
Texas Instruments article page 1

Recovering binary data transmitted over unknown communication channels
A DSP implementation

C. Léal (1), C. Meilhac (1), A. Pesme (1), J.-F. Bercher (2) and C. Vignat (3),

(1) Engineer Students at ESIEE
e-mail: {lealc, meilhace, pesmea}@esiee.fr

(2) Équipe Communications Numériques Sans Fil, LPSI, ESIEE
e-mail: bercherj@esiee.fr

(3) Laboratoire Systèmes de Communication, Université Marne-la-Vallée
e-mail: vignat@univ-mlv.fr

This work was performed at ESIEE by three engineer students
during a 6 weeks training period, under supervision of JFB and CV.

ABSTRACT:

The problem of recovering source data transmitted
over an unknown or partially known channel from the
sole observation of the received data is a major
challenge in the telecommunication field since last
decade. The objective of this paper is twofold: first,
we exhibit a new approach for this task, based on a
simple Markov model that governs the received data
in the case of binary inputs. Second we describe the
implementation of this approach on a TMS320C62
DSP, and show that this method could raise interest in
an industrial context. All these points are illustrated
through simulations.

1. INTRODUCTION

We consider the usual model of a communication
system where the emitted data consist of independent
binary symbols. They are transmitted through a linear
channel that involves:

• the dispersion effect induced by propagation,
• the multipath phenomenon (that appears for

instance in mobile communication systems).
The transmission channel is commonly modeled by a
finite impulse response filter; moreover, the output is
usually corrupted by Gaussian white noise that
represents observation noise and interfering signals.
In this context, qualified as "blind context", the
channel is generally fully unknown, as well as,
obviously, the emitted data. The problem consists thus
in recovering the emitted data, from the sole
observation of the received symbols.

The key point of our approach is to remark
that the noiseless output data take discrete values in a
finite set of dimension 2 p (where p is the length of the
impulse response). The output of the channel evolves

as a Markov chain. The transition probabilities are
known, but the observations are unassigned to their
respective states. In the noisy case, the model is a
Hidden Markov Model (HMM).

Thus, identification of the Markov
parameters will allow to recover the binary input
sequence, and also give, as a by-product (although
unnecessary here), the explicit value of the channel,
up to a sign indeterminacy.

We had to derive a specific algorithm, which
looks like a Viterbi algorithm, which is not usable in
the considered situation because the channel is
unknown.

In the noisy case, we developed a learning
process of the Hidden Markov Model. This process
provides a set of solutions, each one being
characterized by its likelihood. A final detection step
has then to be performed.

Equipment used:
The project was realized using the following
equipment: a PC, an evaluation board for the
TMS320C62 with the associated software (assembler,
linker, debugger), C language tools and the numerical
computation software MatlabTM.

2. PRINCIPLES OF THE METHOD

We start from the remark that the noisy output data is
the observation sequence of a hidden Markov model
(HMM). Each state of the HMM is simply the
sequence defined by the p last emitted bits. Thus,
there are only 2 possible transitions from state at time
t to the state at time t+1, corresponding to the
emission of one bit by the source.

00
m1

01
m2

10
m3

11
m4

Texas Instruments article page 2

The previous figure shows a HMM representation for
a simple 2 coefficients transmission channel.

The HMM Λ = (A,B,π) is characterized by:
• N, the number of states in the model (N=2p for

our application). We denote the individual states
as S={ S1, S2,..., SN}, and the state at time t as
vector qt. S is associated with V={m1, m2, ...
mN}, where mi represents the noiseless
observation output for state Si.

• the state transition probability matrix A={aij},
where∀ 1≤ ≤i j N, a P q Sij t j= =+[1 |q St i=] .

The aij are the transition probabilities from state

i to state j. In our special case, any state at time
(t+1) can be reached from 2 states at time (t)
because the source data are supposed binary
distributed. Thus, in the case of equiprobable
bits, aij = 1/2 if there is a transition from state Si

to state Sj ; and 0 otherwise.
• the law of the noisy output in state Si,

B={bi(Ot)}. A common hypothesis is that the
corrupting noise is Gaussian N(0,σ2), so that
bi(Ot) can be written as a Gaussian law
N(mi,σ

2):

b O
O m

i t
t i() exp

()
=

⋅ ⋅
−

−
⋅

1

2 22

2

2
π σ σ

,

where mi is the mean of the observation symbol
associated to the state Si, and σ 2 the variance of
the observation, for any state.

• the initial state distribution π={πi} where πi =
P[q1=Si] , 1≤ ≤i N .

 Without prior knowledge, a non-committal
choice (la raison insuffisante of Laplace) is to
take all states equiprobable:

π =

1 1 1

N N N
; ;...; .

Given O = [O1 O2 ... OT] and the HMM model Λ =
(A, B, π), we face the two classical problems in HMM
modeling:
¾ how to choose a state sequence Q = [q1 q2 ... qT]

which best explains the observations,
¾ how to learn and adjust the model parameters Λ

= (A, B, π) in order to maximize P(O | Λ).

Solution to the first problem:
In order to solve the first problem, we use an
algorithm based on the Viterbi algorithm. To find the
single best state sequence Q={q1 q2 ... qT} given
observation sequence O = {O1 O2 ... OT}, we define
the probability:

δ t
q q qt

i() max
, ,...

=
−1 2 1

P[q1 q2 ... qt=i, O1 O2 ... Ot | Λ]

i.e., δt(i) is the probability of the most likely path
among all paths that end in state Si at time t and
generate the observation sequence {O1 O2 ... OT}. By
induction, we have:

 []δ δt
i

t ij j tj i a b O+ += ⋅ ⋅1 1() max () () (1)

To retrieve the state sequence, we need to keep track,
for each t and state Sj, of the argument that maximizes
(1). Let us denote by Ψt(j) the array that records these
arguments.

Then, the complete procedure for finding the best
state sequence is:

1) Initialization step:
δ πt i ii b O() ()= ⋅ 1 , 1≤ ≤i N

Ψt i() = 0 .

2) Recursion step: ∀ 2 ≤ ≤t T , ∀ 1≤ ≤j N

[]δ δt
i N

t ij j tj i a b O() max () ()= ⋅ ⋅
≤ ≤ −

1
1 ,

[]Ψt
i N

t ijj i a() arg max ()= ⋅
≤ ≤

−
1

1δ .

3) Termination step:

[]P i
i N

t
* max ()=

≤ ≤1
δ ,

[]q iT
i N

t
* arg max ()=

≤ ≤1
δ .

4) State sequence recovering:
q qt t t

* *()= + +Ψ 1 1 , t = T-1, T-2,..., 1

With this modified Viterbi algorithm, we do not have
to identify the unknown channel in order to recover
the emitted data (i.e. the state sequence).
Identification of the HMM leads directly to the
emitted data associated with the observation
sequence. As a matter of fact, information about the
channel impulse response is in the set of means {mi},
which have to be initialized, and as described in the
following, these first estimates are then refined in line
during the reconstruction process.

Solution to the second problem:
The previous procedure need an initial HMM model
of the channel. There are two ways to build such
initial model:

c sending , and using, a known binary sequence in
order to estimate the unknown parameters
(mi,σ 2),

Texas Instruments article page 3

d designing a learning process so as to estimate the
transition matrix A, together with the set of
means.

c Training sequence:
We designed minimum-length training sequences
using a pseudo-noise generator. This generator
consists in a shift register of length p looped with
XOR. It allows producing 2 p-1 states of the model
without redundancy. The last state, a sequence of p
zeros, is added “by hand”. The training sequence is of
length is p2 p, which is the minimum length possible.

d Non supervised learning of the model:
In a first step, a set of empirical means is estimated
from the observation sequence (the exact procedure
will be described elsewhere). Then, by recensing
transitions from one mean to another, we obtain an
estimate of transition matrix A. This empirical
transition matrix is then compared to the expected
matrix, and by rearrangements, one can assign means
to states. Thus the model is initialized and the
algorithm for the recovery of the binary input can be
engaged on the whole sequence. This approach
enables the algorithm to operate in blind context.

The first model has to be refined synchronously with
the observation sequence. Thus, at each time t, we
adjust the HMM parameters through the mi and σ², in
order to maximize the probability of the observation
sequence given the model. This task is achieved using
principles analog to those of the Baum/Welch
algorithm.
We introduced the following weights:

α
δ

λ δ
i

t

t k

k

t

k

t
i

i
()

()

()
=

⋅−

=
∑

1

, λ < 1

which take observations into account proportionally
to the likelihood that state S=Si at time t. We also
introduced here a forgetting factor λ which enables to
forget the old parameters and thus provides a tracking
capability in a non stationary environment. This leads
to the following reestimation formula:

∀ 1≤ ≤i N , ∀ 2 ≤ ≤t T :
m t t m t t Oi i i i t() (()) () ()= − ⋅ − + ⋅1 1α α ,

var() () var() ()t t O mt= − ⋅ − + ⋅ −1 10 0 0
2α α ,

where α0 and m0 are associated with parameters with
most likely state at time t, given observation Ot.

3. SIMULATION RESULTS

Monte-Carlo simulations were performed under
MATLAB . Tests were repeated 100 times on
observation sequence of length 500, with a forgetting

factor set to 0.99995. Three kinds of transmission
channels were analyzed: a) well-known test cases, b)
non-stationary channels, and c) channels with echo.

a) We tested the three transmission channels (a),
(b) and (c) from the book of Proakis [6]. These 3
channels are often used as test cases for
evaluation and comparison of algorithms.
Results are reported in the following figure,
which gives the error rate performance of a
linear MSE equalizer (31 coefficients), versus
the algorithm studied here:

The 2 methods are almost identically efficient
for low RSB applications; but our algorithm
becomes more efficient as the RSB increases,
and is faster than the MSE equalizer method.
However, our algorithm was not tested with
channel (a), which, with 11 coefficients, requires
too much memory resources.

b) Non stationary channels
To perform the simulation of non-stationary
channels, we used a 3 coefficients channel:
[10 X 50], with ()tX 01.02sin1530 π⋅+= .

The previous figure shows the varying
noiseless output of the channel superposed to the
effective observations and the noise:

The results of simulations confirm once
again the efficiency of the algorithm which
succeeds to track the evolution of the channel
and recovers the input sequence without any
error up to a signal to noise ratio of 13 dB.

Texas Instruments article page 4

c) Transmission channels with echo:
For this experimentation, we used a 6
coefficients channel [1 0 0 0 0 1]. The following
figure shows the levels of the noiseless output of
this channel superposed to the effective
observations and noise:

The main problem encountered for such
channels is the low number of noiseless output
(3) in comparison with the number of states of
the HMM (64). This means that many states
have the same noiseless output value. But once
again, tests proved that the algorithm is able to
recover the input binary data sequence, given the
observation sequence.

4. IMPLEMENTATION ON THE TMS320C62

The DSP TMS320C62 was chosen because it allows a
fast development using the DSP C optimized
compiler. Moreover, we took advantage of specific
capabilities, like implemented functions. The
computational power of this DSP (8 instructions in 1
cycle time, Tc=5 ns) allows real-time implementation
for reasonable filter lengths.

Implementation notes:
We give here some hints on the practical
implementation of the previously presented algorithm.

Computation in the fixed-point format:
This algorithm should be implemented on a floating-
point processor. But it is often less expensive to use a
fixed-point processor. We then had to adapt all
operations toward a fixed-point implementation.

We handle 2 types of variables: observations
and probabilities. The probabilities naturally lie
between 0 and 1. As far as the observations are
concerned, we assume that the data are scaled
between -1 and +1 during the acquisition step. We
may observe that, since we have to recover a sequence
of bits, such scaling may be viewed as the
introduction of a scaling factor on the channel’s

impulse response. This is of no importance here, since
knowledge of the impulse response is not needed.

In fixed-point format, the dynamic range is
sufficient for our purpose. A 16-bit number can vary
from -32768 to 32767, so we choose to represent
variables in Q15 format. Location of the binary point
affects neither the arithmetic unit, nor the multiplier in
the DSP. It only affects the storage of the result,
which is not a problem here, because we are able to
define the dynamic range of all calculations.

On the other hand, division and exponential
calculations are critical operations on a fixed point
DSP. Indeed, division of two 16-bit numbers
generates an integer, which implies a severe precision
loss on the result. The exponential function is
completely unknown by the processor since it results
in a floating point number. We implemented specific
methods to perform these two operations:
¾ Method used to perform divisions:

Both operands are coded in 16 bit registers.
Dividing a number by a bigger one would result
in integer 0. To avoid this, we cast both
operands in 32 bit registers and multiply the
numerator by the biggest possible scaling factor
in order to keep the highest precision. Then, the
integer division is performed, and since we know
the dynamic range of the result, we rescale the
result in the chosen format in a 16-bit register.

¾ Method used to compute exp(x):
We use the following remark on the exponential
function:

exp() exp()x a ai
i

i
i

i

i
= ⋅ = ⋅∑ ∏2 2 , { }ai ∈ 0 1,

The 16 values of exp()2i are recorded in an

array, which enables to reduce the calculation of
exp(x) to a simple product of memory words.

Memory requirements:
We analyzed the memory requirements of this
algorithm. We need to store all data B={bi(Ot)}, δt(i)
and δt-1(i), M={mi}, ∀ =i N1... and especially Ψ
which is an N by T array (T being the length of the
observation sequence). As in the classical Viterbi
algorithm, we introduce a truncature length of
Max(5N, 100) before backtracking to find the best
path.

For a length-p transmission channel, we need
100 observation samples or less. Thus, Ψ consumes
100*N=100*2p memory elements. When N is greater
than 256, these memory elements are words. For an
11-coefficient channel, storage of Ψ requires 400
Kbytes.
But our target, simulating the standard DSP card, has
only 64 Kbytes of internal data memory. This is the

Texas Instruments article page 5

reason why we were only able to test the algorithm on
small filter lengths. However, specific board
embarking the TMS320C62 can be easily designed.

Computation time:
The analysis of the algorithm shows that its
complexity is O(N²). This means that if we double the
number of the channel coefficients, we increase the
number of cycles needed for the processing of one
observation sample by four.

Experimental results on the DSP:
All tests on the DSP were performed using the
training sequence initialization of the HMM.

The algorithm was splitted in several
functions, which are all linked to the main program
main.c. These functions are:

Viterbi, which computes new δt(i) and Ψ(t) for
each observation.

calc_b, which calculates B={bi(Ot)}.

adjust, which updates the array M={mi} and σ2.

norm, which normalizes the array δt(i)

init_m, which initializes the array M={mi} using
the training sequence.

expo, which computes the exponential function.

init_var, which initializes the variance σ2 with the
first means.

To assemble and compile the C program , we
used the command:

cl6x -g -o -k -mg -me main.c -z lnk.cmd -l rts6201e.lib
-o main.out -m main.map

We started the simulator with sim62x -me main.

The following table sums up the number of
cycles used for a 2-coefficient channel, for the four
first samples of the observation sequence.

function number of number of cycles
calls without

optimization
with optim. -o2

Viterbi 4 2581 1397
calc_b 5 609 424
adjust 4 554 287
norm 5 306 140
init_m 1 218 167
expo 5 183 72

init_var 1 83 46
main 17374 10733

Optimization (compiler option -o2) enables to
decrease execution time by 40% in this example.
This other table gives the number of cycles consumed
for a 4-coefficient channel (first 5 observations). We
also report here the effect of switch -o3 (instead -o2).

function number of number of cycles
calls optimization

-o2
optimization

-o3
Viterbi 5 4451 4241
calc_b 6 1474 1297
adjust 5 830 798
norm 6 643 643
init_m 1 239 239
expo 6 72 72

init_var 1 53 53
main 29980 29181

We notice that a simple processing (Viterbi function)
lasts 4 times more with a channel twice longer.

5. CONCLUSION

We have both presented a new algorithm for the
deconvolution of binary data and its implementation
on a new fixed point DSP. The algorithm proved to be
efficient, possibly in non-stationary and blind
contexts. Concerning the DSP implementation, our
goal was to examine the feasibility of a quick
implementation using the new compiler and tools
provided by TI. These tools proved to be very
efficient, and we obtained a functional
implementation in a few days. Of course,
improvements and gains can still be achieved in
several fields, particularly regarding reduction of
redundant operations and direct assembler
optimization of sensible functions.

REFERENCES

[1] L. R. Rabiner & B. H. Juang, An Introduction to Hidden
Markov Models, IEEE ASSP Magazine, January 1986

[2] L. R. Rabiner, A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition, Proceedings of the
IEEE, vol. 77, no. 2, February 1989

[3] Texas Instruments, TMSC320C6xx DSP Design Work Shop,
Student guide, April 1997

[4] Texas Instruments, TMS320C6xx C Source Debugger,
January. 1997

[5] Texas Instruments, Programmer’s guide, July 1997

[6] J.G. Proakis, Digital Communications, 3
rd

 edition New York,
Mc Graw-Hill, 1996

	Introduction
	Principles of the method
	The model
	Viterbi-like algorithm
	Initialization

	Simulation results
	Implementation
	Implementation notes
	Experimental results on the DSP

	Conclusion
	References

