
C55x
Instruction Set Simulator

User’s Guide

Literature Number: SPRU517
June 2001

Printed on Recycled Paper

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with
TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary
to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except
those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
products or services might be or are used. TI’s publication of information regarding any third party’s products
or services does not constitute TI’s approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation
or reproduction of this information with alteration voids all warranties provided for an associated TI product or
service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI’s products or services with statements different from or beyond the parameters stated by TI for
that product or service voids all express and any implied warranties for the associated TI product or service,
is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright  2001, Texas Instruments Incorporated

 Notational Conventions

iii Read This First

Preface

Read This First

About This Manual

This document is the user’s guide for the TMS320C55x instruction set
simulator, available within Code Composer Studio. This document describes
the basic capabilities of the simulator and the features provided for configuring
the it.

How to Use This Manual

This document contains the following chapters:

Chapter 1 discusses two simulation drivers that are available to simulate C55x
DSP CPU and subsystems. This chapter also describes the capabilities and
limitations of each driver.

Chapter 2 contains information on how to change stack configuration and also
the differences related to C54x-compatible mode.

Chapter 3 discusses the importing and custom memory configuration setups.

Notational Conventions

This document uses the following conventions.

� Program listings, program examples, and interactive displays are shown
in a special typeface similar to a typewriter’s. Examples use a bold
version of the special typeface for emphasis; interactive displays use a
bold version of the special typeface to distinguish commands that you
enter from items that the system displays (such as prompts, command
output, error messages, etc.).

Here is a sample program listing:

0011 0005 0001 .field 1, 2
0012 0005 0003 .field 3, 4
0013 0005 0006 .field 6, 3
0014 0006 .even

Notational Conventions

iv

Here is an example of a system prompt and a command that you might
enter:

C: csr –a /user/ti/simuboard/utilities

� In syntax descriptions, the instruction, command, or directive is in a bold
typeface font and parameters are in an italic typeface. Portions of a syntax
that are in bold should be entered as shown; portions of a syntax that are
in italics describe the type of information that should be entered. Here is
an example of a directive syntax:

.sect ” section name”

.sect is the directive. This directive has one parameter, indicated by
section name. When you use .sect, the first parameter must be a section
name, enclosed in double quotes.

� Square brackets ([and]) identify an optional parameter. If you use an
optional parameter, you specify the information within the brackets; you
don’t enter the brackets themselves. Here’s an example of an instruction
that has an optional parameter:

ADD [src,] dst

The ADD instruction has two parameters. The first parameter, src, is
optional. The second parameter, dst, is required. As this syntax shows, if
you use the optional first parameter, you must add a comma before the
second parameter.

� Braces ({ and }) indicate a list. The symbol | (read as or) separates items
within the list. Here’s an example of a list:

{ * | *+ | *– }

This provides three choices: * , *+ , or *– .

Unless the list is enclosed in square brackets, you must choose one item
from the list.

� Some directives can have a varying number of parameters. For example,
the .byte directive can have up to 100 parameters. The syntax for this
directive is:

.byte value1 [, ... , valuen]

This syntax shows that .byte must have at least one value parameter, but
you have the option of supplying additional value parameters, separated
by commas.

 Related Documentation From Texas Instruments/Trademarks

v Read This First

Related Documentation From Texas Instruments

The following books describe the TMS320C55x devices and related support
tools.

TMS320C55x Optimizing C/C++ Compiler User’s Guide (literature number
SPRU281) describes the C55x C/C++ compiler. This compiler accepts
ANSI standard C/C++ source code and produces assembly language
source code for the TMS320C55x device.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x devices.

TMS320C55x DSP CPU Reference Guide (literature number SPRU371)
describes the architecture, registers, and operation of the CPU for the
TMS320C55x digital signal processors (DSPs). This book also
describes how to make individual portions of the DSP inactive to save
power.

TMS320C55x DSP Mnemonic Instruction Set Reference Guide (literature
number SPRU374) describes the TMS320C55x DSP mnemonic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the algebraic
instruction set.

TMS320C55x DSP Algebraic Instruction Set Reference Guide (literature
number SPRU375) describes the TMS320C55x DSP algebraic
instructions individually. Also includes a summary of the instruction set,
a list of the instruction opcodes, and a cross-reference to the mnemonic
instruction set.

Code Composer User’s Guide (literature number SPRU328) explains how to
use the Code Composer development environment to build and debug
embedded real-time DSP applications.

Trademarks

TMS320C55x and Code Composer Studio are trademarks of Texas
Instruments.

If You Need Assistance

vi

If You Need Assistance. . .

If you want to. . . Do this. . .

Request more information about
Texas Instruments Digital Signal
Processing (DSP) products

Call the CRC† hotline:
(800) 336–5236

Or write to:
Texas Instruments Incorporated
Market Communications Manager, MS 736
P.O. Box 1443
Houston, Texas 77251–1443

Order Texas Instruments docu-
mentation

Call the CRC† hotline:
(800) 336–5236

Ask questions about product op-
eration or report suspected prob-
lems

Call the DSP hotline:
(713) 274–2320

Report mistakes in this document
or any other TI documentation

Fill out and return the reader response card at
the end of this book, or send your comments
to:
Texas Instruments Incorporated
Technical Publications Manager, MS 702
P.O. Box 1443
Houston, Texas 77251–1443

† Texas Instruments Customer Response Center

 Running Title—Attribute Reference

vii Chapter Title—Attribute Reference

Contents

1 Simulator Features and Limitations 1-1.
1.1 C55x CPU and Memory System Simulation Capabilities 1-2.

1.1.1 Functional Capabilities 1-2.
1.1.2 Functional Timer Support 1-3.
1.1.3 RTDX Support 1-3.
1.1.4 Limitations 1-3.

1.2 C5510 Device Simulation Capabilities 1-4.
1.2.1 C55x CPU 1-4.
1.2.2 Internal Memory Subsystem 1-4.
1.2.3 External Memory Interface and Subsystem 1-4.
1.2.4 I-Cache (Instruction Cache) 1-5.
1.2.5 DMA Controller 1-5.
1.2.6 Peripheral Bus Controller 1-6.
1.2.7 Timer 1-6.
1.2.8 Multi-channel Buffered Serial Ports 1-6.
1.2.9 Simulating Enhanced Host Port Interface 1-7.
1.2.10 Modules Not Supported 1-10.
1.2.11 Other Limitations 1-10.
1.2.12 RTDX Support 1-11.

1.3 Pipeline Effect on Blue-Bar Movement 1-12.
1.4 Using the Profiler to Measure Stall Cycles 1-13.
1.5 Pipeline Stall Summary Report 1-15.

2 General Tips for Simulation 2-1.
2.1 Changing Stack Configuration 2-2.
2.2 C54x-Compatible Mode Operation 2-3.

3 Simulator Configuration File Setup 3-1.
3.1 Specifying a Simulator Configuration 3-2.
3.2 Creating a Memory Map 3-4.
3.3 Limitations of Memory System Configuration 3-7.

Running Title—Attribute Reference

viii

Figures

1–1 Example Input File for Non-Multiplex Mode 1-9.
1–2 Example Input File for Multiplex Mode 1-9.
1–3 Pipeline Stall Summary Report Example 1-15.
3–1 Example Memory Map 3-5.
3–2 Example C5510 Simulator Configuration File 3-6.

1-1

Simulator Features and Limitations

This chapter discusses two simulation drivers that are available to simulate the
C55x CPU and its subsystems. This chapter also describes the capabilities
and limitations of each driver.

Topic Page

1.1 C55x DSP CPU and Memory System Simulation Capabilities
(TISimC55x) 1-2.

1.2 C5510 Device Simulation Capabilities (TISimC5510) 1-4.

1.3 Pipeline Effect on Blue-Bar Movement 1-12.

Chapter 1

C55x CPU and Memory System Simulation Capabilities

 1-2

1.1 C55x CPU and Memory System Simulation Capabilities

1.1.1 Functional Capabilities

The simulator’s functional capabilities are listed below.

� C55x CPU full instruction set architecture execution (except emulation in-
structions and IDLE instruction). For more information, see the
TMS320C55x DSP CPU Reference Guide and the TMS320C55x DSP
Instruction Set Reference Guides.

� Parallel instruction execution

� Configurable memory system simulation

� If the memory configuration is not provided, a flat memory system
(memory with no latency, no DARAM/SARAM) is used as a default.

� Program/data memory with latency is supported.

� If the memory map is provided in a configuration file, the driver uses
the cycle accurate memory system (SARAM/DARAM). Support of
SARAM and DARAM memory models follow the C55x memory
protocol and access priorities. To use the memory system, you must
set up the configuration file accordingly (see Chapter 3).

� If a hole exists in the memory map, access to an unmapped location
generates a bus error, and it is flagged in 8th bit of IFR1 register
(INT24).

� The estop_1 instruction can be used in your code as a software breakpoint
in addition to simulator breakpoints.

� The Port Connect tool supports external peripheral simulation (in I/O
memory). For more information on Port Connect, select Help–>Contents
in Code Composer Studio. Port Connect online help is listed in the
Contents pane.

Port Connect is supported only for I/O accesses from 0x0 to 0xFFFF.

However, two functional timer modules are simulated at I/O memory
ranges 0x1000 to 0x13FF and 0x2400 to 0x27FF. Port connect is not sup-
ported within these ranges.

� The Pin Connect tool supports external interrupt simulation. The following
interrupts pins are supported: NMI, SINT2, SINT3 … SINT24. For more
information on Pin Connect, select Help–>Contents in Code Composer
Studio. Pin Connect online help is listed in the Contents pane.

Note that SIN24 and SINT22 are not supported because internal timers
use them.

C55x CPU and Memory System Simulation Capabilities

1-3Simulator Features and Limitations

� The simulator driver includes I/O memory (a placeholder for peripherals)
that supports word reads/writes. This functionality can be used for general
access and storage.

I/O memory is supported for I/O accesses from 0x0 to 0xFFFF.

However, two functional timer modules are simulated at I/O memory
ranges 0x1000 to 0x13FF and 0x2400 to 0x27FF. I/O memory accesses
not supported within these ranges.

� When the CPU is writing to an I/O address, the simulator first checks if
there is a file connected to that address. The write happens to the file and
also in the I/O memory. During the reading of I/O space, the simulator first
checks if there is a file connected to that address and reads from there.
If there is no file, then the simulator reads from the I/O memory.

� CPU internal registers are visible in the Code Composer Studio Register
window. For more information, see the Code Composer Studio online
help.

1.1.2 Functional Timer Support

Timer support includes the following:

� Setting up timer registers

� Count down and generation of interrupts

� Timer 0 generates SINT4 and Timer 1 generates SINT22

For more information on the timers, see the TMS320C55x DSP Peripherals
Reference Guide.

1.1.3 RTDX Support

RTDX� support includes the following:

� Host-target and target-host communication

� Both small and large memory models are supported

1.1.4 Limitations

The simulator has the following limitations:

� Port Connect is not supported for Data Memory.

� There is no Pin Connect support on Timer input pins.

� Memory map creation and deletion is not supported via the Code
Composer Studio menu. However, you can configure the memory system
in the simulator configuration file by following the correct syntax.

C5510 Device Simulation Capabilities

 1-4

1.2 C5510 Device Simulation Capabilities

The simulator supports several components as they are defined in the C5510
device specification. Capabilities and limitations of each module are listed in
the following sections.

1.2.1 C55x CPU

For detailed information on the supported C55x CPU features, see Section
1.1.1, Functional Capabilities, on page 1-2.

1.2.2 Internal Memory Subsystem

The features and limitations are listed below:

� Internal memory interface supports interfacing with SARAM and DARAM
models. Note that PDROM is not supported. By default, an SARAM bank
of the same size is mapped to the ROM space.

� SARAM and DARAM memory models are supported according to the
C55x memory protocol and access priorities. To use the memory system,
you must set up the configuration file accordingly (see Chapter 3).

� Support of memory stalls due to slow program memory (memory with
latency) and access conflicts in SARAM and DARAM. Refer to the C5510
configuration file setting to learn more about the C5510 memory map.

� If a hole exists in the memory map, access to an unmapped location
generates a bus error and it is flagged in the 8th bit of IFR1 register (INT24).

� Controlling of the memory map using the MPNMC bit is not supported.

1.2.3 External Memory Interface and Subsystem

For details on the EMIF features, see the TMS320C55x DSP Peripherals
Reference Guide.

For simulation:

� Three types of memory are available that can be configured as external
memory: asynchronous 32 bit, asynchronous 16 bit, and 32 bit SBSRAM.

� The type of memory attached is determined by the programming of CE
(Chip Enable) space register in the EMIF. Keep the memory type as
EXTERNAL in the configuration file (see Chapter 3).

� If a hole exists in the memory map, then the CPU access generates a bus
error and it is flagged in 8th bit of IFR1 register.

C5510 Device Simulation Capabilities

1-5Simulator Features and Limitations

The limitations are listed below:

� Asynchronous 8 bit memory is not supported.

� SDRAM interface in EMIF is not supported.

� Posted write in EMIF is not supported.

� Minimum 2-cycle strobe period is needed for the asynchronous memory
interface.

1.2.4 I-Cache (Instruction Cache)

For details on the I-cache features, see the TMS320C55x DSP Peripherals
Reference Guide.

For simulation:

� To enable the I-cache, set bit 14 of ST3 to 1. Reset it to zero to disable the
I-cache.

� By default, none of the I-cache banks are enabled.

� Program the I-CACHE registers to configure the I-cache and enable re-
spective banks of the I-cache.

The limitations are listed below:

� I-cache flushing is not supported.

� The two-way I-cache bank is not supported.

1.2.5 DMA Controller

For details on the DMA Controller features, see the TMS320C55x DSP
Peripherals Reference Guide.

The limitations are listed below:

� Burst transfer of 8 elements is not supported.

C5510 Device Simulation Capabilities

 1-6

1.2.6 Peripheral Bus Controller

For details on the Peripheral Bus Controller features, see the TMS320C55x
DSP Peripherals Reference Guide.

The peripheral registers can be viewed in the I/O memory space. The start
addresses for the peripherals are:

Peripheral bus controller 0x0000

External memory interface 0x0800

DMA configuration register 0x0C00

Timer registers 0x1000
0x2400

McBSP 0x2800
0x2C00
0x3000

Note that File Connect (Port Connect) via I/O port or I/O memory access is not
supported at the above address spaces.

The limitations are listed below:

� IDLE/Wakeup functionality is not supported.

1.2.7 Timer

For details on the timer features, see the TMS320C55x DSP Peripherals Ref-
erence Guide.

The limitations are listed below:

� Timer input/output pins are not supported.

1.2.8 Multi-channel Buffered Serial Ports

For details on the McBSP features, see the TMS320C55x DSP Peripherals
Reference Guide.

For simulation:

� File Connect (Port Connect) is supported for the simulation of McBSP
receive and transmit functionality.

� For the receive functionality, you must attach a file at address 0x4801,
0x2C01, 0x3001 (DRR1 for three McBSPs).

� For the transmit functionality, you must attach a file at address
0x4803, 0x2C03, 0x3003 (DXR1 for three McBSPs).

C5510 Device Simulation Capabilities

1-7Simulator Features and Limitations

The limitations are listed below:

� For the receive/transmit functionality, it is assumed that the clocks are
synchronized.

� Only internal clock (CPU clock) synchronization is supported.

1.2.9 Simulating Enhanced Host Port Interface

The C5510 simulator provides support for the simulation of enhanced host port
interfaces (EHPI). This simulation is performed using files that specify the
values of control signals and the corresponding address and data values.

When simulating EHPI, two files are associated with EHPI. The input file
specifies the commands from host, and the output file stores output data to the
host. The output file is named host.out. The name of this file cannot be
changed.

1.2.9.1 Setting Up the Input Command File

To simulate EHPI, you must first create an input command file that lists the
EHPI commands with their corresponding data and/or address. The format for
this file is:

{

Command1;
Command2;

}

Commands use the following format:

Command clock_cycle [address] [data];

� Each command must be on a new line and the line must not contain any-
thing else.

� To specify comments, use a hash (#) as the first character in the line

� The clock_cycle parameter specifies the DSP clock cycle in which the host
applies the request to EHPI.

� The address parameter represents a 16-bit address field for multiplexed
mode and 20-bit address field for non-multiplexed mode.

� The data parameter represents a 16-bit data field.

� The command specifies the type of operation requested by the host, and
can be any of the following commands shown in Table 1–1.

C5510 Device Simulation Capabilities

 1-8

Table 1–1. Operation Commands

Commands for Non-Multiplexed Mode Syntax

WRITEMEM (data write) is a command for the non-
multiplexed mode of operation. This command writes
the specified data word at the specified address.

WRITEMEM clock_cycle address data

READMEM (data read) is a command for the non-mul-
tiplexed mode of operation. This command reads the
data word at the specified address.

READMEM clock_cycle address

Commands for Multiplexed Mode Syntax

WRITEHPIA (hpia write) is a command for the multi-
plexed mode of operation. This command writes the
specified address to the HPIA register of EHPI.

WRITEHPIA clock_cycle address

WRITEHPID (hpid write) is a command for the multi-
plexed mode of operation. This command writes
specified data at the address specified in the HPIA
register.

WRITEHPID clock_cycle data

WRITEHPIDAUTOINC (hpid write autoinc) is a com-
mand for the multiplexed mode of operation. This
command writes specified data at the address
specified in the HPIA register. HPIA is then post
incremented.

WRITEHPIDAUTOINC clock_cycle data

READHPID (hpid read) is a command for the multi-
plexed mode of operation. This command reads data
at the address specified in the HPIA register.

READHPID clock_cycle

READHPIDAUTOINC (hpid read autoinc) is a com-
mand for the multiplexed mode of operation. This
command reads data at the address specified in the
HPIA register. HPIA is post incremented.

READHPIDAUTOINC clock_cycle

READHPIC (hpic read) is a command for the multi-
plexed mode of operation. This command reads value
from the HPIC register.

READHPIC clock_cycle

WRITEHPIC (hpic write) is a command for the multi-
plexed mode of operation. This command writes
specified data value to the HPIC register.

WRITEHPIC clock_cycle data

C5510 Device Simulation Capabilities

1-9Simulator Features and Limitations

Figure 1–1 and Figure 1–2 show sample input file examples.

Figure 1–1. Example Input File for Non-Multiplex Mode

 {
WriteMem 10 0x11020 0x1234;
ReadMem 25 0x11020;
WriteMem 40 0x11021 0x4321;
ReadMem 55 0x11021;
WriteMem 70 0x11022 0xabcd;
ReadMem 85 0x11022;
WriteMem 100 0x11023 0xbcda;
ReadMem 125 0x11023;
WriteMem 140 0x11024 0x5612;
WriteMem 160 0x11025 0x64cd;
WriteMem 180 0x11026 0xac72;
ReadMem 215 0x11024;
ReadMem 230 0x11025;
ReadMem 245 0x11026;

 }

Figure 1–2. Example Input File for Multiplex Mode

 {
WriteHpia 10 0x11020;
WriteHpidAutoinc 25 0xabcd;
WriteHpidAutoinc 40 0x1342;
WriteHpidAutoinc 60 0x6ca3;
WriteHpid 80 0x15b2;
WriteHpia 100 0x11020;
ReadHpidAutoinc 120;
ReadHpidAutoinc 160;
ReadHpidAutoinc 200;

 }

1.2.9.2 Connecting the Input Command File to the Interrupt Pin

To connect your input file to the interrupt pin, you can either use the Pin
Connect tool or the Command Window tool in Code Composer Studio.

To use the Pin Connect tool:

1) From the Tools menu, select Pin Connect.

2) From the list of available pins, select HPI.

3) Connect the file.

C5510 Device Simulation Capabilities

 1-10

To use the Command Window tool:

1) From the Tools menu, select Command Window.

2) In the Command Window, enter the following command:

pinc HPI, filename

1.2.9.3 Limitations

The limitations are listed below:

� The host can access only internal SARAM.

� The command file must be connected before the execution of program
begins.

� A gap of approximately 15 cycles (DSP cycles) must exist between two
consecutive host commands to ensure correct operation.

1.2.10 Modules Not Supported

The following modules are not supported:

� ROM model

� GP I/Os

� Clock PLL

� Hardware accelerator modules

1.2.11 Other Limitations

The simulator has the following limitations:

� Port Connect is not supported for Data Memory.

� There is no Pin Connect support on Timer input pins.

� Memory map creation and deletion is not supported via the Code
Composer Studio menu. However, you can configure the memory system
in the simulator configuration file by following the correct syntax.

C5510 Device Simulation Capabilities

1-11Simulator Features and Limitations

1.2.12 RTDX Support

RTDX support includes the following:

� Host-target and target-host communication is supported.

� Both small and large memory models are supported.

Pipeline Effect on Blue-Bar Movement

 1-12

1.3 Pipeline Effect on Blue-Bar Movement

The C55x DSP has the following pipeline stages:

� Decode

� Address

� Access1

� Access2

� Read

� Execute

� Memory Write

The memory write phase is activated only for those instructions where memory
writes or memory-mapped register writes occur. In Code Composer Studio’s
Disassembly window, the PC (blue-bar/arrow) indicates the instruction about
to be executed. This is the instruction at the end of the Read phase of the
pipeline. A step command at this point would execute the instruction at the blue
bar and continue until the end of the Read phase of the next instruction in the
pipeline.

Some C55x instructions complete their operation in the Address phase of the
pipeline. These instructions include those that modify address registers, load
repeat counters, etc. When the PC indicator reaches one of these instructions,
the results are already available. Thus, the new value of the modified registers
can be seen in Code Composer Studio’s CPU Register window.

In most cases, the PC indicator moves one instruction at a time with every step
command. However, the following cases are exceptions:

� A memory write instruction followed by a non-memory instruction

In this case, the first instruction (the memory write) finishes operation in
the Memory Write phase while the second instruction (a non-memory
instruction) finishes operation in the Execute phase. Since they are pipe-
lined, both instructions effectively finish operation at the same clock cycle.
If the PC indicator is at the first instruction, one step command will finish
operation of both instructions. The PC indicator will then jump to the third
instruction in the Disassembly window. This may be a little confusing.
However, if necessary, you can set a breakpoint in the second instruction
and stop just before the execution.

� PC discontinuity instruction

Since PC discontinuity instructions have different operation latencies, the
PC indicator might skip one instruction and jump to another.

Using the Profiler to Measure Stall Cycles

1-13Simulator Features and Limitations

1.4 Using the Profiler to Measure Stall Cycles

The Code Composer Studio profiler can be used to profile the following events
in the simulator:

� Number of clock cycles executed in a range or a function (as selected)

� Number of pipeline stall cycles due to register or memory conflicts
occurring in a range or a function (as selected)

� Number of pipeline stall cycles due to slow data memory operations
occurring in a range or a function (as selected)

� Number of pipeline stall cycles due to a pre-fetch operation in a range or
a function (as selected)

To profile events, open the Clock Setup window. From the Profiler menu, select
Clock Setup.

In the Clock Setup window, in the Count field, select one of the four options:

� CPU cycles

� Pipeline Protection stalls

� Memory stalls

� Pre-fetch stalls

After completing the clock setup, you must enable and view the clock. From
the Profiler menu, select View Clock. The clock window appears.

Using the Profiler to Measure Stall Cycles

 1-14

Now when you step or run through the program code, the clock count will
indicate the number of cycles selected in the clock setup process.

Pipeline Stall Summary Report

1-15Simulator Features and Limitations

1.5 Pipeline Stall Summary Report

The C55x simulator supports a pipeline stall summary report, which indicates
number of pipeline stalls in the whole application or in the code that has been
executed. This report is a text file with the name C55x_stall.report. It is created
in the driver directory. An example of the stall report is shown in Figure 1–3.

Figure 1–3. Pipeline Stall Summary Report Example

###
Pipeline stalls report
###
Address Instruction PPU Memory Memory PF/PPU Total
 Stalls Read stalls Write stalls Stalls Stalls
###
 0x23456 AMOV #234,AR1 3 0 0 0 3
 0xa152f OR #16640,mmap(ST1_55) 2 0 0 0 2
 0x76878 MOV *AR2+,AR0 4 2 0 0 6
 0x98764 MOV AR0,*AR2 0 0 2 3 5
##
Total stall cycles 9 2 2 3 16

In the example above, instruction MOV *AR2+,AR0 stalls for 4 cycles fo regis-
ter conflicts and then stalls for 2 cycles for reading the memory location pointed
to by *AR2. Instruction MOV AR0, *AR2 stalls in the decode phase for 3 cycles
due to pre-fetch/PPU and then stalls for 2 cycles due to memory write.

Note that the PF/PPU stall is really the sum of the decode stalls due to pipeline
protection stalls in the execution pipeline and the decode stalls due to pre-
fetch. So, in some cases, an instruction can be detected and traced. However,
in other cases, if the instruction has not been pre-decoded, it will not be
possible to show the name of the instruction while tracing a decode stall. The
total indicates the total stall (dead) cycles in the execution of the program.

2-1General Tips for Simulation

General�Tips�for�Simulation

This chapter contains information on how to change the stack configuration.
It also describes the simulator functionality differences in C54x-compatible
mode.

Topic Page

2.1 Changing Stack Configuration 2-2.

2.2 C54x-Compatible Mode Operation 2-3.

Chapter 2

Changing Stack Configuration

 2-2

2.1 Changing Stack Configuration

C55x supports the following three modes of stack operation:

� 2x16 bit memory + register stack (fast return through RETA)

� 2x16 bit memory stack (slow return via memory)

� 32-bit memory stack (slow return via memory)

To change the stack mode, you must modify the configuration register, which
resides at the first 4 bits of the reset vector. At reset, the C55x ignores the first
8 bits of the reset vector, pushes the lower 24 bits to the program counter, and
executes. By default, the stack mode is the 32-bit stack with slow return.

To change the stack mode, perform the following steps in the debugger:

1) Load the program with the default stack configuration.

2) Modify the first 4 bits of the reset vector residing at 0xFFFF00 (program
space) to the desired value. For example, to change from 32-bit stack
mode to 16-bit register and memory stack mode, change the first 4 bits of
the reset vector from 0110 (default) to 0000 (fast return with RETA).

3) Perform a reset through the debugger.

4) Step into the program and start executing. The new stack configuration will
be in effect from this point on.

You must step into the program after reset. If you perform a restart
immediately after reset instead of stepping into the program, the new stack
configuration will not be in effect. The restart forces the PC to the start
address without decoding the delay slot instruction.

Alternatively, you can use a memory store instruction to modify the first 4 bits
of the reset vector and execute a software reset instruction. This will have the
same effect as described above.

For more information on the different stack modes, please refer to the
TMS320C55x DSP CPU Reference Guide.

C54x-Compatible Mode Operation

2-3General Tips for Simulation

2.2 C54x-Compatible Mode Operation

The C55x DSP simulator behaves in C54x-compatible mode (the reset value
of the C54CM bit is 1). Because the simulator operates in this mode, you
should be aware of the following functionality differences:

� Indirect addressing

� Indirect addressing uses the ARx register in place of DRx register for
*(ARx +/– DRx) expressions.

� Circular addressing always uses the BK03 for block-size calculation.

� Repeat loop

� In C54x-compatible mode, the simulator supports only 1 level of hard-
ware repeat loops. In the case of nested repeats, BRC0/RSA0/REA0
registers will be used even for inner loops. Therefore, you must save
and restore these registers before the start of nested loops.

� You can terminate or activate blockrepeat (and localrepeat) by setting
the BRAF bit (ST1_55 register, bit #15) to 0 or 1 via a bit clear or set
instruction. The BRAF bit is only visible in C54x-compatible mode.

� ASM compatibility

� The lower 5 bits of the DR2 register are mirrored in the lower 5 bits of
the ST1_55 register.

� far() qualifier

� The use of the far() qualifier with call ACx and goto ACx instructions
enables the use of only the 16-bit user stack (similar to C54x). This
qualifier is activated only in C54x-compatible mode and will be avail-
able for the ported code.

3-1Simulator Configuration File Setup

Simulator�Configuration File Setup

This chapter discusses the syntax of the C55x simulator configuration file and
how it can be used to configure memory subsystems.

Topic Page

3.1 Specifying a Simulator Configuration 3-2.

3.2 Creating a Memory Map 3-4.

3.3 Limitations of Memory System Configuration 3-7.

Chapter 3

Specifying a Simulator Configuration

 3-2

3.1 Specifying a Simulator Configuration

Code Composer Studio’s default simulator configuration is the C55x CPU-only
simulator. It is not necessary to run CCS Setup to use the default simulator
configuration.

To use the C5510 simulator configuration, open the CCS Setup tool. In the
Import Configuration dialog, in the Available Configurations field, select C5510
Simulator. Click the Import button to add this simulator to the System
Configuration.

To use a modified simulator configuration file, specify the file in the Board
Properties dialog of CCS Setup:

1) In the Available Board/Simulator Types pane, select the simulator that
represents your system.

2) Double-click on the simulator device driver in the Available Board/
Simulator Types pane.

3) Click the Board Properties tab. Use the Browse button to locate and
specify the simulator configuration file.

Specifying a Simulator Configuration

3-3Simulator Configuration File Setup

4) After specifying the simulator configuration file, click Next. On the Startup
Gel File(s) page, click Finish. Save your setup. This file will be used for
simulation. Note that this simulator configuration file is loaded every time
you perform a reset operation.

Creating a Memory Map

 3-4

3.2 Creating a Memory Map

This section describes the syntax of the C55x simulator configuration file and
how it can be used to configure memory subsystems.

The memory map can be specified in the simulator configuration file. The
following types of memory are supported:

� SARAM (Single Access RAM). Only one read/write can be done per cycle.

� DARAM (Dual Access RAM). Two reads/writes can be done per cycle.

� EXTERNAL. External memory is handled through EMIF. (Only available
in the C5510 simulator.)

The memory map syntax is described below:

MEMORY_MAP
{
 #Bank Type BankName Start Address Bank Size Page Latency

 (type name addr size page latency)
 (...)
}

type names the type of memory bank. It can be one of three: SARAM,
DARAM, or EXTERNAL.

name is a user-defined tag used to distinguish different memory banks
of the same type. For example, SARAM4, ASYNC32, etc.

addr specifies the starting address (in hex) of the memory bank in the
C55x memory address range (0x000000 to 0xFFFFFF).

size specifies the size (in hex) of the memory bank. The size can be
from 0x0 to 0xFFFFFF, depending on the start address.

page names the memory page. This field is currently unused and
should contain a zero (0).

latency specifies the number of wait states. This field can contain 0 or 1.
A latency of 1 signifies that the instruction having a read request
in cycle n will receive its data in cycle n+3. A latency of 0 signifies
that the instruction having a read request in cycle n will receive
its data in cycle n+2.

Creating a Memory Map

3-5Simulator Configuration File Setup

An example memory map is shown in Figure 3–1.

Figure 3–1. Example Memory Map

MEMORY_MAP
{
#Bank Type BankName Start Address Bank Size Page Latency
(SARAM SARAM0 0x0 0x4000 0 0)
(SARAM SARAM1 0x4000 0x4000 0 0)
(DARAM DARAM1 0x8000 0x4000 0 0)
(DARAM DARAM2 0xc000 0x4000 0 0)
(SARAM SARAM2 0x10000 0xfe0000 0 1)
(EXTRENAL SARAM 0xff0000 0x100ff 0 0)
}

The C5510 has a fixed memory map for the internal memory. Only the external
memory can be configured.

The internal memory consists of 8 banks of DARAM (8KB each) and 32 banks
of SARAM (8KB each)

Note that since no ROM model is available, the configuration uses a SARAM
in place of ROM so that the reset vector is mapped into internal memory.

An example of the C5510 configuration file is shown in Figure 3–2.

Creating a Memory Map

 3-6

Figure 3–2. Example C5510 Simulator Configuration File

MEMORY_MAP
{

#Bank Type BankName Start Address Bank Size Page Latency
(DARAM DARAM0 0x000000 0x2000 0 0)
(DARAM DARAM1 0x002000 0x2000 0 0)
(DARAM DARAM2 0x004000 0x2000 0 0)
(DARAM DARAM3 0x006000 0x2000 0 0)
(DARAM DARAM4 0x008000 0x2000 0 0)
(DARAM DARAM5 0x00a000 0x2000 0 0)
(DARAM DARAM6 0x00c000 0x2000 0 0)
(DARAM DARAM7 0x00e000 0x2000 0 0)
(SARAM SARAM0 0x010000 0x2000 0 0)
(SARAM SARAM1 0x012000 0x2000 0 0)
(SARAM SARAM2 0x014000 0x2000 0 0)
(SARAM SARAM3 0x016000 0x2000 0 0)
(SARAM SARAM4 0x018000 0x2000 0 0)
(SARAM SARAM5 0x01a000 0x2000 0 0)
(SARAM SARAM6 0x01c000 0x2000 0 0)
(SARAM SARAM7 0x01e000 0x2000 0 0)
(SARAM SARAM8 0x020000 0x2000 0 0)
(SARAM SARAM9 0x022000 0x2000 0 0)
(SARAM SARAM10 0x024000 0x2000 0 0)
(SARAM SARAM11 0x026000 0x2000 0 0)
(SARAM SARAM12 0x028000 0x2000 0 0)
(SARAM SARAM13 0x02a000 0x2000 0 0)
(SARAM SARAM14 0x02c000 0x2000 0 0)
(SARAM SARAM15 0x02e000 0x2000 0 0)
(SARAM SARAM16 0x030000 0x2000 0 0)
(SARAM SARAM17 0x032000 0x2000 0 0)
(SARAM SARAM18 0x034000 0x2000 0 0)
(SARAM SARAM19 0x036000 0x2000 0 0)
(SARAM SARAM20 0x038000 0x2000 0 0)
(SARAM SARAM21 0x03a000 0x2000 0 0)
(SARAM SARAM22 0x03c000 0x2000 0 0)
(SARAM SARAM23 0x03e000 0x2000 0 0)
(SARAM SARAM24 0x040000 0x2000 0 0)
(SARAM SARAM25 0x042000 0x2000 0 0)
(SARAM SARAM26 0x044000 0x2000 0 0)
(SARAM SARAM27 0x046000 0x2000 0 0)
(SARAM SARAM28 0x048000 0x2000 0 0)
(SARAM SARAM29 0x04a000 0x2000 0 0)
(SARAM SARAM30 0x04c000 0x2000 0 0)
(SARAM SARAM31 0x04e000 0x2000 0 0)
(EXTERNAL ASYNC321 0x050000 0x3b0000 0 0)
(EXTERNAL ASYNC322 0x400000 0x400000 0 0)
(EXTERNAL ASYNC323 0x800000 0x400000 0 0)
(EXTERNAL ASYNC324 0xc00000 0x3f8000 0 0)
(SARAM PDROM 0xff8000 0x8000 0 0)
}

Limitations of Memory System Configuration

3-7Simulator Configuration File Setup

3.3 Limitations of Memory System Configuration

� For the C5510, it is recommended that you do not change the memory
map.

� For the C5510, the external memory latency is obtained by the setup-
strobe-hold register values in EMIF internal registers. The latency field in
the configuration file is not used to delay the memory accesses.

� The EXTERNAL keyword is not supported for the C55x DSP CPU-only
driver.

� For double access (32 bit long accesses), both words must reside in the
same memory bank.

� To introduce latency in external memory in the C55x DSP CPU-only driver,
use SARAM memories with latency values.

Index

Index-1

Index

A
asynchronous memory support 1-4, 1-5

C
C54x–compatible mode support 2-3
C5510 simulator

C54x–compatible mode support 2-3
CPU features 1-4
DARAM memory model support 1-4
DMA support 1-5
EHPI support 1-7 to 1-10
EMIF register support 1-4
external memory subsystem 1-4
instruction cache support 1-5
internal memory subsystem 1-4
limitations 1-10
McBSP support 1-6
memory map example 3-5
memory map limitations 3-7
peripheral start addresses 1-6
pipeline stall summary report 1-15
profiler usage 1-13
RTDX support 1-11
SARAM memory model support 1-4
simulator configuration 3-2
stack modes 2-2
timer support 1-6

C55x CPU simulator
C54x–compatible mode support 2-3
embedded breakpoints support 1-2
estop_1 instruction 1-2
functional capabilities 1-2
I/O memory 1-3
limitations 1-3
memory configuration 1-2
memory map example 3-5
parallel instruction execution 1-2

C55x CPU simulator (continued)
Pin Connect 1-2
pipeline stall summary report 1-15
Port Connect 1-2
profiler usage 1-13
RTDX support 1-3
simulator configuration 3-2
stack modes 2-2
timer support 1-3

D
DMA, C5510 simulator support 1-5

E
EHPI

C5510 simulator support 1-7 to 1-10
commands 1-8
connecting file to pin 1-9
input command file syntax 1-7
limitations 1-10
sample files 1-9

embedded breakpoints 1-2

EMIF register support 1-4

Enhanced Host Port Interface. See EHPI

estop_1 instruction 1-2

H
hardware accelerators 1-10

Index

Index-2

I
I/O memory 1-3

IDLE 1-6

instruction cache
simulator limitations 1-5
simulator support 1-5

L
limitations

C5510 CPU simulator 1-10
C55x CPU simulator 1-3
memory map 3-7

M
McBSP support 1-6

memory map
in simulator configuration file 3-4 to 3-6
limitations 3-7
syntax 3-4

MPNMC bit 1-4

P
parallel instructions, support in C55x CPU

simulator 1-2

Pin Connect 1-2, 1-9

pipeline
stall summary report 1-15
viewing PC in Code Composer Studio 1-12

pipeline stall summary report 1-15

Port Connect 1-2

profiler 1-13

R
READHPIC command 1-8
READHPICAUTOINC command 1-8
READHPID command 1-8
READMEM command 1-8
RTDX support

C5510 simulator 1-11
C55x CPU simulator 1-3

S
SBSRAM 1-4
SDRAM 1-5
simulator

See also C5510 simulator; C55x CPU simulator
features 1-1 to 1-16
stack modes 2-2

simulator configuration file
memory map 3-4
specifying 3-2
using CCS Setup 3-2

stack modes, changing 2-2

T
timers

C5510 simulator 1-6
C55x CPU simulator 1-3

W
WRITEHPIA command 1-8
WRITEHPIC command 1-8
WRITEHPID command 1-8
WRITEHPIDAUTOINC command 1-8
WRITEMEM command 1-8

	IMPORTANT NOTICE
	Read This First
	About This Manual
	How to Use This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks
	If You Need Assistance

	Contents
	Figures
	Simulator Features and Limitations
	C55x CPU and Memory System Simulation Capabilities
	Functional Capabilities
	Functional Timer Support
	RTDX Support
	Limitations

	C5510 Device Simulation Capabilities
	C55x CPU
	Internal Memory Subsystem
	External Memory Interface and Subsystem
	I-Cache (Instruction Cache)
	DMA Controller
	Peripheral Bus Controller
	Timer
	Multi-channel Buffered Serial Ports
	Simulating Enhanced Host Port Interface
	Setting Up the Input Command File
	Connecting the Input Command File to the Interrupt Pin
	Limitations

	Modules Not Supported
	Other Limitations
	RTDX Support

	Pipeline Effect on Blue-Bar Movement
	Using the Profiler to Measure Stall Cycles
	Pipeline Stall Summary Report

	General Tips for Simulation
	Changing Stack Configuration
	C54x-Compatible Mode Operation

	Simulator Configuration File Setup
	Specifying a Simulator Configuration
	Creating a Memory Map
	Limitations of Memory System Configuration

	Index

