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A New Look at Entropy for
Solving Linear Inverse Problems

Guy Le Besnerais, Jean-Fams Bercher, and Guy Demoment

Abstract—Entropy-based methods are widely used for solving tral analysis) which are known, on physical grounds, to be
inverse problems, particularly when the solution is known to positive. In other specific problems, such as crystallography
be positive. Here, we address linear ill-posed and noisy inverse and tomography, lower and upper bounds on the intensity are

problems of the form z = Az + n with a general convex con- . .
straint = € X, where X is a convex set. Although projective known, see [1]. These constraints may generally be described

methods are well adapted to this context, we study alternative by (2), with

methods which rely highly on some “information-based” crite- )

ria. Our goal is to clarify the role played by entropy in this & ={%:a; <z; <b;, 1<j< K}

field, and to present a new point of view on entropy, using where — oo < a; < b; < oo for eachj. (3)
general tools and results coming from convex analysis. We present

then a new and broad scheme for entropic-based inversion of Within many finite-dimensional inverse problemd, is a
linear-noisy inverse problems. This scheme was introduced by

Navaza in 1985 in connection with a physical modeling for MOnregular ill-conditioned matrix. Therefore, a simple gen-
crystallographic applications, and further studied by Dacunha- €ralized inverse gives unsatisfactory results, because of the
Castelle and Gamboa. Important features of this paper are: i) a dramatic amplification of any observation noise. Many studies
unified prelsefntation of r_nafny well-known reconjtructic_)n criteria, have been devoted to the task of designing reconstruction
1) proposal of new criteria for reconstruction under various prior : ; : . :

k)ngwlgdge and with various noise statistics, iii) a descripgon of procc_edures yielding stable reconstruc.t|ons satisfying (2) or (3).
practical inversion of data using the aforementioned criteria, and I thiS paper, we use entropy to build a general framework
iv) a presentation of some reconstruction results. for inversion under convex constraints, including well-known

. . reconstruction techniques as particular cases.
Index Terms—Duality, entropy, inverse problems, Kullback— q P

Leibler information, regularization.
A. The Penalization Approach

l. INTRODUCTION A popular approach to linear inverse problems resolution is

i ) the minimization of penalized cost functions of the form
NVERSE problems appear in most experimental data pro-

cessing problems. In such situations, one has to derive an J(x) = Fu(z, 2) + Fe(z, m) 4)
estimatez of some physical quantity of interest (the object) )
from indirect and noisy observatiosIn this paper, we focus that corresponds to the general scheme of balancing between

on the “linear-noisy” observation model trust to data and fidelity to some priors, where the penalizing
term F,(z, m) can, for instance, force the solution to belong
z=Az+n (1)  to the constraints set, and may depend on a prior objent

where the transfer matriA and some statistical characteristicg;]hef’]le qntgrla may _orlglr]:a:]e frorln pract]:cal_ con3|dera_1t|ons En
of the noisen are known. the desired properties of the solution (for instance, it can be

In many practical problems, the object is often knoan des'g?e‘?' n orderdtol_sm_ooth the sfolu_tlon) or can dekrjlvs_lfro_m
priori to satisfy a convex constraint such as a preiminary mode |zgt|on st-ep, tor Instance a proba y Istic
) modelization in Bayesian estimation. Important properties of

ze X CRF. (2) the reconstruction process are linked to the propertie,pf

E | f h bl tered when i and F, in the general criterion7.
xamples of Such problems are encountered when Imagigsy o5 aythors have presented axiomatic approaches of

intensity distributions (for instance, in astronomy or in SP€¢version. that lead to compound criteria, whose properties
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B. Proposed Approach A. Introducing Entropy

In the sequel, we present an entropy-based framework toThe method presented here relies heavily on Kullback—
design reconstruction criteria of the form (4). It makes a tradkeibler information (also known ag-divergence), which is
off between axiomatic constructions and general penalizddfined for some reference measurand probability measure
approaches, in the sense that criteria derived in this framewdrkby
share interesting properties and that saegrees of freedom dP
are left to the user in order to design particular criteria adapted K(P, p) =—H,(P)= /10g - dpP (7)
to a particular reconstruction problem. H

The resulting “entropic inversion framework” was introdf P is absolutely continuous with respect to (P < p),
duced in 1985 by Navaza [7], [8] while dealing with aand K(P, ) = +oo otherwise.H,(P), the negative of the
particular reconstruction problem which occurs in crystalloglullback—Leibler information, is the:-entropy of P. Entropy
raphy and which exhibits constraints like (3). It has bedmas been a subject of many studies since its introduction in
further studied since 1989 by mathematicians, see [9]-[18pgineering by Shannon (and also independently by Wiener)
with emphasis on the extension over spaces of functions[8P]. If 4 is a probability measure, theli(P, p) > 0 with
measures. Other studies emphasize applications to variégsiality if and only if P = p. K is used as a discrepancy
finite-dimensional linear inverse problems [14]-[18]. Similameasure in statistics, where it has been introduced and studied
results, including account for observation noise and correlatib Kullback and Leibler, see [5] and [21]-[24].
issues, have been introduced independently in [19]. When dealing with inverse problems, entropy has been

In this paper, we aim to give a systematic presentation i#voked for two purposes: first, it can be used as a regularizing
the entropic framework for inversion. From a practical poirferm for reconstruction of positive objects (it is the log z”
of view, the methodology will finally yield the regularizedentropic regularization method, see Section III-B); second,
criterion (4), where prior knowledge will be encoded into thé is used for selecting probabilistic distributions. Actually,
expressions and properties B8f and7,. The resulting recon- given some “testable informations,” which are usually moment
struction process reduces to an unconstrained minimizatie@nstraints, Jaynes’ maximum entropy principle may be used
of J. Among their properties/F, and F, will be strictly to select a probability distribution [25]. For these two uses of
convex by construction, therefore, the minimization of thentropy, see also papers in [26].
global criterion.7 is greatly simplified.

Section 1l is devoted to the derivation of this entropi®. A Statistical Physics Model
framework: we state the problem and useful mathematicall jue many recent models used in image processing, the
results, give the general form of the resulting entropic Criroposed approach can be illustrated by a statistical physics
teria, together with their important dual formulation. We thefodel. Let us consider a system consisting of a large number
examine common properties of thesg criteria. In Section lliy of independent particles whose Staf¥, }1<n<n May
we pre_se_nt some _partlcul_ar _app_llcatlons of our framewgrgvowe within the state spac§, C R*. Each state ofS,,
Whgre it yields particular criteria e_|th(_er known or new. Sectiog more or less probable according to reference probability
IV is then devoted to the application of the procedure ieasure,, which reflects some physical property (for instance,
inverse problgms._ We also give hints for some of thg remainifge nature of the particles) and whose mean is denotea.by
pracucal ch0|.ces in ordgr to use an entropic inversion methqQgqger well-known assumptions (see, for instance, [27]), the
Finally, we give some inversion examples. mean state of the particlé€ y converges tom, while the
empirical law Py converges tqu for large N. Therefore,u
andm are considered as two possible macroscopic descriptions
) ) _ ~ (or macrostates) of the equilibrium of the system. In [28]is

In this section, we derive the general form of cost functiopy|ieq the level-1 equilibrium macrostate associated with the
(4), taking into account convex constraints on.the sought QbJ%’ifstem, and. its level-2 equilibrium macrostate.
and the fact that data are a linear transformation of the 0”9'”3|Suppose now that a macroscopic linear observation of the

unknown object. _ _ o _following form is available:
The observation noise will be explicitly accounted for: in

fact, we will consider the linear noisy initial problem as a linear
problem relating the data to the pair of unknown vectarsn)

II. BUILDING COST FUNCTIONS USING ENTROPY

N
1 —
z= nz::l HY, = HY . (8)

The problem is now to take (8) into account to update the
equilibrium macroscopic descriptions (or macrostates) of the
system. Let us call the set{y ¢ R* : Hy = z} and P
or the set of probability distributions ovef,, whose mean value
belongs toL. If m € L (or, equivalently, ify € P), the
z = Hy, data (8) do not contradict the initial macroscopic description
(m, 1), which therefore remains unchangednif ¢ £, new
with H = [A, I], andy’ = [z’ n'], and our goal is to estimate macrostate$P € P, § € £) have to be found. The new level-
both vectorse andn from dataz while using prior information. 2 description is given by the maximumentropy distribution,

z:A:c—irn:[A,I][ } 6)

xT
n
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see the work of Jaynes [25] Changing from the level-2 entrop¥ to the level-1 entropy

F is called acontraction principlen large deviations theory. It

is the foundation of the proposed framewaork for reconstruction

] ) o criteria design. The resulting advantages can already be seen:
(note that this expression supposes that the infimum of tB@ing deduced from the “usual’ entropy, the functions
right-hand side is at'Fained iw, see [29] for general results = il share many of its properties. At the same time,
on this problem). This result can be related to Sanov's the@srious choices of the reference measure will lead to different
rem, see for example [28], [§,0]’ and [31], with the "relaxedqst functions: this is the “degree of freedom” that was
observation” selC. = {y € R™ : ||z — Hy|| < ¢} for some gnnounced in Section 1. In the next section, we will study

¢ > 0 and with P the set of probability distributions Ovef,,  frther the links between reference measureand level-1

whose mean value belongs£0. We assume that ¢ L. and entropiesF, and between the two optimization problems (9)
emphasize the case of a finite state spsicen the sequel. In 54 (12).

this case, the method of types [24], [32] gives the asymptotic
behavior of the empirical distribution

P = PMP = argmax H,(P) = argmin (P, ) (9)
rep rep

C. Maximum Entropy on the Mean Description

P(Py = P) = exp{—NK(P, i) + O(log(N))}  (10) 1) Problem StatementLet us recall that the problem state-

. . L . ... mentis
where P denotes a possibly -size sample empirical distribu-

tion. It leads to the probability of the s, PME = argmax H,(P) = argmin K(P, p).  (13)
) rep rep
lim — log P({Py € Pe})=— min K(P, 1) (11) Having found this distribution, the level-1 description of the
N—ooo N rep. . . . N
system is given by its mean valge= Epu=[Y]. Problem (13)
assuming is calledmaximum entropy on the mean problesnDacunha-

. ) Castelle [9].
AP eintPe : K(P, p) < +oo. There are many references concerning the existence of a

Equations (10) and (11) explain the choice of the maximuf®lution for entropy or entropy-like minimization problems,
entropy distribution”™E of (9) as the new level-2 descriptioncf. [29], [34], [35].

of the system [33]. This argument is classical in the literature Along the line of the preceding section, we propose here
on applications of the entropy and known as thaltiplicity ~another interpretation, by using the double stage formulation

argument see the papers of Jaynes [25]. Moreover, it can _ _ _
be linked to a physical model of image formation, see Sec- , 1 K(P, p) = i {P. A K(P, u)}-
tion 1I-B. ' ’ (14)

Here we are more interested in the level-1 description, guation (14) is only a formal guideline for the proposed
level-1 macrostatgy. Intuitively, it should be defined as theapproach. Actually, we will define in Proposition 1 a convex
mean of PMF function 7 on R* such that

Yy = Epur . i
y = Epur[Y] Fu < in K(P, ),  Vy

An alternate way to define this description is to stud
directly the rate of the exponential decay of the probabili
of the events{Y 5 € £.}. Cramer’s theorem [28], [30], [31]
provides a “rate function’F, under some assumptions on the min  F(y)
reference measurg. Then y:Hly==

t?;{nd study cases of equality. Then we will study the convex
gptimization problem

1 o (see Proposition 2). Finally, in Proposition 3, we will give
Aym N log P{Y Ny € L.}) = —;ICHLH Fly) sufficient conditions for existence of a vectpisuch that
_ . min  K(P, p) = min Fly) =F @)
assuming thall Ny such thatP({Y n € £.}) > 0for N > Ny Pz=HEp[Y] y:Hy=2

and = min K(P,
P:Ep[Y]=8 ( N)

;2%1 Fly) = yoim L. F(y)- and a duality result.

o 2) Preliminary Definitions: The log-Laplace transformof
The new level-1 description of the system should thus bgference measurg is

defined as

% A § t
4 = argmin F(y). (12) F*(8) = log / exp (8'w) du(u). (15)

yel . . .
We considerF* as an extended valued function, which means

(At this stage, we suppose that the infimum at the right-hagehy it can take the valueco. The effective domair - (we
side is attained.) The so-calldevel-1 entropyF is defined ;) say domain in the sequel) oF* is

over S,,: actually it is defined over the closed and convex hull / ’
of the state spacé,,. Dg. é{s e RY . F*(s) < o0}
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F* is convex and lower semicontinuous (l.s.c.), a property Sketch of the Proof:Checking the first inequality is
which is equivalent to closedness of the level 4etsF*(s) < straightforward:Yy € Dyx andVs € Dx. let P be a
a} for every o € IR. We will suppose in the sequel that probability measure of meag and finite u-entropy. P is
is maximal its supportS,, is not contained in any properabsolutely continuous with respect goand to £, becausg:
subspace ofR¥. This property implies thatF* is strictly and P, are equivalent. Using the Radon—Nikodim derivative
convex [28, p. 260]. Note that maximality @f is not strictly of P with respect toF, and (16), we derive
necessary, it is used for the sake of simplicity. dP dP.

Associated with the reference measprés the exponential ~ K(P, 1) = / log dpP + / log 7 > dp

; . dP,
family &, = {Ps}, s € Df For eachs € Dx., P; is the “
probability measure olR absolutely continuous with respect =K(P, P;) + / (8'u — F*(8)) dP(u)
to p, whose Radon—Nikodym derivative is . .
=K(P, Fs) +s'y— F"(s) > s'y—F*(s) (21)
dP;s ;
I = eXP(st“ -F (3))~ and, as the last inequality is true for all

> tyy — F* =
Let us suppose that the domain & has interior points: KAL) 2 S‘;p{s y-F(s)} =7

int D7 # 0. Using properties of the Laplace transform;of
it can be proved that™ is differentiable at any interior point
of its domain (see [28] and [36]), angtad F*(8) = Ep,[Y]
for 8 € int D#.. Hence for eachs € int Dz, the Kullback
information of P, with respect tou is int Dy = int{ccS, }. (22)

which implies (18). The case of equality (19) is straight-
forward. Condition (20) derives from the following identity
between sets:

K(P,, p) =8 Ep,[Y] — F*(8) = &' grad F*(8) — F*(s). Under the hypotheses of Proposition (int D, F) and
(16) (int Dx-, F*) are Legendre transforms of each other [37]
and

We will also use theconvex conjugate” of F* int{range{grad 7*}} = int Dy. (23)

Fly) 2 sup{s'y — F*(s)} (17) A proof of (22) and (23) can be found in [36, Sec. 9.1]01

Proposition 2: If p is a maximal probability measure,

also called theCramer transformof ;. [30]. It is an l.s.c. whose log-Laplace transfordi* is steep and satisfies
convex function with domainDx. As F is itself l.s.c., the

convex conjugate ofF is F* [37], which motivates the 0 € int D~ (24)
notation P ) o , i and if the data satisfy the qualification constraint
The strict convexity of 7* implies thatF is essentially

smooth(see, for instance, [28, p. 224]), which means that JdyeDr:Hy==2
int Dz # 0, F is differentiable over intDz, andF is steep

i.e., for any sequency,, } in int D converging to a boundary then there is a unique solution to the problem

point of Dz IEin Fly). (25)
yHy==
nlﬂgoﬂgmd]‘" ()|l = +o0. Proof: Proposition 2 can be derived from results on

convex functions, see [37, Sec. 27] or from general results on
For instance, a convex |.s.c. function whose domain is opgwllback—Leibler information [23], [38]. However, we give a
and which is differentiable over its domain is steep (see [3§imple and self-contained proof in the sequel. The assumptions
p. 87]). on x and F* imply that F is strictly convex. To ensure that
3) Results: the minimum of F is attained we use the fact that the level-
sets ofF are compact and the Weierstrass theorem. We already
know that these sets are closed becatisg |.s.c. The fact that
Yy € Dy, Fly)< min  K(P, p)  (18) they are bounded is a consequence of assumption (24). If (24)
PiEp¥Y]=y holds, one can find & > 0, such that the bal{s: ||s|| < &}
is a subset ofut Dz-. Thene = sup{F*(s), ||8]| < 6} < o0,
and, for everyy € R¥, using (17)

Proposition 1: The Cranér transformF satisfies

with equality if

P € SIL such thatEps[Y] =¥. (19) F(?}) > sup {Sty— F*(S), ||3|| < 6}
Moreover, if ;. is maximal with steep log-Laplace transform, > sup {s'y, [|s]| <8} —c > 6|yl - <.
then a sufficient condition for (19) is that belongs to the g4, everya € IR, F(y) < « implies |ly|| < (o +¢)/6 and the
interior of the closed and convex hull of the support;of ., _jevel set is bounded. 0

that is,
Finally, we present sufficient conditions to obtain a duality

y € int{ccS,}. (20) result associated with both problems (9) and (25).
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Proposition 3: If x is a maximal probability measure,Let us first recall the conditions introduced above to ensure
whose log-Laplace transforn#* is steep and satisfiesthe existence, unicity, and dual form of the solution.
0 € int Dg-, and if the data satisfy thetrong qualification

R ; i K+N.
constraint Cl: p is a maximal probability orR ;

C2: 0 € int Dz« and F* is steep;
C3: Jy = (z, n) € int{X x B} : Hy = 2.
Note that the conditioier H* = {0}, which ensures the strict

Jy eint{ccS,}: Hy ==z (26)

then the following primal-dual attainment equation is valid:

min F(y) = F(@) = D(X) = max D(A\) convexity of D()), is automatically satisfied, due to the special
{yzHy:z A (27)  form of H. The role of the reference measure is essential: it is
with D(X) = X'z — F*(H'A) the only way to incorporate prior information in the estimation
and where the primal solutioj satisfies process, and to ensure its well-posedness. In the sequel we
. X postulate the independence of the noise and the object, and
y=grad 7°(8) = Ep,[Y] (28)  we take a product measure

with 3 = H'\, and P, gives the PME of problem (9). The  C4: product measurgi = jiz @ fin.
dual criterionP(A) is a concave function, which is strictly Finally, as far as the convex constraints (30) are concerned,
concave ifKer H* = {0}. we choose the reference measuggsand p,, such that
Proof: Using (22), assumption (26) is equivalentig € C5: supports of the reference measures satisfy

int Dr: Hy = 2. It implies that the minimum in (27) cannot
be attained at a boundary point bfr, by property of essential ccSy, =4 and ccsy, =B.
smoothness of*, see [37, p. 252]. o 2) Properties of the Reconstruction Process:

The rest of the proposition is an application of the Fenchel )
duality theorem [37]. Sincg € int D#, a dual parametes Property 1: As a consequence of C4, the Cramand log-

can be associated to it by (28), and Laplace transforms are sum-separable
IX:s=grad F(§) = H'A Flx, n) =Fa(x) + Fa(n)
by application of the standard result on Lagrange multipliergl.nd
By (17) with s = H'A, we have F*(Aes An) =72 (Az) + Fr(An). (31)
F@) 2 NH'y— F(H'A) = Nz— F(H). Using the observation equation and (27), the primal and dual

) . ) criteria are
The equality holds foh = A and we define

D(A) = Nz — F*(H'A). J(x) = Falx) + Fu(y — Ax)

and
If Ker H' = {0}, D is strictly concave and is its unique DA) =Xz — FE(AN) — FE(N) (32)
minimizer. The rest follows by Proposition 1. O

and the primal-dual relation is
D. Properties of the Reconstruction Process & = grad Fi( At ;\). (33)

We have presented a method to design a criterion for

signal reconstruction purposes. We recall here the assumptidr@yation (31) is a direct consequence of definitions (15) and
discuss their meaning, and derive the main properties of /). Thus we have obtained the compound criterion of the
resulting reconstruction process, keeping in mind our originggneral form (4), together with its dual formulation. It is

convex inverse problem (1), (2). possible to take advantage of the two dual formulations of

1) General AssumptionsGiven the linear noisy problem the optimization problem. For instance, the dual criterion
is particularly useful when the Cran transforms of the

(A, I] [ﬂ =Hy==z (29) measures do not have an analytic form. In such cases, the dual
n formulation can be used to solve the implicit primal problem.
and the convex constraints Therefore, the method only requires an explicit form of the
. . log-Laplace transformF=.
zeXCRY and neBcCR 30) 9P

S ] o Property 2—Domain ConstraintlUnder assumptions C1,
the estimation method merely consists of estimafingn) by c> ca and C5

(#, 7)) = argmin F(z, n) subject to (29) int Dy =int X x int B

where F is the Cranér transform of a reference probabilityand

measureg: defined onlR"+". We have also indicated that the Flo.n)= +cifzgXorngB.
corresponding dual problem is ’
A= argmax D()\) = argmax {)jz — ]:*(Ht)\)}. This property has been documented in the proof of Proposi-
A A tion 1, see (22). The proof th& is infinite outside the domain
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of the constraints can be found in [36]. The behaviot7obn Property 5: Under assumptions C1-C5, I¢t denote the

the boundary oft and 5 depends on the existence of massagconstruction using criterioff. For everyy € int Dz such

on the boundary, see [30] and [36]. that Hy = z, the following “Pythagorean” equation holds:
The behavior of the primal and dual criteria inside their _ . .

domain is also very attractive: Flylmy) = F(yly) + F(ylmy). (36)

Property 3: Under assumptions C1, C2, C4, and U5js Indeed, choosing, =y andy, = ¥ in (35), and using the
continuously differentiable and strictly convex am Dx. If  fact that the dual optimal parametersis= H'A, we have
y is a finite boundary point oD, and {y,,} a sequence of . . S
points ofint Dz converging toy Fyly) = F(ylmy) — F(ylmy) - NH(y — y)

. _ =TF(ylmy) — F(G|my).
Jm Fly,) = +oo,  ifygDr The last property is called “directed orthogonality” in [2]

lim ||grad F(y,,)|| = + oo. (see also [5]). Actually, it is a property of the minimization
nee of Kullback information under linear constraints [22], [23],
which is also associated with all Bregman divergences. Further
The first property stems from the |.s.c., while the second jigteresting geometrical consequences of (36) can be found in
the steepness oF. This limiting behavior of the cost function [3] and [6].
is suited for optimization by steepest gradient descent: duringrinally, the following special case will be useful for many
the optimization process, the current object is “pushed awaypplications:
from the boundary of the domain of the constraint (note the _
importance of the strong qualification condition C3). Property 6: If X' is a product set such as (3) so that

Property 4: F is a positive function. It takes its minimum X={z: a;<z;<b;, 1<j<K}
value of zero at the unique poigt=my, i.e., L=y, n=Mn, gng 1= @ product measure
the expectations of the reference measurg&nd i,

K
As a consequence of this property, we can consider the feo = ®ij
primal criterion as a discrepancy measure with respect to the j=1

reference mean value, and note A(ylm,) or, using the

separability and (29) with eachy..; having a support whose closed and convex hull

is [a;, b;], then F,, and F} are sum-separable
F(ylmy) = Fe(xlmy) + Fp(z — Aximy,). (34) u . u .
(ylmy) = Fa(zlms) + Fal [mn) E=Xf FE=X7
j=1 j=1

Hence the criterion appears as a tradeoff between two discrep- ] ] ] o
ancy measures penalizing the difference between, respectiv8fjd the closure oD is A'. The primal-dual relationship is a
the object and the prior mean,; the residuals and the noise{denerally nonlinear) component-wise transformatiotfifi
meanm,. =016, 1<j<K, withs=A).

We have already seen that for every member of the expo-
nential family £,,, having an expected valyg € int D, say 1

P; with s = grad F(y), the p-entropy may be written as ) ) . )
In this section, we give, in the form of a table with com-

_ gt ()
KBy 1) = 8y — F7(8) = F(ylmy). ments and references, several examples of reference measures
It is possible to give to this relation an interesting extensiomhich encode different type of prior informations and convex
by considering the measure of the discrepancy between teanstraints. For each measure, we give the log-Laplace trans-
members ofint Dx. For this we define form F*(s), that defines the dual criterion, and, when explicit,
A . the primal criterion*(z). The primal-dual relations are given
F = K(Ps,, Ps,), 8 =grad F(y,), =1, 2. - .
(v ly2) (e, ) grad F(y;) ’ by the derivative of the log-Laplace transforms. Except in the

. EXAMPLES OF CRITERIA

A calculation similar to (21) leads to case of Gaussian measures, we consider separable reference
K(Ps,, Ps,) =K(Ps,, 1) — shy, + F*(s2) measures yielding separable criteria. These criteria are given
= Fly, |[my) — F(ys|my) — 851, — ¥o)- here in t_erms of a genera‘ll opjemf and a measurg., not
Thus necessa_rlly related to the “objec# in the inverse problem
formulation.
Fly|yo) = F(yImy) — F(yolmy) — (erad F(y,)) (41 —42)- Next, we illustrate the construction of criteria within the

(35) entropic frame while studying a particular family of reference

Equation (35) establishes the link between the entropic cdagasure, that give rise to interesting special cases.

functions presented here and Bregman divergences [39]. More- o

over, it will be useful when discussing a possibility of changing- TaPle of Criteria

the initial guesan, in the estimation procedure, see Section Table | (at the top of the following page) presents several
IV-B1). We use it here to demonstrate the following propertyeference measures and criteria.
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TABLE |
ExampLES OF REFERENCE MEASURES ¢, ASSOCIATED LOG-LAPLACE TRANSFORMS F* (FROM WHICH DuaL CRITERIA ARE
DEeRIVED) AND CRAMER TRANSFORMS F (PRIMAL CRITERIA). THE SETS OF CONSTRAINTS ARE INDICATED IN FIRST COLUMN (THE
NoTATION X'; REFERS TO THECASE OF SEPARABLE CONVEX SETS X' = ®§‘:1 Xj). BOTTOM PART OF THE TABLE SHOWS

K
COMPONENTS OF SEPARABLE MEASURES AND CRITERIA (FOR INSTANCE, IN SECOND COLUMN, F*(8) = > f7(s;))
J=1

comments/references

r ol F*(9) F(z)
RE N(m, R;) 1stR.s +s'm (z —m)'R; (= — m) see references [30, 7, 9]

RX | 4N (0, B) + (1 - 7)N(0, Ba) tog (yexp (£Ba2) 4 (1 - 7)exp (#B22)) | not explicit e s e rams
X; i £ (s5) I Fil=z5) comments/references “
Rt Poisson(mn;) my(exp(s;) — 1) zjlog E; —zi+my see Tollowing subsection

Ttakura-Saito measure, used
+ 8 sy = ailBs . x [ = z; in spectrum analysis [40];
R [0, B5) (mean s m; = o /5) Bslog (:—Jz) fi [(;‘J; - 1) ~log (;‘J;)] case m; = 1 is the Burg en-

tropy [41, 42, 7]
used 1In spiky positive sig-

+ g1 2 .. nals reconstruction [16], e.g.
R (e, 1) + (1 =)D ez, o) log (’Y Gi-spn + =1 (ﬁ:—’;)"") not explicit in high resolution spectral
- analysis
law of X = 37.,Y,; with L a 8; L
Rt Poisson(};) random variable and Yj,; ~ | A; (F,'—%E) —Aj Aj { ]i‘]— +1—(8;+1) (;?J—) 7;;JJ'_} see following subsection
D{e, 8) . S
b ; e®iti—ebi%i .. used in crystallographic ap-
[a;,5;] | uniform measure log ( 5 ) not explicit plications [7]; see also [9]
. used in crystallographic ap-
Bernoulli measure: izl og (st ) 4 EJ:_—’J_-log | iz 8 plications; case a; = 0 and
b A . s bs b;=a; —a, b,—a o ns; i =
(a5, b5] a;b(z; —a;) + (1 — o;)8(x; — b;) log (e exp (s;a7) + (1 — ) exp (;;)) —Jlog (b; _(;) ) o ( ) b; = 1 is the Fermi-Dirac en-
s tropy, see [7, 9]
B. Poissonized Sum Distributions Then the primal criteriorF,(z|m) is obtained as the convex

An interesting family of reference measures, proposed fiPnjugate o7, thatis, the Crarr transform ofy.,

[12], is obtained with a Poissonized sum of random variables.

We consider a random variabl&,, defined as the sum of § s
L; independent random variablés ;, I = 1 --- L;, with T (8) Izmj(exp(sj) -1
common distribution@; L; being a Poisson variable with j=t
parameter); i .
j . Fe(z|lm) :Z{xj log ;—J -z + mj}.
J

X;=) Y. =t
=1

This model may be seen as an image formation model. Thke functional 7,(x|m) is none other than the generalized
image is a plane divided int& cells, and its intensity results cross entropy (see [5] and [43]) betweenand m. This
from the fall of a random number of quanta, following as the “z log " entropy (in reference to the title of [44]).
Poisson distribution, of mean paramet®y at site j. The The vectorm is an initial guess for the sought object and
intensity of each quanta is variable, and governed by tffe often chosen as a flat object, or as the result of some
distribution Q. previous experiment. Thet*log «” entropic regularization is
Suppose now that the closed and convex hull of the Suppgﬁen terme_d and considered as an informa_tion theory based
of Q is R*. Let ;i; denote the law ofX; and definey as econstruction method and has been motivated by several
the product axiomatic works [3]-[5], [43].
K This kind of regularization has been used with some success
§= ®N in several applied problems, such as astronomy, tomography,
et ’ RMN, and spectrometry. As far as the positivity constraint is

. . concerned, criteria like Section 1lI-B built upon logarithmic
A simple calculation shows that the log-Laplace transform b 9

. expressions, ensure the positivity [45]. Another well-known
F* of 1 depends on the Laplace transforfy of ¢ through example is the log z” entropy used in spectral analysis, see

i} K Table I.
Fr(s) = Z NLQ(si) = Aj. Poissonnized Sum of Gamma Distributionsnother inter-
j=1 esting application is the case of the Poissonnized sums of

Poisson Distribution: We first apply the construction in Gamma distributions [12]
the special case of a deterministi¢ ;, and we take simply
Q(Y;.;) = 6(Yi 1 — 1). The probability distribution of any
samplez = [z, ---, 2k] is thus a Poisson distributiop,, dpi(z;) =

—ffi e_('af/mf)’“a:fi ~tdz,.
with mean parametek;. We take here the notatioh = m. my I(5i)
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The log-Laplace transform is and we find a “logical” term (the log-likelihood function)
K 3 arising from the Gaussian behavior of the noise. In the case

Fi(s) = Z A </371> — of non-Gaussian no_ise, the resulting term will be the Gram
= B —mys; transform of the noise reference measure. In the case of an

q additive Poisson perturbation of known intensky, we obtain
an

>,aj/<,6j+1> } J(x) = Fup(zimy)

K
Flz|m)= )\,»{/3,» ﬂ—i—l—(ﬁ»—i—l)( K
; 17 my ’ +Z[z—A:t]j10g
j=1

@—[z—fu-]jﬂj.

m,
(37)

This expression can be related to the entropy criteria intrgere again the second term penalizes a “distance” between
duced by Jones and Byrne, (see [3, Example 4], and [2]). ke residual and the noise mean. Observe that in the practical
order to highlight the link with other studies we J¢t = 3, v  optimization, it is not necessary to ensure tpat Az]; > 0,

and introduce the new parameter= 3/(3+1). The criterion because of the steepness B, see Property 3 in Section

then becomes 11-D2.
K In the case of Poisson observations, such as in optical
F(zlm) = Z f4jw(—$7 +,ym]7—1xj) imagery, the data are Pc.)isson—distribu.ted with intengﬂqy, .
=1 (v+ 1)mj and therefore the “noise” is better described as a multiplicative

) o ) process. Itis possible to account for this situation in the form of
with 0 < v < 1. T_r]e latter expression is easily related (gp 9n additive noise distributed asnteredPoisson variables with
a constant) to Csisa's “projection rule” in [5, eq. (3.7) (third 5 \ariable parameter. The general form of the goodness-of-fit
line)]. Such criteria have been used in certain applied fieldg,, is
For instance, in radioastronomy, Narayan and Nityananda have ’
demonstrated in [45] the efficiency of the criterion (37) with K

[z—Az+)]];
g = 1, that is, the square-root criterion ]:"(z_A"’):Z [e—Az+A]; log -

A
i=1 !

K
Flalm) =Y f; <:1—fj +1-2, /%> (38) (39)
j=1

Using A = z is a good approximation for high photon count.

compared to the usual entropy criteriag «” and “z log z.” It is also interesting to consider the choide= Az, although
It is interesting to quote these authors [45, p. 144] who calld¥ depart here from the assumption of independence between
I'/? the criterion (38): the object and the noise. However, formally replacidy

“The success off*/2, which has no information-theoretic 4% in (39) gives (up to a constant)
backing (no logarithms!), is a strong point in favor of the %
penalt_y functl_on interpretation mentioned in Section [I-V. Z —z; log([Az];) + [Az];
We think that it is now clear to the reader that the square root
criterion (38) does possess an “information-theoretic backing,”

as others which do not exhibit logarithms. which is exactly the Poisson log-likelihood.
Other approaches can be used in order to account for

IV. SOLVING REAL PROBLEMS the statistic of the observation noise. The entropic approach

described here can always be used to extend the regularization

So far, we have described the principles of our use fgrm F,, and, for instance, a “nonentropic” function can be

entropy and several examples of reference measures Whiglye 10 it, orF, can be minimized subject to a set constraint
lead to interesting criteria. We shall now be concerned with the.finaq using the noise distribution.

practical use of these criteria for real data inversion problems.

(= Az],.

i=1

. . B. Choice of the Object Ref M
A. Criteria for the Noisy Problem olce of the Lbject Reterence Meastre

. . . ... The choice of the reference measure is an important and
The resolution of an inverse problem begins by the spemg

i the choi f the ref The addit ifficult issue, which is reminiscent of selection of the prior
cation, or the choice, ot the relerence measures. The adotig i tion in the Bayesian setting, and is also an open prob-
noise has been taken into account through the use of

tended ont — [zt nt q bl ; th. In our opinion, there is no general and definitive answer
extended vecloly' = [, n | and a separable re erencio this question. Three essential strategies and arguments, not
measure. Concerning the noise term, we have found it usefu

de in the ref the k h teristi e@clusive, may be applied depending on the particular problem
encode In the reference measytetne known characterisics o g First, when the solution must belong to a convex set

of thg NOISE. Fpr mstanc_e, in the case of noise with known ) r, the reference measure should satisfy condition C5. Second,
previously estimated), first and second-order charactenstlfﬁe measure can be derived using a “physical” model of the
we takelS = R™ and a Gaussian distribution fet,, and object formation. Third, a measure can be built, as a reasonable
1 ; .
T(2) = Fol@t|ma)+ = (2— Az —m’) S (2— Az —my) representation qf the processes under study (for instance, the
mixture distributions for spiky signals).
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Fig. 1. “Transfer function” in the bounded case, thati$z) = argmin,F.(z) + ||z — z||?, where F, is built using a uniform reference over
[0, 1], forcing @(z) to belong to [0, 1].

When several measures are possible, one should derive th2) Tuning the Nonlinear EffectsNonquadratic regulariza-
“best” reconstruction for the problem at hand from knowledg#on is characterized by nonlinear behavior of the reconstruc-
about: 1) the desired behavior of the sought object and 2) tiien process, that allows, for instance, a convex constraint to
possibilities offered by the general framework of reconstruge respected, and more generally, to go beyond the limitations
tion which is used. We intend to give here information about 2 linear reconstruction. There have been several studies on
by illustrating some effects of changes of reference measurguperresolution properties” of some nonlinear inversion meth-

1) Changes of the Prior Guessthe criteria7(z|m) have ods, especially those deriving from entropic regularization.
been interpreted as discrepancy measures betwesrd the References can be found in physics (among others [7] and
prior guessm, the mean of the reference measure. It is usefid5]) and in applied mathematics (see, for example, [11] and
to be able to modifym in order to adapt, or refine, the[47]). In [11], the superresolution phenomenon is linked to the
procedure to another problem, while keeping the same foiBnlinear primal-dual relationship (33). Let us also mention
of criterion. The Bregman distances (35) are designed fg@fe operational study of entropic reconstruction methods done
this task. Suppose that a criteridi{z|m) is associated with py Narayan and Nityananda in [45], who have described
the reference measure and default objectm. In order to the peak-sharpening and sidelobe-attenuating effects of these
change the default objeet into a new objectm,, one can nponquadratic regularizers. Narayan and Nityananda argued
choose as the new reference measure the distribufiom that, from a pragmatic point of view, these effects were the
the exponential family¢, generated by., with expectation (eq| interest of entropic criteria if they were recognized and
parametern; and natural parametér Then, the new primal correctly used.
criterion is derived using (35) We can illustrate such nonlinear behavior using the notion

of “transfer functioti of the reconstruction process. We use the
F(zlmy) = F(z|m) — F(my|m) — (grad F(my))" (m1 — ). simple modek = = +n (that is, the observation is scalar, and

A = 1), and definet = argmin , Fx(z|m) + a(z — x)2. Then,
Concerning the dual criterion, one can readily verify that th@e plot the reconstructiof as a function of the “observation”
log-Laplace transform#7, of P is simply related to the ». Quadratic regularizationF,(z|m) = z?, would give a

log-Laplace transforn#; of 1 by linear estimate, which is simply = «/(1 — a)z. Thusz(z)
has a constant slope. In contrast, reconstructions obtained
Fp(8) = F (s +1t) — F (1) with entropic criteria using non-Gaussian reference measures

exhibit a variable slope: Fig. 1 shows the result with a bounded
Hence changing the initial guess reduces to the addition of/aiform measure, illustrating the nonlinear effect associated to
linear term in the primal criterion, or equivalently, to shift théhe convex domain constraint. In the case of a measure defined
dual criterion. as a mixture of Gaussian measures, twmarisfer functions
In order to reduce the bias toward the default objext in the sense precised above, are given in Fig. 2(a) and (b) for
some authors have proposed an iterative process, where tie different values of the mixture parameter. The nonlinear
result of one inversion step is used as the new prior gueaffect here is d@hresholdthat separates the signainto weak
in the next inversion. Though the theoretical properties esbmponents, which are attenuated and large ones, which are
this procedure have not, to our knowledge, been investigateglspected. This effect is well adapted to the reconstruction of
improved results have been reported, in [46] for instance. signals composed of rare spikes over a weak noise background,
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is often no longer convex, and therefore the solution may
not be unique and practical optimization may be much more
difficult. An example of such approach can be found in [14]
and [35], where the observations are modulus of some Fourier
coefficients of the object.

2) Correlations: Correlations between the components of
the objects are difficult to introduce directly in the entropic
construction: the main difficulty being the computation of the
log-Laplace transform of a nonseparable measure.

Indirect approaches can be found in [48] and [49]. Our
approach [17] consists of the introduction of a “hidden” object
w that is a linear transform ok. We take, for example,

w = Dz, whereD is a differentiation matrixw; = z; —z;_1.

S S R We then use a reference measuredoencoding, for example,
e — concentration, boundness, or a “spiky” character of the first-
order derivatives. Then, using a separability assumption, one
obtains the new entropy functional

Fl@, w) = Falalmy) + Fulwm,).

Finally, using the constrainky = Dz, with a first-order
differentiation matrix (for example), we have

Flz) = Folzlm) + Z Foo (i — zi_1|ma, ;).

This approach gives very interesting results [17]. Actually, the
resulting criteria can be compared to convex potentials arising
in a Markovian context. Other approaches can be found in
[13] and [19].

D. Examples

§ 1) Image Deblurring: An image FOC-f/96 faint object
D ‘ ‘ ' 2 camerg of Supernova SN1987A which exploded in February
(b) 1987 is given in Fig. 3. Data in Fig. 3(a) are blurred by
Fig. 2. “Transfer functions’ in the case of a mixture of Gaussiarthe large impulse response (Fig. 3(b)) of the Hubble Space
|1|£2) = arﬁnigtlﬁfix(x) +ta'||2th— x| IThtere is khefed Tl nonlinear effeft, Telescope (HST) (before its correction in January 1994).
IKe a thresho at separates the signalinto weak and large components. . f . .
(a) First set of parameters. (b) Second set of parameters. See [31] forTaple transfer m,amXA_ was derived fro_m this known ImpU|Se
application of mixture of Gaussian to spike sparse train deconvolution. esponse. At this point, the problem is to deconvolve the data
in Fig. 3(a) using the point-spread function (psf) (Fig. 3(b)).
as may occur in seismic data processing (see [16] and fh@cause the psf has a very large support, spreading the energy
reference therein). Varying the mixture parameter is equivaldit2 large domain (although the main feature of the psf is

to varying the threshold. narrow), this deconvolution problem is ill-conditioned, and a
simple inversion, using for instance a generalized inverse, is
C. Some Extensions of the Entropic Setting unsatisfactory and does not provide more information than the

1) Nonli o tor: Thus f idered that th direct data. In this problem, the goal is to be able to precisely
) oniinéar Lperator. Thus far, we considere al € easure distances between the features, and the repatrtition of
observations are #near and noisy transform of the object

d derived the f £ th larized criterion. t tr;energy in the reconstruction.
and we derived the form of the regularized criterion, together,, ., yqr 1o cope with this problem, one is led to complete

with its dual formulation. The case of a nonlinear operat he data with some constraint arpriori information. A first

IS a stra]lcghtfqrwaqu exter;]smn, (\;vhen one recognizes that YRd of information is positivity, since the data are an energy
entropy functional is unchange distribution. In Fig. 3 (d), we applied a standard maximum-
Flz, n) = Fp(z|my) + Fp(njmy,). entropy “ log =" reconstruction for positive objects, using

Then, incorporating the observation equatioa- A(2) + n, the criterion

one simply obtains K

= ||z — Ax|]? a:ﬂo*ﬁ—a:i m;
Flz) = Falz|ma) + Fulz — A(z)|mn). J@) =z~ Az" 4 ;( & T uT )

Despite the apparent simplicity of the last relation, the problewith m chosen as a “flat” object. For the reconstruction of
is far more complicated: the functiond,,(z — A(z)|m,) astronomical objects, experimentators sometimes use a support
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@ (b)

HH!“

=

(d) ()

Fig. 3. Deconvolution of the data of the Supernova SN1987a, before its correction in January 1994: (a) data, (b) point-spread function, (c)nidigher bou
on the intensity of the object, deduced from the data, (dlog =" reconstruction (positivity constraint), and (e) proposed entropic reconstruction in the
domain defined by (c). Due to their very large dynamics, reconstructions in (d) and (e) are in logarithmic scale.

constraint, that is, the object exists is some areas and notr@sulting criterion is not explicit and the problem was solved
others, because using its dual form

« they knowa priori the position of the object; t £/ at "

« this introduces a kind of regularization, thus improving P =Xz = Fo(AX) - FaN)
the conditioning of the problem and the quality of theyith
reconstruction;

« this speeds up the reconstruction process. Z log < e%i%i — ¢biss )

Using the entropic frame, we can refine this approach, by

using variable bounds on the intensity of the object to be
reconstructed. These bounds are derived from the observations
in Fig. 3 (a). This bounded domai®]a;, b;] is represented Due to their very large dynamics, the results of Fig. 3(d) and
in Fig. 3 (¢), witha; = 0, Y¢ (positivity constraint). We then (e) are in logarithmic scale. They show the improvement that
took a uniform measure over each interval, see Table |. Theuld be provided by refining the search space.

and z = grad F; (At)\).
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Fig. 4. Comparisons in Fourier synthesis: this figure compares different reconstructions in a simple Fourier synthesis problem. The test dbject is in
magnitude of its Fourier transform and of the available data in (b). Then three reconstructions corresponding to different reference measumsédhe
entropic scheme, and also to different constraint sets, are given. They show the improvement with the reduction of the set of admissible solutions.

2) Fourier Synthesis:Fourier synthesis is a classical in- TABLE I
verse problem. Examples of such situations can be found in NONZERO VALUES OF THE TEST OBJECT
radioastronomy or tomography, see for instance [50], [51]. The 2(12) | 2(23) to (32) | z(44) | £(45) | =(56)
following one-dimensional synthetic example, Fig. 4(a)—(e), is 1 19 2 | 16 | 16

intended to illustrate the impact of the definition of the “set
of admissible solutions,” together with the flexibility of the,,qfricients. for the point$1 to 5, 8 and 11} of the discrete
method, which provides here three different criteria. Fourier transform of the object, Fig. 4(b).

Fig. 4(a) shows the original signal made of 64 values As the operator is a Fourier matrix, the problem is well-

between0 and 2 (these values are given in Table Il). Theonditioned and a nonregularized Fourier inversion yields a
observation is accessible in the form of seven of the Fourieorrect but low-resolution reconstruction shown in Fig. 4(c).
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Taking positivity into account by using a Poisson referen@nd useful comments that have improved the presentation of
measure (hence ar'‘log z” regularizer) leads to the recon-this paper.

struction of Fig. 4(d), which shows a far better resolution, but
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