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Estimating the Entropy of a Signal with Applications
Jean-François Bercher and Christophe Vignat

Abstract—In this paper, we present a new estimator of the en-
tropy of continuous signals. We model the unknown probability
density of data in the form of an AR spectrum density and use reg-
ularized long-AR models to identify the AR parameters. We then
derive both an analytical expression and a practical procedure for
estimating the entropy from sample data. We indicate how to incor-
porate recursive and adaptive features in the procedure. We eval-
uate and compare the new estimator with other estimators based
on histograms, kernel density models, and order statistics. Finally,
we give several examples of applications. An adaptive version of
our entropy estimator is applied to detection of law changes, blind
deconvolution, and source separation.

Index Terms—AR processes, entropy estimation, parametric
methods, regularization, spectrum analysis.

I. INTRODUCTION

SINCE Shannon’s work [1], entropy is used as a major tool
in information theory. However, this tool is rarely used in

signal processing, except in theoretical frameworks, because it
appears difficult to compute or estimate the entropy from a set
of real data. Interesting approaches involving direct use of en-
tropy for signal processing applications can be found in [2]–[4].
In many applications, a measure of complexity of underlying
probability density functions, or a measure of dependence be-
tween components or signals, allows the design of an optimal
processing scheme, possibly in nonstationary contexts. Exam-
ples of such situations are plentiful:

• source separation;
• blind deconvolution;
• source coding;
• image alignment;
• detection of abrupt changes;

and so on. Thus, entropy-based approaches might be useful for
such problems.

The entropy of a random variable with continuous
probability density function (PDF) is defined as

(1)

In the discrete case, where takes values with probabili-
ties . Basic estimates can be built,
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using any raw estimates of thein the preceding formula. More
sophisticated entropy estimates, based on coding theorems that
are specific to the discrete case, can be found in [5] and [6]. In
signal processing, data usually have continuous PDF because
of contamination by continuous noise. In this continuous case,
two main approaches exist. First, the PDF can be approximated
by an element of a parameterized set, whose entropy is known
in term of the parameters [7]. Second, entropy estimators are
based on a prior estimation of underlying PDF’s (or cumulative
distribution functions) using methods such as histograms [4],
[8], order statistics [9], [10] (see [11] for a comparative study),
or kernel methods [2], [3], [8].

In this paper, we derive and apply to signal processing prob-
lems a new estimator of entropy for all continuous PDF’s with
bounded support. This estimator can be implemented in recur-
sive schemes and has tracking capabilities in nonstationary con-
texts. Furthermore, our approach provides a convenient estima-
tion procedure of PDF’s.

The main contributions of this work are

i) a new presentation and improvements of the approach of
[12]–[14] for PDF estimation;

ii) derivation of an analytical close-form formula for the es-
timation of entropy;

iii) presentation of a practical procedure for entropy estima-
tion, including recursive and adaptive features;

iv) evaluation and comparisons with other methods;
v) examples of application of the entropy estimator to signal

processing problems.

This paper is organized as follows. In Section II, we discuss
the relevance of AR modeling of PDF’s and introduce regular-
ized long-AR models. In Section III, we give the theoretical ex-
pression of the entropy associated with AR-PDF’s and a prac-
tical procedure for estimating the entropy. In Section IV, we give
examples of PDF’s estimation. Then, we analyze and compare
the behavior of the new estimator with other methods. Finally,
in Section V, we give some applications of this estimate to signal
processing problems, namely, detection of PDF changes, blind
equalization, and source separation.

II. AR M ODELING OF PDF’S

A. Introduction

Our approach consists of estimating the unknown PDF
as the power density spectrum of some unit variance AR
process . Applications of spectral estimation methods
to PDF estimation were first introduced in the context of non-
linear signal processing in [12], [15]. AR-PDF estimation was
also discussed in [13] and [14]. We discuss here the relevance
of this model for PDF estimation, recall the link between spec-
tral matching and linear prediction, and then propose to use a
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long-AR regularized approach in order to obtain stable and ac-
curate estimates. In the sequel, we will show that this model
leads to an easy procedure for computing the associated entropy
and that recursivity and adaptivity can be introduced in the pro-
cedure.

We suppose that the observation consists in samples of a
process , identically distributed according to a contin-
uous PDF with bounded support, say, .
This hypothesis, although restrictive, is usual in the context of
PDF estimation.

B. PDF Estimation Using AR Modeling

We look for an estimate of the true (unknown) PDF
parameterized by a set of coefficients in the

form of a power spectrum density

(2)

where is chosen such that .
The relevance of this parameterization lies in the fact that any

continuous spectrum density can be approximated, in the
sense, by an AR spectrum density. More precisely, if is a
symmetric continuous spectral density on , and

, then there exists an integerand a real-valued causal
AR process with innovation variance such that

(see [16, corol. 4.4.2. p. 132]). This
result extends easily to the case of nonsymmetric, possibly one-
sided, ; in this case, is a complex-valued AR
process.

Once the analogy between PDF’s and power spectrum den-
sities is stated, a natural question arises: Can we find a process

whose spectrum is precisely the PDF of the random
variable ? It is easy to check that
has this property if is any sample of process , and

is uniformly distributed over and independent of
. Indeed, its correlation function is nothing but the first

characteristic function of .
However, this “underlying process” of is

very likely not an AR process. Hence, to identify the parameters
associated with PDF in (2), we need to match a given

spectrum with an AR spectrum
. A classical result about spectral matching [17] states

that the best AR model spectrum minimizing the integrated
ratio of the two spectra
is nothing but the AR solution of the linear prediction problem
whose parameters are such that

.1 Matrix and correlation vector
are built using correlation function .

Thus, modelization of PDF as an AR spectrum follows the
two following steps: 1) estimation of the correlation sequence

, i.e., of the characteristic function of, using the avail-

1Note that minimizinglog I(Z;W ) is equivalent to the minimization of
I(Z;W ) and, in the case of a “good matching” [17], to the maximization of
the Burg entropy. Hence, the general AR spectral matching method coincides
with the “maximum entropy spectral estimation method,” which was derived
in the case of gaussian signals [18], [19].

able data from , as the statistical average
correlation estimate

and 2) estimation of the coefficients of the AR process
by solving .

C. Long AR Models and Regularization

As mentioned above, real PDF’s are very likely not in the
form of an AR spectrum. Hence, an accurate modelization
of PDF’s via AR techniques may require the use of long AR
models. However, the counterpart of adopting a high number
of coefficients is a loss in the stability of the estimate (e.g.,
spurious peaks). The exploitation of regularization techniques
enables the use of long AR models, and thus, modeling of
“non-AR” spectra, while preserving stability.

The idea is to use a long AR model with the addition of some
prior knowledge about the “smoothness” of the spectrum. In
[20], Kitagawa and Gersch defined theth smoothness by

with , and showed that ,
where is the diagonal matrix with elements .

The AR parameters are obtained as a regularized
least-squares solution

(3)

where hyperparameter balances a fidelity to the data and a
smoothness prior.

In [20] and [21], a Bayesian interpretation of this regularized
least-squares is derived, which also leads to a selection rule for
the hyperparameter, as the minimizer of the following mar-
ginal likelihood:

(4)

where is chosen such that the AR probability distribution is
properly normalized.

Let us now turn to the problem of computing an estimate
of the entropy associated with . A natural

approach at this step is to build the entropy estimate of
the unknown PDF as the entropy of the estimate PDF

.

III. ESTIMATE OF ENTROPY

In this section, we exhibit the analytical expression of the
entropy associated with . Then, we give an alternate and
easier procedure for estimating the entropy. Finally, we show
how to introduce recursivity and adaptivity in the procedure.

A. Theoretical Expression

The exact expression of entropy using defined
as in (2) can be derived. Let us denote by the set of sup-
posedly simple poles of and by the set of associated
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residues. With , a straightforward but te-
dious calculus (omitted here) yields (5), shown at the bottom
of the page. Direct use of this analytical expression of entropy
is obviously difficult since it requires computation of all poles
of the AR model, together with their respective residues, which
can be highly time consuming, particularly in the case of long
AR models. Although we have here an explicit formula (5), it is
desirable to find an equivalent formula for that provides
an easier estimation procedure.

B. Easier Estimation Procedure

The entropy associated with as defined by (2) is
. Hence, applying

the Plancherel–Parseval formula to the right-hand side of the
above relation yields

(6)

where denotes the th correlation coefficient of
, and denotes the th

component of its cepstrum. Note that both and
have Hermitian symmetry since is real, which provides
the right-hand side of (6).

At this step, we take advantage of the AR structure of process
since, for that particular type of process, both correla-

tion and cepstrum functions obey recursive relations [22]2 :

(7)

if

if
(8)

with the impulse response of the AR system, which is also
computed recursively according to

(9)

The estimated entropy can thus be computed using (6)–(9),
avoiding any numerical integration. Obviously, however, in
practice, the infinite sum in (6) should be truncated, which

2Relation (8) is derived using [22] and the fact thatR (k) = � h(k) �
h(�k) , whereh(k) is minimum phase withh(0) = 1.

leads to some truncation error. It is also important to note that
(6) does not require the explicit estimation of the PDF but only
of the first coefficients of the correlation sequence

, which in turn enables the computation of the AR
parameters and the cepstrum involved in (6).

As will be described below, as part of a practical method for
implementing the method expressed by (6)–(9), it is possible to
estimate recursively the correlation sequence.

C. Implementation in a Recursive Scheme

The first step consists of estimating the characteristic function
from the observation data . The statistical av-

erage correlation sequence can be estimated recursively using

(10)

This empirical characteristic function is the inverse Fourier
transform of the empirical distribution

. In kernel methods for den-
sity estimation, the empirical distribution is smoothed using
a kernel . It is also possible to compute such an estimate
recursively, as in (10); see [23] and references therein. For the
characteristic function, with , this leads to

(11)

The proposed method thus consists of the three following steps:
First step Estimate the correlation coefficients

using the available
samples using (10) or (11).

Second step The set of estimated correlations
allows computation of

parameters and, thus, time series

and , using relations
(7)–(9).

Third step Finally, application of (6) gives the estimated
entropy of process based on its
first samples.

Furthermore, it is also straightforward to derive an adaptive
version of this entropy estimation scheme. It suffices to intro-
duce a forgetting factor in the updating formula (10) of the
correlation sequence. For the correlation matrix, this gives

with

Re

(5)
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(a) (b) (c)

Fig. 1. AR estimates and (a) theoretical uniform (b) exponential, and (c) Gaussian laws.

with . Then, the AR pa-
rameters and entropy can be evaluated at each new sample using
(3) and (6)–(9).

It is also possible to compute recursively the AR parameters,
thus avoiding the matrix inversion required in (3). Indeed, the
regularized least squares solution can be computed recursively,
using a gradient approach [24]

(12)

Finally, it is also possible to adopt a more simple “LMS-like”
approach, such as

(13)

IV. SIMULATION RESULTS AND COMPARISONS

A. AR-PDF Estimation

In order to illustrate the versatility of the long AR approach
for PDF estimation, experiments were performed on sequences
of 250 samples distributed according to

a) a uniform PDF ;
b) an exponential PDF with parameter 0.1;
c) a Gaussian PDF 3

For these three PDF’s, the parametersand are, respectively,

a) ;
b) ;
c) .

Results given in Fig. 1(a)–(c) show the relevance of this ap-
proach, which is able to approximate with accuracy different
shapes of PDF’s.

B. Entropy Estimation

In order to analyze the behavior of the AR entropy estimator,
we performed a Monte Carlo study in the case of a uniform and
a Gaussian PDF. We evaluated the mean and standard deviation

of the AR entropy estimate over 50 realizations as a func-
tion of the length of available data. We compared these results
with those obtained in the cases of histogram and kernel PDF

3Since PDF’s are modeled as power spectra on interval[�(1=2);+(1=2)],
the data had to be scaled on this interval. This does not restrict our approach
because the entropy of the scaled variable differs from the original entropy only
by a known additive term.

approximation as well as the modified Vasicek’s estimator rec-
ommended in [11].

• In the case of histograms, the entropy is estimated as
, where is the number of

values in theth bin, and is the number of bins.
• In the kernel approach, the available samples

are directly used for modeling the den-
sity as , where is a
smoothing kernel, which is usually chosen as a Gaussian
kernel. In our experiments, we evaluated the density on
a grid of points with a kernel width chosen to
provide the best results. Finally, the entropy was evaluated
as .

• The Vasicek’s estimator [9] relies on the remark that
. Then, the estimator

is obtained by approaching the cumulative distribution
function with order statistics. The modified Vasicek’s
estimator [11] has the following form:

where
ordered set of samples (with for

and for );
positive integer;
function that accounts for a bias correction; see
[11].

Figs. 2 and 3 give the results [mean (a) and standard deviation
(b)] for a uniform density and for a normal den-
sity , with respectively theoretical entropy

bits and bits. For the uniform den-
sity, we have chosen an AR order , 64 bins for histogram
estimates, (on the grid of 1000 points) for kernel esti-
mates, and for the modified Vasicek’s estimator. Results
for the Gaussian density were obtained with , 20 bins for
histogram estimates, for kernel estimates, and
for the modified Vasicek’s estimator.

These results exhibit the good statistical behavior of our es-
timator, that is, a low bias and a small variance. For the uni-
form density, the AR-based estimator has about the same per-
formance as the Vasicek’s one concerning the bias but a lower
standard deviation. The other estimators present a higher bias. In
the case of the Gaussian density, the AR-based estimator clearly
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(a) (b)

Fig. 2. Comparison of histogram, kernel, Vasicek’s, and AR-based estimates of entropy for a uniform density. (a) Mean values. (b) Standard deviations.

(a) (b)

Fig. 3. Comparison of histogram, kernel, Vasicek’s, and AR-based estimates of entropy for a Gaussian density. (a) Mean values. (b) Standard deviations.

presents the lowest bias, whereas all have about the same stan-
dard deviation. Considering these two test cases, the AR-based
estimator of entropy shows either comparable or lower bias and
variance. Hence, it proves accurate and compares favorably with
all other estimators considered.

As far as the complexity is concerned, the AR-based esti-
mator also compares favorably with others since it suffices to
estimate some correlation coefficients, find parameters using a
gradient recursion, construct two times series, and compute their
scalar product. The kernel approach requires a large amount of
memory in order to evaluate and store the density estimate, even
in the case of recursive kernel estimators (storage requirements
can be reduced by using a coarser grid adjusted to the data range,
but the bias increases with the length of intervals on the grid).
Entropy evaluation requiresmultiplications and evaluations
of . Vasicek’s estimator requires storing and sorting the data
and evaluations of .

V. SAMPLE APPLICATIONS

A. DetectingPDF Changes

An interesting application of the adaptive estimates of Sec-
tion III-C consists of detecting PDF changes in signals. As an
illustration, we consider a signal that is composed of 200

samples generated according to a mixture of two Gaussian dis-
tributions, with means and standard deviation ,
followed by 200 samples distributed uniformly on the interval

and by 200 samples of the same gaussian mixture.
First PDF has entropy bits, whereas the second
has entropy bits.

Fig. 4 shows signal ; it is difficult, by a simple inspec-
tion, to diagnose that there are PDF changes. Fig. 5 shows the
adaptive estimates [computed using (12) and (13)] of the negen-
tropy of this test signal, using a forgetting factor .

The following points are of importance.

i) PDF changes appear clearly.
ii) Rupture points are properly revealed.
iii) The entropy is estimated with accuracy.
iv) The adaptive estimate has a good tracking capability.

B. Blind Deconvolution of AR Systems

The problem of blind deconvolution consists of recovering
the input and possibly the parameters of a filter from the sole
observation of its output . The concept of entropy brings an
interesting answer to this problem [25], relying on the following
proposition.

Proposition 1: Let be the output of a unit norm filter
whose input is a non-Gaussian i.i.d. sequence . Then,

.
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Fig. 4. Test signal for adaptive estimates: 200 samples from a gaussian
mixture, 200 samples from a uniform distribution and 200 samples from a
gaussian mixture.

Fig. 5. Adaptive estimates of negentropy for signal in Fig. 4.

The intuitive reason behind this result is that is closer
to a Gaussian distribution than , where the Gaussian dis-
tribution has the maximum entropy in the set of distributions of
given variance; see [25].

Proof: The key of the proof is the entropy power in-
equality stated by Shannon [1, Th. 15 and App. 6]; see also
[26].

Entropy power inequality: If and are two independent
random variables with entropies and , then

with equality if and only if and are Gaussian variables.
The term “entropy power” comes from the fact that the power

of a Gaussian variable is proportional to .
Let be the impulse response of the filter with input .

Its output is . The clas-
sical result on the entropy of rescaled variables and the assump-
tion of stationarity give

Now, the entropy power inequality gives

Then, taking of both sides, we have

Finally, for a unit norm filter, that is, , the last
relation reduces to .

The deconvolution procedure then simply consists of ad-
justing the parametersof a filter , with input , such that
its output has minimum (estimated) entropy. If are the
filter parameters, this becomes

submitted to

Simulations were performed in the case of nonminimum–phase
AR filters. They showed that the AR parameters can be identi-
fied very accurately and that the input can be perfectly recon-
structed, even if the AR order is overestimated. These simula-
tions were performed in the case of uniform and binary inputs,
with 500 samples of data, and the initial solution was chosen as
a standard minimum-phase solution.

In the case of non-AR filters, experiments showed that the
procedure suffers from local minima. However, the procedure
may prove of value when used in a compound criterion that
should be considered in the presence of observation noise, such
as

where is a convolution matrix. Note also that the previous
criterion can be used in a standard deconvolution context, where

is known. In this case, the entropy term will help to select the
“right” solution among several equivalent solutions, as it occurs
in ill-posed problems.

C. Source Separation

In the context of source separation, signals
are mixed by an unknown matrix

to provide observed signals .
The problem consists of recovering the sources from the sole
observation of signals using only an assumption on the
mutual independence of sources. The objective is reached
by designing a matrix such that the reconstructed signal

has independent components. The information
theoretic measure of independence is the mutual informa-
tion , that is, the Kullback–Leibler divergence between

and . For the source
separation problem, minimization of the mutual information
reduces to the minimization of

(14)

In classical approaches, as no estimate of entropy is available,
is chosen as the solution of the nonlinear decorrelation equa-

tions: , for , which express the station-
arity condition of . Function , which is the so-called
score function, is the log derivative of the density .
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TABLE I
EXPERIMENTS ONSOURCESEPARATION. RESULTING MATRIX M = AB

SHOULD BE THE IDENTITY.

Using our AR parameterization, we can i) either estimate the
cost function and minimize it using any standard opti-
mization procedure or ii) estimate the solution of the decorre-
lation equations using the analytical expression (in terms of the
AR parameters) of the score function ,
where is the Toeplitz matrix with entries

, and .
We performed simulations using the first approach, using 500

samples of data in the case of the mixture of sources.
Table I presents, for several distributions of the sources, the re-
sulting matrix , which should be the identity matrix,
up to a scaling factor and a permutation. These results show that
this approach enables proper separation of the input sources,
with performances comparable with classical methods [3].

VI. CONCLUSION

The concept of entropy plays a central role in information
theory. However, it is rarely used directly in signal processing
applications. In this paper, we have presented an estimator of the
entropy of a signal and illustrated its behavior through several
motivating examples of signal processing applications.

Our estimator relies on a simple analogy between the prob-
lems of PDF estimation and power spectrum estimation. The
problem of PDF estimation is tackled using an AR modelization,
which is a well-known approach in signal processing. This para-
metric modelization enables the accurate description of a large
class of PDF. Moreover, in order to obtain accurate and stable
estimates, we have chosen to use the long AR approach of [20],
where the problem of AR parameters estimation is regularized
by a smoothness constraint. Relying on the AR modelization,
we have presented an estimation procedure for the entropy in a
recursive scheme. The corresponding estimator does not require
the explicit estimation of the PDF but only of some samples of
a correlation sequence. Thus, it is easy to derive adaptive ver-
sions of this estimator. As illustrated by a simulation study, the
AR estimate of entropy proves accurate and compares favorably
with other classical estimates.

Finally, we have given several examples of applications
where the entropy-based approach provides valuable results.
It is worth recalling that many other applications can be

considered, as soon as they involve some measure of depen-
dence between random variables or signals or a measure of
complexity.
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