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Abstract.
Many Computational methods are yet available for data retrieval and analysis of genomic

sequences, but some functional sites are difficult to characterize. In this work, we examine the
problem of promoter localization in human DNA sequences. Promoters are regulatory regions
that governs the expression of genes, and their prediction is reputed difficult, so that this issue is
still open. We present the Chaos Game representation (CGR) of DNA sequences which has many
interesting properties, and the notion of ‘genomic signature’ that proved relevant in phylogeny ap-
plications. Based on this notion, we develop a (naïve) bayesian classifier, evaluate its performances,
and show that its adaptive implementation enable to reveal or assess core-promoter positions along
a DNA sequence.
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INTRODUCTION

Recent availability of several mammalian genome sequences has allowed whole genome
analyses to unravel their functional properties. One of the challenge of the mammalian
genomics is to understand how genomes are transcribed. Specifically, the genes are small
sequences spread out along the genomes which, after being transcribed in mRNA, are
translated in proteins turning out to be functional units of the cells. Although several
sequences located within the genes or in their closed vicinity control their specificity of
expression, there are typical regions, the promoters, that define theTranscription Start
Site (TSS) of the genes. One specific gene may have several promoters and each give
rise to a specific mRNA. Detection of the promoters all along the genomes is of crucial
interest since it will enable identification of primarily the transcribed sequences, and
afterwards the tied sequences accountable for, at least partly, expression specificity due
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to transcription factor binding.
The minimum functional part of promoters is defined as the core promoter, and it

lies several hundred bases around the TSS. Until now, computational tools developed
to predict core promoter locations are based on various criteria: biological data, pre-
sence of CpG islands closed to the TSS in more than half promoters, detection of spe-
cific or highly concentrated transcription binding factor sites (TFBS), homology with
orthologous sequences or statistical properties of core promoters compared with other
genomic sequences [1]. The approach we followed rests on this last criterion. It is ba-
sed on the principle of genomic signature which consists in determining frequencies of
all the 2-8 oligonucleotides in a given sequence. These frequencies may be figured by
pictures known as chaos game representation (CGR) initially described by J. Jeffrey [2].
Comparisons of results issued from different sequences proved to be highly relevant in
phylogeny applications [3, 4]. Indeed, genomic signature had shed light on the species
-specific oligonucleotide frequencies [3, 5, 6].

Although Gentles and Karlin noticed that dinucleotide relative abundances are remar-
kably constant across human chromosomes and within the DNA of a particular species
[7], we investigated whether functional sequences, especially core promoters, may have
a specific genomic signature. Using this CGR we have put in evidence the nonstationa-
rity of the genome: coding, promoter or genomic regions of DNA result in different CGR
matrices. In particular we observe the fractal depletion in CG for genomic regions (that
is under -representation of CG words) and CG “islands” in about 80% of promoters.

In order to analyse DNA sequences, references probabilities of the genomic, coding
and promoters background are built using data from public databases. We also estimate
“local” probability distribution functions, using a sliding window, and a forgetting factor.

We built a naïve bayesian classifier for promoter detection, by testing the likelihood
ratio promoter/genomic or promoter/coding of the sequence at hand. Results show that
performance is interesting when the window is located near the TSS , and the window
length is less than 200 bases. Such a classifier has already be useful for classifying
species as in [6].

CHAOS GAME REPRESENTATION (CGR)

The Chaos Game Representation is derived from Chaos Theory and presents several
interesting properties: the source sequence can be recovered uniquely from the CGR
transcription and the distance between CGR position measures similarity between cor-
responding sequences. There is an established link between CGR and Markov models
[10], and an extension to arbitrary discrete sequences, leading to the Universal Sequence
Mapping (USM) technique [11].

The CGR is an independent scale representation which maps in a iterative way a
nucleotide sequence in the [0,1]x[0,1] square. We choose to consider this square in
the complex plane because this allows a mono-dimensional description of the sequence
which can be useful for further signal processing. We first assign to each nucleotide
S ∈ {C,A,G,T} a valuez (S) (position in the complex square) according to:z (C) =
0 + j0, z (A) = 1 + j0, z (G) = 0 + j1, z (T ) = 1 + j1. Then if we consider a DNA



sequence (S1,S2,. . . , Sn,. . . , SN) of N nucleotides, the CGR value along this sequence
is defined by:

CGR (n) =
1

2
CGR (n−1)+

1

2
z (Sn) for n = 1, . . . ,N

Figure 1 illustrates this notion of CGR trajectory for sequence ‘ATCGT’ sequence.
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FIGURE 1 - Example of CGR trajectory for sequence ‘ATCGT’

We can observe the fractal nature of this representation, since the last nucleotide
determines the main quadrant of the (final) CGR position, the previous nucleotide one
the sub-quadrant of that main quadrant and so on.

TheCGR (n) value can be written as a complex binary number

CGR (n) = c12
−1 + c22

−2 + ...+ cn2−n
(
+2−(n+1)

)
with=ci = bi + jb′i. This value represents the complex binary code on2n bits of the
sequence until nucleotideSn. The MSBb1 + jb′1 corresponds to the valuez (Sn) of the
last nucleotide, while LSBbn+jb′n corresponds to the valuez (S1) of the first nucleotide.
With a finite precision ofk bits, theCGR (n) value codes the “word” ofk nucleotides
ending by the nucleotideSn. Each of the 4k positions in the CGR square corresponds
to one possible word. Hence the nucleotide sequence can be directly (and uniquely)
recovered from its CGR transcription.

Figure 2 give the repartition of words in the casek = 3 of a CGR map, and the
representation of a genomic sequence. Figure2a gives the valuesCGR (3) for all the
words of k=3 nucleotides. Figure2brepresents the CGR(3) map for a genomic database
(10 sequences of 100k nucleotides have been used for this representation). The CGR(3)
map represents then the frequency matrix of the words of 3 nucleotides. We can observe
that some words such as ‘AAA’ or ‘TTT’ are overrepresented and others (all the words
including ‘CG’) are underrepresented.

Nonstationarity of the human genome.

Any sequence presents varying statistical properties along the sequence and this phe-
nomenon is accessible through different characteristics such as the local (short term)
mean of CGR or the local (short term) entropy. Different regions of sequence (genomic,
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FIGURE 2 - CGR(3) values and example

coding or promoter regions) in fact exhibit different global (long term) statistics. This is
easily demonstrated by computing CGR maps on large available databases. We used the
Eukaryotic Promoter Database [12] http://www.epd.isb-sib.ch/, that contains 1871 hu-
man promoter sequences, and a random extraction of sequences on the human genome.
Figure3 presents the result obtained with a software we developed. This clearly shows
that promoter and genomic maps exhibit a different “signature”, mainly because of the
known and characteristic depletion in “CG” words observed in the human genome. Ho-
wever, it is important to note that that the high CG content is not a definitive discriminant
feature since promoters from the EPD can be separated into a class with high CG content
(1487 sequences which represent about 4/5 of the EPD sequences) and a second class of
weak CG promoters (383 sequences or about 1/5 of the data base). We have then extrac-
ted from these classes two sets of test sequences representing 1/8 of each class and kept
the others (7/8) as learning databases. CGR maps for promoters with high and low CG
content are given in Figure4.

Differences between the sequences can be quantified using several distances, as shown
on the lower part of the figure3, and sequences may be classified according to some
similarity to a reference model, as will be discussed now.

NAÏVE BAYESIAN CLASSIFIER

In order to detect or predict promoter regions, we applied a simple naïve bayesian clas-
sifier. This kind of classifiers are based on probability models, derived using Bayes’
theorem, that incorporate strong independence assumptions. These assumptions may
often be obviously false, and the classifier deliberately naïve. Despite these simplifi-
cations, naïve Bayes classifiers often work much better in many complex real-world
situations than might be expected, and the method proves successful and surprisingly
efficient [13, 14]. The overall classifier seems robust enough to bypass deficiencies in its
underlying naïve probability model.

The aim of the naïve Bayesian classifier is, given a sequence, S, to predict its most
probable origin, and decide if the sequence belongs to a promoter ‘Pro’ class, or to the

http://www.epd.isb-sib.ch/


0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

Compseq: a sequence comparison program 

FIGURE 3 - Output of CompSeq sofware – Comparison of CGR(4) maps for genomic and promoter
sequences

Im(CGR)

R
e(

C
G

R
)

CGR(6) − EPD High CG

10 20 30 40 50 60

10

20

30

40

50

60 0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

x 10
−3

(a) CGR(6) high CG promoter map

Im(CGR)

R
e(

C
G

R
)

CGR(6) − EPD weak CG

10 20 30 40 50 60

10

20

30

40

50

60

0.5

1

1.5

2

2.5

x 10
−3

(b) CGR(6) low CG promoter map

FIGURE 4 - Comparison of CGR(6) maps for high and low CG content promoters.

genomic ‘Geno’ class. We consider a sequence ofN nucleotides defined as a succession
of N − (k− 1) overlapping words of lengthk, and simply express the probability of
finding sequence S in a class C as the product of theN − (k−1) probabilities of finding



each wordwi in C:

P (S|C) =

N−(k−1)∏
i=1

P (wi|C). (1)

This assumes that the different words are independent of each other. This is clearly false,
at least because of the overlapping between successive words (transition probabilities).

Bayes’ rule enable to express the probability of a class C given the sequence S as

P (C|S) =
P (S|C)P (C)

P (S)
. (2)

Therefore, we obtain the ratio of posterior probabilities for classes Pro and Geno as

P (Pro|S)

P (Geno|S)
=

P (Pro)

P (Geno)

∏N−(k−1)
i=1 P (wi|Promo)∏N−(k−1)
i=1 P (wi|Geno)

, (3)

that can be further factorized in

P (Pro|S)

P (Geno|S)
=

P (Pro)

P (Geno)

N−(k−1)∏
i=1

P (wi|Promo)

P (wi|Geno)
, (4)

thus involving the likelihood ratiosP (wi|Promo)/P (wi|Geno). Taking the logarithm,
we have

log
P (Pro|S)

P (Geno|S)
= log

P (Pro)

P (Geno)
+

N−(k−1)∑
i=1

P (wi|Promo)

P (wi|Geno)
(5)

and the decision rule is simply

log
P (S|Pro)

P (S|Geno)
=

N−(k−1)∑
i=1

log
P (wi|Promo)

P (wi|Geno)

Promo

≷
Geno

log
P (Geno)

P (Pro)
(6)

Let us observe that the log-likelihood can be expressed as the difference between a
Kullback-Leibler divergence and an entropy involving the empirical distribution:

1

N̄

N̄∑
i=1

logP (wi|Promo) =
W∑

j=1

nj

N̄
log

P (wi|Promo)

nj/N̄
+

nj

N̄
log

nj

N̄
(7)

with N̄ = N − (k− 1), W the number of different words andnj the count of a given
wordwj. From (7), we recognize that

1

N̄
logP (S|Promo) = D(P̂ (S)||P (S|Promo))−H(P̂ (S)), (8)

with D(P ||Q) the Kullback-Leibler divergence fromP to Q, andH(P ) the Shannon
entropy. Finally, we obtain that

1

N̄
log

P (S|Promo)

P (S|Geno)
= D(P̂ (S)||P (S|Promo))−D(P̂ (S)||P (S|Geno)). (9)



Relation (6) gives a decision rule that can be implemented in order to classify sequences.
The last relation (9) also indicates the interest of studying Kullback -Leibler divergences
in this context. Table1 reports the detection performance obtained with our databases
(1/8 was reserved for evaluation) when testing sequences of length 600. HCG and LCG
denotes High and Low CG content promoters respectively and FA stands for False
Alarm. These results are clearly interesting for HCG promoters and more mitigated
for LCG that are more difficulty to discriminate from the genomic background. The
practical results can be improved, to a little extent and at a price of a higher complexity,
by considering conditional probabilities or ‘nonstationary’ reference distributions.

TABLE 1 - Detection performances for Genomic (Geno), Promoters with high and low
content, HCG and LCG respectively.

Test Class Detection % FA LCG % FA HCG % FA Geno %

LCG 55 22 23

HCG 95 5 0

Geno 75 20 5

In order to ‘localize’ potential promoter sites, we designed an ‘adaptive’ version. we
first estimate local probability distributions, either using a sliding window (typicaly of
length 200) or using a forgetting factor. Then, we evaluate the log-likelihood ratio, the
entropy and Kullback-Leibler divergences along the sequence, and therefore localize
potential sites. In fact, so doing, we compare the distribution of the sequence at hand to
reference distributions, the ‘genomic signatures’.

This is illustrated in Figure5, where we explore a 960 Kb region of chromosome
7 including several annotated genes. We report the established mapping at GenBank,
and study the log-likelihood ratio along the sequence (Kullback-Leibler divergences and
entropy are not reported here to save space). Several unambiguous peaks emerge that
correspond to the different genes. Furthermore, the LOC646531 predicted gene, that has
no reported in vivo evidence, is also detected. Another peak preceding the SRPK2 Serine
kinase gene has no direct correspondence with a known structure, so that is either a false
detection or indicates a potential alternative promoter.

Hence, this shows the interest and usefulness of this approach that extends the notion
of ‘genomic signature’. But of course, there are still areas of improvement; by incor-
porating biological knowledge (concensus sequences), improving the statistical model,
and look for ‘long term’ dependence or geometric constraints.
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