Tutorial 3: Logical Operations

New Instructions Introduced

AND

OR

XOR

ANDM

ORM

XORM

CMPL

Overview of Tutorial

In the first two tutorials we saw how to move data to and from accumulator A and accumulator B. We shall now look at some of the ways to manipulate data in accumulators A and B.

Logical Operations

Logical operations allow us to alter specific bits of data words. Readers may already be familiar with the C language operators & | ^ and ~. For each of these there is an equivalent TMS320C5000 assembly language operator.

Logical AND

The first logical operation we shall look at is the AND. The truth table is shown in Table 3-1:

Table 3-1. Logical AND

In order for the Result to be 1, both the 1st Value AND the 2nd Value must be 1.

As an example, let us perform the logical AND of the words A95Ch and 00FFh. We apply the truth table for the logical AND to each bit of the two values as shown in Table 3-2:

Table 3-2. Logical AND

To use the analogy of C code, if the first value is stored in accumulator A, we could write Table 3-2 as:

Example 3-1.

Let us now implement the operation shown in Table 3-2 using TMS320C5000 assembly language with immediate addressing:

Example 3-2.

In Example 3-1 it can be seen that the instruction AND with the immediate value FFh leaves the low byte unaffected, but clears the other bits to zero. The immediate value can be in the range 0 to 65535 (0 to FFFFh).

As another example, let us take the case of when accumulator B already contains FFFF1234h.

Example 3-3.

Note that the logical AND affects all 32 bits of the accumulator. In this case the high word of the accumulator has been cleared to 0000h.

Logical AND with Memory

Consider the case when we wish to perform a logical AND of an immediate value with the contents of ad data memory location. An example using C code is shown in Example 3-4:

Example 3-4.

The instruction AND can only be applied to accumulator A or to accumulator B. In order to perform the logical AND of an immediate value with the contents of a data memory address, one way is to copy the value to an accumulator, use it for operation and then to copy the result back to data memory:

Example 3-5.

However, a neater way is to use the instruction ANDM (logical AND memory with 16-bit immediate), as shown in Example 3-6. This is the assembly language implementation of Example 3-4 and assumes that the variable value is stored at data memory address 71h:

Example 3-6.

The instruction ANDM takes two operands. The first operand is the immediate value and can lie in the range 0 to 65535 (0 to FFFFh). The second operand is the destination and is an address in data memory.

Note that the usage of the letter M differs between instructions. For example, the letter M in the instructions STM (store immediate value in memory-mapped register) and LDM (load memory-mapped register) means memory-mapped register. However, the letter M when applied to the instruction ANDM (logical AND with memory) applies to a data memory address.

Logical AND of a Series of Data Memory Addresses

Say we wish to perform a logical AND of data memory address 71h with data memory address 72h and put the result at data memory address 73h. We cannot perform a direct logical AND of two values stored in data memory. To do so, we must first copy one of the values to either accumulator A or accumulator B, as shown in Example 3-7:

Example 3-7.

The instruction AND (logical AND with accumulator) can also be used with indirect addressing. For example, to perform the logical AND of the contents of a data memory address 71h with accumulator A we can write:

Example 3-8.

Logical OR

The truth table for the logical OR is shown in Table 3-3:

Table 3-3. Logical OR

If either the 1st Value or the 2nd Value is a 1, then the result will be 1. The above truth table is applied a totoal of 16 times, once to each bit of a data word.

We can perform a logical OR of A95Ch and 00FFh as shown in Table 3-4:

Table 3-4. Logical OR

Instead of clearing specific bits of an accumulator to 0, as is the case with the logical AND, the logical OR is used to sets specific bits to 1. We can therefore use the instruction OR (logical OR) to set one or more bits of either accumulator A or accumulator B.

We can implement Table 3-4 using the analogy of C code:

Example 3-9.

To carry out the operation in Example 3-9 using TMS320C5000 assembly language we write:

Example 3-10.

Let us now look at a slightly different example where we wish to perform a logical OR directly on the contents of a data memory location. For this the analogy of C code would be:

Example 3-11.

Assuming that the variable value is stored at data memory address 82h, one way we can implement Example 3-11 is shown in Example 3-12:

Example 3-12.

The immediate value can lie in the range 0 to 65535 (0 to FFFFh).

We have copied the value to the accumulator, performed an operation on it and then put back the updated value. There is a simpler way to carry out this operation using the instruction ORM (logical OR memory with constant). The letter M in the instruction ORM stands for memory and not memory-mapped register:
Example 3-13.

Logical OR of Values in Memory

We can perform the logical OR of two or more data words stored in data memory. Example 3-14 gives the analogy in C code of the logical OR of two values:

Example 3-14.

If value_1 is stored at data memory address 63h, value_2 is stored at data memory address 64h and result is stored at data memory address 65h, then we can implement Example 3-14 in assembly language as:

Example 3-15.

The instruction OR also supports indirect addressing. To perform a logical OR of accumulator B with the contents of data memory address 100h we write:

Example 3-16.

The instruction OR affects only the low word of accumulator A or B. If accumulator A already contains the value FFFF1111h, then:

Example 3-17.

The instruction OR (logical OR with accumulator) works differently to the instruction AND which affects the entire accumulator.

Logical Exclusive OR (XOR)

The most flexible logical operation is the exclusive OR. The truth table for the logical exclusive OR is shown in Table 3-5:

Table 3-5. Exclusive OR.

For the Result to be 1, the 1st Value and 2nd Value must be different.

We apply this truth table 16 times once to each bit of the low word of the accumulator. Let us perform an exclusive OR of A95Ch with 00FFh, as shown in Table 3-6:

Table 3-6. Exclusive OR.

In this case the high byte is unaltered but the low byte is inverted. Using the analogy of C code we may write Table 3-6 as:

Example 3-18.

The assembly language equivalent of Example 3-18 would be:

Example 3-19.

If an exclusive OR is performed of two identical values, the result will be zero, as shown in Example 3-20.

Example 3-20.

In this case, the exclusive OR has the same effect as subtracting one value from the other on a bitwise basis. The exclusive OR will be used in later tutorials as a way of comparing two data words.

Logical XOR with Memory

We may wish to perform an exclusive OR on a value stored in data memory. Example 3-21 illustrates this operation using C code:

Example 3-21.

Using TMS320C5000 assembly language, in order to perform a logical exclusive OR directly on a value stored at data memory address 82h with an immediate value we could use an instruction sequence such as the one in Example 3-22:

Example 3-22.

We have copied the value to the accumulator, performed an operation on it and then put the result back into the original data memory address. There is a simpler way to do this operation using the instruction XORM (logical exclusive OR memory with constant), the usage of which is shown in Example 3-23:

Example 3-23.

Note that here the letter M in the instruction XORM means memory, and not memory-mapped register.

An Apparent Inconsistency

The instructions OR and XOR work on the low 16 bits of accumulator A and accumulator B. On the other hand, the instruction AND works on the full 32 bits of the relevant accumulator. Why should these instructions behave in different ways?

When we perform a logical operation on an accumulator, the immediate value is taken to be 32 bits, even though the operand provides only the low 16 bits. The high 16 bits are taken to be 0000h.

When we execute the instructions OR and XOR with a 16 bit value, the high 16 bits of the immediate value are filled with zeroes. An OR or an XOR with an immediate value of zero has no effect.

On the other hand, when the instruction AND is used, all bits where the immediate value is zero are cleared to zero. This means that after a logical AND the high word of the accumulator always contains zeroes, regardless of what values were there before.

Complementing the Accumulator

We can complement the low 16 bits of the accumulators using the instruction XOR (exclusive OR with accumulator). Here complement means that all bits that are 0 are replaced by 1 and all bits that are 1 are replaced by 0. This is also referred to as inversion.

The instruction XOR does not affect the high word of the accumulator, so the special instruction CMPL is provided to complement the full 32 bits of the accumulator. Using the analogy of C code we could write:

Example 3-24.

To implement Example 3-24 in assembly language we write:

Example 3-25.

All bits that were originally 0 are changed to 1 and all bits that were originally 1 are changed to 0.

The complement instruction CMPL is used to invert data, for example at an input to convert active low signals to positive logic.

Upgrading from the TMS320C2000 to the TMS320C5000

The TMS320C5000 has two accumulators, whilst the TMS320C2000 has only one. This means that logical and arithmetic instructions designed for use with a single accumulator cannot be used on the TMS320C5000. Table 3-7 gives a comparison of instructions:

Table 3-7. Comparison of Instructions

dmad = data memory address. Acc = Accumulator A or accumulator B.

Note that because the TMS320C5000 has two accumulators, it takes an extra operand compared to the single one used with the TMS320C2000.

The TMS320C5000 can directly perform AND / OR / XOR operations on a constant with a data memory address, without the need to use the accumulator. These make use of the instructions ANDM (logical AND memory with long immediate), ORM (logical OR memory with long immediate) and XORM (logical exclusive OR memory with long immediate).

To carry out the same operation using the TMS320C2000 processor was considerably less efficient because logical and arithmetic operations could only be carried out in the accumulator. This meant copying the contents of the data memory address to the accumulator, performing the operation and then putting the result back in the data memory address.

Questions

	9.
	What do we mean by the term complement?

Tutorial 3: Logical Operations
 1
Date: 5 February, 2003

