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Abstract 

Very low bit rate speech coders can offer high intelligibility 
at data rates below 800 bits/s. Many different schemes have 
been proposed during the last twenty years, but little attention 
has been paid to the effect of noise on speech quality. Yet, 
this tricky issue must be faced for real applications since most 
schemes use recognition models which are inherently 
sensitive to changes in the recording environment. In this 
article we study the effect of noise on Hidden Markov Models 
(HMM) and the selection of units in the context of very low 
bit rate speech coding. The speech coder considered reaches 
500 bit/s on average, works online and is completely 
unsupervised. To improve its robustness to noise, different 
front-end speech features are compared as well as model 
adaptation and common spectral noise reduction techniques. 

Introduction 
Very low bit rate speech coders must use variable length 
segmentation to reduce their data bit rate without loss of 
intelligibility. Lately, several schemes have been proposed in 
[1], [2] and [3], which take advantage of a large speech 
corpus to code speech. The main shared idea is to build a 
segment classifier to handle segments instead of frames. But 
no study on the influence of noise on such coder has been 
made so far. Though bad recording conditions is a tricky 
issue, it must be faced to integrate this type of coder in real 
applications. 
In this paper we propose to study the influence of noise on a 
VLBR coder which has been described in [4] and [5]. This 
coder operates at 500 bit/s and code speech online. In a recent 
evaluation described in [6] it has been ranked at the same 
intelligibility level than the NATO STANAG-4591 at 2400 
bits/s. 
After a short description of the VLBR coder, its noise 
sensitive parts is highlighted in Section 2. Different front-end 
speech features and noise reduction techniques are presented 
in Section 3, to improve the robustness of the HMM models. 
The influence of noise on the unit selection process is 
discussed in Section 4. Eventually, Section 5 presents the 
experimental tests and the results obtained under various 
configurations. 

1. VLBR coding 
The main idea in VLBR coding is to take advantage of a large 
speech corpus, looking up the elementary speech units that 
will best reconstruct the input speech. To achieve this goal, 
the VLBR coder combines two approaches: speech 
recognition using HMM in the encoder part, and synthesis by 

corpus in the decoder part. The speech database is built 
during a training phase. 

1.1. Training phase 

64 HMM models are used to jointly segment and classify the  
speech corpus. They are trained iteratively on the corpus 
using an initial transcription. This phase is completely 
automatic. Indeed, the segmentation is supplied by a 
dendrogram-like bottom-up frame merging process. The 
segments are classified using the cumulated distance to the 
code vectors computed by vector quantization of the speech 
corpus. The HMM topology is three states left-to-right 
models. The emitting probability of each state is modeled by 
one Gaussian. A Viterbi algorithm is used at the end of the 
training phase to jointly segment and classify the whole 
corpus. The units are gathered according to their class in the 

unit database. 
Figure 1: VLBR encoding principle. 

1.2. Encoding phase 

The encoding phase is presented on Figure 1. First, features 
are extracted every 10 ms. Pitch is computed using 
normalized cross-correlation. 

1.2.1. Segment classification and unit selection 

A Viterbi algorithm is used with previously trained HMM to 
derive from input speech the segmentation and the class of the 
target units. The unit selection is performed in two steps: 

• Pre-selection: for each target unit, the 16 closest units of 
the same class in the synthesis database are pre-selected. 
The criteria used in the pre-selection is the mean pitch 
distance to the target unit. 

• Final selection: normalized cross-correlations are 
computed between the target unit and the pre-selected 
units on their mean harmonic spectrum, energy and pitch 
profiles (see Figure 2). The unit which has the highest 
cumulated correlation is selected. 

Two steps are used in the selection in order to code the 
selected unit with a fixed number of bits regardless to the 
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number of units in the synthesis database. Indeed, the class, 
the mean pitch and the index of the final selection are 
transmitted to retrieve the unit. 

1.2.2. Unit correction 

To best fit the target unit, the energy and pitch profile of the 
selected unit are corrected. The transformations are handled 
using an Harmonic plus Noise model (HNM Cf [7]). 
An energy correction gain is computed to correct the mean 
level of the energy. It is defined by a ratio along the energy of 
the frames of the selected unit and the target unit. It is set in 
order to correct both the harmonic and stochastic part. 
The pitch profile is corrected by a linear varying gain defined 
by the mean pitch of the target unit and a slope parameter (Cf 
[5]). 
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Figure 2: Final unit selection step 

2. Recognition models in noise 
Since the HMM models are trained on clean speech features, 
a mismatch between feature spaces is introduced when noise 
is added to the input speech. Segmentation and classification 
are no more consistent with the training. Changes in the class 
lead to the pre-selection of units that can’t match the input 
speech. 

2.1. Lack of transcription reference 

The main problem in the evaluation of the robustness of the 
HMM is related to the type of unit considered in VLBR 
coding. There is no unambiguous transcription like phoneme 
transcriptions. For that reason, we will use as a reference the 
transcription obtained using the Viterbi algorithm on clean 
speech. This reference is specific to the type of features used 
to train the HMM. 
Given the clean speech and the noisy speech transcriptions, 
recognition scores can be computed by a dynamic 
programming-based label alignment procedure, using the 
HRESULTS tool of HTK (Cf [8]). The percentage number of 
labels correctly recognized is given by: 

 %100% ⋅= N
HCorr  (1) 

Were H is the number of correct labels and N is the total 
number of labels in the transcription files. 
The recognition scores can’t be compared with classical 
phoneme recognition systems. Actually, under the effect of 
noise, one unit could be splitted into two units of different 
classes. Since there is no known optimal transcription, the 
resulting synthesized speech is not inevitably worse. 
Furthermore, there is 64 classes of units: it is twice the 
number of classes of phoneme recognition systems. On one 
hand it lowers the recognition scores. But on the other hand 
the wrong recognized classes are closer acoustically which 
means the effect of errors on speech quality is reduced. This 
aspect suggests that a soft error decision should be considered 
in the evaluation. But in practice we will assume that the 
closest the transcription is to the clean speech transcription, 
the best is the noise robustness. 

2.2. Reference cepstral features 

A large number of features can be used in speech recognition, 
we tested in this article : 
• LPCC parameters (Linear Predictive Coding Cepstrum). 

The cepstrum is derived from the LPC spectral 
envelope. 

• MFCC parameters, (Mel Frequency Cepstrum 
Coefficient). The cepstrum is derived from Mel 
filterbank outputs. It has been recently standardized in 
the ETSI ES 202 050 standard (Cf [6]). 

These features are not robust to noise since they try to model 
the spectrum without any noise assumption. 

2.3. Tested methods for noise robustness 

Noise reduction techniques can reduce the mismatch 
introduced by additive noise in the feature space. They can be 
applied at three different stages: before feature extraction, 
during feature extraction or on the trained models. 

2.3.1. Speech enhancement 

Noise can be subtracted in the spectral domain before feature 
extraction, using a noise model estimated on regions where 
speech is not active. A Voice Activity Detector (VAD) can be 
used to supply such regions. Then, a noise adaptive filter can 
be designed using MMSE (Minimum Mean Square Error 
Short Time Spectral Amplitude Estimator). It has been used 
successfully in [9] to enhance speech and can be used to 
derive noise robust features. 

2.3.2. Joint Feature extraction and noise reduction 

Lately, a feature extraction has been standardized in ETSI ES 
202 212 (Cf [10]). Noise is estimated using a VAD, it is 
subtracted during feature extraction, using a two stage Wiener 
filter applied on Mel filter bank outputs. Robust MFCC are 
derived, which are called AURORA MFCC in the following. 

2.3.3. Noise robust statistical modeling 

Instead of trying to remove noise from speech, which can 
introduce strong distortions, noise can be added to the clean 
speech models. For that purpose, Parallel Model Combination 
(PMC) can be used. It has been studied by Gales in [11]. A 
HMM noise model is trained and combined to speech HMM 
models in the spectral domain using a Log-Add 



approximation. Noise and speech spectral means are added. 
Resulting spectral means are then transformed back into the 
cepstrum domain. 

3. Modifications for noise robust unit selection 
In the last section we have considered the effect of noise on 
HMM models and more specifically on speech features. But it 
can be expected that noise can also impact on unit selection. 
For that reason, pitch estimation must be robust enough to 
have consistent pre-selection of the synthesis units. 

3.1. Effect of noise on unit correction 

Provided that pitch is robust enough, noise has little effect on 
final unit selection since the synthesis units are close to each 
other: they have the same class and close mean pitch. In fact, 
the main problem lie in the correction of the selected units. 
Two cases can be considered: 

• Recognition failed. The pre-selected units are very 
different to the target unit. To match the target unit, 
strong gains are estimated to correct the energy and pitch 
profiles. It results in strong discontinuities. Nothing but 
improving the class recognition and limit corrections can 
be done. 

• Recognition succeeded. Pre-selected synthesis units are 
good representatives of the target unit. Because of noise, 
the stochastic part of the target unit is strong and an 
overestimated energy correction gain is computed. 
Therefore, artificial noise is synthesized through the 
stochastic part of the HNM model. 

3.2. Modified unit correction 

To avoid artificial noise to be synthesized, two different 
approaches can be used which led to similar quality. Either 
remove noise from the target units using MMSE noise 
reduction or add noise to the synthesis units. These methods 
were tested by bypassing the recognition models and using 
the clean speech transcriptions to prevent the effect of bad 
class recognition (first case). In the latter method, noise was 
added using the mean HNM profile of the first second of the 
noisy speech, before the start of the utterance. 

4. Experimental tests 

4.1. Speech Material 

Four speakers were took from the French speech corpus BREF 
(see [12]). These speakers are two males and two females. For 
each speaker, one hour of speech was divided into a training 
and a testing corpus. 10 test utterances were reserved for 
testing. All the signals used in the experiment were wide-band 
signals sampled at 16 000 Hz. 

4.2. Noise Material 

Three noises of 1 minute long were used in the experiments : 
• “Subway”: Travel of a subway between two stations, 

including departure and arrival. 
• “Car”: A Smart car at 80 km/h recorded on a ring road at 

a fairly stationary speed. 
• “Babble”: canteen, 100 people. Taken from the NOISE-

ROM-0 noises (Cf. [13]) 

Figure 1 shows the spectrum density of the noises. 

4.3. Training 

The training phase was performed on each speaker using the 
training corpus and using separately three features: LPCC, 
MFCC, and AURORA MFCC (as described in Section 2). We 
obtained respectively 3 sets of HMM. Each set is compound 
of 63 speech HMM and 1 silence HMM. 
These HMM sets were used to derive three transcriptions for 
the test utterances. These transcriptions were used as 
references to compute recognition scores. They were also 
used to build a synthesis database for each type of feature. 

4.4. Simulated noisy speech encoding 

The SVP56 tool from the ITU-T Recommendation P.56 ( Cf 
[14]) was used in root mean square mode to set the right 
levels of speech and noise in order to obtain noisy speech test 
utterances at a specific SNR. Noise regions were drawn 
randomly. 
The three HMM sets trained previously were used to derive 
the transcriptions of the noisy speech test utterances at 
different SNR levels. The recognition scores were computed 
by comparing the clean speech and noisy speech transcription 
corresponding to the type of feature considered. 
This process has been repeated using two noise adaptation 
techniques and only one type of feature: 
• PMC adaptation with LPCC features. The noise models 

were trained using one second of noise before the start 
of the utterance. 

• MMSE enhancement with MFCC features: This 
technique was used in front end of feature extraction. 

4.5. Results 

The mean recognition scores obtained are reported on Tables 
1, 2 and 3 for each noise, feature and SNR considered. We 
can see there is little difference between LPCC and MFCC 
parameters, though LPCC are slightly better under Car and 
Babble noise. 
The recognition scores of transcriptions obtained through 
noise reduction techniques show that AURORA MFCC 
features are more robust when compared to MMSE MFCC. 
At any rate the PMC LPCC gave the best recognition scores. 
Indeed, its insertion rate were very low since the silence 
model is better adapted. 
In Figure 4 are plotted the spectrograms of a clean speech test 
utterance, its noisy version at 15dB SNR under car noise and 
its VLBR coded version. The unit correction was adapted 
adding noise to speech units (as described in section 3) and 
PMC LPCC were used. A good quality was obtained at this 
SNR even with car and babble noise, but when SNR reaches 5 
dB the pitch extraction is not robust enough. The quality of 
the unit selection is poor and wrong pitch correction introduce 
strong discontinuities. Examples of this encoded utterance can 
be found for every noisy condition at: 
www.esiee.fr/~baudoing/sympatex/demo 

5. Conclusions 
A study of different parameters and noise reduction 
techniques showed that VLBR coding of speech in noisy 
environments can be done using noise reduction techniques 
such as PMC. Good quality can be obtained under various 



noises but the pitch estimation has to be improved to handle 
SNR under 15dB. A combination of the three noise reduction 
techniques could be studied since noise filtering usually 
performs better at very low SNR than PMC. Moreover class 
recognition could be improved by extending the unit selection 
to the classes which are close to the recognized class. 
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Figure 3: Power spectrum of subway noise (solid line), 
Car Noise (dashed line), Babble noise (dotted line) 

Figure 4: Spectrogram of original utterance (a), after 
adding car noise(15 dB SNR) (b), after VLBR coding 

using PMC LPCC features (c). 

Features LPCC MFCC AURORA MFCC MMSE MFCC PMC LPCC  
SNR(dB) 5 15 20 5 15 20 5 15 20 5 15 20 5 15 20
Corr (%) 15 36 45 19 41 47 34 53 57 29 51 52 35 51 62
Sub (%) 82 59 50 76 53 46 59 39 36 65 42 41 41 36 29Subway 
Ins (%) 26 28 23 29 23 22 27 21 21 26 22 21 5 10 10
Corr (%) 31 57 61 30 55 58 45 61 64 41 53 55 51 72 75
Sub (%) 64 39 34 64 39 36 48 32 29 52 40 38 31 18 16Car 
Ins (%) 34 22 21 26 22 21 22 17 17 26 22 22 6 5 5
Corr (%) 29 54 59 28 51 57 36 54 59 33 50 54 45 63 72
Sub (%) 68 43 38 69 44 39 58 39 36 61 44 40 45 29 22Babble 
Ins (%) 38 29 27 37 30 30 33 23 23 30 27 27 19 14 11

Table 1, 2, 3: Recognition rates under Subway, Car and Babble noise. (Corr: Correct, Sub: Substitution, Ins: Insertion) 


