Tutorial 4: Signed Numbers and Shifting Data

New Instructions Introduced

RSBX

SSBX

SFTA

SFTL

New Flag Introduced

C

Overview of Tutorial

In the first two tutorials, we looked at some of the simpler instructions that can be used to move data. We shall now look at some additional ways in which to use these instructions to move data. In this tutorial we shall also look at how to use positive and negative numbers as well as to shift data.

Signed and Unsigned Values

All of the instructions up to this point in the tutorials have used unsigned numbers only, that is numbers that only have positive values. For example, the instruction LD (load accumulator) has been used to load a value between 0 to 65535 (0 to FFFFh).

For many DSP applications, we require numbers that are signed, that is numbers that can take values that are negative or positive. In order to represent a signed number, we use the most significant (left-most) bit of the number to indicate the sign. To make the number positive, we make the most significant (left-most) bit 0, and to make the number negative, we make the most significant (left-most) bit of the number 1. Some examples of signed numbers are given in Table 4-1:

Table 4-1. Signed Numbers.

	Decimal
	Hexadecimal
	Binary
	Description

	0
	0
	0000 0000 0000 0000
	Sign bit (most significant bit) is 0, therefore a positive number.

	+32767
	7FFFh
	0111 1111 1111 1111
	Sign bit (most significant bit) is 0, therefore a positive number.

	-1
	FFFFh
	1111 1111 1111 1111
	Sign bit (most significant bit) is 1, therefore a negative number.

	-32768
	8000h
	1000 0000 0000 0000
	Sign bit (most significant bit) is 1, therefore a negative number.

Using a 16-bit number, we can represent signed values between -32768 (8000h) and +32767 (7FFFh). Here FFFFh represents -1.

Leading zeroes in front of a positive number have no effect. For example, the numbers 1, 01, 001, 0001 all have the same value. In a similar way, negative numbers are padded out with a number of Fs. For example, the number -1 can be written as FFh for an 8-bit number, FFFFh for a 16-bit number and FFFFFFFFh for a 32-bit number.

Turning on Sign Extension

The instruction LD (load accumulator long immediate) supports both signed and unsigned numbers. In order to use the instruction LD with a signed number, we must first turn on sign-extension using a variation of the instruction SSBX (set status register bit).

The instruction SSBX is used to set a particular bit in one of the status registers. In this case, the bit we are interested in is SXM which controls sign-extension mode. To turn on sign-extension mode, we use the instruction SSBX with the operand SXM. Once this instruction has been executed, all operations that are affected by SXM (sign-extension mode) will be taken as signed numbers, until sign-extension is turned off.

Example 4-1.

	
	

	SSBX SXM
	; Turn on sign-extension mode. From this

; point in the program, all instructions

; affected by sign-extension (SXM) use

; signed numbers.

	LD #1, A
	; Load accumulator A with 00000001h.

	LD #7FFFh, B
	; Load accumulator B with 00007FFFh. This

; is the largest positive value (+32767).

	LD #-1, A
	; Load accumulator A with FFFFFFFFh.

	LD #0FFFFh, A
	; The constant is taken to be -1. Load

; accumulator A with FFFFFFFFh.

When a 16-bit positive number is being loaded into an accumulator (i.e. where the most significant bit is 0), the high word of the accumulator is filled with 0000h. On the other hand, when a negative number is being loaded into the accumulator (i.e. where the most significant bit is 1), the high word of the accumulator is filled with FFFFh.

Turning off Sign Extension

In order to turn off sign-extension mode, we use the instruction RSBX (reset status register bit) with the operand SXM. This has the affect of turning off sign-extension mode until the next instruction SSBX SXM occurs and is illustrated in Example 4-2:

Example 4-2.

	
	

	RSBX SXM
	; Turn off sign-extension mode. From this ; point in the program, all instructions

; affected by sign-extension (SXM) will

; use positive values only.

	LD #0FFFFh, A
	; Load accumulator A with 0000FFFFh.

	LD #7FFFh, B
	; Load accumulator B with 00007FFFh.

	SSBX SXM
	; Turn on sign-extension mode. From this

; point in the program, all instructions

; affected by sign-extension mode (SXM)

; will use signed numbers.

	LD #0FFFFh, A
	; Load accumulator A with FFFFFFFFh (-1).

Shifting to the Left

Shift instructions are used to move bits in accumulator A or accumulator B to the left or to the right. Readers may already be familiar with shifts in C. For example, to shift a 32-bit variable one place to the left we can write:

Example 4-3.

	
	

	unsigned long accumulator_A;
	

	accumulator_A <<=1;
	// Shift the contents of

// accumulator A one place

// to the left.

The operation of a shift to the left of a 16-bit variable is shown in Table 4-2:

Table 4-2. Shifts to the Left

	
	Decimal
	Hexadecimal
	Binary

	Original Value
	+43356
	 A95Ch
	0000 1010 1001 0101 1100

	Shift left
	+86712
	152B8h
	0001 0101 0010 1011 1000

	Shift left again
	+173424
	2A570h
	0010 1010 0101 0111 0000

Shifting one place to the left has the same effect as multiplying by 2.

The TMS320C5000 provides the instruction SFTL (shift accumulator logically). Note that the letter L in SFTL does not mean left. This instruction moves each bit of an accumulator a number of places to the left or right, as specified by the operand. For example, if accumulator A already contains 00008421 and we wish to shift it one place to the left we write:

Example 4-4.

	
	

	SFTL A, 1
	; Shift accumulator A one place to the

; left (multiply by 21 = 2). Accumulator A

; now contains 10842h. The Carry (C) bit

; now contains 0.

When we shift an accumulator one place to the left, then the most significant (left-most) bit of the accumulator (bit 31) is moved into the Carry (C) flag and a 0 is moved into the lowest bit (right-most) of the accumulator (bit 0).

The Carry (C) flag is also used to indicate that a number has exceeded the maximum value that can be stored in the variable while carrying out an addition.

When using the instruction SFTL, the amount of left shift can be between 1 and 15 places.

Example 4-5.

	
	

	SFTL A, 2
	; Shift accumulator A two places to the

; left (multiply by 22 = 4). Accumulator A

; now contains 21084h. The Carry (C) bit

; contains 0.

	SFTL A, 16
	; Illegal. Maximum allowed shift is 15.

Since the instruction SFTL (shift accumulator logically) takes two operands, it is illegal to write:

Example 4-6.

	
	

	SFTL A
	; Illegal. The number of shifts must be

; specified.

	SFTL B, 0
	; Shift accumulator B zero places. This

; instruction has no effect other than to

; clear the Carry (C) flag.

	SFTL 1
	; Illegal. Either accumulator A or

; accumulator B must be specified as the

; source.

We cannot use the instruction SFTL A, 15 to shift the low word of the accumulator into the high word. For that, 16 shifts would be required. In order to obtain a shift left of 16 places, we execute the SFTL instruction twice, as shown in Example 4-7, so that the sum of the shifts adds up to 16:

Example 4-7.

	
	

	SFTL A, 8
	; Shift accumulator A 8 places to the

; left.

	SFTL A, 8
	; Shift accumulator A a further 8 places

; to the left. Total number of shifts is

; now 16.

Shifting to the Right

To shift a 32-bit variable one place to the right, in C code we can write:

Example 4-8.

	
	

	unsigned long accumulator_A;
	

	accumulator_A >>=1;
	// Shift the contents of

// accumulator A one place

// to the right.

The operation of a shift to the right is shown in Table 4-3:

Table 4-3. Shifts to the Right

	
	Decimal
	Hexadecimal
	Binary

	Original Value
	+43356
	 A95Ch
	 1010 1001 0101 1100

	Shift right
	+21678
	54AEh
	 0101 0100 1010 1110

	Shift right again
	+10839
	2A57h
	 0010 1010 0101 0111

A shift to the right is a quick way of carrying out a division by 2. However, each time a shift to the right is executed, the least significant (right-most bit) is lost. This means that there is a loss of resolution. Shifting to the right is often used after a multiplication to scale down the product.

In order to shift the value in an accumulator to the right, we again use the instruction SFTL (shift accumulator logically), but this time with an operand in the range -16 to -1. This moves each bit of an accumulator a number of places to the left, as specified by the operand.

For example, if accumulator A already contains 8421h and we wish to shift accumulator A one place to the right (divide by 2) we can write:

Example 4-9.

	
	

	SFTL A, -1
	; Shift accumulator A one place to the

; right (multiply by 2-1). Accumulator A

; now contains 0421h. The Carry (C) bit

; now contains 1.

When shifting to the right, the most significant (right-most) bit is shifted into the Carry (C) flag. Two further examples of right shift are given in Example 4-10, and assume accumulator A already contains 00008421h.

Example 4-10.

	
	

	SFTL A, -2
	; Shift accumulator A two places to the

; right (multiply by 2-2). Accumulator A

; now contains 210h. The carry (C) bit

; now contains 0.

	SFTL A, -17
	; Illegal. Maximum allowed shift is -16.

We can use a shift of 16 to the right to move the high word of accumulator A or B to the low word of that accumulator. If accumulator A already contains 23456789h then:

Example 4-11.

	
	

	SFTL A, -16
	; Shift accumulator A 16 places to the

; right (multiply by 2-16). Accumulator A

; now contains 00002345h. The Carry (C)

; bit now contains 0.

Note that the instruction SFTL is not affected by sign-extension mode SXM, and therefore carries out exactly the same operation, whether the value in the accumulator is negative or positive.

Shifting Signed Values

When using signed numbers, if we shift the value to the left or the right, we still expect positive numbers to remain positive and negative numbers to remain negative. With the logical shift SFTL this is not the case. Assuming that accumulator A already contains

80008421h:

Example 4-12.

	
	

	RSBX SXM
	; Turn off sign-extension mode.

	SFTA A, -1
	; Arithmetic shift accumulator A one

; place to the right (divide by 2).

; Accumulator A now contains 40004210h.

In this case, a negative number before the shift has become a positive number after the shift.

To maintain the status of the sign bit during a shift, the instruction SFTA (shift accumulator arithmetically) is provided. The behavior of this instruction does depend on whether sign-extension mode (SXM) is set. If the accumulator already contains 80008421h (a negative number) then:

Example 4-13.

	
	

	SSBX SXM
	; Turn on sign-extension mode.

	SFTA A, -1
	; Shift accumulator A one place to the

; right (divide by 2). The sign bit (bit

; 31) is unchanged. Accumulator A now

; contains 80004210h.

In this case, a negative number remains negative after the shift. When sign-extension mode is turned on, the most significant (left-most) bit which controls the sign of the number, is maintained.

Loading an Accumulator with Data Shifts

We have seen how to load the accumulator with a 16-bit constant using the instruction LD (load accumulator). In the data book, the full description given of the instruction LD is in fact load accumulator with shift. To avoid confusion in the earlier tutorials, the concept of shift was deliberately not mentioned.

When applied to the instruction LD, shift means that each bit is moved one or more places to the left and the least significant bit(s) are filled with zero(es). For example:

00000001h shifted 1 place to the left is 00000002h

00000001h shifted 2 places to the left is 00000004h

00000001h shifted 16 places to the left is 0001000h

The instruction LD (load accumulator with shift) does not provide shifts to the right. Note that the description of the instruction LD is slightly misleading because the shift is done before the load.

Let us load the accumulator A with FFFFh using the instruction LD (load accumulator with shift), but not specify any shift:

Example 4-14.

	
	

	RSBX SXM
	; Turn off sign-extension mode.

	LD #0FFFFh, A
	; Load accumulator A with the immediate

; value FFFFh. Accumulator A now contains

; 0000FFFFh.

We can also add an extra operand and write Example 4-14 as:

Example 4-15.

	
	

	RSBX SXM
	; Turn off sign-extension mode.

	LD #0FFFFh, 0, A
	; Load accumulator A with immediate

; value FFFFh shifted zero places to

; the left. Accumulator A now

; contains 0000FFFFh.

The middle operand denotes the amount of shift to the left and is optional. If no shift is specified, the default of 0 is used. The number of shifts can be in the range 0 to 16.

In order to load accumulator A with FFFFh shifted one place to the left we would write.

Example 4-16.

	
	

	RSBX SXM
	; Turn off sign-extension mode.

	LD #0FFFFh, 1, A
	; Load accumulator A with the

; immediate value FFFFh shifted one

; place to the left. Accumulator A

; now contains 0001FFFFEh.

Similarly, to load accumulator B with FFFFh shifted two places to the left we would write:

Example 4-17.

	
	

	RSBX SXM
	; Turn off sign-extension mode.

	LD #0FFFFh, 2, B
	; Load accumulator B with the

; immediate value FFFFh shifted two

; places to the left. Accumulator B

; now contains 0003FFFCh.

The ability of the instruction LD (load accumulator with shift) to shift the constant before loading allows us to scale a constant before loading it.

Loading all 32 bits of the Accumulator

So far we have only loaded the low 16 bits of accumulator A or accumulator B. Consider the following simple problem. How do we load accumulator A (32 bits) with the constant 6789ABCD hexadecimal? The answer is not as straightforward as it might first appear.

We have already seen how to load the low 16 bits of the accumulator using the instruction LD (load accumulator with shift). The high word of the accumulator is filled with 0000h. We need an instruction to load the high word.

However, the TMS320C5000 instruction set provides no special instruction to load the high 16 bits of an accumulator. This is because it is not needed. To load the high 16-bits of accumulator A with a constant, we use the instruction LD in conjunction with 16 shifts to the left. We can therefore write:

Example 4-18.

	
	

	LD #6789h, 16, A
	; Load accumulator A with the

; immediate value 6789h shifted 16

; places to the left. Accumulator A

; now contains 67890000h.

We have now loaded the high word of the accumulator with 6789h and have filled the low 16 bits with 0000h.

Now we need to fill the low 16 bits of accumulator A with ABCDh. Unfortunately, the instruction LD #ABCDh, A cannot be used. This would load accumulator A with 0000ABCDh, thus overwriting the high 16 bits with zeroes. We need to load the low 16 bits of the accumulator in a way that does not affect the high 16 bits already loaded.

We have more than one way to do this. Assuming that accumulator A already contains 67890000h:

Example 4-19.

	
	

	OR #0ABCDh, A
	; First method. Logical OR low word

; of accumulator A with the immediate

; value ABCDh. Accumulator A now

; contains 6789ABCDh.

	XOR #0ABCDh, A
	; Second method. Logical XOR low word

; of accumulator A with the immediate

; value ABCDh. Accumulator A now

; contains 6789ABCDh.

In Example 4-19 we see two different ways in which to fill the low 16 bits of accumulator A. The method of using the instruction OR (logical OR with accumulator)

is the most commonly used.

Combining Examples 4-18 and 4-19, we now have a method to load the constant 6789ABCDh into accumulator A, and this is shown in Example 4-20:

Example 4-20.

	
	

	LD #6789h, 16, A
	; Load accumulator A with the

; immediate value 6789h shifted 16

; places to the left. Accumulator A

; now contains 67890000h.

	OR #0ABCDh, A
	; Logical OR low word of accumulator

; A with the immediate value ABCDh.

; Accumulator A now contains

; 6789ABCDh.

Loading a 32 bit number into the accumulator requires a load with shift and then an operation such as a logical OR. The shift is carried out before the value is loaded into the accumulator.

Upgrading from the TMS320C2000 to the TMS320C5000

A comparison of instructions used to change sign-extension mode and to perform shifts is shown in Table 4-4:

Table 4-4. Comparison of Instructions

	Description
	TMS320C2000 Instruction
	TMS320C5000

Instruction

	Turn off sign-extension mode
	CLRC SXM
	RSBX SXM

	Turn on sign-extension mode
	SETC SXM
	SSBX SXM

	Logical shift left
	SFL
	SFTL Acc, n

	Logical shift right
	SFR
	SFTL Acc, -n

	Arithmetic shift right
	SFR
	SFTA Acc, -n

	Arithmetic shift left
	Not supported
	SFTA, Acc, n

Here Acc = Accumulator A or B and n is the number of shifts.

On the earlier devices, shifts of only one place to the left or right were allowed. This meant that to achieve certain shifts, the instruction had to be repeated, whereas the TMS320C5000 can carry out multiple shifts using a single instruction.

The earlier shift instructions required no operands, whereas the TMS320C5000 requires two; one operand for the source and the other operand for the number of shifts.

On the TMS320C2000, the maximum shift available when loading the accumulator is 15. This makes loading a 32-bit value into the accumulator quite difficult. On the TMS320C5000 it is much easier because a shift of 16 is allowed.

Questions

	1.
	What is the difference between a signed number and an unsigned number?

	2.
	How do we turn on sign-extension mode?

	3.
	How do we turn off sign-extension mode?

	4.
	The mnemonic SFTL means:

a)
Shift accumulator laterally

b)
Shift accumulator left

c)
Shift accumulator logically.

	5.
	The instruction SFTL A, 1 shifts accumulator A

a)
One place to the left

b)
One place to the right.

	6.
	The instruction SFTL B, -1 shifts accumulator B

a) One place to the left

b) One place to the right.

	7.
	How do we shift the value in accumulator B two places to the right?

	8.
	How do we shift the high word of accumulator A into the low word of accumulator A?

	9.
	How does sign-extension mode (SXM) affect the instruction SFTL?

	10.
	How does sign-extension mode (SXM) affect the instruction SFTA?

	11.
	What is the difference between the instructions SFTL and SFTA?

	12.
	When the instruction LD is used with a shift operand, is it

a)
shift constant then load

b)
load constant then shift.

	13.
	What is the default shift for the instruction LD #5555h, A (load accumulator with shift)?

	14.
	Shift the value #7777h into the high word of accumulator B.

	15.
	In this tutorial we have used two different instructions that can be used to load the immediate value 5555h into the low word of an accumulator, without affecting the high word. Which instructions are they?

	16.
	How do we load the constant FEDC9876h into accumulator B?

Tutorial 4: Signed Numbers and Shifting Data
 10
 Date: 5 February, 2003

