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Estimating the Entropy of a Signal with Applications

Jean-Francois Bercher and Christophe Vignat

Abstract—in this paper, we present a new estimator of the en- using any raw estimates of tpein the preceding formula. More
tropy of continuous signals. We model the unknown probability sophisticated entropy estimates, based on coding theorems that
density of data in the form of an AR spectrum density and use reg- are specific to the discrete case, can be found in [5] and [6]. In
ularized long-AR models to identify the AR parameters. We then . . ' .
derive both an analytical expression and a practical procedure for signal pro_ces_smg, data l_Jsua”y ha_ve Cont'nuous _PDF because
estimating the entropy from sample data. We indicate howtoincor- Of contamination by continuous noise. In this continuous case,
porate recursive and adaptive features in the procedure. We eval- two main approaches exist. First, the PDF can be approximated
uate and compare the new estimator with other estimators based by an element of a parameterized set, whose entropy is known
on histograms, kernel density models, and order statistics. Finally, i tarm of the parameters [7]. Second, entropy estimators are
we give several examples of applications. An adaptive version of . . . . ) .
our entropy estimator is applied to detection of law changes, blind base_d o_n a pnor estlmatlt_)n of underlying PDF’s (pr cumulative
deconvolution, and source separation. distribution functions) using methods such as histograms [4],

Index Terms—AR processes, entropy estimation, parametric [8], order statistics [9], [10] (see [11] for a comparative study),

methods, regularization, spectrum analysis. or kernel methods [2], [3], [8]. . .
In this paper, we derive and apply to signal processing prob-

lems a new estimator of entropy for all continuous PDF’s with
. INTRODUCTION bounded support. This estimator can be implemented in recur-
INCE Shannon’s work [1], entropy is used as a major toglve schemes and has tracking capabilities in nonstationary con-
in information theory. However, this tool is rarely used if€Xts. Furthermore, our approach provides a convenient estima-
signal processing, except in theoretical frameworks, becaustaf procedure of PDF's.
appears difficult to compute or estimate the entropy from a setThe main contributions of this work are
of real data. Interesting approaches involving direct use of en- i) a new presentation and improvements of the approach of
tropy for signal processing applications can be found in [2]—[4]. [12]-[14] for PDF estimation;
In many applications, a measure of complexity of underlying ii) derivation of an analytical close-form formula for the es-
probability density functions, or a measure of dependence be-  timation of entropy;
tween components or signals, allows the design of an optimaliii) presentation of a practical procedure for entropy estima-
processing scheme, possibly in nonstationary contexts. Exam-  tion, including recursive and adaptive features;

ples of such situations are plentiful: iv) evaluation and comparisons with other methods;
« source separation; v) examples of application of the entropy estimator to signal
« blind deconvolution; processing problems.
 source coding; This paper is organized as follows. In Section Il, we discuss
 image alignment; the relevance of AR modeling of PDF’s and introduce regular-
« detection of abrupt changes; ized long-AR models. In Section Ill, we give the theoretical ex-
and so on. Thus, entropy-based approaches might be usefulf@ssion of the entropy associated with AR-PDF’s and a prac-
such problems. tical procedure for estimating the entropy. In Section IV, we give
The entropyH (X) of a random variablé with continuous examples of PDF’s estimation. Then, we analyze and compare
probability density function (PDR)x (z) is defined as the behavior of the new estimator with other methods. Finally,
in Section V, we give some applications of this estimate to signal
+oo processing problems, namely, detection of PDF changes, blind
H(X) =—Ex[logypx]| = —/ px(z)logypx(x)dz.  equalization, and source separation.
1)

Il. AR MODELING OF PDF’s

In the discrete case, wherg takes values:; with probabili- A, Introduction

tiesps, H(X) = —2.; pilog, pi. Basic estimates can be built, ., approach consists of estimating the unknown BRE:)

as the power density spectrufn, (=) of some unit variance AR
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long-AR regularized approach in order to obtain stable and able datgz(n) }1<.<n from X (w, n), as the statistical average
curate estimates. In the sequel, we will show that this moddrrelation estimate

leads to an easy procedure for computing the associated entropy N
and that recursivity and adaptivity can be introduced in the pro- R 2(k) = 1 Z oIk (n)
cedure. N

n=1

We suppose that the observation consists in samples of a o -
processX (w, n), identically distributed according to a contin-2nd 2) estimation of the coefficien{g.,.} of the AR process
uous PDFpx () with bounded support, saly: (1/2), +(1/2)]. W(w,n) by solvingRza = 7.

This hypothesis, although restrictive, is usual in the context (Q,f

PDF estimation. Long AR Models and Regularization

As mentioned above, real PDF’s are very likely not in the
B. PDF Estimation Using AR Modeling form of an AR spectrum. Hence, an accurate modelization
of PDF’s via AR techniques may require the use of long AR
models. However, the counterpart of adopting a high number
of coefficients is a loss in the stability of the estimate (e.g.,
spurious peaks). The exploitation of regularization techniques
enables the use of long AR models, and thus, modeling of

We look for an estimatéx (x) of the true (unknown) PDF
px (x) parameterized by a set of coefficiedts, }1 <x<, in the
form of a power spectrum densisjy ()

2

px(z) = Swiz) = e (2) ‘Mon-AR”spectra, while preserving stability.
1->7_ ape—i2mk= eideaistouse along model with the addition of some
p_ 2k |2 The id long AR model with the add f
prior knowledge about the “smoothness” of the spectrum. In
wheres? is chosen sqch th@ftf((ll/;). Sw_r(f) -df = 1. [20], Kitagawa and Gersch defined thth smoothness by
The relevance of this parameterization lies in the fact that any L1k A(f) 2
continuous spectrum density can be approximated, iff{he Dy = / “ar df

sense, by an AR spectrum density. More preciselyzifz) is a

symmetric continuou_s spectr_al density[en(1/2),(1/2)], and  ith A(f) = S°P_ axe?®*f | and showed thab,, o« a’Aga,
6 > 0, then there exists an integgrand a real—va;lued causalyhereA,, is the diagonal matrix with elementa . ];; = i2*.
AR(p) process¥ (w,n) with innovation variance_ suchthat  The AR parameters are obtained as a regularized
|Sw (z) — SZ(x)HC?O < & (see [16, corol. 4.4.2. P 132])._ This|east-squares solution
result extends easily to the case of nonsymmetric, possibly one- X
sided, Sz(z); in this case W (w,n) is a complex-valued AR a=(Ryz+ Ay 'ty 3
process. o

Once the analogy between PDF’s and power spectrum d#ffiere hyperparameter balances a fidelity to the data and a
sities is stated, a natural question arises: Can we find a proce&¥othness prior. o . _ .
Z(w,n) whose spectrum is precisely the PDF of the random In [20] and [21], a Bayesian interpretation of this regularized
variableX (w)? It is easy to check thaf(w, n) = e/ (X +6(w) least-squares is derived, which also leads to a selection rule for
has this property ifX is any sample of proces¥(w, n), and th_e hy_per_parametek, as the minimizer of the following mar-
$(w) is uniformly distributed ovef0, 2x] and independent of ginal likelihood:
X . Indeed, its correlation functiaR z (k) is nothing but the first -
characteristic function ok . L(\) = log(det(Rz + AAx)) — plog(A) — Nlog(o7) (4)

However, this “underlying processZ(w,n) of X(w,n) IS \yheres2 is chosen such that the AR probability distribution is
very likely not an AR process. Hence, to identify the paramete6§0per|y normalized.

{ax } associated with PDF.y in (2), we need to match a given' | o s now turn to the problem of computing an estimate
spectrumSz(z) = px(x) with an AR spectrumSi (z) = g ) of the entropyH (X ) associated witlpx (). A natural

px (). A classical result about spectral matching [17] stateg,gach at this step is to build the entropy estinfatex) of
that the best ARp) model spectrum m{n;mlzmg the integratedpe | nknown PDFyx () as the entropy of the estimate PDF
ratio of the two spectrd(Z, W) = f:’((l//Q)) Sz(x)/Sw(x)dx Px ().

is nothing but the AR solution of the linear prediction problem

whose parameters = [a1,...,q,]" are such thaR,a = . ESTIMATE OF ENTROPY

rz.! Matrix (Rz)1<; j<, = Rz(i — j) and correlation vector n thi i hibit th wtical . f th
(rz)1<i<p = Rz(4) are built using correlation functioR (). n this section, we exnibit the analylical expression of the

Thus, modelization of PDF as an AR spectrum follows the ENtropy associated withy (). Then, we give an alternate and

two following steps: 1) estimation of the correlation sequen&@Sier procedure for estimating the entropy. Finally, we show
Ry (k), i.e., of the characteristic function of, using the avail- how to introduce recursivity and adaptivity in the procedure.

INote that minimizinglog I(Z, W) is equivalent to the minimization of A. Theoretical Expression

I(Z,W) and, in the case of a “good matching” [17], to the maximization of The exact expression of entrOﬁy(X) usingﬁX (az) defined
the Burg entropy. Hence, the general AR spectral matching method coincides. ’

with the “maximum entropy spectral estimation method,” which was derived® N (2) can be derived. Let us denote{y } the set ofp sup-
in the case of gaussian signals [18], [19]. posedly simple poles gfx («) and by{, } the set of associated
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residues. Withd(z) = >"%_, ar>~*, a straightforward but te- leads to some truncation error. It is also important to note that
dious calculus (omitted here) yields (5), shown at the bottof6) does not require the explicit estimation of the PDF but only
of the page. Direct use of this analytical expression of entropy the first (p + 1) coefficients of the correlation sequence
is obviously difficult since it requires computation of all polesiyy (k), which in turn enables the computation of the AR
of the AR model, together with their respective residues, whigfarameters and the cepstrum involved in (6).
can be highly time consuming, particularly in the case of long As will be described below, as part of a practical method for
AR models. Although we have here an explicit formula (5), it isnplementing the method expressed by (6)—(9), it is possible to
desirable to find an equivalent formula fﬁf(X) that provides estimate recursively the correlation sequence.
an easier estimation procedure.

C. Implementation in a Recursive Scheme

B. Easier Estimation Procedure The first step consists of estimating the characteristic function

The entropy associated withy (z) as defined by (2) is Ry from the observation datf; }1<;<,41. The statistical av-
: _ +(1/2) ' - : == . .
H(X) = —f_(l ) Sw(z)log, Sw(x)dz. Hence, applying erage correlation sequence can be estimated recursively using
the Plancherel—réarseval formula to the right-hand side of the

above relation yields 1T
y Rgﬁﬂ)(k) _ Z pi2mka;
Ry n+ 1l
H=- Ry (k)Ciy (k) (0 L jomkans
— L TRDn4L 1

+oo

=-2 RQ{ZRW;(I{;)C";,(]{;)} (6) This empirical characteristic function is the inverse Fourier
k=0 transform of the empirical distributionﬁﬁ?*l)(a:) =

. . 1/(n + )X 6(x — ;). In kernel methods for den-
where Rw (k) denotes thekth correlation coefficient of _: 7 Lei=l g e .
W(w,n),wagd)CW(k) — FT-[log, S ()] denotes thésth sity estimation, the empirical distribution is smoothed using

: a kernelg(z). It is also possible to compute such an estimate
component of its cepstrum. Note that bathy, (k) ‘_"deW(_k) recursively, as in (10); see [23] and references therein. For the
have Hermitian symmetry sinc®y () is real, which provides

. . . . _ _1 .
the right-hand side of (6), characteristic function, witl (k) = FT™ " (¢(z)), this leads to

At this step, we take advantage of the AR structure of process (n+1) nom
W (w,n) since, for that particular type of process, both correla- Ry, " (k) = nrlw (k) +
tion and cepstrum functions obey recursive relations?[22]

) J2mkaa, 41 )
(k) (1)

The proposed method thus consists of the three following steps:

- . 2 Firststep  Estimate thep + 1) correlation coefficients
Ry (k) = Z:l ai Ry (k — 1) + o26(k) @) R (kocney Using the(n + 1) available
Z—log o2, it k=0 samples using (10) or (11). '
el . Second step The set of estimated correlations
B =9 -3 <i> Cw(Dh(k — i), ifk>0® Ry (k)o<r<, allows computation  of
P\ parameters,ag’f;];)< and, thus, time series

(n+1) = Sl - -
with 2(k) the impulse response of the AR system, which is also Ry " (k) and Cy" 7 (k), using relations

computed recursively according to ) (7_)_(9)' o ) )
Third step  Finally, application of (6) gives the estimated

p . entropy of procesX (w, n) based onitén+1)
(k) == aih(k — i) + 6(k). 9) first samples.
=1 Furthermore, it is also straightforward to derive an adaptive

The estimated entropy can thus be computed using (@_@ﬁysion of this entropy estimation scheme. It suffices to intro-
avoiding any numerical integration. Obviously, however, ifuce a forgetting factor in the updating formula (10) of the

practice, the infinite sum in (6) should be truncated, whickprrelation sequence. For the correlation matrix, this gives

2Relation (8) is derived using [22] and the fact thag (k) = o2h(k) * ~(n 1 S n—1
h(—k)*, whereh(k) is minimum phase witth(0) = 1. Rg/v) = [(” - 1)NR$4/' '+ e(n)e(n)"'}

p 1 —1
e

H(X)==+logl;, with

b b:z%{é@ <1—A<Ziz>>_llog{1—A<ziz>}}.

()
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Fig. 1. AR estimates and (a) theoretical uniform (b) exponential, and (c) Gaussian laws.

with e(n)t = [e=i@nte) ... ¢=i=+9)] Then, the AR pa- approximation as well as the modified Vasicek’s estimator rec-

rameters and entropy can be evaluated at each new sample usingnended in [11].

(3) and (6)—(9). « In the case of histograms, the entropy is estimated as
It is also possible to compute recursively the AR parameters, _ Zfil N;/K log,(N;/K), whereN; is the number of

thus avoiding the matrix inversion required in (3). Indeed, the  values in theth bin, andK is the number of bins.

regularized least squares solution can be computed recursivelye |n the kernel approach, the available samples

using a gradient approach [24] {z1,...zx} are directly used for modeling the den-
. . o I sity aspx () = (1/N) SN | ¢(x — x;), wherep(x) is a
at =al o [(RE/V) + )‘Ak) a™ — & )} - (12 smoothing kernel, which is usually chosen as a Gaussian

kernel. In our experiments, we evaluated the density on
a grid of L = 1000 points with a kernel width chosen to
provide the best results. Finally, the entropy was evaluated

L. A
as— ) ;. bilogy pi.

Finally, it is also possible to adopt a more simple “LMS-like”
approach, such as

a"t =al +a [(e(”)e(”yr +AAa™ —e me(”)l « The Vasicek’s estimator [9] relies on the remark that
(13) H(X) = fol log,(dF () /du) du. Then, the estimator
is obtained by approaching the cumulative distribution
IV. SIMULATION RESULTS AND COMPARISONS function F' with order statistics. The modified Vasicek’s
A. AR-PDF Estimation estimator [11] has the following form:

In order to illustrate the versatility of the long AR approach 1> n
for PDF estimation, experiments were performed on sequence‘én,n(X) = Z log, (% ($(1+m) —w(z;m))) + f(m,n)
of 250 samples distributed according to i=1

a) a uniform PDH[[_(1/10)7(1/10)1; where
b) an exponential PDF with parameter 0.1, {z»}  ordered set of sampleg(i) (with z(;y = x() for
c) a Gaussian PDR/(0,0.01).3 i < landzgy = x(y) fori > n);
For these three PDF’s, the parameteend are, respectively, m positive integer;
a)p =232, A=510"7%; f(m,n) function that accounts for a bias correction; see
b) p =32, A =31077; [11].
C)p=20A=810""% Figs. 2 and 3 give the results [mean (a) and standard deviation

Results given in Fig. 1(a)—(c) show the relevance of this aff?)] for a uniform density/i_(1/10),(1/10y and for anormal den-
proach, which is able to approximate with accuracy differesity A'(0,0.01), with respectively theoretical entrogy(X) =

shapes of PDF'’s. —2.3219 bits andH (X) = —1.2748 bits. For the uniform den-
sity, we have chosen an AR ordee 32, 64 bins for histogram
B. Entropy Estimation estimatesg? = 5 (on the grid of 1000 points) for kernel esti-

In order to analyze the behavior of the AR entropy estimatdRates, andn = 3 for the modified Vasicek’s estimator. Results
we performed a Monte Carlo study in the case of a uniform af@f the Gaussian density were obtained witk: 20, 20 bins for
a Gaussian PDF. We evaluated the mean and standard devidligiPgram estimates;” = 10 for kernel estimates, and = 3
oy of the AR entropy estimate over 50 realizations as a funtQr the modified Vasicek’s estimator. _
tion of the length of available data. We compared these results! Nese results exhibit the good statistical behavior of our es-

with those obtained in the cases of histogram and kernel P@¥gator, that is, a low bias and a small variance. For the uni-
form density, the AR-based estimator has about the same per-

SSince PDF’s are modeled as power spectra on intdvel/2),+(1/2)l,  formance as the Vasicek’s one concerning the bias but a lower
the data had to be scaled on this interval. This does not restrict our approa dard deviati Th h . hiaher bi |
because the entropy of the scaled variable differs from the original entropy ofy2'dard deviation. The other estimators presenta higher bias. In

by a known additive term. the case of the Gaussian density, the AR-based estimator clearly
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Fig. 2. Comparison of histogram, kernel, Vasicek's, and AR-based estimates of entropy for a uniform density. (a) Mean values. (b) Standasd deviation
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Fig. 3. Comparison of histogram, kernel, Vasicek’s, and AR-based estimates of entropy for a Gaussian density. (a) Mean values. (b) Standard deviatio

presents the lowest bias, whereas all have about the same ssamples generated according to a mixture of two Gaussian dis-
dard deviation. Considering these two test cases, the AR-basidlzlitions, with means-0.3 and standard deviation = 0.06,
estimator of entropy shows either comparable or lower bias aftlowed by 200 samples distributed uniformly on the interval
variance. Hence, it proves accurate and compares favorably Witlh.44, 0.44] and by 200 samples of the same gaussian mixture.

all other estimators considered.

First PDF has entropy/; = —1.011 bits, whereas the second

As far as the complexity is concerned, the AR-based estias entropyH, = —0.1844 bits.
mator also compares favorably with others since it suffices toFig. 4 shows signat(n); it is difficult, by a simple inspec-
estimate some correlation coefficients, find parameters usingjan, to diagnose that there are PDF changes. Fig. 5 shows the
gradient recursion, construct two times series, and compute treaptive estimates [computed using (12) and (13)] of the negen-
scalar product. The kernel approach requires a large amountrofy of this test signal, using a forgetting facior= 0.98.
memory in order to evaluate and store the density estimate, eveihe following points are of importance.
in the case of recursive kernel estimators (storage requirementsj) PDF changes appear clearly.
can be reduced by using a coarser grid adjusted to the datarangei) Rupture points are properly revealed.
but the bias increases with the length of intervals on the grid).jii) The entropy is estimated with accuracy.

Entropy evaluation requirdsmultiplications and. evaluations

iv) The adaptive estimate has a good tracking capability.

of log,. Vasicek’s estimator requires storing and sorting the data

andn evaluations otog,.

V. SAMPLE APPLICATIONS

A. DetectingeDF Changes

B. Blind Deconvolution of AR Systems

The problem of blind deconvolution consists of recovering
the inputX and possibly the parameters of a filter from the sole
observation of its output”. The concept of entropy brings an
interesting answer to this problem [25], relying on the following
proposition.

An interesting application of the adaptive estimates of Sec-Proposition 1: LetY (w, n) be the output of a unit norm filter
tion 11I-C consists of detecting PDF changes in signals. As avhose input is a non-Gaussian i.i.d. sequeAde, n). Then,
illustration, we consider a signal») that is composed of 200 H(Y) > H(X).
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Then, takindog, of both sides, we have
1
H(Y) > H(X)+ 5108‘2 Z 7]

Finally, for a unit norm filter, that isy", |¢;|* = 1, the last

relation reduces téf(Y") > H(X). O
The deconvolution procedure then simply consists of ad-

justing the parameteigs of a filter £y, with inputY’, such that

its outputX has minimum (estimated) entropy. #f are the

filter parameters, this becomes

Bopt = arg Irgn fI(X)

- X(f) = F (/)Y (f)
submitted to{ 1B = 1.

160 2(I)0 360 460 5(‘)0 600
Fig. 4. Test signal for adaptive estimates: 200 samples from a gaussian
mixture, 200 samples from a uniform distribution and 200 samples from a
gaussian mixture. Simulations were performed in the case of nonminimum-phase
12 . , . i i AR filters. They showed that the AR parameters can be identi-

: fied very accurately and that the input can be perfectly recon-
structed, even if the AR order is overestimated. These simula-
tions were performed in the case of uniform and binary inputs,
with 500 samples of data, and the initial solution was chosen as
a standard minimum-phase solution.

In the case of non-AR filters, experiments showed that the
procedure suffers from local minima. However, the procedure
: may prove of value when used in a compound criterion that
i should be considered in the presence of observation noise, such
‘ as

LMS like algorithm

0.8

Gradient algorithm

o 100 200 300 400 500 600 [90Pt7 Xopt] = arg mi}_n H(X) + a||Y _ H9X||2
Fig. 5. Adaptive estimates of negentropy for signal in Fig. 4. X

whereHy is a convolution matrix. Note also that the previous

The intuitive reason behind this result is tipgt(y) is closer Criterion can be used in a standard deconvolution context, where
to a Gaussian distribution than, (), where the Gaussian dis-Hae is known. Inthis case, the entropy term will help to select the
tribution has the maximum entropy in the set of distributions ofight” solution among several equivalent solutions, as it occurs
given variance; see [25]. in ill-posed problems.

Proof: The key of the proof is the entropy power in- i

equality stated by Shannon [1, Th. 15 and App. 6]: see alSo SOUrce Separation

[26]. In the context of source separatio®y, signalss(n) =

Entropy power inequalitylf X andY are two independent [s1(n), ..., sx(n)] are mixed by an unknowdV x N matrix

random variables with entropied (X ) and H(Y), then A to provide observed signate(n) = [z1(n),...,zn(n)].
RHAY) 5 2H(X) | 2H(Y) The problem consists of recovering the sources from the sole

observation of signals(n) using only an assumption on the
with equality if and only if¥ andY are Gaussian variables mutual independence of sources. The objective is reached
The term “entropy power” comes from the fact that the powdly designing a matrixB such that the reconstructed signal
of a Gaussian variabl¥ is proportional toz27(X). §(n) = Bx(n) has independent components. The information
Let g be the impulse response of the filter with inptitw, n.). theoretic measure of independence is the mutual informa-
Its outputY (w,n) is Y(w,n) = 3, g; X (w,n — ). The clas- tion I, that is, the Kullback—Leibler divergence between

sical result on the entropy of rescaled variables and the assutp-._ 5, (51, -- - $n) and Ili<i<y pg (3:). For the source
tion of stationarity give separation problem, minimization of the mutual information
. . reduces to the minimization of
H(giX(w,n—1)) = H(X(w,n — ) +log |i] N
= H(X) +log, |gil- C(B) = —log|det B| + > H(3;). (14)
=1

Now, the entropy power inequality gives _ . _ .
Sy o Xl Xl _ In plassmal approaches,. as no esumgte of entropy is 'ava|lable,
MO > N " PHo X wn=i)) = N7 2H (0 +2 logs o] B is chosen as the solution of the nonlinear decorrelation equa-
i i tions: E[8;1;(8,)] = 0, for i # j, which express the station-
— 2H(X) 1 Z lgi|?. arity condition ofC'(B). Function; (s;), which is the so-called
log, 2 £ score function, is the log derivative of the dengity (s;).
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TABLE |
EXPERIMENTS ON SOURCE SEPARATION. RESULTING MATRIX M = AB
SHOULD BE THE IDENTITY.

1693

considered, as soon as they involve some measure of depen-
dence between random variables or signals or a measure of

complexity.

source 1 source 2 M= AB
1{N(0.3,0.2) 1 0.0395
Ul—os,05]
+N(-0.3,0.2)} 0.0011 1
1 0.02
U050 Ul—os.05)
0.0163 1
bin [ ]
lal'}l’ N(O, 1) 1 0.0354
[_57 3 L 0.02 1
1 0.23
U505 N(0,1)
—0.0491 1

(1]

Using our AR parameterization, we can i) either estimate the
cost functionC(B) and minimize it using any standard opti- 2
mization procedure or ii) estimate the solution of the decorre-
lation equations using the analytical expression (in terms of the
AR parameters) of the score functigifz) = a™Ta/|ate|?,
whereT is the Toeplitz matrix with entrieTy; = —j2n(k —
De=327(k=0z andet = [16727% ... 27— 1],

We performed simulations using the first approach, using 500
samples of data in the case of the mixtureMof= 2 sources. [5]
Table | presents, for several distributions of the sources, the re-
sulting matrixA = AB, which should be the identity matrix,
up to a scaling factor and a permutation. These results show that
this approach enables proper separation of the input sources/]
with performances comparable with classical methods [3]. (8]

(9]
(20]

(4]

VI. CONCLUSION

The concept of entropy plays a central role in information(11]
theory. However, it is rarely used directly in signal processing
applications. In this paper, we have presented an estimator of the]
entropy of a signal and illustrated its behavior through several
motivating examples of signal processing applications.

Our estimator relies on a simple analogy between the proki3]
lems of PDF estimation and power spectrum estimation. The
problem of PDF estimation is tackled using an AR modelization,[l4]
which is a well-known approach in signal processing. This paras]
metric modelization enables the accurate description of a lar (136]
class of PDF. Moreover, in order to obtain accurate and stabl
estimates, we have chosen to use the long AR approach of [2Q},7]
where the problem of AR parameters estimation is regularize

. : . [18]
by a smoothness constraint. Relying on the AR modelization,
we have presented an estimation procedure for the entropy in[ze]
recursive scheme. The corresponding estimator does not require
the explicit estimation of the PDF but only of some samples 0{20]
a correlation sequence. Thus, it is easy to derive adaptive ver-
sions of this estimator. As illustrated by a simulation study, th 1
AR estimate of entropy proves accurate and compares favorabfy
with other classical estimates.

Finally, we have given several examples of applicationg??]
where the entropy-based approach provides valuable resull@sl
It is worth recalling that many other applications can be
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