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Abstract.

An amended MaxEnt formulation for systems displaced from the conventional MaxEnt equili-
brium is proposed. This formulation involves the minimization of the Kullback-Leibler divergence
to a reference) (or maximization of Shanno-entropy), subject to a constraint that implicates
a second reference distributid® and tunes the new equilibrium. In this setting, the equilibrium
distribution is the generalized escort distribution associatedtand Q. The account of an
additional constraint, an observable given by a statistical mean, leads to the maximization of Ré-
nyi/Tsallis Q-entropy subject to that constraint. Two natural scenarii for this observation constraint
are considered, and the classical and generalized constraint of nonextensive statistics are recovered.
The solutions to the maximization of Réng-entropy subject to the two types of constraints
are derived. These optimum distributions, that are Levy-like distributions, are self-referential. We
then propose two ‘alternate’ (but effectively computable) dual functions, whose maximizations
enable to identify the optimum parameters. Finally, a duality between solutions and the underlying
Legendre structure are presented.
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duality

INTRODUCTION

The formalism of nonextensive statistical mechanic<] leads to a generalized Boltz-
mann factor in the form of a Tsallis distribution (or factor) that depends on an entropic
index and recovers the classical Boltzmann factor as a special limit HaJénis distri-
bution is of high interest in many physical systems since it enables to model power-law
phenomena. In a wide variety of fields, experiments, numerical results and analytical
derivations fairly agree with the description by a Tsallis distribution.

Tsallis’ distributions (sometimes called Levy distributions) are derived by maximi-
zation of Tsallis entropyd], under suitable constraints. The present formulation is as
follows: maximize Tsallis’ entropy

T.(P) = ﬁ { / Pla)*de — 1] , 1)
subject to
m:/wP*(x)dx with P*(z) = %, 2)
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where the mean constraint is called a ‘generalized’ mean constraint in the nonextensive
litterature, andP*(x) is called the ‘escort’ distribution. This formulation was preferred

to the simple maximization with a classical mean constrairt [ =P (z)dx because of
mathematical difficulties. The solution is given in the litterature as

1

P =5 (15w -m) @)

whereZ is a partition function.

Of course, these distributions do not coincide with those derived by conventionnal
MaxEnt and consequently will not be justified from a probabilistic point of view, because
of the uniqueness of the rate function in the large deviations thdoB}.[Furthermore,
the status and interest of generalized expectations and of escort distributions is unclear.
Last, it is apparent that the expression of distributiBni¢ implicit, so that both its
manipulation and determination of its parametewill be difficult.

However, in view of the success of nonextensive statistics, there should exist a
probabilistic setting that provides a justification for the maximization of Tsallis entropy.
There are now several indications that results of nonextensive statistics are physically
relevant for partially equilibrated or nonequilibrated systems, with a stationary state
characterized by fluctuations of an intensive parameier]f for instance, the Tsallis
factor is obtained from the Boltzmann-Gibbs’ if the inverse of temperature fluctuates
according to a gamma distribution.

In this paper, | present a framework for the maximization of Rényi/TsgHigntropy,

that leads to the so-called Levy distribution (or Tsallis factor). The Rényi information
divergence, the opposite of Rényientropy, is given by

log / P(2)*Q(x)" " dz, ()

where « is a real parameter called the entropic index. Using L'Hospital’s rule, the
Kullback-Leibler divergence is recovered for— 1

Da(PIIQ) = ——

P(x)
D(PIQ) = [ Plw)lox )
Its opposite is the Shanngi+—entropy, the correct, coordinate invariant, extension of the
classical Shannon entropy to the continuous ca@ké his divergence can be interpreted

as a “distance” between two distributions. Rényi and Tsgjlientropies are related by

a simple monotonic function. Therefore, their maximization under the same constraint
lead to the same distribution.

In the following, | propose an amended MaxEnt formulation for systems with a
displaced equilibrium, find that the relevant entropy in this setting is the Rényi entropy,
interpret the mean constraints, derive the correct form of solutions, propose numerical
procedures for estimating the parameters of the Tsallis factor and characterize the
associated entropies. | will also indicate a duality between the solutions associated with
classical and generalized mean constraint. Finally | will discuss the underlying Legendre
structure of generalized thermodynamics associated to this setting.



THE AMENDED MAXENT FORMULATION

A key for the apparition of Levy distributions and a probabilistic justification might
be that it seems to appear in the case of modified, perturbated, or displaced classical
Boltzmann-Gibbs equilibrium. This means that the original MaxEnt formulation “find
the closest distribution to a reference under a mean constraint” may be amended by
introducing for instance a new constraint that displaces the equilibrium. The patrtial
or displaced equilibrium may be imagined as an equilibrium characterized by two
references, sal; and@). Instead of selecting the nearest distribution to a reference under
a mean constraint, we may look for a distributiBhsimultaneously close to two distinct
references: such a distribution will be localized somewhere ‘between’ the two references
P, and@. For instance, we may consider a global system composed of two subsystems
characterized by two prior reference distributions. The global equilibrium is attained for
some intermediate distribution, and the observable may be, depending on the viewpoint
or on the experiment, either the mean under the distribution of the global system or
under the distribution of one subsystem. This can model a fragmentation process: a
systemX( A, B) fragments intaA, with distribution P;, and B with distribution@, and
the whole system is viewed with distributid?r that is some intermediate betweén
and(@. This can also model a phase transition: a system leaves astaeard P, and
presents an intermediate distributién.

This can be stated as: fin#* such that the Kullback-Leibler divergence ¢,
D(P||Q) is minimum (or equivalently the Shanna@p-entropy is maximum), but un-
der the constraint thab(P||Q) = D(P||P,) + 0, wheref can be expressed as a log-
likelihood. The problem simply writes

{ minp D(P||Q) =minp [ P(x)log Fia) dx ©)

st 0 =D(P||Q)—D(P||P) = [ P(z log d

and its solution was given by Kullback,[page 39] as an illustration of his general
theorem on constrained minimization éi( P||Q):

Py (z)*Q(z)'

= TR @ g

which is nothing else but the escort distributio?) f nonextensive statisticsL()
(although it is generalized here with referen@®. The parametery is simply the
Lagrange parameter associated to the constraint, and it can be shown that necessarily
a < 1. Clearly, distributionP* which is the geometric mean betwefrmand() realizes

a trade-off, governed by, between the two references. By dual attainment, we have

{er 02Dl Doy = (o0 tos( [ Aera@ =) @

[0}

In this last relation, the terfog ( [ Pi(2)*Q(xz)'~*dz) is directly proportional to the
Rényi divergence4).



Observable mean values

Observable values are as usual the statistical mean under some distributions. Depen-
ding on the viewpoint, the observable may be a mean under distribbtighe distribu-
tion of an isolated subsystem, or undet, the equilibrium distribution betweehR and
(. Hence, the problem will be completed by an additionnal constraint, and a possible
approach would be to select distributiéh by further minimizing the Kullback-Leibler
information divergencé (P||(Q), but overP; (z) and subject to the mean constraint. So,
the whole problem writes

minp D(P||Q) = minp [ P(x)log 53 dz
subject to:0 = [ P(x)log 13((;:)) dx ) 9)
subject tom = Ep, [ X]| orm = Ep«[X]

K- ) minp

whereEp| X] represents the statistical mean under distribuftor’p [ X | = [ 2 P(z)dx.
This may be tackled in two steps: first minimize with respecPttaking into account
the mean log-likelihood constraint, and obtaii, @nd second, minimize with respect to
P,. Taking into account§), problem @) becomes

B maxp, (o« —1)D,(P]|Q)
k= i {&9 - { subject torm = Ep, [X] or m = Ep-[X] (10

and amounts to the extremization of Rényi information divergence under a mean
constraint Therefore, we find that the amended MaxEnt formulation leads to the
maximization of Rényi (or equivalently Tsallis) entropy subject to a statistical mean
constraint. We can note that the second constraint; F'p-[X] is nothing else but the
‘generalized expectation’ of nonextensive statistics that has here a clear interpretation.

It is important to note that the minimization of Kullback-Leibler divergence with
respect toP and P;, subject to the two constraints, may not always reduce to the two-
steps procedure above.

SOLUTIONS TO THE MAXIMIZATION OF RENY! QQ-ENTROPY

We now consider the maximization of Rénytentropy subject to the classical mean

constraint (Cyn = Ep,[X] and the generalized mean constraint (&} Ep-[X] as we

obtained in {0). We first begin by some results on a general ‘Tsallis’ distribution, that

simplify the derivation of exact solutions (proofs are omitted to save space).
Preliminary results

Definition 1 Distribution P# () is defined by:

P#(z) = [y(z — ) + 1] Q(z)e 710, (11)



ondomairD = DyND,,whereDg ={z: Q(x) >0} andD, ={z:y(x —7)+1 > 0}.
In this expressiory is either (a) a fixed parameter, say, and P#(z) is a two parame-
ters distribution, (b) or some statistical mean with respedPfqz), e.qg. its “classical”
or “generalized” mean, and as such a function-afObserve that distributio®” ()
is not necessarily normalized to one. Associated Wijti{x), we also define a partition
function

Z,(7.7) = /D Nz —7) + 1 Q()de. (12)

Notation 2 We will denote by, [ X] the statistical mean with respect to the probability
distribution associated witt?# (z), and byE™ [X] the generalized—mean. One can
observe that in the case of the Levy distributidf)(we haves." [X] = E..[X].Inthe
special caser = +¢, we obtainEfE) [X] = Eyie41)[X], becausga = ({+1) = -
Theorem 3 The Levy distribution Pg#(x) with exponentr = &, is normalized
to one if and only ifz = E¢[z], the statistical mean of the distribution, and

Da(Pg#HQ) = —10gZE+1(%f) = —long(’y,f).

In the same way, the Levy distributid?fg(:p) with exponent = —¢, is normalized
tooneifandonly iff = E_,_; [z] = E(j? [x], the generalized—expectation of the dis-
tribution, andDa(PféHQ) = —log Z_(¢41)(7,7) = —log Z_¢(7,Z), with a§ = (£ +1).

Whenz is a fixed parametem, this will be only true for a special valug* of v such

that E¢ [z] = m or E(_Oé) [x] = m, respectively in the first and second case.
Remark 4 Here takes place an important remark tire mappingc < ~. Consider the
normalized distributionPg#(x) with T = E¢ [z]. This distribution depends on the sole
parametery, andz is a function ofy. But contrary to the intuitionthe mappinge <

is not necessarily one to on€his means that a specified value of the meanm may
correspond to several valuespfand conversely a specified valueyaihay give several
different meang. This can be illustrated through numerical examples.

Lemma 5 Partition functionsZ, (v, m) and Z_¢(~,m) are convex functions of.

Solutions

The solutions to the maximization of Rényentropy subject to the classical mean
constraint (Cyn = Ep, [ X| and the generalized mean constraint (&)= Ep-[X] are
found using standard Lagrangian techniques The optimum solution, see for instance
[11], is a saddle point of the Lagrangian and we may proceed in two steps: first minimize
the Lagrangian irP(z), and thus obtain a solution in terms of the Lagrange parameters,
and then maximize the resulting Lagrangian, the dual function, in order to exhibit
the optimum Lagrange parameters. Taking into account the normalization conditions
described above, these solutions are easily derived and simplified:



[z —7) +1f

r—7))"° .
(@) Pole) = I with s = Epy X = EoenlX] (19

where¢ = ﬁ ,andZ,(~, ) isthe partition function. Itis important to emphasize that

in (13) is the statistical mean with respectfo(x), T in (14) is the generalized-mean

with respect taP; (), and as such a function ef It is a common mistake in the large

majority of reported results and calculations to improperly takerftire fixed valuen

of the constaint, which is only correct for the optimum value of the Lagrange parameter.
These optimum distributions appear to be self-referential, since their expressions

involve their statistical mean. Therefore, the direct determination of their parameters

is difficult, if not intractable.

Alternate dual functions

From the Lagrangian theory, one should maximize the dual function in order to ob-
tain the remaining Lagrange parameter. But in the present cases, the dual functions are
implicitely defined. Thus, in order to identify the value of the natural parameter associa-
ted to the mean constraints, | propose two ‘alternate’ (but effectively computable) dual
functions, whose numerical maximizations enable to exhibit the optimum parameters.

For the classical mean, | just sketch the procedure. At the optimum, welhgve =
sup, sup,,infp L(P,v, ). For any valug: of p, letting D(v) = L(P;:ﬁ,'y,ﬁ), we have
D(v*) > D(v). Thus, if D(v*) = D(v*) for the optimum~*, then D(v*) will be a
maximum ofD(~) and the maximization of the dual function can be carried equivalently
via the maximization ofD(v). Condition D(v*) = D(v*) is achieved withu(vy) =
—(£+1)(1—~m). Then, after some algebra, we obtain the very simple form

De(7) = —log Ze 1 (v,m) (15)

that is simply the expression of the divergence frBfﬁto Q, Da(Pg# |1Q). We know that
Ze+1(v,m) is a convex function. Thus, .. (v, m) is defined on a continuous domain,
Ec('y) has an only maximum foty = v*. If Z.,(y,m) is defined (and convex) on
several intervalsD(7) may have a maximum on each of these intervals, and one has to
select the minimum of these maxima (that is the maximum associated with the minimum
divergence). Hence, the identification of the optimum paramgtsimply amounts to
the unconstrained maximization of an unimodal functional, possibly in several intervals.
For the generalized mean, the rationale for an alternate dual function is as follows.
We know thatDa(PiHQ) = —logZ_¢(y,m) when the generalized mean constraint

is satisfied. Sincé”’g%ﬁwn) = —g(f—m)%, —log Z_¢(y,m) is maximum



when the constraint = m is satisfied. Hence, the search of the optimum Lagrange
parameter can be carried using the very simple alternate dual function

Do(7) = —log Z_¢(v,m). (16)

The partition functionZ_,(y,m) is a convex function forx < 1. If it is defined on a

continuous domain) () has an only maximum that is simply reached4foisuch that

m = E_¢_1[z], the generalized-mean If the domain is given by several intervals, then

D¢ () may present several maxima, and the minimum of these maxima, associated with
the minimum divergencé)a(PiHQ), has to be selected. We thus obtain two practical
numerical schemes for the identification of the distributions parameters, and it is also
possible to study the behaviour of entropies associated with some particular references
(). We come to a close to this presentation by considering the relationship between the
two minimization problems and an underlying Legendre structure.

DUALITY AND LEGENDRE STRUCTURE

The a < 1/a duality

The dual functions associated to the two problems aflegZ .(y,m) and
—log Z_¢,(v,m). Thus, we will have pointwise equality of dual functions, and of
course of the optima, if; + 1 = —&,, that is if indexesy; anda; satisfya; = 1/a,. We
can also remark that with&; = & + 1 = o1&, we have the following relations between
the two optimum probability density functions:

PaOl-a pPa2Ol-az )
=-¢* __ and PCZGZL, with ay = 1/as, (17)

1—ao

&1 &1
and using the fact th&f,, 1 (v, m) = Z¢, (v, m) for the optimum value of. It means that
P is the escort distribution o~ with index «; and thatP. is the escort distribution
associated withP; and indexas. It can be checked in the general case tiatays
have the equalityD . (P*||Q) = D,(P1||Q) between thd /o Rényi divergence of the
escort distribution 'F(@ and the standard divergence Hence, the minimization of the
a Rényi divergence subject to the generalized mean constraint is exactly equivalent to
the minimization of thel /o Rényi divergence subject to the classical mean constraint
so that generalized and classical mean constraints can always be swapped, provided the
index« is changed intd /«, as was argued irlp, 13].

The Legendre structure

In the study of alternative entropies, considerable efforts have been directed to the
analysis of associated thermodynamics. The concave entropies corresponding to our two

problems areS¢ = log Zf+1(—@,f), andSg =log Z_¢(\/&€,T). Let us consider the

general formS =log Z,1(7,7).



In terms of the Lagrange multipliex, it can be shown that

ds dSdy dx
el 1) —. 18
D DR (18)
Specializing the result to the two entropies, we obtain in both cases the Euler formula:
ds dz

Next, the derivative of the entropy with respect to the mean is simply

ds dS d)\i/\dfd)\i
dt — dxdz “didz
Let us now introduce the Massieu potentigh) = S — AT (or equivalently the free
energy). Derivations with respect to the Lagrange parameter and to the mean give
dp  _ dp — _d\
These four relations show th8tand¢ are conjugated with variablesand\ : S [z] = ¢
[A], so that the basic Legendre structure of thermodynamics is preserved (but care must
be taken for interpretations, for instance a valid definition of temperature requires that
always remains positive).

by (20)
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