Tutorial 11:
Bit Operations

New Instructions Introduced

BIT

BITT

BITF

CMPR

New Test Conditions Introduced

AOV
BOV

ANOV BNOV

TC
NTC

Overview of Tutorial

So far in these tutorials we have worked with 16-bit and 32-bit values. However, certain variables, flags in particular, can be represented in a single bit. For example, the Boolean variables TRUE / FALEs and ON / OFF can be represented by a 0 or a 1. If we use a single data bit for each Boolean variable, we can then pack 16 variables into a data word.

This tutorial covers the usage of individual data bits and highlights some of the special instructions used to manipulate them.

Testing Bits

Let us look at a simple problem. We wish to test whether the word stored at data memory address 70h is an odd number or an even number. All we need to do is to test the least significant (right-most) bit. If it is 1, then we have an odd number. If it is 0, we have an even number. Example 11-1 shows how to carry out this operation using C code:

Example 11-1.

We shall now implement Example 11-1 using TMS320C5000 assembly language. Let us assume that the variable value is stored at data memory address 70h. In order to test the least significant bit, we use the instruction AND (logical AND) to clear to zero all the other bits, followed by a test. This is shown in Example 11-2:

Example 11-2.

In Example 11-2 we have copied the variable under test from data memory to accumulator A in order to test it.

Working Directly on Bits in Data Memory

The TMS320C5000 provides a mechanism whereby the individual bits of a word stored in data memory can be tested directly, without the need to copy them to accumulator A or accumulator B. This saves an operation and leaves the accumulators free for other purposes.

To test a bit of a data word, the instruction BIT (bit test) is provided. However, this instruction is unusual in that it does not support direct addressing. The usage shown in Example 11-3 is therefore illegal:

Example 11-3.

Example 11-4 shows the correct usage of the instruction BIT using indirect addressing:

Example 11-4.

The instruction BIT (bit test) takes two operands. The first operand is the data memory address of the variable, the second operand is the number of the bit to be tested.

In the Texas Instrument databook, the description of the instruction BIT (bit test) is in fact somewhat misleading. No test is actually performed. The instruction BIT copies the bit under test to the bit TC (test/control flag) in the control register ST0.

Now for the less-than-obvious part guaranteed to catch the unwary. The usual convention is to number data bits of a word from 0 (the least significant or right-most bit) to 15 (the most significant or left-most bit). As far as the operand used with the instruction BIT is concerned, the bits are numbered in reverse order to the usual convention.

On the TMS320C5000, the bits of a data word are numbered from 15 (representing the least significant or right-most bit) to 0 (representing the most significant or left-most bit). In this series of tutorials we shall adhere to the standard convention and always refer to bit 0 as the least significant (right-most) bit.

The code required to use the instruction BIT to copy bit 0 of data memory address 103h to bit TC (test/control flag) using direct addressing is shown in Example 11-5.

Example 11-5.

To remain with the convention that bit 0 represents the least significant (right most) bit, when entering the operand, we subtract the number of the bit to be tested, here 0, from 15.

The significance of the bit TC is that it can be tested with the instruction BC (branch conditionally).

Now let us combine the instruction BIT (bit test) with the instruction BC. Say we wish to test if the least significant (right-most) bit of the word at data memory-address 103h is 1, and if so, branch to the label action2 (somewhere else in code):

Example 11-6.

Clarifying Code

Because the bits within a word are numbered in reverse order to the usual convention, mistakes can occur. To prevent error, we have already seen how to write the operand as (15 - bit to be tested), another sample of which is shown in Example 11-7:

Example 11-7.

A more foolproof method is to use the assembler directive .set:
Example 11-8.

At the beginning of the program we write a series of 16 directives of type .set to

equate the numbers to a series of symbols BIT_0 to BIT_15. When we require to do work on a particular bit we use the symbol defined using the .set directive.

For example, to test bit 8 of the word at data memory address 38Ch we can write:

Example 11-9.

The assembler replaces the symbol BIT_8 by the number 7.

Bit Testing Using Variables

The instruction BIT (bit test) is limited in that it can only be used with an immediate operand. For more flexibility, we may wish to test a bit using a variable rather than immediate data. This gives us the possibility of calculating the bit to be tested.

The T (temporary) register is normally used for multiplications, but is also used with the instruction BITT (test bit specified by T register). The format of the instruction BITT is shown in Example 11-10:

Example 11-10.

The instruction BITT (test bit specified by T register) takes a single operand which is the address in data memory of the variable to be tested. The bit to be tested (in the range 0 to 15) is loaded into the T register. Note that the instruction BIT differs from the instruction BITT in that the latter supports direct addressing.

Example 11-11 shows how we test bit 0 of data memory address 2A0h using the instruction BITT, this time with indirect addressing.

Example 11-11.

Testing Multiple Bits

There are times when we may wish to test more than one bit of a word in data memory. Say we wish to test whether each of bits 0 and 1 of a word in data memory is set to 1. Example 11-12 shows how we would do this in C code:

Example 11-12.

First, we use a logical AND to clear to zero all the bits in which we have no interest.

We then compare the remaining value with 0003h. Say that the variable value contains ABCDh. After the logical and with 0003h we are left with 0001h which we then test against the value 0003h.

To implement Example 11-12 using TMS320C54x assembly language, we cannot use the instruction BIT (bit test) because it can only be used to test a single bit. Instead we must use a logical AND together with some form of compare instruction such as an exclusive OR. Assuming that the variable value is stored at data memory address 85h then we can write:

Example 11-13.

Again we have not written any code for what is to be done when a bit is set or not, but simply put a template in place.

Testing Specific Bits for Non-Zero

Let us look at another example. Say we wish to test if bits 4 to 7 of a particular data word are all cleared to zero. For example, the numbers 0000h, FF0Fh, 3303h, 1204h would meet this criteria. The numbers 00F0h, FFAFh, 33E0h and 1234h would not.

We can carry this operation out in C code as shown in Example 11-14:

Example 11-14.

We clear all the bits to zero except bits 4 to 7 using a logical AND. We then test if the remaining value is zero and act accordingly.

The C code shown in Example 11-14 can be implemented using TMS320C5000 assembly language, and this is shown in Example 11-15. Assuming that the variable value is stored at data memory address 425h:

Example 11-15.

Note that in Example 11-15 we do not need to carry out any comparison using the instruction XOR or the instruction SUB. This is because we can directly test for zero in accumulator A or B using the instruction BC with the condition AEQ or ANEQ.

The TMS320C5000 also provides a way of carrying out a logical AND of a word at a data memory address, but without the need to use the accumulator. For this, we use the special instruction BITF (test bit field specified by immediate value). The usage of the instruction BITF with direct addressing is shown in Example 11-16.

Example 11-16.

In this case we are testing the two least significant (right-most) bits of the value.

Unlike the instruction BIT, the instruction BITF supports direct addressing. We can carry out the same operation as shown in Example 11-17, but this time using indirect addressing.

Example 11-17.

The instruction BITF (bit test field specified by immediate value) performs a logical AND of the data memory address and the immediate value. If all of the bits under test are 0 then the result will be 0, then the bit TC (test/control flag) is loaded with 0. If the result of the logical AND is non-zero, which is the case if any of the bits is 1, then the bit TC is loaded with 1.

The syntax of the instruction BITF (bit test field specified by immediate value) is unusual in that the immediate operand comes after the data memory address. Normally, the immediate value follows the instruction.

Using the instruction BITF (bit test field specified by immediate value), we can re-write the code in Example 11-14 using the conditional branch instruction with the condition NTC (test control bit TC not set to 1).

Example 11-18.

Note that the instruction BITF (bit test field specified by immediate value) can only be used to test the contents of a data memory address for zero or non-zero. It cannot distinguish between one or all the bits being set to 1.

Testing for Overflow

In previous tutorials we saw how to carry out multiplication with accumulation. It was mentioned that overflow can be a potential problem. By overflow we mean that the process has caused the contents of accumulator A or accumulator B to be greater than 7FFFFFFFh or less than 80000000h. When an overflow occurs, the value in an accumulator is unreliable.

Using the instruction BC (branch conditionally), we have the facility to test for an overflow (or for no overflow) in accumulator A or accumulator B.

The operand used with the instruction BC can be of four types of test condition: AOV (overflow from accumulator A), BOV (overflow from accumulator B), ANOV (no overflow from accumulator A) and BNOV (no overflow from accumulator B). If the test condition evaluates to true, then a branch occurs.

Example 11-19.

We may therefore use a conditional branch to take action when an overflow has occurred. Example 11-20 shows where an overflow test might be used with a multiply/accumulate loop. In this case, two blocks of 10 values in data memory are being multiplied and accumulated.

Example 11-20.

After the instruction MAC (multiply with accumulate), the overflow flag OVA in status register ST0 is checked using the instruction BC with the condition AOV (branch on overflow). Should an overflow occur, the multiply / accumulate loop will terminate and branch to the error handler at label overflow.

Using the Test/Control Flag TC to Test Auxiliary Registers

We have already seen how to compare an accumulator with an immediate value. There are cases when we wish instead to use one of the auxiliary registers AR0 to AR7 as a general purpose register and compare the contents of the auxiliary register with a known value.

The instruction CMPR (compare auxiliary register with AR0) is used to compare the value in one of auxiliary registers AR1 to AR7 with the value in auxiliary register AR0.

Four different tests are available. If the outcome of the particular test is true, then the bit TC in control register ST0 set to 1. Otherwise the bit TC is cleared to zero.

The instruction CMPR (compare auxiliary register with AR0) takes two operands. The first operand is the kind of comparison to be made. It can be EQ (equals), LT (less than), GT (greater than) or NEQ (not equal). The second operand is the auxiliary register to be tested. Example 11-21 shows typical ways to use the instruction CMPR:
Example 11-21.

Instead of writing the operand EQ, we could write the number 0, as shown in Example 11-22.

Example 11-22.

Instead of the operands LT, GT and NEQ we could write the numbers 1,2 and 3 respectively. However, it is not immediately obvious that the operand 0 means EQ, which makes the code is more difficult to read. For clarity, it is better to use the symbols EQ, NEQ, LT, GT rather than the numbers 0 to 3.

The instruction CMPR makes a comparison of an auxiliary register (as specified by the operand) with AR0. If AR0 is used as the second operand, the instruction will not function correctly. This is shown in Example 11-23.

Example 11-23.

We can follow the instruction CMPR with the instruction BC to test for an auxiliary register containing a specific value.

Example 11-24.

A typical usage of a comparison of an auxiliary register with a known value is in a control loop. To use the analogy of C code, we do this using a for loop:

Example 11-25.

We can implement Example 11-25 in TMS320C5000 assembly language using one of the auxiliary registers, say AR5 to store the value i. This is shown in Example 11-26:

Example 11-26.

The instruction CMPR (compare auxiliary register with AR0) is used to test for the condition AR5 is less than AR0. If the condition that AR5 is less than AR0 is true, then the bit TC is set to 1 and the conditional branch instruction BC will branch to the label loop2. On the tenth time the loop is executed, the value in AR5 will be equal to AR0 so the loop will be terminated and the next instruction to be executed will be at the label done2.

There are two limitations of using an auxiliary register for comparison purposes. First the instruction CMPR (compare auxiliary register with AR0) is that it only allows four types of comparison. It does not support the comparisons less than or equal to (LTE) or greater than or equal to (GTE). Second, in order to carry out a comparison, auxiliary register AR0 must also be used as well as the auxiliary register under test, which may be wasteful of resources.

Upgrading from the TMS320C2000 to the TMS320C5000

Both these devices support operations on bits, although using a slightly different syntax.

Table 11-1. Comparison of Instructions

Because the TMS320C5000 allows direct storage of a value in the T register using the instruction STM, the instruction BITT is more code efficient on the TMS320C5000.

The TMS320C5000 has introduced the new instruction BITF (test bit field specified by immediate value) which can be used to test multiple bits.
Questions

Tutorial 11: Bit Operations 13 Date: 22 September, 1999

