Tutorial 12:
Stack Operations

New Instructions Introduced

PSHD
PSHM

POPD POPM

Overview of Tutorial

The stack is a part of the TMS320C5000 that is essential for the operation of subroutine calls and interrupts. This tutorial looks at the structure of the stack and how it is used to save and restore data.

The Stack

The stack is an area of data memory put aside for use with subroutine calls, interrupts and the temporary storage of variables. It is normally placed at a high address in data memory so as to remain separate from the memory-mapped registers and program variables.

The stack has its own dedicated memory-mapped register known as the stack pointer (SP), which points to the start of the stack. This is shown in Figure 12-1.

[image: image1.wmf]Figure 12-1. Model of the Stack Pointer

137Ch

SP

0000h

0000h

0000h

0000h

0000h

200h

FFFFh

FFFFh

FFFFh

FFFFh

1377h

1378h

1379h

137Ah

137Bh

137Ch

137Dh

137Eh

137Fh

1380h

Stack

Pointer

Data

Memory

In Example 12-1, the stack pointer points to data memory address 137Ch.

One of the first tasks in the initialization of the processor is to set the stack pointer to point to the start of data memory allocated for the stack. The stack pointer is set to a specific value using the instruction STM (store immediate value in memory mapped register):

Example 12-1.

	

The value to which the stack pointer is initialized depends upon the hardware being used.

For example, on the TMS320C541, the data memory lies between 0h and 13FFh. We might therefore use a value of 13F0h for the stack pointer. The size of the stack depends upon the application, but a typical size is 100 words of data memory.

When initializing the stack pointer (SP), care needs to be taken if doing prototype work on one TMS320C5000 device and then using another device with lower capacity for production. What may be a data memory location on one device may be outside the data memory space on another. For example, on the TMS320C542, the address 1800h is a valid address in data memory. However, on the TMS320C541, the address 1800h lies outside the data memory space.

Pushing Data Onto the Stack

The process of storing a variable on the stack is referred to as pushing. Figure 12-2 Shows how we push the value 7777h onto the stack:

[image: image2.wmf]Figure 12-2. Pushing a Data Memory Variable onto the Stack

137Ch

SP

0000h

0000h

0000h

0000h

0000h

200h

FFFFh

FFFFh

FFFFh

FFFFh

1377h

1378h

1379h

137Ah

137Bh

137Ch

137Dh

137Eh

137Fh

1380h

Stack

Pointer

Data

Memory

137Bh

SP

0000h

0000h

0000h

0000h

7777h

200h

FFFFh

FFFFh

FFFFh

FFFFh

1377h

1378h

1379h

137Ah

137Bh

137Ch

137Dh

137Eh

137Fh

1380h

Stack

Pointer

Memory

Before

Push

After

Push

Data

When a push occurs, the stack pointer is decremented by one and the value being pushed is copied to the data memory address pointed to by the stack pointer. The stack pointer points to the last value pushed onto the stack.

To push the contents of a data memory address onto the stack we use the instruction PSHD (push data memory value onto the stack). This instruction takes a single operand which is the address in data memory of the value to be pushed onto the stack.

Example 12-2.

	

With each push, the stack pointer is decremented by one.

We can also carry out the operation shown in Example 12-2, but use indirect addressing instead.

Example 12-3.

	

The instruction PSHD offers a quick and convenient way to temporarily store a value in data

memory. A typical usage is for saving a value stored in data memory prior to a destructive test.

Popping a Value from the Stack to Data Memory

The opposite instruction to push is pop. For this we use the instruction POPD (pop the top of stack to data memory). By top of stack we mean the most recent value pushed onto the stack. The effect upon the stack of the instruction POPD is shown in Figure 12-3:

[image: image3.wmf]Figure 12-3. Popping a Variable from the Stack

137Bh

SP

0000h

0000h

0000h

0000h

7777h

FFFFh

FFFFh

FFFFh

FFFFh

1377h

1378h

1379h

137Ah

137Bh

137Ch

137Dh

137Eh

137Fh

1380h

Stack

Pointer

Data

Memory

137Ch

SP

0000h

0000h

0000h

0000h

7777h

200h

FFFFh

FFFFh

FFFFh

FFFFh

1377h

1378h

1379h

137Ah

137Bh

137Ch

137Dh

137Eh

137Fh

1380h

Stack

Pointer

Memory

Before

 Pop

After

 Pop

200h

Data

When a pop occurs, the value is copied from the data memory address pointed to by the stack pointer to the location supplied by the operand. The stack pointer is then increased.

The instruction POPD takes the most recent value pushed onto the stack and stores it in the data memory address supplied by the operand. The stack pointer is then incremented.

Example 12-4

	

With each pop of a word from the stack, the stack pointer is incremented by one. We can also carry out the operation shown in Example 12-4 using indirect addressing.

Example 12-5

	

The instruction POPD carries out the opposite action to the instruction PSHD and is used to restore a value that has been temporarily saved on the stack.

Pushing and Popping

Let us look at what happens when we use the instruction PSHD followed by the instruction POPD.

Example 12-6

	

When we carry out the PSHD instruction in Example 12-6, we temporarily store the value at data memory address 512h on the stack. We then carry out some operation to modify the contents of the data memory location. The instruction POPD is used to restore the value in the data memory address to its original value.

We can also carry out the same operation as shown in Example 12-6, but instead by using indirect addressing:

Example 12-7

	

When both a push and a pop occur, the stack pointer is restored to its original value.

It is recommended that push and pop instructions be used in pairs. In this way, it is ensured that the stack pointer will return to its original value. Example 12-8 shows how the stack pointer can be set to a value outside of data memory when a pop occurs without a corresponding push. In this case, any further operations using the stack will not function correctly.

Example 12-8

	

Example 12-8 has set the stack pointer to a value outside the internal data memory for the TMS320C542. Any subsequent operation that uses the stack will then try to push a value to an address outside data memory. This may cause the program to crash.

Carrying out pop instructions without the preceding push instruction is the realm of expert programmers when writing operating systems or clever returns from interrupts.

Pushing Memory-mapped Registers

We have already seen how to push a value stored in data memory onto the stack and how to pop it. We can also push the values stored in memory-mapped registers onto the stack, in particular the auxiliary registers AR0 to AR7.

To push the contents of a memory-mapped register onto the stack we use the instruction PSHM (push memory-mapped register onto the stack). This instruction takes a single operand and is the name of the memory-mapped register to be stored:

Example 12-9.

	

We are not restricted to pushing auxiliary registers onto the stack. We can push any memory-mapped register, including the stack pointer itself.

 Example 12-10.

	

In a later tutorial, we shall see how pushing the status registers ST0 and ST1 is important when using interrupts.

Popping Memory-mapped Registers

To pop a value from the stack to a memory-mapped register we use the instruction POPM (pop top of stack to memory-mapped register). Again this takes a single operand which is the name of the memory-mapped register.

Example 12-11.

	

We can also pop memory-mapped registers other than the auxiliary registers AR0 to AR7. This is shown in Example 12-12.

Example 12-12.

	

Pushing and Popping Multiple Values

We have seen how to push a value onto the stack to save it temporarily and then how to pop it to restore the original value. We can also push and pop multiple values; however, the order in which values are popped is important, and is shown in Example 12-13:

 Example 12-13

	

The code in Example 12-13 swaps the values in data memory addresses 110h and 111h. This is because the instruction POPD pops the most recent value pushed onto the stack. In this case the value stored at data memory address 111h is pushed onto the stack and then popped to data memory address 110h.

In order to push multiple values onto the stack and then restore them to their original statuses, the values must be pushed onto the stack then popped in reverse order. Example 12-14 shows how to do this using indirect addressing:

 Example 12-14.

	

In Example 12-14 we have pushed three values onto the stack an popped them in reverse order. In this way the content of each data memory address is saved and then restored to its original value.

Mixing Push and Pop Instructions

When carrying out push and pop instructions, the TMS320C54x does not check what type of variable is being pushed and popped. It is therefore legitimate to push the contents of a data memory address onto the stack and then later pop this value to a memory-mapped register.

Example 12-15.

	

In Example 12-15,the contents of AR4 are transferred to data memory address 245h and the contents of data memory address 244h are transferred to auxiliary register AR0.

It is quite legal to push the same value onto the stack several times.

 Example 12-16.

	

In Example 12-16 we have pushed the value stored at data memory address 482h onto the stack three times. We have then popped this value to data memory addresses 245h, 246h and 247h.

Pushing and Popping the Contents of Accumulators

The contents of accumulator A and accumulator B can be pushed onto the stack. To do so requires the memory mapped registers AH and AL or BH and BL to be pushed using the instruction PSHM.

Example 12-17.

	

In a similar way, the contents of the stack can be popped into the accumulator:

Example 12-18.

	

Upgrading from the TMS320C2000 to the TMS320C5000.

Table 12-1: Comparison of Instructions

Here mmr = memory mapped register dmad = data memory address

On the TMS320C2000, the only way to push a data memory address or a register was to use the instruction PSHD. The TMS320C5000 has the new instruction PSHM to push the contents of a memory-mapped register.

Similarly, on the TMS320C2000, the only instruction to pop the contents of a data memory address or a register was the instruction POPD. The TMS320C5000 has the new instruction POPM to pop the contents of a memory-mapped register.

Questions

Tutorial 12: Stack Operations
6
Revision 1. 5 February, 2003

