure your system to use the Data Converter Plug-in:

Step 1: System tab. Add devices that are connected to the DSP.

Step 2: DSP tab. Specify required DSP configuration data.

Step 3: “Device Name.” Configure your ADC(s), DAC(s) and/or Codec(s).

Data Converter

4-31Code Composer Studio Debug Tools

Step 4: CCS IDE. Open a project in CCS IDE.

Step 5: Files tab. Generate the configuration files.

Several source code files – usually C language – are added to your
DSP project. These files contain the lowest level of interface soft-
ware required for the data converter(s). In addition, a set of static
configuration data is created in header files to be used by the inter-
face software. The data may also be used by your application. The
#define strings should be used in your software in order to allow for
configuration independent programming.

Step 6: CCS IDE. Use data structures and interface functions as needed.

Step 7: CCS IDE. Verify correct operation using CCS debug features.

Step 8: CCS IDE. Save a workspace before exiting CCS IDE.

Note:

Interface functions are hardware dependent. They only work if standard
hardware interfacing is used. It is always your responsibility to verify the cor-
rect operation of hardware and software in your system.

5-1

Code Composer Studio Optimization Tools

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE. However, not all devices have access to all the tools discussed in
this chapter. For a complete listing of the tools available to you, see the online
help and online documentation provided with CCS IDE.

Profiling helps you determine how long a processor spends in each section of
a program. Using profiling can help you make your programs more efficient.
This chapter discusses the CCS profiling tools and shows you how to use
them.

Topic Page

5.1 Profiler 5-2.

5.2 Profile Based Compiler (PBC) 5-4.

Chapter 5

Profiler

 5-2

5.1 Profiler

Profiling helps reduce the time it takes to identify and eliminate performance
bottlenecks. The profiler analyzes program execution and shows you where
your program is spending its time. For example, a profile analysis can report
how many cycles a particular function takes to execute and how often it is
called.

Profiling helps you to direct valuable development time toward optimizing the
sections of code that most dramatically affect program performance.

Start a new session each time you want to perform profile analysis on an
executable program. When you want to profile more than one executable pro-
gram, multiple profile sessions can be launched.

To start a new profile session:

Step 1: Select Profiler→Start New Session.

Step 2: In the Profile Session Name dialog box, enter a name for this profile
session. By default, the name MySession appears.

Profiler

5-3Code Composer Studio Optimization Tools

Step 3: Click OK.

A Profile View window appears within the CCS window.

Profile by Function

Profile by Range

Drag-and-drop any func-
tion from your code into
the Profile View window.

Note:

The new profiler allows you to exclude code ranges from being profiled. In
other words, you can use Start and End points to exclude certain parts of your
code found within the profiling range from being counted as part of the profil-
ing data.

Step 4: Select File→Load Program.

Step 5: In the Load Program dialog box, specify the output file to be profiled
and click Open.

As a prerequisite to performing profile analysis, the program must be built with
symbolic debugging information.

For detailed information on the Profiler tool, see the Profiler topics provided in
the online help: Help→Contents→Profiling Code Execution.

Profile Based Compiler (PBC)

 5-4

5.2 Profile Based Compiler (PBC)

This tool is only available to TMS320C6000 devices.

PBC is a tool that enables you to more quickly and easily optimize the trade-off
between code size and cycle count for your application. Using a variety of pro-
filing configurations, PBC will profile your application, collect data on individual
functions, and determine the best combinations of compiler options. PBC will
then produce a graph of these configurations, allowing you to choose the con-
figuration that best fits your needs.

To understand the behavior of your application and the effects that different
compiler options have, PBC must compile and run your application under a
number of different profiling configurations.

By default, PBC has 5 different Profiling Configurations defined, ranging from
optimize for maximum speed to optimize for minimum code size. By default,
3 Profiling Configurations are activated. If a Profiling Configuration is acti-
vated, PBC will use it when profiling your application. A deactivated Profiling
Configuration is available, but will not but used until activated. You can also
create your own Profiling Configurations. This allows you to define and main-
tain Profiling Configurations in addition to the defaults that are defined by PBC.

When using PBC with your application, you may want to increase the number
of activated Profiling Configurations, and even define some of your own. The
more Profiling Configurations used, the longer PBC takes to build and profile
your application. This gives PBC more options in finding an optimal build of
your application, relevant to your speed or code size constraints.

Profile Based Compiler (PBC)

5-5Code Composer Studio Optimization Tools

Enabling Profile Configurations

Step 1: Select PBC→Enable.

Step 2: Select PBC→Profiling Configurations.

The Profiling configurations with check boxes are activated, and
should look similar to this:

Step 3: Make changes to the profiling configurations if needed.

Step 4: Click OK to close the dialog box.

You will be asked if you want to rebuild your application with the new
Configurations, choose Yes if you made any changes. Choose No
if you did not make changes. If you choose cancel, you will go back
to the profiling configurations dialog.

Profile Based Compiler (PBC)

 5-6

Building Profile Configurations

Now that you have determined which Profiling Configurations will be used, you
can build and profile your application.

Step 1: From the PBC menu, chose ReProfile All.

Step 2: This step will take some time (as long as 30 minutes).

In the CCS output window, the PBC tab shows build progress. When
PBC is finished profiling your application, a window like the following
one is shown:

PBC will not build and profile a configuration if it has not changed since the last
time it was used. You can force PBC to rebuild and profile Configurations by
selecting ReProfile All from the PBC menu.

Once PBC has built and profiled all active profiling configurations, it will have
collected profile information on how each function performed under each con-
figuration. PBC uses this information to determine all of the useful configura-
tions that can be used to build your application. A configuration is useful if no
other configurations results in a version of your application that is both smaller
and faster.

The set of all useful configurations are graphed in purple in the Configuration
Space window. You can now select one (or more) of the configurations to use
for your application.

For detailed information on the Profiler tool, see the Profiler topics provided in
the online help: Help→Contents→Profile Based Compiler.

Profile Based Compiler (PBC)

5-7Code Composer Studio Optimization Tools

Figure 5–1. Finished PBC Application

6-1

Code Composer Studio
Real-time Kernel and Analysis

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE. However, not all devices have access to all of the tools discussed
in this chapter. For a complete listing of the tools available to you, see the on-
line help and online documentation provided with CCS IDE.

CCS IDE includes a real-time kernel and real-time analysis features that
simplify development and debugging of complex applications. The features
covered in this chapter are:

� DSP/BIOS� kernel

� RTDX� (Real-Time Data Exchange) technology

To read more about these features, or to determine if you have access to these
features, see the online help and/or tutorial provided with CCS IDE.

Topic Page

6.1 DSP/BIOS Kernel 6-2.

6.2 RTDX Technology 6-13.

Chapter 6

DSP/BIOS Kernel

 6-2

6.1 DSP/BIOS Kernel

DSP/BIOS kernel is a scalable real-time kernel. It is designed for applications
that require real-time scheduling and synchronization, host-to-target commu-
nication, along with real-time instrumentation. DSP/BIOS kernel provides pre-
emptive multi-threading, hardware abstraction, and real-time analysis.

DSP/BIOS kernel is packaged as a set of modules that can be linked into an
application; applications include only those functions of the DSP/BIOS kernel
that are referenced (directly or indirectly) by the application. In addition, the
DSP/BIOS Configuration Tool allows you to optimize code size and speed by
disabling DSP/BIOS kernel features not used in their programs.

You can use DSP/BIOS kernel to instrument any application to be probed,
traced, and monitored in real-time. Programs that use the DSP/BIOS Configu-
ration Tool to take advantage of the multi–threading capabilities of DSP/BIOS
kernel are implicitly instrumented.

DSP/BIOS kernel is integrated with CCS IDE and requires no runtime license
fees.

For details on on using DSP/BIOS kernel, see the Help→Contents→DSP/
BIOS or Help→Tutorial→Using DSP/BIOS.

DSP/BIOS Kernel

6-3Code Composer Studio Real-time Kernel and Analysis

DSP/BIOS kernel includes the following components:

� DSP/BIOS Configuration Tool. This tool allows you to create and config-
ure the DSP/BIOS kernel objects used by your program. You can also use
this tool to configure memory, thread priorities, and interrupt handlers.

� DSP/BIOS Real-time Analysis Tools. These windows allow you to view
program activity in real-time. For example, the Execution Graph shows a
diagram of thread activity.

� DSP/BIOS Kernel. The DSP/BIOS kernel implements run-time services
that the target application invokes through DSP/BIOS APIs.

� Chip Support Library: The Chip Support Library provides macros and
functions that simplify configuration and management of on-chip peripher-
als. See Chapter 7 for more information.

DSP/BIOS Configuration Tool

The DSP/BIOS Configuration Tool tightly integrates with CCS IDE. This tool
enables developers to select and deselect kernel modules, and control a wide
range of configurable parameters accessed by the DSP/BIOS kernel at run–
time as shown in the figures below. A file of data tables generated by the tool
ultimately becomes an input to the program linker.

Figure 6–1. DSP/BIOS Configuration Window

DSP/BIOS Kernel

 6-4

The DSP/BIOS Configuration Tool (see Figure 6–1) serves as a special-pur-
pose visual editor for creating and assigning attributes to individual run-time
kernel objects (threads, streams, etc.) used by the target application program
in conjunction with DSP/BIOS API calls. The Configuration Tool provides de-
velopers the ability to statically declare and configure DSP/BIOS kernel ob-
jects during program development rather than during program execution. De-
claring these kernel objects through the Configuration Tool produces static ob-
jects which exist for the duration of the program. DSP/BIOS kernel also allows
dynamic creation and deletion for many of the kernel objects during program
execution. However, dynamically created objects require additional code to
support the dynamic operations. Statically declared objects minimize memory
footprint since they do not include the additional create code.

Another important benefit of static configuration is the potential for static pro-
gram analysis by the DSP/BIOS Configuration Tool. In addition to minimizing
the target memory footprint, the DSP/BIOS Configuration Tool provides the
means for early detection of semantic errors through the validation of object
attributes, prior to program execution. When the configuration tool is aware of
all target program objects prior to execution, it can accurately compute and re-
port such information as the total amount of data memory and stack storage
required by the program.

DSP/BIOS Kernel

6-5Code Composer Studio Real-time Kernel and Analysis

Creating DSP/BIOS Configuration Files

To create DSP/BIOS configuration files:

Step 1: Within Code Composer Studio, choose File→New→DSP/BIOS
Configuration.

The New Configuration window displays.

Available DSP/BIOS
configurations for
your platform

Description of
the selected
configurationView list as large icons

View list as small icons
View detailed list

Step 2: Select a Configuration template.

If your board is not listed, you can create and add a custom template
to this list.

DSP/BIOS Kernel

 6-6

Step 3: Click OK to create the new configuration.

The Configuration window displays.

Step 4: In the Configuration window, perform the following tasks as required
by your application:

� Create objects to be used by the application.

� Name the objects.

� Set global properties for the application.

� Modify module manager properties.

� Modify object properties.

� Set priorities for software interrupts and tasks.

See Help→Contents→DSP/BIOS→DSP/BIOS API Modules for
details on implementation of APIs.

Step 5: Save the configuration.

Step 6: Add the DSP/BIOS configuration file(s) to your project as described
in the next procedure.

DSP/BIOS Kernel

6-7Code Composer Studio Real-time Kernel and Analysis

Adding DSP/BIOS Configuration files to your project

After you save a DSP/BIOS configuration file, follow these steps to add files
to your Code Composer Studio project.

Step 1: If it is not already open, use Project→Open to open the project with
Code Composer Studio.

Step 2: Choose Project→Add Files to Project. In the Files of type box, select
Configuration File (*.cdb). Select the .cdb file you saved and click
Open.

Adding the .cdb file to a project automatically adds the following file
to the Project View folders:

� program.cdb in the DSP/BIOS Config folder

� programcfg.s62 in the Generated Files folder

� programcfg_c.c in the Generated Files folder

Step 3: Choose Project→Add Files to Project again. In the Files of type box,
select Linker Command File (*.cmd). Select the *cfg.cmd file the
Configuration Tool generated when you saved the configuration file
and click Open.

Step 4: If your project already contained a linker command file, Code Com-
poser Studio warns you that a project can only contain one linker
command file and asks if you want to replace the existing file.

Step 5: If your project includes the vectors.asm source file, right-click on the
file and choose Remove from project in the shortcut menu. Hardware
interrupt vectors are automatically defined in the configuration file.

Step 6: If your project includes the rtsxxxx.lib file (where xxxx is your device
or device’s generation), right–click on the file and choose Remove
from project in the shortcut menu. This file is automatically included
by the linker command file created from your configuration.

These steps can be used whenever you want to convert an existing program
to one that can call DSP/BIOS API functions.

DSP/BIOS Kernel

 6-8

DSP/BIOS Real-time Analysis Tools

The DSP/BIOS Real-Time Analysis (RTA) features, shown in Figure 6–2, pro-
vide developers and integrators unique visibility into their application by allow-
ing them to probe, trace, and monitor a DSP application during its course of
execution. These utilities, in fact, piggyback upon the same physical JTAG
connection already employed by the debugger, and utilize this connection as
a low-speed (albeit real-time) communication link between the target and host.

Figure 6–2. Real-Time Capture and Analysis

DSP/BIOS RTA requires the presence of the DSP/BIOS kernel within the tar-
get system. In addition to providing run-time services to the application, DSP/
BIOS kernel provides support for real-time communication with the host
through the physical link. By simply structuring an application around the DSP/
BIOS APIs and statically created objects that furnish basic multitasking and I/O
support, developers automatically instrument the target for capturing and
uploading the real-time information that drives the visual analysis tools inside
CCS IDE. Supplementary APIs and objects allow explicit information capture
under target program control as well. From the perspective of its hosted utili-
ties, DSP/BIOS affords several broad capabilities for real-time program analy-
sis:

DSP/BIOS Kernel

6-9Code Composer Studio Real-time Kernel and Analysis

The DSP/BIOS Real-Time Analysis tools can be accessed through the DSP/
BIOS toolbar.

Figure 6–3. DSP/BIOS Toolbar

Message Log

Statistics View

Host Channel Control

RTA Control Panel

Execution Graph

CPU Load Graph

Kernel/Object View

� Message Event Logs. Capable of displaying time-ordered sequences of
events written to kernel log objects by independent real-time threads, trac-
ing the program’s overall flow of control. The target program logs events
explicitly through DSP/BIOS API calls or implicitly by the underlying kernel
when threads become ready, dispatched, and terminated.

� Statistics Accumulators. Capable of displaying summary statistics
amassed in kernel accumulator objects, reflecting dynamic program ele-
ments ranging from simple counters and time-varying data values, to
elapsed processing intervals of independent threads. The target program
accumulates statistics explicitly through DSP/BIOS API calls or implicitly
by the kernel when scheduling threads for execution or performing I/O op-
erations.

� Host Data Channels. Capable of binding kernel I/O objects to host files
providing the target program with standard data streams for deterministic
testing of algorithms. Other real-time target data streams managed with
kernel I/O objects can be tapped and captured on-the-fly to host files for
subsequent analysis.

� Host Command Server (RTA Control Panel). Capable of controlling the
real-time trace and statistics accumulation in target programs. In effect,
this allows developers to control the degree of visibility into the real-time
program execution.

DSP/BIOS Kernel

 6-10

Note:

When used in tandem with the CCS IDE standard debugger during software
development, the DSP/BIOS real-time analysis tools provide critical visibility
into target program behavior at exactly those intervals where the debugger
offers little or no insight – during program execution. Even after the debugger
halts the program and assumes control of the target, information already
captured through DSP/BIOS can provide invaluable insights into the se-
quence of events that led up to the current point of execution.

Later in the software development cycle, regular debuggers become ineffec-
tive for attacking more subtle problems arising from time-dependent interac-
tion of program components. The DSP/BIOS real-time analysis tools subsume
an expanded role as the software counterpart of the hardware logic analyzer.

This dimension of DSP/BIOS becomes even more pronounced after software
development concludes. The embedded DSP/BIOS kernel and its companion
host analysis tools combine to form the necessary foundation for a new gener-
ation of manufacturing test and field diagnostic tools. These tools will be capa-
ble of interacting with application programs in operative production systems
through the existing JTAG infrastructure.

The overhead cost of using DSP/BIOS is minimal, therefore instrumentation
can be left in to enable field diagnostics, so that developers can capture and
analyze the actual data that caused the failures.

DSP/BIOS Kernel

6-11Code Composer Studio Real-time Kernel and Analysis

DSP/BIOS Kernel

The DSP/BIOS kernel implements run-time services that the target application
program invokes through DSP/BIOS APIs.

Individual DSP/BIOS modules in general will manage one or more instances
of a related class of objects, sometimes referred to as kernel objects, and will
rely upon global parameter values to control their overall behavior.

Developers can statically declare and configure many of these objects using
the DSP/BIOS Configuration Tool. Developers may also declare and configure
many of these objects dynamically within their programs.

C, C++, and assembly language programs can call over 150 DSP/BIOS API
functions. DSP/BIOS is packaged as a set of modules that can be linked into
an application; applications include only those functions of the DSP/BIOS that
are referenced (directly or indirectly) by the application. In addition, the DSP/
BIOS Configuration Tool allows you to optimize code size and speed by disab-
ling DSP/BIOS features not used in their programs.

Execution Threads

When applications are organized as independent paths of execution, develop-
ers can place structure and order into them (see Figure 6–4). DSP/BIOS exe-
cution threads are independent paths of execution that execute an indepen-
dent stream of DSP instructions. An execution thread is a single point of control
that may contain an ISR, subroutine, or a function call. For example, a hard-
ware interrupt is a thread, and it performs the ISR when triggered.

DSP/BIOS Kernel

 6-12

Figure 6–4. DSP/BIOS Execution Threads

Multithreaded applications can run on single processor systems by allowing
higher-priority threads to preempt lower–priority threads. DSP/BIOS provides
30 levels of priority, divided over four distinct classes of execution threads (see
Figure 6–4). DSP/BIOS also provides services to support the synchronization
of, and communication between, execution threads. Multirate processing
maps well onto multithreaded systems.

With the exception of the background idle processing thread, each thread type
supports multiple levels of priority. DSP/BIOS provides choices; it allows de-
velopers to use the optimum thread-types for their application and not bend
their application to fit a certain model. DSP/BIOS developers have the flexibil-
ity to mix and match the objects in the run-time library that are best suited for
the application. DSP/BIOS is completely scalable and only those modules that
have been selected link with the application, minimizing resource require-
ments.

For more information on using DSP/BIOS, see the Help→Contents→DSP/
BIOS or Help→Tutorial→Using DSP/BIOS.

RTDX Technology

6-13Code Composer Studio Real-time Kernel and Analysis

6.2 RTDX Technology

DSP/BIOS Real-Time Analysis (RTA) facilities utilize the Real-Time Data Ex-
change (RTDX) link to obtain and monitor target data in real-time. You can uti-
lize the RTDX link to create your own customized interfaces to the DSP target
by using CCS IDE’s RTDX API Library.

Real-time data exchange (RTDX) allows system developers to transfer data
between a host computer and target devices without interfering with the target
application. This bi-directional communication path provides for data collec-
tion by the host as well as host interaction with the running target application.
The data collected from the target may be analyzed and visualized on the host.
Application parameters may be adjusted using host tools, without stopping the
application. RTDX also enables host systems to provide data stimulation to the
target application and algorithms.

RTDX consists of both target and host components. A small RTDX software
library runs on the target application. The target application makes function
calls to this library’s API in order to pass data to or from it. This library makes
use of a scan-based emulator to move data to or from the host platform via a
JTAG interface. Data transfer to the host occurs in real-time while the target
application is running.

On the host platform, an RTDX Host Library operates in conjunction with CCS
IDE. Data visualization and analysis tools communicate with RTDX through
COM APIs to obtain the target data and/or to send data to the DSP application.

The host library supports two modes of receiving data from a target applica-
tion: Continuous and Non Continuous. In Continuous mode, the data is simply
buffered by the RTDX Host Library and is not written to a log file. Continuous
mode should be used when the developer wants to continuously obtain and
display the data from a target application, and does not need to store the data
in a log file. In Non Continuous mode, data is written to a log file on the host.
This mode should be used when developers want to capture a finite amount
of data and record it in a log file.

For details on using RTDX, see the Help→Contents→RTDX or Help→Tuto-
rial→RTDX Tutorial.

RTDX Technology

 6-14

RTDX Data Flow

RTDX forms a two-way data pipe between a target application and a host cli-
ent. This data pipe consists of a combination of hardware and software compo-
nents as shown below.

Figure 6–5. RTDX Data Flow

Configuring RTDX Graphically

The RTDX tools within CCS IDE allow you to configure RTDX graphically, set
up RTDX channels, and run diagnostics on RTDX. These tools allow you to
enhance RTDX functionality when transmitting data.

RTDX has three menu options:

� Diagnostics Control
� Configuration Control
� Channel Viewer Control

RTDX Technology

6-15Code Composer Studio Real-time Kernel and Analysis

Figure 6–6. RTDX Menu

Diagnostics Control

RTDX provides the RTDX Diagnostics Control to verify that RTDX is working
correctly on your system. The diagnostic tests test the basic functionality of
target–to–host transmission and host–to–target transmission.

To open the RTDX Diagnostics Control in CCS IDE, select
Tools→RTDX→Diagnostics Control. The Diagnostics Control window ap-
pears near the bottom of the CCS IDE interface.

Figure 6–7. RTDX Diagnostics Window

RTDX Technology

 6-16

Configuration Control

RTDX provides the RTDX Configuration Control to configure and control
RTDX graphically. Configuration Control is the main RTDX window. It allows
you to do the following:

� View the current RTDX configuration settings

� Enable or disable RTDX

� Access the RTDX Configuration Control Properties page to reconfigure
RTDX and select port configuration settings

To open the RTDX Configuration Control in CCS IDE, select
Tools→RTDX→Configuration Control. The Configuration Control window dis-
plays.

Figure 6–8. RTDX Config Window

Click this button to
reconfigure properties

RTDX Technology

6-17Code Composer Studio Real-time Kernel and Analysis

Channel Viewer Control

RTDX provides the RTDX Channel Viewer Control to set up RTDX channels.
The RTDX Channel Viewer Control allows you to:

� Add or remove target–declared channels to the viewable list.

� Enable or disable channels once they have been added to the list.

To open the RTDX Channel Viewer Control in CCS IDE, select
Tools→RTDX→Channel Viewer Control. The Channel Viewer Control window
displays.

Figure 6–9. RTDX Channel Viewer Window

RTDX Technology

 6-18

Transmit a Single Integer to the Host

The basic function of RTDX is to transmit a single integer to the host. The fol-
lowing steps provide an overview of the process of sending data from the tar-
get to the host and from the host to the target. For specific commands and de-
tails on transmitting different types of data, see the Help→Contents→RTDX
or Help→Tutorial→RTDX Tutorial.

To send data from your target application to the host:

Step 1: Prepare your target application to capture real-time data.

This involves inserting specific RTDX syntax into your application
code to allow real-time data transfer from the target to the host. Al-
though the process for preparing a target application is the same for
all data types, different data types require different function calls for
data transfer. Therefore, sending an integer to the host requires you
to add a function call that is specific to only transmitting a single inte-
ger as compared to sending an array of integers to the host.

Step 2: Prepare your host client to process the data.

This involves instantiating one RTDX object for each desired chan-
nel, opening a channel for the objects specified, and calling any other
desired functions.

Step 3: Start CCS IDE.

Step 4: Load your target application onto the TI processor.

Step 5: Enable RTDX in CCS IDE: Tools→RTDX→Configuration Control.

The Configuration Control window displays.

Step 6: Run your target application to capture real-time data and send it to
the RTDX Host Library.

Step 7: Run your host client to process the data.

For details on using RTDX, see the Help→Contents→RTDX or Help→Tuto-
rial→RTDX Tutorial.

RTDX Technology

6-19Code Composer Studio Real-time Kernel and Analysis

Transmit Data from the Host to the Target

A client application can send data to the target application by writing data to
the target. Data sent from the client application to the target is first buffered in
the RTDX Host Library. The data remains in the RTDX Host Library until a re-
quest for data arrives from the target. Once the RTDX Host Library has enough
data to satisfy the request, it writes the data to the target without interfering
with the target application.

The state of the buffer is returned into the variable buffer state. A positive value
indicates the number of bytes the RTDX Host Library has buffered, which the
target has not yet requested. A negative value indicates the number of bytes
that the target has requested, which the RTDX Host Library has not yet satis-
fied.

To send data from a host client to your target application:

Step 1: Prepare your target application to receive data.

This involves writing a simple RTDX target application that reads
data from the host client.

Step 2: Prepare your host client to send data.

This involves instantiating one RTDX object for each desired chan-
nel, opening a channel for the objects specified, and calling any other
desired functions.

Step 3: Start CCS IDE.

Step 4: Load your target application onto the TI processor.

Step 5: Enable RTDX in CCS IDE: Tools→RTDX→Configuration Control.

The Configuration Control window displays.

Step 6: Run your target application.

Step 7: Run your host client.

For details on using RTDX, see the Help→Contents→RTDX or Help→Tuto-
rial→RTDX Tutorial.

7-1

Code Composer Studio
Chip Support Library Overview

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE. However, not all devices have access to all of the tools discussed
in this chapter. For a complete listing of the tools available to you, see the on-
line help and online documentation provided with CCS IDE.

This chapter introduces the Chip Support Library, briefly describes its architec-
ture, and provides a generic overview of the collection of functions, macros,
and constants that help you program DSP peripherals.

For more information on CSL, see the online help provided with CCS IDE.

Topic Page

7.1 Introduction to CSL 7-2.

7.2 Introduction to the DSP/BIOS Configuration Tool: CSL Tree 7-3.

Chapter 7

Introduction to CSL

 7-2

7.1 Introduction to CSL

The Chip Support Library(CSL) is a fully scalable component of DSP/BIOS
that provides C-program functions to configure and control on-chip peripher-
als. It is intended to simplify the process of running algorithms in a real system.
The goal is peripheral ease of use, shortened development time, portability,
hardware abstraction, and a small level of standardization and compatibility
among devices.

How the CSL Benefits You

The CSL benefits you in the following ways:

� Standard Protocol to Program Peripherals

CSL provides a higher-level programming interface for each on-chip
peripheral. This includes data types and macros to define peripheral regis-
ter configuration, and functions to implement the various operations of
each peripheral.

� Basic Resource Management

Basic resource management is provided through the use of open and
close functions for many of the peripherals. This is especially helpful for
peripherals that support multiple channels.

� Symbol Peripheral Descriptions

As a side benefit to the creation of CSL, a complete symbolic description of
all peripheral registers and register fields has been created. It is suggested
that you use the higher level protocols described in the first two bullets, as
these are less device specific, making it easier to migrate your code to
newer versions of DSP’s.

The DSP/BIOS configuration tool provides a graphical user interface for de-
vice configuration via the CSL. The CSL tree of the configuration tool allows
the pre-initialization of some peripherals by generating C files using CSL APIs.
The peripherals are pre-configured with the pre-defined configuration objects.

Note:

If you utilize CSL without use of the DSP/BIOS Configuration tool, CSL can
conflict with DSP/BIOS functionality.

Introduction to the DSP/BIOS Configuration Tool: CSL Tree

7-3Code Composer Studio Chip Support Library Overview

7.2 Introduction to the DSP/BIOS Configuration Tool: CSL Tree

The DSP/BIOS Configuration Tool allows you to access the CSL graphical in-
terface and configure some of the on-chip peripherals. Each peripheral is rep-
resented as a subdirectory of the CSL Tree as shown in Step 3.

The work-flow consists of the following steps:

Step 1: Creation of the DSP/BIOS configuration file (.cdb).
File→New→DSP/BIOS Configuration.

The New configuration window displays.

Available DSP/BIOS
configurations for
your platform

Description of
the selected
configurationView list as large icons

View list as small icons
View detailed list

Introduction to the DSP/BIOS Configuration Tool: CSL Tree

 7-4

Step 2: Select the appropriate configuration for your target and click OK.

The Config window displays.

Introduction to the DSP/BIOS Configuration Tool: CSL Tree

7-5Code Composer Studio Chip Support Library Overview

Step 3: Configure the on-chip peripherals through the CSL hierarchy tree.

Add configuration icons and then set the values and parameters for
each configuration.

You can also set global properties. Under the System icon in the
Configuration window, highlight Global Settings. Right-click and
select Properties from the pop-up menu. The Global Settings
Properties window displays.

Introduction to the DSP/BIOS Configuration Tool: CSL Tree

 7-6

Step 4: C-code files are automatically generated when you save the configu-
ration file. These files display in your project window.

Two C files are generated – the header file and the source file.

� Header file: projectcfg.h

� Source file: projectcfg_c.c

In these examples, project is the user’s cdb file name. The bold char-
acters are attached automatically.

Header file

The header file contains several elements.

� The definition of the chip

#define CHIP_6201 1

� The csl header files of the CSL tree

#include <csl.h>

#include <csl_dma.h>
#include <csl_emif.h>
#include <csl_mcbsp.h>
#include <csl_timer.h>
0

� The declaration list of the variables handle and configuration names de-
fined in the project.cdb. They are declared external and can be used by
the user

extern far TIMER_Config timerCfg1;
extern far MCBSP_Config mcbspCfg0;

extern TIMER_Handle hTimer1;
extern MCBSP_Handle hMcbsp0;

In order to access the predefined handle and configuration objects, the header
file has to be included in the user’s project C file.

/* User’s main .c file */

The following line is mandatory and must be included in the user s C file:

#include <projectcfg.h>

Introduction to the DSP/BIOS Configuration Tool: CSL Tree

7-7Code Composer Studio Chip Support Library Overview

Source file

The source file consists of the Include section, the Declaration section, and the
Body section.

� Include section

The source file has access to the data declared in the header file.

#include <projectcfg.h>

Note: If this line is added before the other csl header files (csl_emif,
csl_timer, ...), you are not required to specify the device number under the
Project option (–dCHIP_6xxxx not required).

� Declaration section:

This section describes the configuration structures and the handle objects
previously defined in the configuration tool.

The values of the registers reflect the options selected through the Proper-
ties pages of each device.

� Body section:

The body is composed of a unique function, CSL_cfgInit(), which will be
called from the user’s C file.

The function CSL_cfgInit() allows you to allocate and configure a device
by calling the Peripheral_open() and Peripheral_config() APIs.

These two functions are generated when the Open and Enable Pre-initiali-
zation options are checked in the Properties page of the related Resource
Manager. An exception to this is when the EMIF handle does not exist.

Note: A device can be allocated without being configured.

8-1

TMS320 DSP Algorithm Standard

This chapter applies to all platforms using Code Composer Studio �

(CCS) IDE. However, not all devices have access to all of the tools discussed
in this chapter. For a complete listing of the tools available to you, see the on-
line help and online documentation provided with CCS IDE.

The TMS320 DSP Algorithm Standard is a key ingredient of eXpressDSP. Its
coding conventions for algorithm writers ultimately eliminate much of the time–
consuming reengineering work required to integrate algorithms into a variety
of applications. It achieves this by defining common programming rules,
guidelines, and interfaces.

The Algorithm Standard enforces known behaviors, requires documentation
of features relevant to integration, and defines interfaces for algorithms to use
to request resources. This facilitates the integration and deployment of algo-
rithms in a variety of systems.

This chapter discusses the TMS320 DSP Algorithm Standard and provides re-
sources for algorithm writers to help them create algorithm interfaces.

For more information on the TMS320 DSP Algorithm Standard, see
Help→Contents→TMS320 DSP Algorithm Standard.

Topic Page

8.1 TMS320 DSP Algorithm Standard 8-2.

8.2 Resources for Algorithm Writers 8-3.

Chapter 8

TMS320 DSP Algorithm Standard

 8-2

8.1 TMS320 DSP Algorithm Standard

Texas Instruments tests algorithms for compliance with the TMS320 DSP Al-
gorithm Standard. Algorithms that pass may use the eXpressDSP-compliant
logo. By using such algorithms, system integrators can avoid bugs that result
from unfounded assumptions by the algorithm about resource availability and
calling context.

Rules and guidelines for writing portable code are provided for the following
DSP platforms:

� TMS320C62x�, C64x�, C67x�

� TMS320C54x�, C55x�

� TMS320C24x�

The TMS320 DSP Algorithm Standard Developer’s Kit included in your CCS
installation contains tools to assist both algorithm producers and consumers.

The Developer’s Kit includes documents, examples, and supplementary APIs.
Example versions are provided to run out of the box on the following platforms:

� C54x simulator

� C62x simulator

� EVM6201

� DSK6211

� DSK5402

Resources for Algorithm Writers

8-3TMS320 DSP Algorithm Standard

8.2 Resources for Algorithm Writers

By following these steps, you generate the files needed to create
eXpressDSP-compliant algorithm interfaces. If you need help while using
these steps in CCS IDE, press F1.

Step 1: Select Tools → Algorithm Standard → Template Code Generator.

The Algorithm Standard Code Generator Window displays.

Resources for Algorithm Writers

 8-4

Step 2: Enter values in the fields.

The Algorithm Name, Vendor Name, and Algorithm Methods fields
are required.

If all required fields are filled, the Build Project button activates.

TIP: When entering this information, do not use semicolons be-
cause the tool adds them automatically.

Step 3: Click Create Template to create your new DSP Algorithm template.

Step 4: Click Build Project.

The Build Progress dialog box and the Output window display.

Step 5: The Algorithm Standard files are generated and placed in the project
specified by the Project Location field.

Step 6: Add the following files to the project:

� alg-create.c and alg_malloc.c

� The object files containing the original vendor algorithm.

� rts[dsp].lib (the DSP-specific run time system library)

� The framework or application containing the main() function.

Resources for Algorithm Writers

8-5TMS320 DSP Algorithm Standard

Step 7: Change the build options (Project→Options) so the ‘Include Search
Path’ contains the following paths – order is important:

� <path for project directory>

� <path for any header files required for original algorithm>

� c:\ti\xdas\include

Step 8: Edit the i<module>.c file.

This file contains the Params structure default values. Fill in each de-
fault value with a reasonable value as the tool puts in zero by default
for each parameter.

Step 9: Rename the <MODULE>_<VENDOR>.c file to <MODULE>_<VEN-
DOR>ialg.c and edit the file.

Step 10: Rename the <MODULE>_<VENDOR>_vtab.c file to <MOD-
ULE>_<VENDOR>ialgvt.c.

Step 11: Add the following function definitions to the bottom of the <MOD-
ULE>_<VENDOR>.h file, before the final #endif statement.

/*
 * ======== <MODULE>_<VENDOR>_init ========
 * Initialize the <MODULE>_<VENDOR> module as a whole.
 */
Void <MODULE>_<VENDOR>_init(Void);

/*
 * ======== <MODULE>_<VENDOR>_exit ========
 * Exit the <MODULE>_<VENDOR> module as a whole.
 */
Void <MODULE>_<VENDOR>_exit(Void);

For information about submitting a product for compliance testing, on the TI
web site go to the DSP Developers’ Village and follow links in the eXpressDSP
Compliance Program box.

Index

Index-1

Index

A

absolute lister 3-7

accessing documentation 1-7

add, new project configuration 2-11

add files to a project 2-4

add new project configuration 2-11

advanced event triggering 4-17
event analysis 4-17
event sequencer 4-17, 4-20

algorithm standard
resources for writers 8-3
using 8-2

API
DSP/BIOS 6-3, 6-11
execution threads 6-11

archiver, described 3-7

assembler
described 3-7
overview 3-8

assembly language tools 3-7
absolute lister 3-7
archiver 3-7
assembler 3-7
cross–reference lister 3-7
hex–conversion utility 3-7
linker 3-7
menemonic–to–algebraic translator utility 3-7

assembly optimizer, described 3-13

automatic tool updates, Update Advisor 1-9

automatic web update, Update Advisor 1-9

B
bookmarks, code window 2-14
breakpoints

hardware 4-5
introduction 4-3
software 4-4
vs. probe points 4-10

build options 3-4
dialog box 3-4

Build Options dialog box 3-4
build program 2-8
build project 2-8
build projects, from the command line 2-11

C
C/C++ code development tools 3-13
C/C++ compiler, described 3-13
CCS versions, Component Manager 1-10
change, active project configuration 2-10
change active project configuration 2-10
Channel Viewer Control, RTDX 6-17
check for tool updates, Update Advisor 1-8, 1-9
Chip Support Library 7-2

DSP/BIOS Configuration Tool 7-3
graphical interface 7-3
header file 7-6
source file 7-7

code, review using the editor 2-13
Code Composer Studio, code generation tools 3-3
Code Composer Studio Tutorial 1-6
code development tools

assembly optimizer 3-13
C++ name demangling utility 3-13
C/C++ 3-13
library–build utility 3-13
run–time–support libraries 3-13

Index

Index-2

code generation tools 3-2
code window

bookmarks 2-14
keyboard shortcuts 2-14
keywords 2-13
selection margin 2-13

CodeMaestro settings 2-14
command line, build projects from 2-11
Command Window 4-25
compiler, overview 3-6 to 3-9
Component Manager 1-10
Configuration, create a 1-3
configuration

add DSP/BIOS files to project 6-7
add new project 2-11
building PBC profile 5-6
change active 2-10
enable PBC profile 5-5
project selection 2-10

Configuration Control, RTDX 6-16
configuration files, DSP/BIOS 6-5
configuration tool, DSP/BIOS 6-3
configure

RTDX graphically 6-14
system for Data Converter 4-30

create a project 2-2
Project Creation wizard 2-2

Create a System Configuration 1-3
cross-reference utility 3-7
CSL

DSP/BIOS Configuration tool 7-3
graphical interface 7-3
header file 7-6
Introduction to 7-2
source file 7-7

CSL (chip support library), benefits of 7-2
CSL Benefits 7-2

D
Data Converter 4-29

configure your system for 4-30
open window 4-29

data flow, RTDX 6-14
debug tools

advanced event triggering 4-17
Command Window 4-25

Data Converter 4-29
emulator analysis 4-16
graphs 4-21
overview 4-2
Pin Connect 4-26
Port Connect 4-27
probe points 4-10
simulator analysis 4-14
symbol browser 4-23
Watch window 4-6

development flow 1-2
Diagnostics Control, RTDX 6-15
documentation, accessing 1-7
DSP Algorithm Standard

resources for writers 8-3
using 8-2

DSP/BIOS
add configuration files to project 6-7
API 6-3, 6-11
configuration tool 6-3
create configuration files 6-5
execution threads 6-11
kernel 6-3, 6-11
Real–time Analysis Tools 6-8
Real–time analysis tools 6-3
RTA 6-3
using 6-2

DSP/BIOS toolbar 6-9

E
editor, review source code 2-13
emulator analysis 4-16
EPROM programmer 3-7
event analysis 4-17
event sequencer 4-17, 4-20
event triggering 4-17

event analysis 4-17
event sequencer 4-17, 4-20

execution threads 6-11
external editor, source code 2-15
external makefile 2-12

F
files

add DSP/BIOS configuraiton to project 6-7
adding to a project 2-4
create DSP/BIOS configuration 6-5

Index

Index-3

G
GEL, general extension language 4-24

graphical interface, CSL 7-3

graphs, displaying 4-21

H
hardware breakpoints 4-5

header file, CSL 7-6

hex conversion utility, described 3-7

I
Import Configuration dialog box 1-3, 1-4

import makefile 2-12

interlist utility, described 3-13

K
kernel, DSP/BIOS 6-3, 6-11

keyboard shortcuts, code window 2-14

keywords, code window 2-13

L
library-build utility, described 3-13

linker
described 3-7
overview 3-9
Visual Linker 3-10

M
makefile

external 2-12
import 2-12

mnemonic–to–algebraic translator utility 3-7

multiple CCS versions, Component Manager 1-10

multiple tool versions, Component Manager 1-10

N
new project

create a 2-2
Project Creation wizard 2-2

O
optimization tools

Profile Based Compiler 5-4
Profiler 5-2

optimizer, described 3-13
overview

assembler 3-8
debug tools 4-2
linker 3-9

P
PBC

building configuration 5-6
finished application outline 5-7
Profile Based Compiler 5-4
profile configuration 5-5

Pin Connect 4-26
Port Connect 4-27
probe points 4-10

vs. breakpoints 4-10
Profile Based Compiler

building configuration 5-6
finished application outline 5-7
PBC 5-4
profile configuration 5-5

Profile session 5-2
Profiler 5-2
program

build 2-8
run 2-8

project
add DSP/BIOS configuration files 6-7
adding files 2-4
build 2-8
create a 2-2
Project Creation wizard 2-2

project configuration
add new 2-11
change active 2-10
selecting 2-10

Index

Index-4

Project Creation wizard 2-2
project run 2-8
projects, build from the command line 2-11

R
Real–time analysis tools, DSP/BIOS 6-3, 6-8
real–time component, DSP/BIOS 6-2
real–time components, RTDX 6-13
real–time data exchange, RTDX 6-13
resources for algorithm writers 8-3
RTA, DSP/BIOS 6-3
RTDX

Channel Viewer Control 6-17
Configuration Control 6-16
configure graphically 6-14
data flow 6-14
Diagnostics Control 6-15
real–time data exchange 6-13
transmit data from host 6-19
transmit integer to host 6-18
using 6-13

run program 2-8
run project 2-8
runtime-support, library, described 3-13

S
select

configuration 2-10
project configuration 2-10

select a project configuration 2-10
selection margin, code window 2-13
session, for the Profiler 5-2
shell program, described 3-13
simulator analysis 4-14

user options 4-14
software breakpoints 4-4
source code

external editor 2-15
review 2-13

Source Control 2-6
pop–up menu 2-7

source file, CSL 7-7

symbol browser 4-23
System Configuration, Create a 1-3
system configuration, for Data Converter 4-30

T
threads, execution 6-11
TMS320 DSP Algorithm Standard

resources for writers 8-3
using 8-2

tool updates, Update Advisor 1-8, 1-9
tool versions, Component Manager 1-10
toolbar, DSP/BIOS 6-9
tools

assembly language 3-7
code generation 3-2
compiler 3-6

translator utility, mnemonic–to–algebraic 3-7
transmit data from host, RTDX 6-19
transmit integer to host, RTDX 6-18
tutorial 1-6

U
Update Advisor 1-8

check for tool updates 1-8, 1-9
use Source Control 2-6

pop–up menu 2-7
using

DSP/BIOS 6-2
RTDX 6-13
TMS320 DSP Algorithm Standard 8-2

V
Visual Linker 3-10

getting started 3-10

W
Watch window 4-6

display 4-6
toolbar 4-6

web updates, Update Advisor 1-8, 1-9

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Related Documentation
	Trademarks
	To Help Us Improve Our Documentation . . .

	Contents
	Figures
	GettingStartedwith CodeComposerStudioIDE
	Development Flow
	Creating a System Configuration
	Getting Started with CCS Tutorial
	Accessing CCS Documentation
	Accessing Documentation from the Start Menu

	Update Advisor
	To Check for Tool Updates
	To Uninstall the Updates
	To Automatically Check for Tool Updates

	Component Manager
	Opening Component Manager
	Multiple Versions of the CCS IDE

	CodeComposerStudio ProjectManagementandEditingTools
	Creating a New Project
	Adding Files to a Project
	Using Source Control
	Building and Running the Program
	Selecting a Project Configuration
	Change the Active Project Configuration
	Add a New Project Configuration

	Building Projects From the Command Line
	Importing an External Makefile
	Limitations and Restrictions

	Reviewing Your Source Code Using the Editor
	CodeMaestro Settings
	External Editor

	CodeComposerStudio CodeGenerationTools
	Code Generation Tools
	Code Generation Tools and Code Composer Studio
	Build Options
	Set Project Level Options
	Set File-Specific Options

	Compiler Overview
	Interfacing with Code Composer Studio
	Compiler shell program
	Flexible assembly language interface

	Assembly Language Development Tools
	Assembler Overview
	Linker Overview
	Visual Linker
	Getting Started with the Visual LInker

	C/C++ Code Development Tools

	CodeComposerStudioDebugTools
	Overview of Applicable Debug Tools
	Introduction to Breakpoints
	Software Breakpoints
	Hardware Breakpoints

	Watch Window
	Probe Points
	Simulator Analysis
	Emulator Analysis
	Advanced Event Triggering
	Event Analysis
	Event Sequencer

	Displaying Graphs
	Symbol Browser
	General Extension Language (GEL)
	Command Window
	Pin Connect
	Port Connect
	Data Converter
	Open the Data Converter Support Window
	Configure Your System to Use the Data Converter Plug-in

	CodeComposerStudioOptimizationTools
	Profiler
	Profile Based Compiler (PBC)
	Enabling Profile Configurations
	Building Profile Configurations

	CodeComposer Studio Real-time Kernel and Analysis
	DSP/BIOS Kernel
	DSP/BIOS Configuration Tool
	Creating DSP/BIOS Configuration Files
	Adding DSP/BIOS Configuration files to your project
	DSP/BIOS Real-time Analysis Tools
	DSP/BIOS Kernel
	Execution Threads

	RTDX Technology
	RTDX Data Flow
	Configuring RTDX Graphically
	Configuration Control
	Channel Viewer Control

	Transmit a Single Integer to the Host
	Transmit Data from the Host to the Target

	CodeComposerStudio ChipSupportLibraryOverview
	Introduction to CSL
	How the CSL Benefits You
	Standard Protocol to Program Peripherals
	Basic Resource Management
	Symbol Peripheral Descriptions

	Introduction to the DSP/BIOS Configuration Tool: CSL Tree
	Header file
	Source file
	Include section
	Declaration section:
	Body section:

	TMS320DSPAlgorithmStandard
	TMS320 DSP Algorithm Standard
	Resources for Algorithm Writers

	Index

