Tutorial 5: Arithmetic Operations

New Instructions Introduced

ADD

ADDM

SUB

MAR

NEG

New Flags Introduced

OVM

Overview of Tutorial

In earlier tutorials we saw how to load data and carry out logical operations. We shall now see how to carry out additions and subtractions on the contents of accumulators, data memory addresses and auxiliary registers.

Simple Addition

To add an immediate value to accumulator A or accumulator B, we use the instruction ADD (add to accumulator).

Example 5-1.

The instruction ADD takes two operands. The first operand is a constant and the second operand is the accumulator to be used.

The instruction ADD is affected by sign-extension mode. The constant is taken to be unsigned when sign-extension mode is off (SXM = 0)and signed when sign-extension mode is on (SXM = 1). This means that the constant can be either be unsigned (in the range 0 to 65535 decimal) or signed (in the range -32768 to +32767 decimal). For the time being, we shall only consider unsigned values. When the constant lies in the range 0 to +32767 (0 to 7FFFh) then sign-extension mode makes no difference.

We can also add the contents of a data memory address to an accumulator using the instruction ADD (add to accumulator) with direct addressing. Say that data memory address 61h already contains the value 3Fh, then to carry out an addition we write:

Example 5-2.

The instruction ADD (add to accumulator) also supports indirect addressing. We can therefore carry out the same operation as carried out in Example 5-2, but this time using indirect addressing. Assuming that data memory address 61h contains the value 3Fh:

Example 5-3.

When adding values greater than +32767 (7FFFh), sign-extension mode must be turned off, otherwise the constant will be treated as a negative number.

Example 5-4.

Signed Additions

When sign-extension mode is turned on, the immediate value used with the instruction ADD is treated as a signed number. Any values between 8000h and FFFFh are taken to be negative numbers; 8000h represents -32768 and FFFFh represents -1.

Whereas Example 5-4 has been used to add the positive number 65535 to accumulator A, Example 5-5 shows how to add the negative number -1 (FFFFh) to accumulator A.
Example 5-5.

When sign-extension mode is turned on, the largest positive value we can add to an accumulator is +32767 (7FFFh).

Example 5-6.

Simple Subtraction

In a similar way to which we carried out addition, we can subtract an immediate value from either accumulator A or accumulator B. For this we can use the instruction SUB (subtract from accumulator). Again, the instruction SUB is affected by sign-extension mode. If the value being subtracted lies in the range 0 to +32767, then sign-extension mode has no effect.

Example 5-7.

When sign-extension mode is turned off, the constant lies in the range 0 to 65535 (0 to FFFFh). When sign-extension mode is turned on, the constant to be subtracted must lie in the range -32768 to +32767 (8000h to 7FFFh). This means that the largest positive value that can be subtracted is 7FFFh.

We can subtract the contents of a data memory address from an accumulator using the instruction SUB (subtract from accumulator). For example, to subtract the contents of data memory address 71h from accumulator B we can write:

Example 5-8.

We can perform a similar operation as shown in Example 5-8, but instead using indirect addressing and with a signed value in data memory:

Example 5-9.

Adding Directly to Memory

We may wish to perform an addition on the contents of a memory address. An example of such an operation is given using C code in Example 5-10:

Example 5-10.

The instruction ADD can only be applied to either accumulator A or to accumulator B. To perform add an immediate value to a data memory address, we must use the instruction ADDM (add long immediate value to memory). Example 5-10 has been implemented in assembly language in Example 5-11 and assumes that the variable value is stored at data memory address 222h:

Example 5-11.

Here the letter M in the instruction ADDM means memory, not memory-mapped register. The instruction ADDM takes two operands. The first operand is the immediate value and the second operand is the data memory address. The result of the addition is placed in the data memory address.

The instruction ADDM is affected by sign-extension mode. When sign-extension mode is turned off, the constant is taken to be positive in the range 0 to 65535 (0 to FFFFh). When sign-extension mode is on, the constant is taken as being a signed value in the range -32768 to +32767 decimal (8000h to 7FFFh).

We can carry out the same operation in Example 5-11, but this time using indirect addressing:

Example 5-12.

Subtraction from Data Memory

We may also wish to perform a subtraction of a constant from the contents of a memory location. Example 5-13 shows how this would be done in C code:

Example 5-13.

The TMS320C5000 does not provide an instruction to subtract an immediate value (constant) directly from the contents of a data memory address. Instead we must use the instruction ADDM (add long immediate value to memory) with a negative constant. An implementation of Example 5-13 using assembly language is shown in Example 5-14. Assuming the variable value is stored at data memory address 284h:

Example 5-14.

The same operation as shown in Example 5-14 can be carried out using indirect addressing. This is shown in Example 5-15:

Example 5-15.

Preventing Overflow During Addition and Subtraction

Consider the following simple problem. Accumulator A contains 7FFFFFFFh and we add 1. The result will be 80000000h. If the number in accumulator A represents a signed number, then adding 1 to 7FFFFFFFh (a large positive number) will produce the result of 8000000h (a large negative number). The addition causes the contents of the accumulator to overflow beyond the upper limit of signed values.

The TMS320C5000 provides a mechanism to prevent overflows. This is done by setting the overflow flag in status register ST1 to 1 to turn on overflow-mode (OVM = 1). In all the examples given in this tutorial so far, it has been assumed that overflow-mode has been switched off (OVM = 0). The instructions ADD, SUB and ADDM are all affected by overflow-mode.

When overflow mode is turned on, the instruction ADD imposes an upper value of 7FFFFFFFh in the accumulators, whether or not sign-extension mode is on.

Assuming that accumulator A already contains 7FFFFFFFh (the maximum signed value that can be held in the 32 bits of an accumulator) then:

Example 5-16.

When an addition occurs that would take the value in an accumulator over its maximum, then the accumulator limits itself to 7FFFFFFFh. This is preferable to going to 80000000h which can represent a negative number.

In a similar way, the instruction SUB imposes a lower limit of 80000000h, whether or not sign-extension mode is on.

Assuming that accumulator A already contains 80000000h (the most negative signed value that can be held in the 32 bits of an accumulator) then:

Example 5-17.

When an subtraction occurs that would take the value in an accumulator over its minimum, then the accumulator limits itself to 80000000h. Again this is preferable to the value in the accumulator changing sign and becoming 7FFFFFFFFh which can represent a positive number.

When using the instruction ADDM, overflow mode limits the contents of a data memory address to a maximum of 7FFFh and a minimum of 8000h.

Example 5-18.

Incrementing and Decrementing Auxiliary Registers

We have seen how to carry out additions and subtractions using accumulators and values stored in data memory. We shall now carry out additions and subtractions on the auxiliary registers AR0 to AR7.

Should we wish to increment or decrement the contents of an auxiliary register without affecting the contents of the data memory address, we use the instruction MAR (modify auxiliary register). This takes a single operand as shown in Example 5-19:

Example 5-19.

The analogy of C code would be:

Example 5-20.

Here the letter M in the instruction MAR means modify, rather than move, as is the case with some other processors. Please note that the description given here of the instruction MAR only covers some of the capabilities of the instruction MAR. More details as to the usage of the instruction MAR are given in the TMS320C5000 databook.

An important point to remember is that when using the instruction MAR (modify auxiliary register), the symbol * does not refer to indirect addressing. It simply means an operation is carried out on the auxiliary register.

Modifying Auxiliary Registers

In order to add a constant from the value in an auxiliary register, we use a special variation of the instruction MAR that adds the value in AR0 to the auxiliary register.

Example 5-21 shows how to add together the contents of two auxiliary registers.

Example 5-21.

The instruction MAR *AR4+0 modifies auxiliary register AR4 by adding the contents of AR0 to AR4 and then putting the sum in AR4.

Similarly, we can subtract a value from an auxiliary register.

 Example 5-22.

The value to be added or subtracted must always be put in AR0. The sum or difference will always be stored in the register listed first in instruction MAR.

Example 5-23.

The operator on the auxiliary register of the type *AR5+0 can also be used with some of the other instructions already introduced.

Example 5-24.

In each of the sample instructions in Example 5-24, the auxiliary register is modified after the store operation has been done.

Differences Between the Instructions STM and MAR
When first learning TMS320C5000 assembly language, the differences between the instructions STM (store in memory-mapped register) and MAR (modify auxiliary register) may not be immediately obvious.

The instruction STM stores a value in a memory-mapped register AR0 to AR7. It is not possible to modify an auxiliary register as part of this instruction.

Example 5-25.

By contrast, the instruction MAR modifies an auxiliary register but does not store any data.

Example 5-26.

A practical example of how we would use the instructions STM and MAR is to implement a for loop in C using an auxiliary register to store our variable. Consider part of the for loop shown in Example 5-27:

Example 5-27.

To partly implement this in assembly language we will use auxiliary register AR4 to store the variable x.

Example 5-28.

In the case where we use an auxiliary register to store the C variable, no operations are performed on data memory.

Converting Numbers from Unsigned to Signed

Within a program, there is sometimes the need to convert a positive number to a negative number. For example, as part of an algorithm we sometimes have a variable that is positive at times, and negative at others. As a simple problem, how do we convert the positive number +1 to the negative number -1?

Expressed as a 16-bit number, +1 is 0001h and -1 is FFFFh. To convert a positive number to a negative number, one way is to complement the number and then add 1 to it. This is shown in Example 5-29:

Example 5-29.

The instruction CMPL is not affected by sign-extension mode.

In order to convert an unsigned number to a signed number, the TMS320C5000 provides the instruction NEG (negate accumulator):

Example 5-30.

Again the instruction NEG is not affected by sign-extension mode.

Upgrading from the TMS320C2000 to the TMS320C5000

The TMS320C5000 has two accumulators, whilst earlier devices had only one. This means that earlier logical and arithmetic instructions designed for use with a single accumulator cannot be used on the TMS320C5000. Table 5-1 gives a comparison of instructions:

Table 5-1. Comparison of Instructions

Here x is a number between 0 and 7 and ARx is one of the current auxiliary registers AR0 to AR7. dmad = data memory address and Acc = accumulator A or B.

Because the TMS320C5000 has two accumulators, it takes and extra operand compared to the single one used with earlier devices.

The usage of the instruction MAR (modify auxiliary register) has changed between the earlier devices and the TMS320C5000. On the earlier devices, the instruction was mostly used to change the current auxiliary register. However, on the TMS320C5000 it is mostly used to alter the value of an auxiliary register.

Unlike earlier devices, the TMS320C5000 can now directly add a positive or negative constant to the contents of a data memory address using the instruction ADDM (add long constant to memory). To carry out the same operation using an earlier processor was considerably less efficient because arithmetic operations could only be carried out in the accumulator. This meant copying the contents of the data memory address to the accumulator, performing the operation and then putting the result back in the data memory address.

Questions

Tutorial 5: Addition and Subtraction
 12
 Date: 18 April, 2002

