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ABSTRACT

In this paper we are trying to define a novel scheme for
speech coding on segmental basis. The goal is 100-200 bit/s
coding rate in multi-speaker and multi-lingual environment.
The main part of the algorithm is the research and mod-
elization of typical spectral sequences. We have performed
this search using temporal decomposition (TD), vector quan-
tization (VQ) and multigram (MG) techniques, on a mono-
speaker database. We report the results in terms of lengths
and numbers of typical spectral sequences, and we are dis-
cussing their phonetical relevance. The following steps will
be a modelization of sequences using Hidden Markov Mod-
els (HMM), and a study on resynthesis and speaker adap-
tation.
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Figure 1: Scheme of the segmental coder.

1. INTRODUCTION

Standard low-bit rate techniques used in present applica-
tions (FS DoD at 4.8 kbit/s, LPC10 at 2.4 kbit/s) need, in
some situations, to be replaced by a coding scheme reaching
lower bit rates (hundreds of bit/s). “Black boxes” for air-
planes, tapeless answering machines, speech storage, and
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military applications can be mentioned rather than stan-
dard tclecommunication oncs, where high quality and lim-
ited delay are requested. At those rates, one must leave the
classical coding schemes working frame-by-frame for the al-
gorithms using larger speech segments. The scheme of such
coder can be seen on Figure 1. For the spectrum representa-
tion, which is the biggest “consumer” of bit rate, Chou et al.
[4] suggested the Variable to Variable length Vector Quan-
tization (VVVQ). We worked on a similar approach which
we called Modified Multigrams (MMG) [6, 7]. Section 2
gives a very brief overview of these experiences. However,
we found the multigrams themselves to be insufficient for a
significant decrease in the bit rate; therefore we are looking
for a method using multigrams for the research of typical
spectral sequences, but not for the speech spectrum mod-
elling itself. In section 3 we present a general scheme of the
novel algorithm, where the search of sequences and their
modelization are divided. Section 4 deals in detail with the
method of search of typical spectral sequences, section 5
presents the experiences and results. The following section
6 discusses the application of HMM to segmental coding,
and the synthesis and adaptation issues. We conclude in
section 7.

2. SPECTRUM CODING BY MODIFIED
MULTIGRAMS

The multigram segmentation originally proposed by Bimbot
et al. in [3], is a method for the division of a string of
symbols W into variable length sequences (1 to n) using a
decision oriented likelihood maximization:

L(W) = max [ [ p(Sk) (1)
{B}
k

where p(Sj) are the probabilities of sequences and {B} is
the set of all possible segmentations. To be able to repre-
sent speech spectra sequences, we modified the method by
adding a distance notion to the evaluation of segmentation
likelihood. A detailed description of experiences and their
results can be found in [6, 7], but we can summarize, that for
a significant decrease in bit rate, the spectral distortion de-
terioration is too important. We have qualified the modified
multigrams themselves to be unsuitable for the low bit rate
speech coding. The main drawback of multigrams is the
time rigidity (a spectral sequence can not be represented
by a multigram of different length). These disadvantages
conducted us to define a new scheme of segmental coder,
which we describe in the following section.



3. NEW SCHEME FOR SEGMENTAL CODING

During our previous experiences with the segmental coding
we found, that the etaps of characteristical segments search
and spectrum representation must be separated. We sug-
gest the following five steps to build an algorithm for very
low bite-rate coding:

1. Non-supervised search of characteristical seg-
ments. We propose the using of TD for the timing
normalization, and VQ and MG of the target vectors
to find the typical sequences. Following two sections
deal with this point in detail.

2. Clustering and modelling of segments. The
same technique as that used in 1. (TD+MG) could
be employed, but we must note, that a badly quanti-
fied spectral target can “destroy” a sequence, which
will not be able to be represented by a multigram. If
we return from targets and interpolation functions of
TD to spectral vectors, those can be represented by
a set of HMMs.

3. Segment recognition. The segmentation and seg-
ment recognition can be done using techniques known
from continuous speech recognition. Only the index
of HMM and a timing information must be transmit-
ted from the coder to the decoder.

4. Segment reconstruction. While the points 1.-3.
are common for speech recognition and segmental
coding, there is no need to reconstruct the original
speech in the recognition. To obtain the complete in-
formation, the pitch and the energy of speech must
be reconstructed as well as the spectrum. Another
problem is the smoothing in concatenations of seg-
ments.

5. Adaptation. The resulting set of typical segments
will be strongly dependent on the database used for
the training. Several approachs can be considered to
overcome the inter-speaker variability (normalization
of voices to a generic one, voice modification).

4. SEARCH OF TYPICAL SPECTRAL
SEQUENCES

The first division of the speech signal is into active and
passive parts using a voice avtivity detector (VAD). For
the search of sequences, only active parts are taken into
account. The signal is parametrized of frame basis by a set
of spectral coeflicients, which form the P x N matrix Y,
where P is the number of coefficients and NV the number of
frames.

As next step, this matrix is separated into limited
amount of spectral events, each consisting of a target and an
interpolation function (IF) using Temporal Decomposition
(TD), introduced by Atal in [1] and refined by Bimbot in [2].
The spectral parameters are approximated by a product of
two matrices:

Y =G® (2)

where G is a P x M target matrix and ® is a M x N ma-
trix of interpolation functions, concentrated in time (the
function is non-zero only on the interval [begin;, end;]. The

number M of events is inferior to N. The method used for
this decomposition is a short-time SVD with an adaptive
windowing, with post-processing of interpolation functions
(smoothing, decorrelation) and with iterative refinement of
G and @. It is described in detail in [2]. We can not deter-
mine the exact localization of an event in the time, but we
can approximate it as a gravity center of the corresponding
interpolation function.

Then, the target vectors are quantified using a sim-
ple VQ with low-size codebook to obtain a set of symbols.
These are the input into the “classical” (without the notion
of distance) multigram method, looking for characteristical
repeating patterns of variable length in the training string.
The process consists of an initialization of dictionary using
all occurences of 1— to n—symbol sequences, and of iter-
ations of segmentation (Eq. 1) and probabilities reestima-
tion. Two modifications were added to the original method
[3]:

e introduction of forced segmentation on the bor-

ders of parts. Those are determined by VAD, and the

resulting training string is created by their concate-
nation, so no mutligram should cross their borders.

e introduction of minimum occurence number for
the multigram dictionary entries. In the original work,
a penalized probability evaluation was used to prune
the dictionary, but as this pruning does not control
directly the number of representants of each MG in
the training string, we used thresholds for the num-
bers of occurences.

Using this procedure, we obtain a set of variable length
charactersitical spectral sequences. The time variability is
introduced by two factors: the different length of interpo-
lation functions of TD and by the variable length of multi-
grams.

5. TYPICAL SEQUENCES - EXPERIENCES
AND RESULTS

We used one speaker data from French Swiss DB Poly-
var created at IDIAP. Tt is recorded over telephone, with
F, = 8000 Hz and 16 bit quantization. The set of 218
calls was divided into training (%) and test (1) sets. Only
the training set was used for the search. The signal was
parametrized using 10 LAR coefficients in frames of 20 ms,
with overlapping of 10 ms. In the same time, the pitch
(using FFT-cepstrumn on 400 ms frames) and energy were
computed. The voice activity was detected using one abso-
lute and one relative energy thresholds, and the raw deci-
sions were smoothed using a 11-tap OR-filter (“all around
must be passive to consider a frame passive”). We obtained
5.2 hours of active speech containing 15813 active parts and
1.8 x 10° frames.

The TD was done using the td95 package of Frederic
Bimbot!. The parameter controlling the number of spec-
tral targets was empirically set to have approximately the
same numer of events per second as the phonetical rate
(15 events/sec). The mean length of one interpolation func-
tion is 87 ms. The total number of events in the training

IThank you very much, Fred !



(@)

+
3
3

Figure 2: Example for the French word “annulation”. a)
signal, b) spectrogram, c¢) TD interpolation functions, d)
MG segmentation.

corpus is 280273. An example of TD can be seen on Fi-
gure 2c.

The TD target vectors were quantified using VQ with 32
code-vectors. For the codebook training, we used an LBG
algorithm with 2 — 4 — ... — 32 splitting. For simplicity,
the code-vectors are marked by letters A...Z, 0...5. The
MG dictionary training and segmentation was performed
on the symbol string resulting from the VQ quantization.
The maximal length of sequence was n = 5. We performed
10 iterations of the segmentation—reestimation cycle. The
borders of parts gave us the imposed segmentation. The
thresholds for minimum number of occurences of one se-
quence were two: the first was applied right after the ini-
tialization of dictionary, the second in the iterations. Both
thresholds were set to min. 20 representants of one sequence
in the training string. The numbers of 1— to 5—grams in
the resulting dictionary are given in Table 1. An example
of multigram segmentation can be seen on Figure 2d.

5.1. Phonetical relevance of sequences

One dictionary entry represents several (> 20) speech seg-
ments in the training corpus. We tried to find, if the seg-
ments represented by the same sequence are phonetically

no. of sequences
1-grams 32
2-grams 627
3-grams 478
4-grams 32
5-grams 2
Total in the dictionary 1171
Mean length [events] 1.936

Table 1: Numbers of characteristical sequences in the re-
sulting MG dictionary

coherent. An example of such comparison is shown on Fig-
ure 3: we took the most frequent sequence from 3—grams,
“FQ3” and we were looking for the speech segments rep-
resented by this sequence. Phonetically, the signals con-
tain a fricative “s” and a nasalized “a”. In some repre-
sentations, we observe the substitution of “s” for an un-
voiced plosive “t”. For some signals, the final “4” does
not end properly, but we can hear artefacts from follow-
ing interpolation functions (“s48” in FQ3.3). Speech sig-
nals for this and other examples can be found on Web page
http://www.fee.vutbr.cz/"cernocky/English.html as
wav-files.

Generally, the sequences are phonetically coherent, some-
times with the above mentioned problems: substitutions of
sounds with similar character, and not clear beginnings and
ends. In our opinion, the former problem is caused by the
low dimension of VQ used. Also, we used only the LPC
spectra for the quantization, without an energy or voicing
criterion. The later problem comes from the nature of TD,
where we had to determine the point separating two events
in time. For two neighbouring interpolation functions p and
g (where ¢ = p + 1) we place the border to the mean value
of end, and begin,.

It was also found that the human evaluation of coher-
ence of sequences is not objective — a strong event on the
beginning of sequence (a plosive for example) is attracting
attention and we are less able to evaluate the middle and
end of sequence, especially in case of very short ones.

6. HMM, SYNTHESIS, AND ADAPTATION

The combination of TD+VQ+MG is used only for the first
segmentation and labelling of training corpus. As the next
etap, we are going to train one HMM for each dictionary
sequence, and the coding itself will be done on similar base
as connected word recognition. Next, we need to resynthe-
size the sequences in the decoder and to pay attention to
adaptation issues. We are only beginning with the experi-
ences, but this section contains some reflections about these
problems.

6.1. HMM and “How to obtain desired bit rate 7”

Having a labelled training corpus, we can train a set of mo-
dels using standard training methods. However, we must
think about number of states per sequence and about the
nature of state distributions. For an i—gram, we suggested
either ¢ states (one per original TD event) or 27 + 1 states,
where event transitions should be better modelized. For
the number of possible state distributions, we will certainly
not able to have an independent one for each state. We
suggest the tying of distributions for the states represented
originally by the same VQ code-vector. For 2i + 1 states
per model, we should have 32 distributions for constant
parts of IF plus one distribution per possible event to event
transition.

Each HMM will have its probability a-priori p(M;) defi-
ning a simple “language model” and the segmentation will
be performed by maximization of well known likelihood:

L= Hp(Mi)p(OilMi) (3)
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Figure 3: Five speech segments from the training string rep-

resented by the same sequence “FQ3”. Signals and spec-
trograms.

where O; is a sequence of observations, over the set of all
possible segmentations and models. As the lengths of se-
quences representing the spectrum are directly linked to
the resulting bit rate, we proposed an iterative algorithm
to adjust the probabilities a-priori. These probabilities are
initially given by the MG dictionary, then readjusted using
the scheme on Figure 4.

6.2. Resynthesis of segments

For the reconstruction, we must transmit not only the spec-
trum information but also the pitch/voicing and energy.
Having the typical spectral sequences, we hope to be able
to fing characteristical patterns also for those parameters.
The synthesis itself can be done using standard LPC syn-
thesizer (impulsions or noise excited filter) or by a PSOLA
based method. In this case, the decoder must dispose of
the training speech (or at least of several examples for each
sequence) which is marked by dotted line on Figure 1. An-
other important issue is the smoothing on segment to seg-
ment transitions.

6.3. Speaker adaptation

The spectral sequences are strongly dependent on the spea-
ker(s) who created the training database. To be able to
code any speaker, we are considering the methods known
from recognition: the normalization of voice to a generic
one, with an adaptation on the decoder side [5].

7. CONCLUSION

Our work was aimed to the search of typical spectral se-
quences of variable length for the very low bit rate coding.
We have found a set of sequences using the combination
of TD, VQ and MG, and we observed a sufficient phoneti-
cal coherence of speech segments, represented by the same
sequence. As next step, we are going to modelize these se-
quences by HMM and use them for the segmentation and
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Figure 4: Algorithm for training of HMMs for sequences.

coding. As the experiences are just on the beginning, this
article contains only several reflections on these topics; we
are going to present the results in our future publications.
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