Tutorial 2: Indirect Addressing

Overview of Tutorial

In the previous tutorial we saw how to transfer data using direct addressing. This tutorial illustrates the usage of another method of moving data known as indirect addressing. Indirect addressing is an important mode of the TMS320C5000 and is well worth mastering. In fact, certain instructions only work effectively using indirect addressing.

Analogy of Indirect Addressing

The concepts of direct and indirect addressing can be easily explained in terms of the real-life scenario of a library. Say we require a certain book. If we know the number of the book then we can go to its location straight away. However, what happens if we do not know the number of the book? We would first look in the index system, find the book number and then go to its location.

The book number and the number of a data memory address work in the same way. In terms of TMS320C5000 assembly language, when using direct addressing, the operand gives the data memory address. This is the equivalent of the book number in the library analogy.

Indirect addressing differs in that the operand does not give the data memory address, but tells us which auxiliary register contains this information. The auxiliary register is equivalent to the index system in the library analogy. The TMS320C5000 makes use of auxiliary registers AR0 to AR7 as pointers to data memory addresses.

Figure 2-1 shows the mechanism of indirect addressing for the TMS320C5000 in diagrammatic form:

[image: image1.wmf]Figure 2-1. Model of Indirect Addressing

0000h

AR0

1674h

AR1

0060h

AR2

0200h

AR3

0300h

AR4

13F0h

AR5

0005h

AR6

8000h

AR7

0000h

0000h

0000h

0000h

0000h

1000h

FFFFh

FFFFh

FFFFh

FFFFh

1FBh

1FCh

1FDh

1FEh

1FFh

200h

201h

202h

203h

204h

Auxiliary

Registers

Data

Memory (RAM)

In order to work upon the contents of data memory address 200h, we use auxiliary register AR3 to act as a pointer to this location.

A Model of Indirect Addressing Using the Analogy of C

We can model the behaviour of indirect addressing, as shown in Figure 2-1 using the analogy of C code. Let us look at the case of where we wish to load a 32-bit variable (named accumulator_A) with the contents of memory address 200h.

Example 2-1.

	
	

	unsigned int *AR3;
	// AR3 is a pointer to a

// data memory location.

	unsigned long accumulator_A;
	// Our 32-bit variable.

	AR3 = 0x200;
	// Load AR3 with the address // of memory location 200h.

	accumulator_A = *AR3;
	// Load accumulator_A with

// the contents of data

// memory address

// 200h.

Please note that this is an analogy only, and we would never actually write code of this type. The important point to remember is that one of the auxiliary registers AR0 to AR7 contains the address of the data memory location we wish to work upon.

Using Indirect Addressing

Let us now perform exactly the same operation as we saw in Figure 2-1 and Example 2-1, but this time using assembly language. Let us load the accumulator with the contents of data memory address 200h using AR3 as the pointer to data memory. This requires two distinct operations and is shown in Example 2-2:

Example 2-2.

	
	

	STM #200h, AR3
	; Load auxiliary register AR3 with the

; address in data memory.

	LD *AR3, A
	; Load accumulator A with the contents

; of the data memory location

; whose address is contained in AR3.

The first operation is to select one of the eight auxiliary registers AR0 to AR7 as our pointer register and load it with the address of the data memory address we wish to use. For this we employ the instruction STM (store immediate value in memory-mapped register).

Because AR0 to AR7 are 16-bit registers, the address is therefore 16-bit. This gives us access to any data memory address in the range 0 to 65535 (0 to FFFFh).

The second operation in Example 2-2 is to load the accumulator with the contents of the data memory address to be found in the auxiliary register, here AR3. The symbol * is used with the instruction LD (load accumulator) to indicate that the auxiliary register AR3 is used as a pointer to a data memory address. In this particular case, but not always, the symbol * works in the same way as the operator * does in C for pointers.

Should we forget to put in the symbol * when working with indirect addressing, the meaning of the instruction changes completely and is shown in Example 2-3:

Example 2-3.

	
	

	LD AR4, A
	; The symbol * is missing. This will

; be interpreted by the assembler as the

; instruction LDM (Load accumulator A

; with the contents of memory-mapped

; register AR4).

Syntax

The instruction STM can be used with two forms of syntax, both of which are shown in Example 2-4:

Example 2-4.

	
	

	STM #200h, AR3
	; Load auxiliary register AR3 with the

; immediate value 200h. AR3 now contains

; 200h.

	STM 200h, AR3
	; Load auxiliary register AR3 with the

; value 200h. AR3 now contains 200h.

In both cases, the value supplied as the operand is treated as immediate data and is loaded into an auxiliary register. However, what that value means depends upon the context. It may represent a number or an address in data memory. To distinguish between the two different ways of using the instruction, readers may wish to use the convention that an operand supplied with a # sign is taken to be a number while an operand without the # sign is taken to be an address. However, the clearest way is to comment the code.

Example 2-5.

	
	

	STM #200h, AR3
	; Store immediate value 200h in

; auxiliary register AR3. AR3 = 200h.

	STM #200h, AR3
	; Store address 200h in auxiliary

; register AR3. AR3 = 200h.

Development tools can use either syntax, so readers need to be aware that two forms exist.

Differences between Direct and Indirect Addressing

We have already seen how to load the accumulator with the contents of a data memory address using the instruction LD (load accumulator) and direct addressing, as shown in Example 2-6:

Example 2-6.
	
	

	LD #1, DP
	; Load data pointer (DP) with 1 to address

; page 1. Gain access to data memory

; addresses 80h to FFh.

	LD 0h, B
	; Direct addressing. Load accumulator B

; with the contents of data memory address

; 80h + 0h = 80h.

When using indirect addressing, we use the instruction LD in a slightly different way, as shown in Example 2-7:

Example 2-7.

	
	

	STM #80h, AR3
	; Store address 80h in auxiliary register

; AR3.

	LD *AR3, B
	; Indirect addressing. Load accumulator B

; with the contents of the data memory

; address pointed to by AR3. AR3 contains

; the address 80h.

In Example 2-7, the symbol * is used to indicate that the auxiliary register contains the address of a data memory address. However, care needs to be taken not to read too much into the symbol *. It simply means that the operation is based upon the contents of the auxiliary register. How it is used is taken from the context of the instruction. When used with the instruction LD (load accumulator), the symbol * is used to indicate indirect addressing. However, there are other instructions where the symbol * does not mean indirect addressing. Examples of these instructions will be covered in later tutorials.

Advantages of Indirect Addressing

Indirect addressing offers two advantages over direct addressing.

First, the auxiliary register contains the full 16-bit data memory address, whereas direct addressing provides only 7 bits. To guarantee correct operation when using direct addressing, a separate instruction must be executed to set the remaining 9 bits of the address. The high 9 bits of the address are stored in the data memory page pointer (DP). When performing an operation using direct addressing and two different data memory pages, it is possible to forget to change the data memory page pointer and therefore address the wrong data word.

The second advantage of using indirect addressing is that it provides a mechanism to modify the contents of the auxiliary register as part of the instruction, an example of which is shown in Example 2-8:

Example 2-8.

	
	

	STM #200h, AR4
	; Store the address 200h in auxiliary

; register AR4.

	LD *AR4+, B
	; Load accumulator B with the contents

; of the data memory address pointed to

; by AR4 (200h). Then increment AR4 to

; point to the next data memory address

; (201h).

Here we have used the symbol *AR4+ to mean that the auxiliary register contains the value to be used as the basis of our operation and that after doing the operation, we increment the contents of the auxiliary register. Note that the operation *AR3+ increments the address of the data memory location, but does not increment the data contained at the data memory address.

The C code analogy of Example 2-8 is shown in Example 2-9:

Example 2-9.

	
	

	unsigned long accumulator_B;
	// Accumulator B.

	unsigned int *AR4 ;
	// AR4 is a pointer to

// memory.

	AR4 = 0x200;
	// AR4 points to address

// 200h.

	accumulator_B = *AR4++;
	// Load accumulator B with

// the contents of data

// memory address 200h, then

// increment the pointer to

// address 201h.

With TMS320C5000 assembly language, should we wish to decrement the contents of the auxiliary register while using indirect addressing to load accumulator A we would write:

Example 2-10.

	
	

	STM #300h, AR3
	; Store address 300h in auxiliary

; register AR3.

	LD *AR3-, A
	; Load accumulator A with the contents

; of the data the memory address pointed

; to by AR3 (300h). Decrement AR3 to

; point to the adjacent data memory

; address (2FFh).

The C code analogy would be as shown in Example 2-11:

Example 2-11.

	
	

	unsigned long accumulator_A;
	// Accumulator A.

	unsigned int *AR3 ;
	// AR3 is a pointer to a

// word in memory.

	AR3 = 0x300;
	// AR3 points to address

// 300h.

	accumulator_B = *AR3--;
	// Load accumulator A with

// the contents of memory

// address 300h, then

// decrement the pointer to

// 2FFh.

Note that the operators to increment and decrement cannot be used with the instruction STM (store immediate value in memory-mapped register).

Example 2-12.

	
	

	STM #500h, *AR1+
	; Illegal. Cannot use *ARx+ with the

; instruction STM (store immediate

; value in memory-mapped register).

	STM #30h, *AR2-
	; Illegal. Cannot use *ARx- with

; the instruction STM (store immediate

; value in memory-mapped register).

Saving the Contents of the Accumulator in Data Memory

Indirect addressing can also be applied to instructions such as STL (store accumulator low in memory) and STH (store accumulator high in memory). An example of both of these instructions is given in Example 2-13:

Example 2-13.

	
	

	STL A, *AR2
	; Store the low word of accumulator A

; in the data memory address pointed to

; by AR2.

	STH A, *AR4
	; Store the high word of accumulator A to

; the data memory address pointed to

; by AR4.

We can also apply the assembly operators of the type *AR3+ and *AR3- to the instructions STH and STL. For example, to store the low word of the accumulator A at data memory address 300h and the high word of the accumulator B at data memory address 301h we can write:

Example 2-14.

	
	

	STM #300h, AR2
	; Store the address 300h in auxiliary

; register AR2.

	STL A, *AR2+
	; Store the low word of accumulator A at

; the data memory address pointed

; to by auxiliary register AR2 (300h).

; Increment AR2 to point to the data

; memory address 301h.

	STH A, *AR2
	; Store the high word of accumulator A at

; the data memory address pointed to by

; AR2 (301h).

By incrementing the current auxiliary register as part of the instruction STL (store accumulator low into memory), we are then ready to work on the next data memory address.

More Complex Indirect Addressing

What would happen if we were to attempt to load accumulator A using indirect addressing but forget to put in the name of the auxiliary register AR0 to AR7, as shown in Example 2-15?

Example 2-15.

	
	

	LD *, A
	; Use indirect addressing to

; load accumulator A without specifying an

; auxiliary register.

Even though there is no named auxiliary register, this instruction will assemble correctly and run without error. This is because when no auxiliary register is specified, under normal circumstances, auxiliary register AR0 is used as the default. However, this form of syntax is not recommended and is better to put in the name of the auxiliary register.

Compatibility with Earlier Devices

Indirect addressing on the TMS320C25, TMS320C2xx and TMS320C5x functioned in a different way to that of the TMS320C5000. For backwards compatibility, the TMS320C5000 can be configured to operate in the same way as earlier devices. This mode of operation is not normally used with the TMS320C5000 but is included here so that readers can understand and make use of application notes written for earlier devices.

The earlier devices used the same syntax as shown in Example 2-15, but which of the auxiliary register used for indirect addressing is determined from a configuration variable known as the auxiliary register pointer (ARP). The auxiliary register pointer (ARP) can be loaded with a value between 0 and 7, corresponding to one of the auxiliary registers AR0 to AR7.

To make one of the TMS320C5000 auxiliary registers AR0 to AR7 the selected (or current auxiliary register), we use the instruction LD (load accumulator). This takes two operands. The first operand is an immediate value between 0 and 7. The second operand consists of the letters ARP to indicate that the auxiliary register pointer is being configured. Assuming that the TMS320C5000 has been set up to be compatible with the earlier devices, Example 2-16 shows how we can make AR7 the current auxiliary register and place a value into it.

Example 2-16.

	
	

	LD #7, ARP
	; Load ARP with 7 to make AR7 the current

; auxiliary register. Any indirect

; addressing done without specifying an

; auxiliary register will use AR7.

	LD *AR3, A
	; Load accumulator A with the contents of

; the data memory address pointed to by the

; auxiliary register AR3.

	LD *, B
	; Load accumulator B with the contents of

; the data memory address pointed to by the

; current auxiliary register (ARP), here

; AR7.

In simplistic terms, the auxiliary register pointer (ARP) can be viewed as a field that contains the number of the current auxiliary register.

The code in Example 2-17 is incorrect:

Example 2-17.

	
	

	LD #9, ARP
	; Incorrect. First operand must lie in the

; range 0 to 7.

Modelling the Auxiliary Register Pointer

A model of how the auxiliary register pointer ARP works is shown diagramatically in Figure 2-2:

[image: image2.wmf]Figure 2-2. Second Model of Indirect Addressing

0000h

AR0

1674h

AR1

0060h

AR2

0200h

AR3

0300h

AR4

13F0h

AR5

0005h

AR6

8000h

AR7

0000h

0000h

0000h

0000h

0000h

1000h

FFFFh

FFFFh

FFFFh

FFFFh

1FBh

1FCh

1FDh

1FEh

1FFh

200h

201h

202h

203h

204h

Auxiliary

Registers

Data

Memory (RAM)

ARP

3

In this case we use the number in the auxiliary register pointer (ARP) to select one of the auxiliary registers AR0 to AR7 to be the basis of our operations on data memory. The auxiliary register pointer ARP is a pointer to a pointer to a data memory address.

Modelling the Auxiliary Register Pointer in C

We can model the behaviour of the auxiliary register pointer (ARP) using the analogy of C code, and is shown in Example 2-18:

Example 2-18

	
	

	unsigned char ARP;
	// Index in range 0 to 7.

	unsigned int *AR[8];
	// An array of 8 pointers.

	unsigned long accumulator_A;
	// Accumulator A.

	
	

	ARP = 3;
	// Set index to 3.

	AR[ARP] = 0x200;
	// Use AR[3] to point to

// address 200h.

	accumulator_A = *AR[ARP];
	// Load accumulator A with

// contents of memory

// address 200h.

In this case we are treating auxiliary registers AR0 to AR7 as an array of eight pointers. To select AR3 as our current auxiliary register we use AR[3]. We then load accumulator A using the selected pointer.

Note that is an analogy only, and in practice we would never write C code of this type. The main point to remember is that the ARP (auxiliary register pointer) is a pointer to a pointer to a data memory address.

On the TMS320C5000, the auxiliary register pointer is only really important for complex addressing. Most of the time it is not used. However, it should be remembered that on earlier devices such as the TMS320C25 and TMS320C5x, it is the main method of using indirect addressing.

Upgrading from the TMS320C2000 to the TMS320C5000

The data book for the TMS320C25 provides the instruction LARP (load auxiliary register pointer). Both the TMS320C2xx and TMS320C5x can also use this instruction, although it is not in either databook.

Table 2-1. Comparison of Instructions

	Description
	TMS320C2000
	TMS320C5000 Instruction

	Load auxiliary register pointer
	LDP #x
	LD #x, ARP

	Load accumulator with

contents of data memory address pointed to by AR3. Increment AR3.
	LARP 3

LD *+
	LD *AR3+, Acc

	Load accumulator with contents of data memory address pointed to by AR4. Decrement AR4.
	LARP 4

LD *-
	LD *AR4-, Acc

Here x is a number between 0 and 7 and ARx is one of the current auxiliary registers AR0 to AR7, Acc is accumulator A or accumulator B.

The fact that the name of the auxiliary register can be explicitly stated makes the TMS320C5000 instructions much easier to read than with the earlier devices. Example 2-19 shows how to load the accumulator with the contents of a data memory address and how to copy it to data memory using TMS320C2000.

Example 2-19.

	
	

	LARK 3, 100h
	; TMS320C2000 syntax. Load address

; 100h into auxiliary register AR1.

	LARK 4, 200h
	; Load address 200h into auxiliary register

; AR4.

	LARP 3
	; Make AR3 the current auxiliary register.

	LD *, AR4
	; Load accumulator with contents of the

; data memory address pointed to by AR3.

; Make AR4 the new current auxiliary

; register.

	ST *
	; Store low word of accumulator in the data

; memory address pointed to by AR4.

Example 2-20 shows how to load an accumulator with an immediate value and how to copy it to data memory using TMS320C5000 syntax.

Example 2-20.

	
	

	STM #100h, AR3
	; TMS320C5000 syntax. Store address 100h in

; auxiliary register AR3.

	STM #200h, AR4
	; Load address 200h into auxiliary register

; AR4.

	LD *AR3, A
	; Load contents of data memory address 100h

; in accumulator A.

	STL A, *AR4
	; Store low word of accumulator A in the

; data memory address pointed to by AR4.

Questions

	1.
	Which two of the following instructions are legal?

a) STM #400h, AR4
b) STM #20, AR5-
c) STM 200h, AR1+
d) STM 600, AR7

e) STM #2, -AR5

f) STM 30h, +AR6

	2.
	Which three of the following instructions are legal?

a) LD *AR2, A+

b) LD *AR6, B-

c) LD *

d) LD *AR4-, B

e) LD *AR5+, A

f) LD *AR3, A

	3.
	What are the advantages of indirect addressing over direct addressing?

	4.
	How do we increment the contents of an auxiliary register when using indirect addressing?

	5.
	How do we decrement the contents of an auxiliary register when using indirect addressing?

	6.
	What effect does the instruction LD *AR2+, A have?

a)
Load accumulator A with indirect data then increment AR2

b)
Load accumulator A with indirect data then increment accumulator A

a)
Load accumulator A with indirect data then increment indirect data.

	7.
	The instruction STL A, *AR2 means:

a)
Subtract the low word of accumulator A from auxiliary register AR2.

b)
Store low word of accumulator A in dmad pointed to by AR2

c)
Save total value in accumulator A in AR2.

d)
Shift left accumulator A and store result in dmad pointed to by AR2.

	8.
	The instruction STH B, *AR3 means:

a) Shift hexadecimal value in accumulator B and put result in AR3

b) Subtract value in high word of accumulator B from AR3

c) Store horizontally accumulator B in AR3

d) Store high word of accumulator B in dmad pointed to by AR3.

	9.
	What is meant by the term current auxiliary register?

	10.
	What is meant by the term auxiliary register pointer (ARP)?

	11.
	How do we make AR6 the current auxiliary register?

Tutorial 2: Indirect Addressing
 11
 Date: 5 February, 2003

