Tutorial 14: Non-Maskable Interrupts

New Instructions Introduced

RETE RETED

PORTR PORTW

BD

INTR

RESET

Overview of Tutorial

One of the important facets of real-time software is the ability to handle events from external sources without affecting the performance of the system. For this task interrupts are used, and their usage is described in this tutorial.

The Concept of Interrupts

In everyday life, we are familiar with the concept of interrupts. An interrupt is simply a task that must be done in the middle of another task. Let us take a simple example. Say we are working at our desk. The phone rings. We temporarily stop what we are doing, answer the phone and when the telephone conversation is complete, continue with what we were doing. The interruption of the telephone call does not affect the execution of the task, other than adding slightly to the time required to carry it out. The whole basis of an interrupt is that it allows other processes to go on rather than having to wait for a particular event to finish.

The TMS320C5000 has a range of interrupt sources. Interrupts can be made to occur under a variety of different circumstances such as a timer expired, a character being received at a serial buffer, an external line changing state or a specific instruction being executed.

Maskable and Non-Maskable Interrupts

There are two types of TMS320C5000 interrupts - maskable and non-maskable. A maskable interrupt can be turned on or off under the control of software. A non-maskable interrupt is an interrupt that cannot be turned off globally by software.

Non-maskable interrupts are normally used for high priority events. Readers will be familiar with the reset button on their computer - it is a high-priority non-maskable interrupt that causes the computer to restart execution from the beginning. The only way to turn it off is to physically disconnect the reset button.

Two of the non-maskable interrupts on the TMS320C5000 are driven by a change of state at the input pins. These are the RESET line and the non-maskable interrupt (NMI). As we shall see in this tutorial, non-maskable interrupts can also take the form of software instructions.

The Interrupt Table

The code that determines what happens when an interrupt occurs resides in what is known as the interrupt vector table. When an interrupt occurs - be it from a hardware or a software source - the program branches to the appropriate address in the interrupt vector table.

The structure of an interrupt vector table is shown in Table 14-1.

Table 14-1. Interrupt Vector Table for the TMS320C5402

	
	
	
	

	K Number
	Name
	Offset in Program Memory
	Description

	0
	sintr
	00h
	Hardware reset and software reset

	1
	NMI/sint16
	04h
	Non-maskable hardware interrupt and

software interrupt 16

	2
	sint17
	08h
	Software interrupt 17

	3-15
	sint18 to sint30
	0Ch to 3Ch
	Software interrupts 18 to 30

	16
	INT0/sint0
	40h
	External user interrupt 0

	17
	INT1/sint1
	44h
	External user interrupt 1

	18
	INT2/sint2
	48h
	External user interrupt 2

	19
	TINT0/sint3
	4Ch
	Timer interrupt

	20-31
	Others
	70h to 7Fh
	Other interrupts

The interrupt vector table is situated in program memory (ROM). We normally refer to the interrupts by their offset address, so the first interrupt is referred to as being at program memory location 0h.

Some of the interrupts can be driven from both hardware and software sources. For example, non-maskable interrupt NMI can be driven from the NMI pin of the device. The same interrupt can also be made to occur through software. Interrupts that can be driven by software are denoted by the term sint which is used as an abbreviation for software interrupt.

Each entry in the interrupt vector table has four words of program memory allocated to it. For example, the non-maskable interrupt NMI has its interrupt table between 04h and 07h. When a certain change of state occurs at the NMI pin, program execution is immediately redirected to location 4h. Interrupts can also be referred to by name. For example, reset is also known as sintr.

Another convenient way to refer to a particular interrupt is by a number in the range 0 to 31. The first column of Table 14-1 gives the K numbers of each interrupt. Therefore, we can refer to RESET as interrupt 0. The K number is the value used as an operand with the instruction to generate a software interrupt.

Note that the interrupt vector table is device dependant. Table 14-1shows the interrupt vector table for the TMS320C5402, and the table does differ between devices in the TMS320C5000 family.

Interrupt Service Routines

When an interrupt occurs, a special subroutine is executed that is known as the interrupt service routine. This is often abbreviated as isr. An interrupt service routine differs from a standard subroutine in that we never call it directly from the body of the program. It is automatically called when a particular event occurs.

The shortest interrupt service routine (isr) we can use contains only the instruction RETE (return and enable interrupts). This is shown in Example 14-1.

Example 14-1.

	
	
	

	sint17:
	RETE
	; Return from interrupt and enable

; interrupts.

; 5 cycles.

	
	NOP
	; 1 word padding.

	
	NOP
	; 1 word padding.

	
	NOP
	; 1 word padding.

	sint18:
	
	; Next interrupt service routine.

We have an interrupt service routine at the program memory address sint17 (software interrupt 17 at location 44h). To fill the unused three words of the interrupt service routine we have inserted three NOP instructions. These act as padding so that the next interrupt service routine starts at the correct program memory address.

It is important that every interrupt service routine contains an instruction that causes a return from interrupt such as RETE. If such an instruction is not present, when an interrupt occurs, the program execution will not return from interrupt, but drop through to the next line of code and carry out some operation that was not intended.

Note that we do not use the instruction RET to return from an interrupt service routine. During an interrupt service routine, further interrupts are prevented by temporarily turning the interrupts off. When the instruction RETE occurs, not only is there a return but the interrupts are also turned on again.

For the first time in this series of tutorials, we have shown the number of execution cycles required. Each instruction takes a certain amount of time to execute and this time is expressed in terms of a system clock. A typical cycle time is 25 ns.

As an example, the instruction RETE requires 5 cycles. This is the minimum time required to process the interrupt service routine. In fact, the time will be greater because the current instruction must be completed before the interrupt can occur.

Four words of program memory are very limited, but may be enough code space to carry out a simple task such as to read in value from a parallel input port.

Example 14-2.

	
	
	

	timer:
	PORTR 17h, *AR2
	; Read value at port address

; 17h into the data memory

; address pointed to by

; auxiliary register AR2.

; 2 words.

	
	RETE
	; Return from interrupt. 1

; word.

	
	NOP
	; 1 word padding.

The instruction PORTR (read data from port) takes two operands. The first operand is the address of the external parallel input / output port. The second operand is the address in data memory to which the value is to be written.

A port is physical hardware that allows us to interface to the outside world. An example is the parallel port LPT1 on a computer that takes signals from the computer to the peripheral device, in this case a printer. On the TMS320C5000, a port usually takes the form of a memory-mapped address.

If interrupts are not being used, the code space can be used for other purposes. However, care needs to be taken. Should the interrupt be executed, then the code in place of the interrupt service routine will be taken to be the interrupt service routine. If there is program memory available, the safest way is to fill each unused interrupt vector location with the instruction RETE.

Software Interrupts

Whereas certain interrupts can be generated from hardware derived events, it is possible to generate an interrupt within a program using a software interrupt. This is done using the special instructions INTR and RESET.
The instruction INTR (software interrupt) takes a single operand which is a constant in the range 0 to 31. Example 14-3 shows how to generate a call to an interrupt service routine under the control of software.

Note that there is a difference between the terms sint and intr. The former is the name of an interrupt and the latter is an executable instruction.

Example 14-3.

	
	

	INTR 2
	; Execute interrupt number K = 2 (software

; interrupt number 17). When this instruction

; is used, the interrupt service routine at

; address 8h will be executed.

The instruction INTR is non-maskable. This means it cannot be turned off under the control of software.

Forcing a Reset from Software

Another software controlled interrupt is the instruction RESET (software reset). Again this is non-maskable and cannot be turned off by software. The effect of the instruction RESET is drastic; it is the same as CTL-ALT-DELETE on a computer. The program running is aborted and the TMS320C5000 starts again from the very beginning, as it did at power up.

Example 14-4.

	
	

	RESET
	; Force the TMS320C5000 to the beginning of its

; sequence. Overflow mode is turned off (OVM =

; 0), sign extension is turned on (SXM = 1)

; and DP = 0.

Because of the drastic nature of this command, it would normally be used when the software has failed completely.

The instructions INTR 0 and RESET both cause a call to the interrupt service routine at interrupt vector location 0. However, there are some differences between them.

The instruction INTR 0 does not reset the flags as does the instruction RESET. This can be used for a warm reset (where we wish to start the program from the beginning but do not wish to change any variables). On the other hand, should be wish to do a reset and put all the registers and flags in their condition at power up, we would use the instruction RESET. This is known as a cold reset.

Larger Interrupt Service Routines

Whereas four words of program memory are sufficient for simple interrupt service routines, for more practical applications we need to either branch or call a subroutine outside the interrupt vector space. For example, say we wish to read port A at input/output address 17h and copy the value to accumulator A.

Example 14-5.

	
	
	

	sint16:
	CALL isr_sint16
	; Call subroutine at

; program memory address

; given by the label

; isr_sint16.

; 2 words, 4 cycles

	
	RETE
	; Return from interrupt.

; Enable interrupts.

; 1 word, 5 cycles.

	
	NOP
	; 1 word padding.

	
	
	

	isr_sint16:
	PORTR 17h, *AR2
	; Read word from external

; input/output port 17h

; and copy to data memory

; address pointed to by

; auxiliary register AR2.

; 2 words.

	
	LD *AR2, A
	; Copy word to accumulator

; A.

	
	SFTL A,-1
	; Shift accumulator A one

; place to the right.

	
	RET
	; Return from subroutine. ; 5 cycles.

Example 14-5 shows the interrupt service routine outside the four words allocated in the interrupt vector table. We use the instruction CALL to reach the subroutine isr_sint16. When the subroutine is completed, the program execution returns to the interrupt vector table using the instruction RET, which also corrects the stack pointer. Finally, the interrupt service routine is completed with the instruction RETE to return execution to the main program and to turn the interrupts on again.

There is a better way to write Example 14-5. Instead of using the instruction CALL to gain access to the subroutine, we use the instruction B (branch unconditionally). This is shown in Example 14-6.

 Example 14-6.

	
	
	

	sint16:
	B isr_sint16
	; Branch to subroutine at

; program memory address

; given by the label

; isr_sint16.

; 2 words, 5 cycles

	
	NOP
	; 1 word padding.

	
	NOP
	; 1 word padding.

	
	
	

	isr_sint16:
	PORTR 17h, *AR2
	; Read word from external

; input / output port 17h

; and copy to data memory

; address pointed to by

; auxiliary register AR2.

	
	LD *AR2, A
	; Copy word to

; accumulator A.

	
	SFTL A, -1
	; Shift accumulator A one

; place to the right.

	
	RETE
	; Return from interrupt.

; 5 cycles.

Using the instruction B (branch unconditionally) offers a major advantage over the instruction CALL (call unconditionally). The instruction B does not push a return address onto the stack. This means that we do not need to execute the instruction RET to correct the stack pointer and can return directly from the interrupt service routine using the instruction RETE.

This has the effect that the interrupt service routine runs 5 cycles faster. This may not seem a long period of time, but for interrupts, execution time may be critical. An interrupt may be called thousands of times per second. While the interrupt service routine is being processed, the execution of the main program is suspended.

Saving Registers

When using interrupts, it is important to remember that an interrupt can occur at any point in the program. Therefore, if there are any instructions used within the interrupt service routine that affect flags, then these flags should be saved early in the interrupt service routine.

For example, say the interrupt service routine uses the instruction SFTL. This instruction affects the Carry (C) flag and therefore the Carry (C) flag should be saved prior to executing the instruction SFTL. The data pointer (DP) and the sign-extension mode bit (SXM) may also be changed.

Fortunately, the majority of flags that are affected by instructions are stored in the status registers ST0 and ST1. It is in fact common practice to save the status registers ST0 and ST1 as part of an interrupt service routine. In order to temporarily save the contents of these registers within the body of the interrupt service routine we write:

Example 14-7.

	
	
	

	isr_sint17:
	PSHM ST0
	; Push the contents of

; status register ST0

; onto the stack.

; Temporarily save the Carry

; (C), OVA, OVB flags and

; DP.

	
	PSHM ST1
	; Push the contents of

; status register ST1

; onto the stack.

; Temporarily save the OVM

; and SXM flags.

	
	LD #6, DP
	; Page 6. Gain access to

; data memory addresses 300h

; to 37Fh.

	
	SSBX SXM
	; Turn on sign-extension

; mode.

	
	PORTR 17h,0h
	; Read value from port at

; input/output address 17h

; and store at data memory

; address 300h + 0h = 300h.

	
	ADDM #FF00h,0h
	; Subtract offset by adding

; a negative value.

	
	LD 0h, A
	; Copy value to accumulator

; A.

	
	SFTL A, 5
	; Shift value left 5 places.

	
	STL A, 1h
	; Save at data memory

; address 300h + 1h = 301h.

	
	POPM ST1
	; Restore flags.

	
	POPM ST0
	; Restore flags.

	
	RETE
	; Return from interrupt and

; enable interrupts.

In Example 14-7 we carry out three operations that affect flags. The first is the instruction LD #6, DP which affects the data pointer and the second is to turn on sign-extension mode by changing the status of the SXM flag. Then we execute the instruction SFTL which affects the Carry (C) flag. The original value of all these flags can be saved by using the instructions PSHM ST0 and PSHM ST1, then restored using the instructions POPM ST1 and POPM ST0 before the interrupt service routine returns.

Using Delayed Instructions

Consider the case of an interrupt service routine that modifies auxiliary registers AR0 and AR1. In order to leave these two auxiliary registers unaffected in the main program, it is necessary to temporarily save these values as part of the interrupt service routine. This is shown in Example 14-8.

Example 14-8.

	
	
	

	timer:
	B timer_isr
	; Branch to subroutine at

; the program memory address

; given by the label

; timer_isr.

; 2 words, 5 cycles

	
	NOP
	; 1 word padding.

	
	NOP
	; 1 word padding.

	
	
	

	timer_isr:
	PSHM AR0
	; Temporarily save AR0.

	
	PSHM AR1
	; Temporarily save AR1.

	
	MAR *AR0+
	; Some operation on AR0.

	
	MAR *AR1-
	; Some operation on AR1.

	
	POPM AR1
	; Restore AR1.

	
	POPM AR0
	; Restore AR0.

	
	RETE
	; Return from interrupt.

; 5 cycles.

Note that when we push AR0 and AR1, we must pop them in reverse order to restore the original values.

We can make two improvements to Example 14-8 by using two variations on the B and RETE instructions, as shown in Example 14-9.

Example 14-9.

	
	
	

	timer:
	BD timer_isr
	; Delayed branch to

; subroutine at program

; memory address given by the

; label timer_isr.

; 2 words, 3 cycles

	
	PSHM AR0
	; Save AR0. 1 word, 1 cycle.

	
	PSHM AR1
	; Save AR1. 1 word, 1 cycle.

	
	
	

	timer_isr:
	ADDM #4, AR0
	; Some operation on AR0.

	
	ANDM #0FFh, AR1
	; Some operation on AR1.

	
	RETED
	; Delayed return from

; interrupt. 3 cycles.

	
	POPM AR1
	; Restore AR1.

; 1 word, 1 cycle.

	
	POPM AR0
	; Restore AR0.

; 1 word, 1 cycle.

Example 14-9 makes use of the instructions BD (branch unconditionally with delay) and RETED (enable interrupts and return from interrupt with delay). In both cases, the delay has the effect of speeding program execution. An explanation is in order.

The word delay does not mean that the instruction puts a delay in program execution as would the instruction NOP. Here the word delay means that the instruction does not act immediately, but there is a delay before the instruction acts.

While waiting for the delay to expire, other instructions can be executed. For example, when the instruction BD is encountered, the branch does not occur immediately. The two single word instructions or one dual word instruction following immediately afterwards are executed and then the branch occurs. The operation of the instruction BD is shown in Example 14-10.

Example 14-10.

	
	

	BD timer_isr
	; Branch unconditionally after the next two

; instructions have been executed. 3 cycles.

	PSHM AR0
	; Temporarily save AR0. 1 cycle.

	PSHM AR1
	; Temporarily save AR1. 1 cycle.

The code in Example 14-10 can be thought of as follows:

Example 14-11.

	
	

	PSHM AR0
	; Temporarily save AR0. 1 cycle.

	PSHM AR1
	; Temporarily save AR1. 1 cycle.

	B timer_isr
	; Branch unconditionally.

The two PSHM instructions following immediately after the instruction BD are executed before the branch occurs. The time from reaching the instruction BD to the branch is still 5 cycles, but in this time two extra instructions are executed.

In a similar way, when the instruction RETED is encountered, the return from interrupt does not occur immediately, but rather the next two single word instructions are executed. Then the return from interrupt occurs.

Example 14-12.

	
	

	RETED
	; Return from interrupt after following two

; instructions have been executed. 3 cycles.

	POPM AR1
	; Temporarily save AR1. 1 cycle.

	POPM AR0
	; Temporarily save AR0. 1 cycle.

The operation of the instruction RETED can be thought of as shown in Example 14-14.

Example 14-13.

	
	

	POPM AR1
	; Temporarily save AR1. 1 cycle.

	POPM AR0
	; Temporarily save AR0. 1 cycle.

	RETE
	; Return from interrupt. 3 cycles.

These instructions with delay have an unusual effect upon program execution in that instructions are not executed sequentially.

The ability to execute two single word instructions before the branch and return is very useful. Instructions commonly placed here are PSHM ST0 and PSHM ST1 to save the flags.

Using the instructions BD and RETED allow us to rewrite Example 14-8 in a way that saves 4 cycles.

Example 14-14.

	
	
	

	timer:
	BD timer_isr
	; Delayed branch to the

; subroutine at program

; memory address given by the

; label timer_isr.

; 2 words, 3 cycles

	
	PSHM AR0
	; Temporarily save AR0.

; 1 cycle.

	
	PSHM AR1
	; Temporarily save AR1.

; 1 cycle.

	
	
	

	timer_isr:
	MAR *AR0+
	; Some operation on AR0.

	
	MAR *AR0-
	; Some operation on AR1.

	
	RETED
	; Delayed return from

; interrupt. 3 cycles.

	
	POPM AR1
	; Restore AR1. 1 cycle.

	
	POPM AR0
	; Restore AR0. 1 cylce.

The code in Example 14-8 and Example 14-14 carry out the same operation, but the code in the second example uses 4 fewer cycles.

Upgrading from the TMS320C2000 to the TMS320C5000.

There are considerable differences in syntax between the TMS320C5000 and earlier devices. These are shown in Table 14-2.

Table 14-2: Comparison of Instructions

	Description
	TMS320C2000 Instruction
	TMS320C5000

Instruction

	Return from interrupt
	RET
	RETE

	Return from interrupt with delay.
	Not supported
	RETED

	Input from Port
	IN
	PORTR

	Output to Port
	OUT
	PORTW

	Branch with delay
	Not supported
	BD

	Force reset from software
	INTR K
	RESET

	Call interrupt service routine
	INTR K
	INTR K

	Non-maskable interrupt
	NMI
	INTR 1

K is a constant between 0 and 31.

The TMS320C5000 has a different interrupt vector table structure to that of earlier devices. The TMS320C2000 only allocates two words per interrupt, whereas the TMS320C5000 uses four words. This means that on earlier devices it is necessary to vector to the interrupt service routine. However, with the four words that are available on the TMS320C5000, it is possible to execute three single-word instructions and a RETE.

The interrupt vector numbers have also changed between the devices. For example, on the TMS320C2000, interrupt 24 was non-maskable interrupt NMI. On the TMS320C5000 it is interrupt 1.

Questions

	1.
	What is the difference between a maskable interrupt and a non-maskable interrupt?

	2.
	What is meant by the term interrupt service routine?

	3.
	The instruction RETE means:

a)
Return from exception

b)
Return and execute

c)
Return from interrupt and enable interrupts

d)
Return except when condition is TRUE

e)
Return except when condition is FALSE?

	4.
	Why is it important that every interrupt service routine contains a return from interrupt instruction such as RETE?

	5.
	What is the difference between the instructions RET and RETE?

	6.
	What is a port?

	7.
	How do we call a particular interrupt service routine during the course of a program?

	8.
	How do we force a reset using a software instruction?

	9.
	What is the difference between a cold reset and a warm reset.

	10.
	Why do we use the instruction B rather than the instruction CALL to reach an interrupt service route?

	11.
	Why might we need to save flags before executing an interrupt service routine?

	12.
	What does the term delay mean when applied to a branch instruction?

	13.
	What are the differences between the instructions B and BD?

	14.
	What are the differences between the instructions RETE and RETED?

	15.
	Which of the following instructions offers the faster operation:

a) RETE

b) RETED?

Tutorial 14: Non-Maskable Interrupts 12 5 February, 2003

