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ABSTRACT

In this paper we address the problem of building convenient criteria
to solve linear and noisy inverse problems of the form y = Ax+n.
Our approach is based on the speci�cation of constraints on the so-
lution x through its belonging to a given convex set C. The solution
is chosen as the mean of the distribution which is the closest to a
reference measure � on C with respect to the Kullback divergence,
or cross-entropy. This is therefore called the MaximumEntropy on
the Mean Method (memm). This problem is shown to be equivalent
to the convex one x = argminx F(x) submitted to y = Ax (in the
noiseless case). Many classical criteria are found to be particular so-
lutions with di�erent reference measures �. The memm also takes
advantage of a dual formulation to exhibit dual problems, often
unconstrained, whereas the direct problem is constrained and may
not be explicit. The presence of additive noise is also integrated in
the memm scheme, the object and noise being both searched for in
an appropriate convex C0 including the previous one C. The memm
then gives an unconstrained criterion of the form F(x)+G(y�Ax).

1. Problem statement and present answers

A general problem arising in experimental data processing is to estimate

an object from a set of measurements. No experimental device, even the most

elaborate, is entirely free from uncertainty. The simplest example is the �nite

working precision of the recording device and observations are also usually corrupted

by noise. If we let x be the object, and y be the data vector, the object and

the measurements are then related by a relation of the form y = A(x) � n. In

this general expression, A is a (non-)linear operator describing the essential part

of the experiment, and the operation �n accounts for the degradation of this ideal

representation by a random process n. In this communication, we will only consider

the situations where the distortion mechanism can be correctly modeled as a linear



transformation of x and the addition of noise, so that the previous relation reduces

to:

y = Ax +n: (1)

This is often the situation encountered in image reconstruction and restoration4.

A natural idea for inverting Eq. (1) is to use the generalized inverse of A.

Unfortunately, it is generally ill-conditioned and the reconstruction su�ers from an

excessive ampli�cation of any observation noise4. A (now) classical way of handling

this kind of di�culty is regularization theory. The basic idea is to renounce the

hope of obtaining an exact solution from imperfect data, and to de�ne a class of

admissible solutions by adding to Eq. (1) some extra prior information concerning

what may be considered as a reasonable \physical" solution.

In this paper we are especially interested in the reconstruction of objects

known to belong to some speci�ed convex set. Examples of this situation are plen-

tiful, let us only cite the problem of imaging positive intensity distributions, which

arises in spectral analysis, astronomy, spectrometry, etc: : : In other speci�c prob-

lems, such as crystallography or tomography, lower and upper bounds on the image

are known | and have to be taken into account in the reconstruction process. Such

constraints may be speci�ed by the belonging of the object to the convex set

C = f x 2 IRN
= xk 2 ]ak; bk[ ; k = 1::Ng; (2)

where �1 � ak < bk �1 are known, 1 � k � N .

Possible answers are given with set theoretic estimation and projection onto

convex sets algorithms1 (pocs). Although good reconstructions can be obtained

using such approaches, they are often computationally expensive and do not lead to

a unique and well-de�ned reconstruction. We do think that the importance of that

drawback should not be overestimated but we will also present examples where the

regular behavior of the reconstruction is used with bene�ts.

A di�erent approach relies on the Bayesian setting. In this framework, the

lack of an exact knowledge on a quantity is accounted for by de�ning a probability

distribution over its possible values. Then the aim of an experiment is to provide

a probability distribution for the quantities of interest to the observer. Roughly

speaking, the more \sharp" is this so-called a posteriori distribution, the more

information we have on the object.

Knowing how the experimental device behaves under a given solicitation al-

lows the direct distribution p(yjx) to be de�ned. Then, the a posteriori distribution

is given by the Bayes rule

p(xjy) / p(x) p(yjx) (3)

which requires that the prior distribution p(x) for x be also speci�ed. The lat-

ter distribution summarizes what is known of the object before the experiment is

performed. In a strict Bayesian sense, Eq. (3) gives the solution to the inverse

problem since it gathers all information on x. However, when the object consists of

a large number of independent parameters, the study of its a posteriori distribution

is cumbersome and often intractable. A single a posteriori estimation of the object

is prefered, such as the Maximum of the A Posteriori distribution (map estimate).

Taking the logarithm of Eq. (3) the map estimation reduces to the optimization of

J (x) = logp(y j x) + log p(x):



Bayesian estimation is a satisfactory framework for reconstruction problems4, yet

in a situation where no a priori probabilistic model has \naturally" emerged or has

been empirically found useful, the ab initio choice of a good a priori distribution

p(x) is a di�cult task for which there is no general answer7. It is precisely the

case when the only a priori knowledge on the object is a convex constraint such as

Eq. (2). Choice of a prior is then guided by ad hoc considerations, among which the

ability to easily compute the estimates is very important. It explains the success

of gaussian models, which lead to quadratic regularization and linear (with respect

to the data) estimates. Unfortunately these linear estimates usually cannot be

guaranteed to satisfy Eq. (2).

2. Basis of a new approach and an early example

Deliberately leaving the Bayesian framework, we reformulate the problem

as: \how to derive functionals F and G such that optimization of

J (x) = F(x) + �G(y �Ax): (4)

yields a satisfactory reconstruction procedure ?" This question is made more precise

with the following requirements or desiderata on the criterion J :

A1 It should impose an exact �t to the data in the noiseless case, or a good �t to

them while taking the noise statistics into account;

A2 It should impose the solution to be a member of C;

A3 The reconstructed object should be uniquely de�ned as a regular function of

the data, in order to ensure the uniqueness of the solution and to allow the

study of its stability with respect to noise;

A4 When a prior guess m of the object is available (it can originate from a pre-

vious experiment for instance), the reconstruction process should have some

properties of a projection of m onto the subset of all solutions that are con-

sistent with the data and the constraints.

Note that A4 implies the following \natural" property: if the data are uninformative

concerning the object under consideration then the reconstruction process should

give back the prior guess m as a result. More details about the precise meaning of

the fourth requirement can be found in reference10.

Clearly, these few desiderata are not simultaneously satis�ed by quadratic

regularization or pocs methods. In contrast, we present now an early example of

a regularized procedure, the so-called maximum entropy reconstruction of positive

objects6, which is in agreement with the desiderata in the case when C = IRN
+ . It

relies on the following criterion

J (x) = ky �Axk2 + �

NX
i=1

fxi log
xi

mi

� xi +mig; (5)

where m = [m1;m2; : : : ;mN ] is a prior guess arising from previous measurements

or chosen as a 
at object. As far as the positivity constraint is concerned, criteria



like Eq. (5), built upon logarithmic expressions, ensure positivity and are therefore

said to be \positivity free"; an other well-known example is the \log(x)" or Burg

entropy used in spectral analysis. Entropic regularization has been successfully used

in several applied problems. Because of some rather acrimonious discussions in the

literature, we emphasize that, in our view, maximum entropy reconstruction is not

the ultimate answer to all positive inverse problems. We are simply interested

in some of its properties (they are summarized in our four desiderata). Indeed,

when dealing with arbitrary convex sets C, it would be advantageous to exhibit a

well behaved criterion just as Eq. (5). The presentation of an original constructive

approach to obtain such criteria is the subject of the next section.

3. The Maximum Entropy on the Mean Method

The foundations of the Maximum Entropy on the Mean Method originate

from the work of J. Navaza11, and some theoretical aspects of the method were fur-

ther studied by F. Gamboa and D. Dacunha-Castelle2. We have also studied it with

a special attention to its potential applications in signal and image reconstruction

and restoration9. For the sake of simplicity, this paragraph addresses the noiseless

problem. Discussion of how to account for noise will take place in x6.
Much emphasis must be put on our only a priori information: the convex

constraint of Eq. (2). The memm construction thus begins with the speci�cation of

the set C and a reference measure d�(x) over it.

Suppose that the actual observations y are the mean of a process x under

a probability distribution P de�ned on C (this idea comes from statistical physics

where observations are average values or macrostates). The set C being convex,

the mean EP fxg under P is in C and hence the convex constraint is automatically

ful�lled by EPfxg.

3.1. Additional information principle

Since the constraint given by Eq. (2) does not lead to a unique distribution

P , we have to invoke some additional information principle. For this purpose, we

introduce the �-entropy K(P; �), or Kullback-Leibler (K-L) information8. This

information is de�ned for a reference measure � and a probability measure P by

K(P; �) =

Z
log

dP

d�
dP (6)

if P is absolutely continuous with respect to � (P � �) and K(P; �) = +1 other-

wise.

We shall select the distribution P as the minimizer of the �-entropy sub-

mitted to the constraints \on the mean" AEPfXg = y. In other words, P is the

nearest distribution to the reference measure � in the set of distributions such that

AEP fXg = y, with respect to the K-L divergence. The maximum entropy on the

mean problem then states as follows:

memm problem

8><
>:

P̂ = argmin
P

Z
log

dP

d�
(x)dP (x)

such that y = A

Z
xdP (x)



It is well known that the solution, if it exists, belongs to in the exponential family

dP s(x) = exp
�
s
t
x � logZ(s)

	
d�(x); (7)

and, more precisely, that its natural parameter is of the form s = A
t
� for some

�. In Eq. (7) logZ is the log-partition function or the log-Laplace transform of the

measure d�(x); for reasons that will become clear later, this function will be noted

F� in the sequel.

3.2. The dual problem

Using results of duality theory, there is an equality between the optimum

value of the previous problem and the optimum value of its dual counterpart (dual

attainment):

Inf
P2Py

K(P; �) = Sup
�2D

�

�
�
t
y � F�(At

�)
	
; (8)

where Py = fP : AEP fXg = yg is the set of normalized distributions which satisfy

the linear constraint on the mean, and D� is the set f� 2 IRM : Z(At
�) < 1g,

which is often the whole IRM , in which case the dual problem is unconstrained.

Once the dual problem on the right side of Eq. (8) is solved, yielding an

optimum value �̂, one has the expression of the density P̂ = P
At�̂ and can calculate

the reconstructed object x̂ by computing (numerically) the expectation EP̂ fXg.
But this is not the more e�cient way to compute the solution. Indeed, inside the

exponential family (7) there is a one-to-one mapping between the natural parameter

s and the mean of the associated distribution x(s):

x(s) =
dF�

ds
(s) : (9)

Therefore, the solution x̂ is simply obtained by calculating (9) at the optimal point

A
t
�̂. We can now review the di�erent steps for a practical implementation of the

method. First, we have to choose a convex domain, C, re
ecting our knowledge

about the domain where the solution has to be found, and a reference measure

� on this domain. Second, the log-partition function is calculated (analytically)

together with the primal-dual relation of Eq. (9). Then the maximization of the

dual criterion

D(�) = �ty �F�(At
�) (10)

has to be (numerically) achieved. We emphasized that the dual criterion is by con-

struction a strictly concave functional. E�cient methods of numerical optimization,

such as gradient, conjugate gradient, or second order methods (Gauss-Newton) can

be used to compute the solution. They will use the gradient of D which is easily

calculated to be just y �Ax(At
�). During the algorithm the primal-dual relation

is used to compute the current reconstruction from the dual vector �.

3.3. Yet another primal problem

The previous development was done in the space of the dual parameters �.

The purpose of this paragraph is to come back to the natural \object space". We

will exhibit a new primal criterion, which we will call an entropy. This function,

not surprisingly, is intimately related with the previous dual function and the K-L



information. Finally we will be able to derive, as particular cases of the memm

procedure, many of the well known regularizing functionals.

For each x 2 F , consider the memm problem when the constraint is

EP fXg = x. We de�ne F(x) to be the optimum value of the K-L information

for this problem

F(x) = Inf
P2Px

K(P; �);

where Px = fP : EP fXg = xg.
As already seen, at the optimum, we have by dual attainment

F(x) = Sup
�2D

�

�
�
t
x �F�(�)

	
; (11)

The latter equation means that F is the conjugate convex of F� and, as F� is the

log-Laplace transform of �, the Cram�er transform of �. Such transforms appear in

various �elds of statistics and in particular in the Large Deviations theory, which

has important connections with the memm10. Properties of Cram�er transforms are

listed below5:

� F is continuously di�erentiable and strictly convex on C,

� F(x) = +1 for x =2 C and its derivative is in�nite on the boundary of C,

� F(x) � 0 with equality for x = m, the mean value under the reference

measure �.

Our original memm problem can now be handled in a di�erent way. If P is

a candidate distribution with mean x, its K-L information with respect � is greater

or equal to F(x). Moreover, this lower bound can be decreased by searching a

vector x̂ minimizing F over the set Cy = fx : Ax = yg. Then the memm problem

is reformulated as

Inf
x2Cy

f Inf
P2Px

K(P; �)g:

If we consider the reconstruction problem in the object space, we only need to solve

x̂ = argmin
x2Cy

F(x): (12)

Note that this problem has the same dual problem than that of Eq. (10). In fact,

we have exhibited another primal problem associated to Eq. (10), directly in the

object space IRN . Its solution x̂ is the mean of the optimal distribution in the

memm problem, and a solution to our reconstruction problem. This swap between

primal problems is referred to as a \contraction principle" in statistical physics5.

From this point of view, functional F appears as a level 1 entropy, therefore we will

simply call it entropy in the following.

Properties of the Cram�er transform are useful for reconstruction purposes,

when holding the entropy F as the objective function, as in Eq. (12). Strict con-

vexity enables a simple implementation and guarantees the uniqueness of the re-

construction. The second property shows that any descent method will provide a

solution in C, even if the constraint x 2 C is not speci�ed in the algorithm; this



property, the \C-free property", is here an analog of the \positivity free" property

observed in maximum entropy reconstruction (see above). The last property shows

that F may be considered as a discrepancy measure between x and m. In the

sequel, we give some examples illustrating the di�erent points developed above.

4. A few examples of memm criteria

4.1. Gaussian reference

Our �rst example consists in a problem where no constraint is known on

the object, so that C = IRn. We choose the Gaussian measure N (m;Rx) as our

reference measure � on C. A simple calculus then leads to the Cram�er transform

F(x) = (x �m)tR�1
x (x �m); (13)

which is recognized as a quadratic regularizing term, already mentioned as being

linked to a Gaussian prior distribution with expectation m and covariance matrix

Rx.

4.2. The positive case

� Poisson reference and the \Shannon entropy"

Let now C be ]0;+1[, and the reference distribution be a Poisson law, with

expectation m. As usual, without any information regarding correlation between

adjacent pixels, the distribution is supposed separable. Such a prior may correspond

to the modeling of the fall of quanta of energy, following a Poisson process, in such

a way that the expectation at a site j is mj . This modeling may be encountered in

astronomy (the speckle-images of optical interferometry) for instance. The reference

measure is then

�(x) =

NY
j=1

�(xj) =

NY
j=1

m
xj
j

xj!
exp(�mj):

Observations are again a linear transform y = Ax of an unknown object x, and

we select as a solution the mean under the nearest distribution to � satisfying

the constraint for that mean, the distance being measured by the Kullback-Leibler

distance. The entropy functional F is the Cram�er transform of �, and works out to

be

F(x) =

NX
j=1

�
xj

mj

log

�
xj

mj

�
+mj � xj

�
;

which is the generalized version of the Shannon entropy (the corrective termmj�xj
ensures the positivity of F when either x or m, or both, are not normalized to

unity).

� Gamma reference and Itakura-Sa��to discrepancy measure

The problem takes place in spectrum analysis. We review here the pre-

sentation of reference12, which happens to be exactly a memm approach to a well

known criterion: the Itakura-Sa��to discrepancy measure.



Let the data y be a vector of autocorrelation samples. We consider here

only the �nite-dimensional problem, i.e. estimation of the power spectra over a list

of k frequencies. The relation between the data y and the (discretized) spectrum

x is the Fourier transform y = Ax, where A is a M � N Fourier matrix, with M

the number of known correlation samples and N the number of wanted spectrum

samples. The periodogram having asymptotically a �2 distribution with two degrees

of freedom, the corresponding reference measure � over the possible spectra is an

exponential law with mean, i.e. prior spectrum m. Using the Cram�er transform

de�nition, one easily obtains the entropy

F(x) =

NX
j=1

xj

mj

� log

�
xj

mj

�
� 1; (14)

which is the Itakura-Sa��to distortion between s and m. Observe that m, which

is the mean under �, is also the minimum of the Itakura-Sa��to distortion without

constraint, and is therefore the prior guess. With m = 1, we measure a distance to

a 
at spectrum, and �nd out the so-called \log(x)", or Burg entropy.

4.3. The bounded case

We consider here the case when C has the general form of Eq. 2. Such

constraints may be useful in many applied problems where the object is a priori

known to lie between two bounds (tomography, �lter design, crystallography).

Several reference measures can be used on the convex C. A natural idea is

indeed to use a product of uniform measures over each interval ]aj; bj[ :

d�(x) =

NO
j=1

1

bj � aj
1]aj ;bj [(xj) dxj:

The calculus of the Cram�er transform leads to implicit equations, therefore we have

no analytic expression for F . Nevertheless the primal-dual relation can be computed

xj = �
1

sj
+
bje

bjsj � aje
ajsj

ebjsj � eajsj
with sj = [At

�]j, 1 � j � N

and the convex problem 8<
:

Inf
x
F(x)

subject to y = Ax

where F is not explicit, can still be solved using its dual formulation

D(�) = �ty �F�(At
�);

together with the aforementioned primal-dual relation. Other measures could be

used in this case. The case of a Bernoulli measures product d�(x) =
NN

j=1f�j�(xj�
aj)+(1��j )�(xj�bj)g (where � denotes the Dirac measure) is derived in a referenced

work10.



5. Illustrations

Two illustrations are given here. The �rst one concerns data from the

Hubble Space Telescope, and the second one is a synthetic example in Fourier

synthesis.
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Figure 1| An image foc-f/96 (Faint Object Camera) of Supernova SN1987A which ex-

ploded in February 1987 is given in Fig. 1.a. Data are blurred by the large impulse response

of the Hubble Space Telescope (hst) (before its correction in January 1994). Figs. 1.b and

1.c compare two restorations of this image; the �rst being a standard Maximum Entropy

one, while the second is obtained with the memm. Due to their very large dynamics, the

results of Figs. 1.b and 1.c are in logarithmic scale. This shows the improvement provided

by the memm, especially concerning the background of the sky.

Figure 2 | This �gure compares di�erent reconstruction methods in a simple Fourier

synthesis problem. The original object and the available data (o) are on the top. Then

three reconstructions, corresponding to di�erent reference measures in the memm scheme,

and also to di�erent constraint sets C, are given. They show an improvement with the

reduction of the \admissible set" of solutions.

6. Taking noise into account

So far memm criteria have been derived from the maximization of the �-

entropy submitted to an exact constraint. Any observation noise will ruin our

exact constraint, and as a consequence the two (primal-dual) formulations of the

memm problem. The exact constraint was useful in interpreting observations as a

linear transform of a mean, then enabling us to exhibit the discrepancy measure

F . Because of the good properties of F , we will keep on considering the unknown

object x as a mean, in order to use its entropy F(x), but we will have to modify the

procedure. In the sequel, we �rst introduce the noise using a �
2 constraint, then

we turn towards a modi�cation of the memm setting to explicitely account for the

noise.

6.1. The �2 constraint

A classical way to account for noise is to construct a con�dence region

about the expected value of some statistic. For gaussian noise, one usually uses

the �2 constraint jjy�Axjj2 � �, where � is some constant. Then the problem

becomes the minimization of F submitted to the �2 constraint. There always exists

a positive parameter � (in fact it is a Lagrange parameter corresponding to the �2

constraint) such that the previous problem and the penalized problem

Inf
x
fF(x) + �jjy� Axjj2g (15)

have the same solution. Since we may not have an analytic expression for F, while
we always have an expression of its conjugate F�, our goal is to exhibit a problem

equivalent to Eq. (15) expressed in terms of F�. In order to achieve that, we

need to transform Eq. (15) into a constrained problem. The idea, according to the

reference3 , is to introduce a new set of parameters, namely �, and to replace the

optimization of Eq. (15) by the equivalent(
Inf
x;�

fF(x) + �jj�jj2g;

� = y �Ax:
(16)

The Lagrangian of Eq. (16) is

~L(x; �;�) = L(x;�) + �jj�jj2 + �t�;



where L is the Lagrangian of the noiseless problem. This Lagrangian can be mini-

mized separately with respect to x and �, leading to the new dual function ~D:

~D(�) = �ty �K
�(At

�) �
1

2�
jj�jj2 = D(�) �

1

2�
jj�jj2;

with � = ��=(2�). Thus, the only modi�cation given by the addition of a penaliza-

tion in the direct problem is the addition of a regularizing term in the dual function.

The primal-dual relation remains the same and the reconstruction is again ensured

to belong to the speci�ed convex set C.

6.2. Accounting for general noise statistic within the memm procedure

Thanks to a speci�c entropy function, more complicated penalizations than

Eq. (15) can be performed in order to account for non-gaussian noises. Such en-

tropies can be derived directly in the same memm axiomatic approach as in the

noiseless case. To this end, we only need to introduce an extended object ~x = [x; n],

and consider the relation y = ~A~x, with ~A = [A; 1]. The vector ~x evolves in the

convex ~C of IRN+M , which separates on a product of the usual C and of B, ~C = C�B,
where B is the convex hull of the state space of the noise vector n.

We then use a reference measure � over the noise set. For instance, in

the case of a Gaussian noise we take B = IRM and a centered gaussian law with

covariance matrix R� as �. With a Poisson noise we take B = IRM
+ and a Poisson

reference measure �.

Now we can de�ne a new entropy functional by using a reference measure ~�

on ~C. If � is the distribution of the noise, � our object reference measure on C and

if we assume that the object and noise are independent, we obtain ~� = �
 �. The

entropy function we looked for is then the Cram�er transform of ~� which is simply

F~�(~x) = F�(x) + F�(n):

Estimation of the extended object is conducted through a constrained minimization

of F~�(~x), the constraint being y = ~A~x = Ax + n. Therefore it reduces to the

unconstrained minimization of the compound criterion

J (x) = F~�([x;y �Ax]
t) = F�(x) +F�(y �Ax): (17)

A dual approach is again useful, in particular if F� or F� or both are not explicit.

It is easy to show that the dual criterion is

~D(�) = �ty �F�

�(A
t
�) �F�

� (�):

Having solved the dual problem we come back to the primal solution by the primal-

dual relation which is, thanks to the separability of the log-Laplace transform of ~�,

the same as in the noiseless case:

x(At
�) =

dF�

�

ds
(At

�):

We are then able to account for speci�c noise distributions, without loss in

the nice properties of our criteria: the global criterion of Eq. (17) is always con-

vex, and the convex constraint is automatically satis�ed. Concerning the case of a



Gaussian noise, it can easily be checked using result of Eq. (13), that a gaussian

reference measure for the noise term leads to the problem of Eq. (15), obtained by

statistical considerations.

It is always possible to modify our reference measures to balance the two

terms of the global criterion Eq. (17) which should therefore be written as

J (x) = F�(x) + �F�(y �Ax);

where � is a regularization parameter. The Maximum Entropy on the Mean pro-

cedure enables us to �nd the generic form of regularized criteria, and to solve the

problem even if primal criteria F� and F� have no analytical expression.

Such an approach provides a new general framework for the interpretation

and derivation of these criteria. Many other criteria as those presented in x4 have

been derived10. In particular, reference measures de�ned as mixture of distributions

(Gaussian, Gamma) have been successfully used for the reconstruction of blurred

and noisy sparse spike trains. Poissonized sums of random variables also lead to

interesting regularized procedure in connection with the general class of Bregman

divergences10. Work is also in progress concerning the quanti�cation of the quality

of memm estimates, the links with the Bayesian approach, especially with correlated

a priori models such as Gibbs random �elds.
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