Design of a CDMA system simulator and implantation on a TMS320C6201

D. Janu @, G. Baudoin ", J.-F. Bercher ‘", O. Venard "’

o Signal Processing and Telecommunications department
ESIEE, BP99, 93162, Noisy Le Grand, CEDEX, FRANCE
janud @esiee.fr, baudoing @esiee.fr, bercherj@esiee.fr, venardo@esiee.fr

@ Technical University of Brno, Czech Republic

ABSTRACT:

This paper presents the different steps and results of
the development of a CDMA (Code division Multiple
Access) real-time simulator based on the IS95
standard and implemented on a TMS320C6201.
Optimization works have focused on the elements that
will also be important for European UMTS standard :
Viterbi decoder, long code generation, correlators.

1. INTRODUCTION

CDMA techniques are becoming more and more
important. Some cellular mobile radiocommunications
systems are already using CDMA (IS95 in USA for
example), and the new generation of cellular
European Mobile telecommunication networks
(UMTS : Universal Mobile Telecommunication
system) will use CDMA.

The performances of DS-CDMA (Direct Sequence
CDMA) systems could be increased by developing
new algorithms for the receiver taking into account
the multi-user aspects. We have developed a real time
CDMA base-band simulator on a TMS320C6201 in
order to test these new algorithms and also to evaluate
the capacities of the C6201 in a CDMA base station.
This DSP is particularly interesting because it is very
powerful and because it can be efficiently
programmed in C which reduces the development
times compared to assembler programming.

In this work we have developed and implanted on the
TMS320C6201 a CDMA system based on the 1S95
standard. The forward link emitter has been implanted
as well as part of the receiver for the reverse links
(base station approach). The receiver is for the
moment a classical Rake receiver.

First the different blocks have been written in
Matlab™ then in C with fixed point format and
transferred on the DSP.

The programs are as flexible as possible in order to be
able to quickly transform them for another standard.

This work was performed at ESIEE during the 3-
month master project of a student from the technical
university of Brno.

The following equipment was used: a PC with
software development tools for the TMS320C6201
and the numerical computation software Matalb'™.

2. 1S95 REVERSE AND FORWARD LINK

It is out of the scope of this paper to describe in
details the CDMA principles and 1S95 standard.
Many pieces of information can be found on the web
[1,2,3]and in [4, 5, 6].

Different techniques are used for multiple access in
mobile cellular radio networks. The classical
approaches are: FDMA, TDMA and DS-CDMA
(Frequency Division, Time Division and Direct
Sequence Code Division Multiple access). These
techniques share the radio resources between several
users. Each user is allocated :

¢ in FDMA a portion of the frequency band,

e in TDMA atime slot

¢ in CDMA a specific code.

In CDMA, each user can occupy the full frequency
band continuously in time. The separation between
users is obtained thanks to individual orthogonal
pseudo noise codes. Each user sends a bit sequence at
the bit rate 1/Tb. This sequence is multiplied by the
user code sequence at the chip rate 1/Tc which is
higher than the symbol rate. At the receiver, the signal
is re-multiplied with the user’s code. CDMA is a
spread spectrum technique, with a processing gain
equal to Tb/Tc, resulting in frequency diversity
advantages.

In the 1S95 standard, the physical layer for the
forward and reverse links has the following
characteristics.

Forward link

The forward link is the link from the base station to
the mobile. Different types of channels can be
distinguished : pilot, paging and traffic channels. They
are synchronously added and sent together to the
mobiles. The pilot channel is permanently sent by the

Texas Instruments article page 1

base station for the synchronization of the mobiles.
There are at the maximum 64 different channels by
base station. Figure 1 describes the main parts of a
forward link traffic channel..

Reverse link

The reverse link is the link from the mobile to the
base station. Figure 1 describes a reverse link traffic
channel.

Forward link transmitter C:r?tr;elirng Walsh Short
Bits Code Code 1
9600bps 19.2ksps ‘ l
| , =
Base Convolutional Block § D, PCC s w0 QPSK
Station Coder Interleaver § ! T modulator
7 | g
Long Code 1.22Mcps r
Puncturing Short
Code Q
1.22Mcps
Reverse link transmitter Short
1.22Mcps Code 1
9600bps 28.8ksps 307.2ksps | |
| | b
Mobilef |Convolutional Block Orthogonal i ' to O-QPSK
Station Coder Interleaver Modulation § * modulator
| F
..... Short
Long Code Code Q
1.22Mcps

Figure 1: Traffic Data Channels of the IS95 standard

Rake receivers

For an additive white gaussian noise channel, the
receiver minimizing the symbol error probability is a
simple adapted filter to the user’s signature. But radio
channels are multi-paths channels. The received signal
can be represented by a sum of a few delayed and
attenuated replicas of a main component, each replica
corresponding to a particular « radio path ». Most of
existing CDMA receivers are Rake receivers. They
take advantages of the wide spectrum of CDMA
emissions to resolve main radio propagation paths and
recombine them synchronously to increase the signal
to noise ratio. Classically a Rake receiver has 3 or 4
fingers, each finger being associated to a radio path.
Figure 2 represents a Rake receiver.

Delays corresponding to the different

L propagation paths of the channel
receved

signal

Compensation of the @
different paths attenuations

| +

to detection

Figure 2: Rake receiver

3. MATLAB SIMULATION OF CDMA 1895
STANDARD

There were two main purposes for using MATLAB.
First we used this user friendly tool for understanding
and simulating the CDMA inner structure. Second the
MATLAB results were used for validation of our
TMSC6201 implementation results.

Implementation of Base Station algorithms was our
main interest. This includes forward link (downlink}
emitter and reverse link (uplink) receiver part.
However the reverse link emitter was also
successfully simulated. Only traffic data channels
were simulated since they are the most complex in the
CDMA channel generation.

The following blocks of IS95A standard were
simulated for the forward link: Convolutional Coder,
Long Code Generator, Block Interleaver, PCC (Power
Control) bits puncturing, Walsh Code spreading, [and
Q short codes and FIR shaping filter.

In the reverse link similar blocks were employed plus
Walsh Code Orthogonal Modulation. Two important
blocks of the Base Station receiver were optimized.
Viterbi decoder and RAKE Receiver.

Both in MATLAB and C, we worked with input
frames corresponding to 20ms intervals. At the initial
bit rate 9600bps these input frames result in blocks of
192 bits coming from vocoder.

4. IMPLANTATION ON THE TMS320€6201

The TMS320C6201

The DSP C6201 [7,11,12] is a 32 bits fixed-point
DSP. Its typical cycle time is Sns at 200 MHz. Its
CPU contains 2 almost identical blocks of 4
functional units (2 16x16 bit Multipliers and 6 ALUs).
Each block of 4 units communicates with 1 general
purpose register file of 16 32-bit register each. Six of
the units have access to the opposite side’s register
file via a cross path. There are two 32-bit paths for
loading data from memory to the register files and two
32-bit paths for storing register to memory. The ALUs
can perform 32-bit or 40-bit fixed point and logical or
bit fields manipulation operations.

The TMS320C6201 is a VLIW (Very Long Word
Instruction) DSP. Its architecture called VelociTI
allows up to 8 instructions to be executed in parallel
on the 8 functional units, leading to a maximum of
1600 Mips. The DSP fetches 8 32-bit instructions at a
time. This constitutes a Fetch Packet (FP) of 256 bits
(VLIW). The 8 instructions of a Fetch Packet can be
executed serially, in parallel or partially serially. All
instructions of a FP executing in parallel (8 at the
maximum) constitute an Execute Packet (EP). No 2
instructions in the same EP can use the same

Texas Instruments article page 2

resources (each instruction must use a different
functional units, and there are constraint on cross-
paths, constraints on Load and Store, Constraint on
long data ,constraint on register reads and writes).

The on-chip memory is divided into a program
memory and a data memory space. The data memory
can be byte, half-word (16 bits) or word (32 bits)
accessed. The internal data memory contains 64K
bytes. The internal program memory is made of 2 K
256-bit words.

The DSP uses a pipeline with 3 steps : Program Fetch
(4 cycles), Decode (2 cycles) and Execute (1 to 6
cycles depending on the delay slot of the instruction).
A delay slot of n cycles means that the results of the
instruction will be available only n cycles later. For
example, the branch instructions has 5 delay slots. It
may be necessary to introduce NOP (no operation)
instructions after an instruction with non zero delay
slots in order to wait for its results to be ready.

All instructions can operate conditionally, depending
on the value (zero or not) of one of 5 condition
registers. This helps preventing the delays introduced
by branches.

To use this DSP at its maximum capacity, it is
necessary to optimize the parallel use of the 8
functional units and Texas-Instruments offers specific
tools for C and/or assembler optimization.

Programming languages and associated software
development tools for the TMSC6201

Three coding languages can be used: ANSI C
language (files with extension .c), assembly language
(files with extension .asm) and lincar assembly
language (files with extension .sa) [8,9].

The linear assembly is similar to regular C6201
assembly code in that it uses C6201 instructions, but it
is not necessary to specify all of the information that
is necessary for regular assembly such as: parallel
instructions, pipeline latencies, register usage, which
functional unit is used. The assembly optimizer can
determine this information itself in an optimized way.

The 3 coding approaches can be ranked by decreasing
order of development complexity : assembly code,
linear assembly code and C-code.

The classical development flow consists in 3 phases:

e phase 1 = develop C code.

¢ Phase 2 =refine C code

e phase 3 = write linear assembler

According to TI documentation, in comparison with
good hand-coded assembler, the C compiler will
typically generate 70-80% efficient code. Therefore,
with have only used C programming in our work. We
chose C programming to shorten the development
time and to test the efficiency of the C optimizer to
fully use the parallel capacity of the DSP.

The main software development tools (optimizing C
compiler, linear assembly optimizer, assembler and
linker) can be called in a single step by the shell
program cl6x in order to create an executable file.

The executable file can be loaded into the debugger
which is the user interface for most of TI's
development tools : software simulator, evaluation
module (including an evaluation board with a DSP) or
the emulator [10]. We used the Release 2.00 of the
simulator sim6x. This simulator has a profiling mode
which allows to determines the number of cycles used
by the different parts of the program.

C - Programming of the DSP C6201 for simulation
of the base station IS95 Emitter and Receiver

Only the base station part of the standard was
simulated on the DSP, since this DSP, because of its
power consumption, is better suited for base stations
than for mobiles.

The processing was done frame by frame of 20ms.
Almost through the whole emitter part, we worked
with unsigned 32-bits integer words. Six words were
necessary to store one input frame of 192 bits (9600
bps). From output of the convolutional coder to
Walsh code spreading, one frame of symbols
(encoded bits at 19.2 Kbps) was resolved in twelve
words. Then 768 (64x12) words were required to
store all the chips in one 20ms frame. In the emitter,
most of the processing was done at the bit level

There were 2 development phases :

1. Making the C program work and checking it.

2. Refining and better optimizing the C-code.

First step : development of a correct C code

In the first step we compiled, optimized and linked
our C programs by the cl6x shell program with the
following standard set of options :

clox -g -o -k -mg filename.c -z lnk.cmd -1 rts6201.lib
-o filename.out.

These C-compiler options correspond to the
maximum degree of optimization compatible with
symbolic debugging and profiling.

We used the internal memory for program and data to
optimize the processing speed.

During this step, we compared DSP and Matlab
results. The DSP memory pages can be saved in COF
(Common Object Format) Files with the debugger.
Two Matlab functions were written for reading and
writing COFF files from Matlab. So, it was easy to
compare DSP and Matlab results as waveforms in one
Matlab figure window and to load into memory initial
values prepared in Matlab.

Second step : refining of the C code to increase speed
After the results were validated with those we got in

Matlab, we started the C code refinement process.

Texas Instruments article page 3

Only such algorithms that can yield a significant
improvement from the global point of view were
optimized.
The objective of the optimization was to decrease the
number of cycles regardless of the program size.
We can distinguish 2 kinds of optimizations : generic
optimizations non specific to the processor and
optimization specific to the architecture of the C6201.
Among generic optimizations, we find : algorithm
optimization, cost-based register allocation, alias
disambiguation, branch optimization and control flow
simplification, data flow optimizations, expression
simplifications, inline expansion of some routines,
induction variable optimization, loop-invariant code
motion, loop rotation, register variables, register
tracking / targeting.
There are 3 basic optimizations specific to this DSP:
increase the parallelism of instructions (up to EP of 8
instructions), fill delay-slots with useful instructions
instead of NOP, use 1 word-access instead of 2 half-
word accesses.
Most of these optimizations can be automatically
realized by the optimizing C compiler depending on
the chosen level of optimization. The chosen level is
specified by the -on option of cl6x, where n is an
integer between 0 and 3 (3 = maximum optimization).
In order to efficiently schedule instructions in parallel,
the compiler must determine their dependencies,
because only independent instructions can be parallel.
The option -mt allows the compiler to make
hypothesis to eliminate memory dependencies. The
option -pm enables program level optimization. It is
not possible to use the option for the maximum
optimization (-03) and to keep symbolic debugging
and profiling. So the option -03 was reserved for final
optimization in the second step.
In the refining optimization step, different techniques
can be applied to refine the C code in order to help
the C optimizing compiler to be more efficient:
1. Using intrinsics,
2. Using word (32-bit) access for 16-bit short ,
3. Changing the structure of the program by
= Modifying the order of the processing
blocks,
= Decrementing loop counters instead of
incrementing,
= Loop unrolling,
= Software pipelining the instructions
manually
¢ Intrisincs: the c6x compiler provides special
functions that map directly to inlined c¢6201
instructions. DSP Instructions that are difficult to
implement in C code are supported as intrinsics.
Intrinsics are specified by a leading underscore
and called like functions with arguments. For

example, the intrinsic _add2(srcl, src2) adds the
upper and lower halves of srcl to the upper and
lower halves of src2 and return the result.

Using Word access for short data: the data
busses are on 32 bits but very often we work with
16-bit data. It is efficient to replace 2 memory
half-word accesses by a single word access, the
word containing two 16 bits data. In the same way,
the C6201 has specific instructions with
corresponding intrinsics (_add2 for example) that
work on two 16-bit data stored in the upper and
lower part of a 32-bit register. We have used this
method for FIR shaping filtering of short data.
Software pipelining : is a technique used to
schedule the instructions in a loop so that multiple
iterations of the loop execute in parallel. In order
to illustrate this concept, suppose that the loop
contains 3 steps A, B, C and that it must be
iterated 5 times (trip count = 5). If the 3 steps are
dependent, at least 15 =5 x 3 cycles are necessary
to run the loop. But it is possible to decrease this
number of cycles by pipelining successive
iterations. The following figure 3 shows that the
loop can be executed with a loop kernel where 3
instructions, from different iterations, execute in
parallel (C1//B2//A3 for example). So the loop is
finished after 7 cycles instead of 15 without
software pipelining.

Cycle

number
1 Al Prolog
2 B1 A2
3 Cl1 B2 A3 Kernel
4 C2 B3 A4
5 C3 B4 A5
6 C4 BS5 Epilog
7 G5

Figure 3 : software pipelined loop

Software pipelining is automatically done by the C
optimizer from optimization level 2. But it can be
helped manually. Coming back to the example,
more efficiency could be obtained for a loop with
more steps (up to EP of 8 parallel instructions).
When the body of a loop is too small to really
benefit of software pipeling, it is possible to
partially unroll the loop manually. For example
instead of repeating N time a set of K=3
instructions, it is possible to repeat N/2 times a set
of 6 = 2x3 instructions in order to be able to have
6 instructions in parallel in the kernel.

Loop unrolling : means repeating the body of the
loop many times and decrease the loop counter. It
increase the number of instructions available to
execute in parallel and helps software pipelining.

Texas Instruments article page 4

¢ Decrementing loop counters: only loops with
decrementing counters can be software pipelined.
The optimizer (-02 or -03) tries to convert
incrementing counters in downcounting ones. But
it does not always succeeded and it can be helped
manually. Testing that a counter is at zero is
efficient on the DSP because all instructions
(including loop B) can be conditionally executed
depending on the value zero or non zero of a
conditions register (tat can store a loop counter).

An example of optimization process

We have chosen the Long Code Generator algorithm
as an example of optimization because it was one of
the more time consuming. Figure 4 represents the
Long Code Generator with consists of a PN (Pseudo-
Noise) sequence generation and of a Long Code Mask
applied to the PN Sequence. The PN sequence is
created by a 42-bit long Logical Feedback Shift
Register. A 42-bit logical mask (public Electronic
Serial Number or private Mobile Identification
Number) is applied on the PN sequence. This Long
Code Generator is used to generate the scrambling
sequence in the forward link.

42 -bit Long Code LFSR

42 40

3
42 - bit_Long Code Mask

Figure 4: Long Code Generator
We cut the two 42-bit registers in two parts and
stored them in 2 integer words, one with the 10 MSB
and the other one with the 32 LSB. Both updates and
‘and’ operations are executed individually and then

connected (figure 5).

Long Code Shift Register 75%
- - £ -
Lolof __Tol [_Jofo] [Lf Jofol _Jr]ifo]o]
32 1110 132 1
(42) (33)
Long Code Mask
- — - VAN - —
Lolof __To[o [_Tu[o] [els[ofo __JifoJo]o]
32 1110 132 1
(42) (33)

Figure 5: Long Code stored in two words

Long Code generator requires 24576 (192x64x2) shift
register updates per 20ms interval The output is
calculated after every 64 shift register updates, since
the forward link uses long code decimated by 64. We
tried to optimize it as much as possible.

Algorithm optimizations :
We have optimized the computation of the output

chip as a modulo 2 inner product of the results of
‘and’ operations between the mask and the current
shift register. We called this calculation
inner_modulo2. The output chip is equal to 1
(respectively 0} if the number of XOR inputs equal to
1 is odd (resp. even). The 42 XOR inputs are stored in
a variable called result.

In a first method, we counted the number of ‘1’ in
‘result’ by simply adding each bit of ‘result’ one after
the other to a ‘number_of_ones’ register initialized at
0. This was done by adding the LSB of ‘result’ to
‘number_of_ones’ and then shifting ‘result’ 1-bit to
the left. This was iterated 42 times. This method was
called ‘shifting’.

The second method is called ‘table’. The figure 8
gives its pseudo-code. Basically the same principle is
used, but instead of working bit by bit we worked
with packets of 4 bits at a time and we pre-calculated
all the possible numbers of ‘1’ in the binary
representation of integers between 0 and 15. We
prepared an array - ‘table’ of length 16. Each value in
the array represents a number of ‘1°. For example the
seventh value says how many ‘1’ are in the binary
representation of number 6 (we start from zero). The
4 LSB of ‘result’ are used to address the table, then
the read value is added to ‘number_of_ones’ and
‘result’ is 4-bit left shifted. This is iterated 11 times.
The output of the Long Code Generator is modulo2 of
the number of ones. If it is even number, ‘0’ is sent
out, if it is odd ‘1’ is sent out.

Refining of the C code
Mostly we used logical and no multiplication was

employed, so none of 2 multiplying units of the
processor was involved which limits to 6 the possible
number of parallel instructions.

Three C refinement techniques were successfully
applied : decrementing counters, modifying the order
of blocks of code, partial loop unrolling.
Decrementing counters :We used two counters in the
main loop body. One counts up to 64 and is actually
the decimation counter. The other counter checks
whether a word is filled with 32 output chips (one
output chip occupies 1 bit position in a word). These
counters and the main loop counter were upcounting.
In our Long Code only the main loop counter was
changed to decrementing by the C - compiler. We
changed the two remaining ones by rewriting the C
code and obtained good improvement (Table 1).

We also tried different block orders. Originally in the
main loop, the updating of the shift register state was
the first block, the checking of the decimation counter
was the second. We found an improvement after

Texas Instruments article page 5

reordering these blocks and putting the checking of
the counter before the register updates.

Loop unrolling . we have tested different unrolling
factors repeating 1 to 8 times the body of the loop.
Table 1 gives the obtained results for a loop of 2600
iterations only (instead of 24576 for the full loop).

Unrolling | number of Note
factor cycles
1 33637 No unrolling
2 26361 2" unrolling
4 22475 ‘4’ unrolling
8 20533 ‘8’ unrolling

Table 1: unrolling the long code generator loop body

Table 2 shows the optimization history of the Long
Code Generator.

Cycles Pipelining Number of Counters Update register
Branch instructions 64 32 method
6520 YES 5 + + “shifting"
5704 YES 3 + + “shifting”
5500 YES s + + “shifting"
5084 YES 5 -+ “table”
3069 YES 3 - “table”
Note : The numbers of cycles are valid for 384 long code register updates,
which is equal to 1/64 th of input data frame, the number 3 069
correspondsto the final result of 223 202 cycles.
The number of loop iterations was shortened for only debugging purposes.

Table2: Long Code Generator optimization history

Results obtained for the forward link emitter
Table3. shows an overview of algorithms for the
forward link, their numbers of cycles required for
20ms interval and whether pipelining was achieved or
not. The algorithms with lower numbers of cycles
were not optimized.

Number of | Pipelining
cycles

Convolutional coder 4522 NO
Block interleaver 2 298 YES
PCC data puncturing 483 NO
Long Code generator 223 202 YES
Walsh code 983 NO
1 Short code 147 474 YES
TOTAL for emitter 526 436

Table3: Number of cycles for forward link emitter

S. WORK PLANNED

We have not given the results obtained for the
receiver, because the optimization are not fully
finished for the rake receiver and the Viterbi decoder.
Both of them have been simulated with Matlab and a
first C code have been developed.

In our future work we will finish this optimization and
then adapt the code for UMTS W-CDMA standard.
We will also test new receiver algorithms for multi-
user detection.

6. CONCLUSION

A base station CDMA forward link emitter was
simulated using Matlab and implemented on the
TMS320C6201 using C programming. The algorithms
requiring the largest part of the processing time (long
code generator for example) were optimized. Some of
the receiver blocks are still to be optimized.

4 millions cycles of the processor are available for
each 20 ms frame (with 5ns cycle time). The total
number of cycles for 1 forward link emitter is about
530 000 cycles by frame. But the short code
generators are the same for the 64 channels of one
CDMA channel and the long code varies only in
user’s mask. If we subtract the number of cycles of
both I and Q short code generators (about 295 000)
and the number of cycles of the long code generator
register updates (about 200 000) from 530 000 we
obtain 35 000 cycles specific to each channel. So with
4 000 000 cycles available on 1 DSP every 20ms, it
should bc possible to implement up to 100 CDMA
logical emitters (excluding FIR). This means a whole
CDMA forward link channel emitter on one DSP.

REFERENCES

[1] http ://www.cdg.org

[2] http ://www.qualcomm.com

[3] http /rwww.ti.com

[4] Flikkema, P. Spread Spectrum Techniques for
wireless communications, IEEE Signal Processing
Magazine, p 26-36, May 1997.

[5] Simon, Marvin K., Omura, Jim K., Scholtz,
Robert A., Levitt, Barry K. Spread spectrum
Communications Handbook, McGraw-Hill, 1994.

[6] Viterbi, Andrew J., Principles of Spread Spectrum

Addison-Weglev Reading
AQAISOn-wesiey, g,

Communications
Lommunicaions, AQGQISON-wWEsIey, xeadin

MA,1995.

[7] TMS320C6X CPU end Instructions Set Reference
Guide, Texas Instruments Inc., 1997.

[8] TMS320C6X Programmer’s guide Preliminary,
Texas Instruments Inc., 1997.

[9] TMS320C6X Optimizing C Compiler, User’s
guide Preliminary, Texas Instruments Inc., 1997.

[10] TMS320C6X C Source DEbugger, User’s guide
Preliminary, Texas Instruments Inc., 1997.

[11] TMS320C6X DSP Design Workshop, Student
Guide, Texas Instruments Inc., 1997.

[12] TMS320C6201 Digital Signal Processor Pro-
duct Preview, Texas Instruments Inc., 1997.

Texas Instruments article page 6

