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A New Look at Entropy for
Solving Linear Inverse Problems

Guy Le Besnerais, Jean-Fran¸cois Bercher, and Guy Demoment

Abstract—Entropy-based methods are widely used for solving
inverse problems, particularly when the solution is known to
be positive. Here, we address linear ill-posed and noisy inverse
problems of the form z = Ax+ nz = Ax + nz = Ax + n with a general convex con-
straint x 2 Xx 2 Xx 2 X , where XXX is a convex set. Although projective
methods are well adapted to this context, we study alternative
methods which rely highly on some “information-based” crite-
ria. Our goal is to clarify the role played by entropy in this
field, and to present a new point of view on entropy, using
general tools and results coming from convex analysis. We present
then a new and broad scheme for entropic-based inversion of
linear-noisy inverse problems. This scheme was introduced by
Navaza in 1985 in connection with a physical modeling for
crystallographic applications, and further studied by Dacunha-
Castelle and Gamboa. Important features of this paper are: i) a
unified presentation of many well-known reconstruction criteria,
ii) proposal of new criteria for reconstruction under various prior
knowledge and with various noise statistics, iii) a description of
practical inversion of data using the aforementioned criteria, and
iv) a presentation of some reconstruction results.

Index Terms—Duality, entropy, inverse problems, Kullback–
Leibler information, regularization.

I. INTRODUCTION

I NVERSE problems appear in most experimental data pro-
cessing problems. In such situations, one has to derive an

estimate of some physical quantity of interest (the object)
from indirect and noisy observations. In this paper, we focus
on the “linear-noisy” observation model

(1)

where the transfer matrix and some statistical characteristics
of the noise are known.

In many practical problems, the object is often knowna
priori to satisfy a convex constraint such as

(2)

Examples of such problems are encountered when imaging
intensity distributions (for instance, in astronomy or in spec-
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tral analysis) which are known, on physical grounds, to be
positive. In other specific problems, such as crystallography
and tomography, lower and upper bounds on the intensity are
known, see [1]. These constraints may generally be described
by (2), with

where for each (3)

Within many finite-dimensional inverse problems, is a
nonregular ill-conditioned matrix. Therefore, a simple gen-
eralized inverse gives unsatisfactory results, because of the
dramatic amplification of any observation noise. Many studies
have been devoted to the task of designing reconstruction
procedures yielding stable reconstructions satisfying (2) or (3).
In this paper, we use entropy to build a general framework
for inversion under convex constraints, including well-known
reconstruction techniques as particular cases.

A. The Penalization Approach

A popular approach to linear inverse problems resolution is
the minimization of penalized cost functions of the form

(4)

that corresponds to the general scheme of balancing between
trust to data and fidelity to some priors, where the penalizing
term can, for instance, force the solution to belong
to the constraints set , and may depend on a prior object.
These criteria may originate from practical considerations on
the desired properties of the solution (for instance, it can be
designed in order to smooth the solution) or can derive from
a preliminary modelization step, for instance a probabilistic
modelization in Bayesian estimation. Important properties of
the reconstruction process are linked to the properties of
and in the general criterion .

Several authors have presented axiomatic approaches of
inversion, that lead to compound criteria, whose properties
(as functions of , , and ) translate the chosen axioms, see,
for example, [2]–[6]. In this case, the resulting criteria have
by construction good properties, but these constructions are
limited, to our knowledge, to the convex constraint ,
with

or (5)
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B. Proposed Approach

In the sequel, we present an entropy-based framework to
design reconstruction criteria of the form (4). It makes a trade-
off between axiomatic constructions and general penalized
approaches, in the sense that criteria derived in this framework
share interesting properties and that somedegrees of freedom
are left to the user in order to design particular criteria adapted
to a particular reconstruction problem.

The resulting “entropic inversion framework” was intro-
duced in 1985 by Navaza [7], [8] while dealing with a
particular reconstruction problem which occurs in crystallog-
raphy and which exhibits constraints like (3). It has been
further studied since 1989 by mathematicians, see [9]–[13],
with emphasis on the extension over spaces of functions or
measures. Other studies emphasize applications to various
finite-dimensional linear inverse problems [14]–[18]. Similar
results, including account for observation noise and correlation
issues, have been introduced independently in [19].

In this paper, we aim to give a systematic presentation of
the entropic framework for inversion. From a practical point
of view, the methodology will finally yield the regularized
criterion (4), where prior knowledge will be encoded into the
expressions and properties of and . The resulting recon-
struction process reduces to an unconstrained minimization
of . Among their properties, and will be strictly
convex by construction, therefore, the minimization of the
global criterion is greatly simplified.

Section II is devoted to the derivation of this entropic
framework: we state the problem and useful mathematical
results, give the general form of the resulting entropic cri-
teria, together with their important dual formulation. We then
examine common properties of these criteria. In Section III,
we present some particular applications of our framework,
where it yields particular criteria either known or new. Section
IV is then devoted to the application of the procedure to
inverse problems. We also give hints for some of the remaining
practical choices in order to use an entropic inversion method.
Finally, we give some inversion examples.

II. BUILDING COST FUNCTIONS USING ENTROPY

In this section, we derive the general form of cost function
(4), taking into account convex constraints on the sought object
and the fact that data are a linear transformation of the original
unknown object.

The observation noise will be explicitly accounted for: in
fact, we will consider the linear noisy initial problem as a linear
problem relating the data to the pair of unknown vectors

(6)

or

with , and , and our goal is to estimate
both vectors and from data while using prior information.

A. Introducing Entropy

The method presented here relies heavily on Kullback–
Leibler information (also known as-divergence), which is
defined for some reference measureand probability measure

by

(7)

if is absolutely continuous with respect to ,
and otherwise. , the negative of the
Kullback–Leibler information, is the -entropy of . Entropy
has been a subject of many studies since its introduction in
engineering by Shannon (and also independently by Wiener)
[20]. If is a probability measure, then with
equality if and only if . is used as a discrepancy
measure in statistics, where it has been introduced and studied
by Kullback and Leibler, see [5] and [21]–[24].

When dealing with inverse problems, entropy has been
invoked for two purposes: first, it can be used as a regularizing
term for reconstruction of positive objects (it is the “ ”
entropic regularization method, see Section III-B); second,
it is used for selecting probabilistic distributions. Actually,
given some “testable informations,” which are usually moment
constraints, Jaynes’ maximum entropy principle may be used
to select a probability distribution [25]. For these two uses of
entropy, see also papers in [26].

B. A Statistical Physics Model

Like many recent models used in image processing, the
proposed approach can be illustrated by a statistical physics
model. Let us consider a system consisting of a large number

of independent particles whose state may
evolve within the state space . Each state of
is more or less probable according to reference probability
measure , which reflects some physical property (for instance,
the nature of the particles) and whose mean is denoted by.
Under well-known assumptions (see, for instance, [27]), the
mean state of the particles converges to , while the
empirical law converges to for large . Therefore,
and are considered as two possible macroscopic descriptions
(or macrostates) of the equilibrium of the system. In [28],is
called the level-1 equilibrium macrostate associated with the
system, and its level-2 equilibrium macrostate.

Suppose now that a macroscopic linear observation of the
following form is available:

(8)

The problem is now to take (8) into account to update the
equilibrium macroscopic descriptions (or macrostates) of the
system. Let us call the set and
the set of probability distributions over whose mean value
belongs to . If (or, equivalently, if ), the
data (8) do not contradict the initial macroscopic description

which therefore remains unchanged. If , new
macrostates have to be found. The new level-
2 description is given by the maximum-entropy distribution,
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see the work of Jaynes [25]

(9)

(note that this expression supposes that the infimum of the
right-hand side is attained in , see [29] for general results
on this problem). This result can be related to Sanov’s theo-
rem, see for example [28], [30], and [31], with the “relaxed
observation” set for some

and with the set of probability distributions over
whose mean value belongs to. We assume that and
emphasize the case of a finite state spacein the sequel. In
this case, the method of types [24], [32] gives the asymptotic
behavior of the empirical distribution

(10)

where denotes a possible -size sample empirical distribu-
tion. It leads to the probability of the set

(11)

assuming

Equations (10) and (11) explain the choice of the maximum
entropy distribution of (9) as the new level-2 description
of the system [33]. This argument is classical in the literature
on applications of the entropy and known as themultiplicity
argument, see the papers of Jaynes [25]. Moreover, it can
be linked to a physical model of image formation, see Sec-
tion III-B.

Here we are more interested in the level-1 description, or
level-1 macrostate . Intuitively, it should be defined as the
mean of

An alternate way to define this description is to study
directly the rate of the exponential decay of the probability
of the events . Cramer’s theorem [28], [30], [31]
provides a “rate function” , under some assumptions on the
reference measure. Then

assuming that such that for
and

The new level-1 description of the system should thus be
defined as

(12)

(At this stage, we suppose that the infimum at the right-hand
side is attained.) The so-calledlevel-1 entropy is defined
over : actually it is defined over the closed and convex hull
of the state space .

Changing from the level-2 entropy to the level-1 entropy
is called acontraction principlein large deviations theory. It

is the foundation of the proposed framework for reconstruction
criteria design. The resulting advantages can already be seen:
being deduced from the “usual” entropy, the functions

will share many of its properties. At the same time,
various choices of the reference measure will lead to different
cost functions : this is the “degree of freedom” that was
announced in Section I. In the next section, we will study
further the links between reference measuresand level-1
entropies , and between the two optimization problems (9)
and (12).

C. Maximum Entropy on the Mean Description

1) Problem Statement:Let us recall that the problem state-
ment is

(13)

Having found this distribution, the level-1 description of the
system is given by its mean value . Problem (13)
is calledmaximum entropy on the mean problemby Dacunha-
Castelle [9].

There are many references concerning the existence of a
solution for entropy or entropy-like minimization problems,
cf. [29], [34], [35].

Along the line of the preceding section, we propose here
another interpretation, by using the double stage formulation

(14)
Equation (14) is only a formal guideline for the proposed
approach. Actually, we will define in Proposition 1 a convex
function on such that

and study cases of equality. Then we will study the convex
optimization problem

(see Proposition 2). Finally, in Proposition 3, we will give
sufficient conditions for existence of a vectorsuch that

and a duality result.
2) Preliminary Definitions: The log-Laplace transformof

reference measure is

(15)

We consider as an extended valued function, which means
that it can take the value . Theeffective domain (we
will say domain in the sequel) of is
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is convex and lower semicontinuous (l.s.c.), a property
which is equivalent to closedness of the level sets:

for every . We will suppose in the sequel that
is maximal: its support is not contained in any proper
subspace of . This property implies that is strictly
convex [28, p. 260]. Note that maximality of is not strictly
necessary, it is used for the sake of simplicity.

Associated with the reference measureis the exponential
family , . For each , is the
probability measure on absolutely continuous with respect
to , whose Radon–Nikodym derivative is

Let us suppose that the domain of has interior points:
. Using properties of the Laplace transform of,

it can be proved that is differentiable at any interior point
of its domain (see [28] and [36]), and
for . Hence for each , the Kullback
information of with respect to is

(16)

We will also use theconvex conjugate of

(17)

also called theCramér transform of [30]. It is an l.s.c.
convex function with domain . As is itself l.s.c., the
convex conjugate of is [37], which motivates the
notation .

The strict convexity of implies that is essentially
smooth (see, for instance, [28, p. 224]), which means that

, is differentiable over int , and is steep,
i.e., for any sequence in converging to a boundary
point of

For instance, a convex l.s.c. function whose domain is open
and which is differentiable over its domain is steep (see [36,
p. 87]).

3) Results:

Proposition 1: The Craḿer transform satisfies

(18)

with equality if

such that (19)

Moreover, if is maximal with steep log-Laplace transform,
then a sufficient condition for (19) is that belongs to the
interior of the closed and convex hull of the support of,
that is,

cc (20)

Sketch of the Proof:Checking the first inequality is
straightforward: and let be a
probability measure of mean and finite -entropy. is
absolutely continuous with respect toand to , because
and are equivalent. Using the Radon–Nikodim derivative
of with respect to and (16), we derive

(21)

and, as the last inequality is true for all

which implies (18). The case of equality (19) is straight-
forward. Condition (20) derives from the following identity
between sets:

cc (22)

Under the hypotheses of Proposition 1, and
are Legendre transforms of each other [37]

and

(23)

A proof of (22) and (23) can be found in [36, Sec. 9.1].

Proposition 2: If is a maximal probability measure,
whose log-Laplace transform is steep and satisfies

(24)

and if the data satisfy the qualification constraint

then there is a unique solution to the problem

(25)

Proof: Proposition 2 can be derived from results on
convex functions, see [37, Sec. 27] or from general results on
Kullback–Leibler information [23], [38]. However, we give a
simple and self-contained proof in the sequel. The assumptions
on and imply that is strictly convex. To ensure that
the minimum of is attained we use the fact that the level-
sets of are compact and the Weierstrass theorem. We already
know that these sets are closed becauseis l.s.c. The fact that
they are bounded is a consequence of assumption (24). If (24)
holds, one can find a , such that the ball :
is a subset of . Then , ,
and, for every , using (17)

For every , implies and the
-level set is bounded.

Finally, we present sufficient conditions to obtain a duality
result associated with both problems (9) and (25).
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Proposition 3: If is a maximal probability measure,
whose log-Laplace transform is steep and satisfies

, and if the data satisfy thestrong qualification
constraint

cc (26)

then the following primal-dual attainment equation is valid:

with
(27)

and where the primal solution satisfies

(28)

with , and gives the of problem (9). The
dual criterion is a concave function, which is strictly
concave if .

Proof: Using (22), assumption (26) is equivalent to
: . It implies that the minimum in (27) cannot

be attained at a boundary point of , by property of essential
smoothness of , see [37, p. 252].

The rest of the proposition is an application of the Fenchel
duality theorem [37]. Since , a dual parameter
can be associated to it by (28), and

by application of the standard result on Lagrange multipliers.
By (17) with , we have

The equality holds for and we define

If , is strictly concave and is its unique
minimizer. The rest follows by Proposition 1.

D. Properties of the Reconstruction Process

We have presented a method to design a criterion for
signal reconstruction purposes. We recall here the assumptions,
discuss their meaning, and derive the main properties of the
resulting reconstruction process, keeping in mind our original
convex inverse problem (1), (2).

1) General Assumptions:Given the linear noisy problem

(29)

and the convex constraints

and (30)

the estimation method merely consists of estimating by

subject to (29)

where is the Craḿer transform of a reference probability
measure defined on . We have also indicated that the
corresponding dual problem is

Let us first recall the conditions introduced above to ensure
the existence, unicity, and dual form of the solution.

C1: is a maximal probability on ;

C2: and is steep;

C3: .

Note that the condition , which ensures the strict
convexity of , is automatically satisfied, due to the special
form of . The role of the reference measure is essential: it is
the only way to incorporate prior information in the estimation
process, and to ensure its well-posedness. In the sequel we
postulate the independence of the noise and the object, and
we take a product measure

C4: product measure: .

Finally, as far as the convex constraints (30) are concerned,
we choose the reference measuresand such that

C5: supports of the reference measures satisfy

cc and cc

2) Properties of the Reconstruction Process:

Property 1: As a consequence of C4, the Cramér and log-
Laplace transforms are sum-separable

and

(31)

Using the observation equation and (27), the primal and dual
criteria are

and

(32)

and the primal-dual relation is

(33)

Equation (31) is a direct consequence of definitions (15) and
(17). Thus we have obtained the compound criterion of the
general form (4), together with its dual formulation. It is
possible to take advantage of the two dual formulations of
the optimization problem. For instance, the dual criterion
is particularly useful when the Cramér transforms of the
measures do not have an analytic form. In such cases, the dual
formulation can be used to solve the implicit primal problem.
Therefore, the method only requires an explicit form of the
log-Laplace transform .

Property 2—Domain Constraint:Under assumptions C1,
C2, C4, and C5

and

if or

This property has been documented in the proof of Proposi-
tion 1, see (22). The proof that is infinite outside the domain
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of the constraints can be found in [36]. The behavior ofon
the boundary of and depends on the existence of masses
on the boundary, see [30] and [36].

The behavior of the primal and dual criteria inside their
domain is also very attractive:

Property 3: Under assumptions C1, C2, C4, and C5,is
continuously differentiable and strictly convex on . If

is a finite boundary point of , and a sequence of
points of converging to

if

The first property stems from the l.s.c., while the second is
the steepness of . This limiting behavior of the cost function
is suited for optimization by steepest gradient descent: during
the optimization process, the current object is “pushed away”
from the boundary of the domain of the constraint (note the
importance of the strong qualification condition C3).

Property 4: is a positive function. It takes its minimum
value of zero at the unique point , i.e., , ,
the expectations of the reference measuresand

As a consequence of this property, we can consider the
primal criterion as a discrepancy measure with respect to the
reference mean value, and note it or, using the
separability and (29)

(34)

Hence the criterion appears as a tradeoff between two discrep-
ancy measures penalizing the difference between, respectively,
the object and the prior mean ; the residuals and the noise
mean .

We have already seen that for every member of the expo-
nential family , having an expected value , say

with , the -entropy may be written as

It is possible to give to this relation an interesting extension
by considering the measure of the discrepancy between two
members of . For this we define

A calculation similar to (21) leads to

Thus

(35)

Equation (35) establishes the link between the entropic cost
functions presented here and Bregman divergences [39]. More-
over, it will be useful when discussing a possibility of changing
the initial guess in the estimation procedure, see Section
IV-B1). We use it here to demonstrate the following property.

Property 5: Under assumptions C1–C5, let denote the
reconstruction using criterion . For every such
that , the following “Pythagorean” equation holds:

(36)

Indeed, choosing and in (35), and using the
fact that the dual optimal parameter is , we have

The last property is called “directed orthogonality” in [2]
(see also [5]). Actually, it is a property of the minimization
of Kullback information under linear constraints [22], [23],
which is also associated with all Bregman divergences. Further
interesting geometrical consequences of (36) can be found in
[3] and [6].

Finally, the following special case will be useful for many
applications:

Property 6: If is a product set such as (3) so that

and a product measure

with each having a support whose closed and convex hull
is , then and are sum-separable

and the closure of is . The primal-dual relationship is a
(generally nonlinear) component-wise transformation in

with

III. EXAMPLES OF CRITERIA

In this section, we give, in the form of a table with com-
ments and references, several examples of reference measures
which encode different type of prior informations and convex
constraints. For each measure, we give the log-Laplace trans-
form , that defines the dual criterion, and, when explicit,
the primal criterion . The primal-dual relations are given
by the derivative of the log-Laplace transforms. Except in the
case of Gaussian measures, we consider separable reference
measures yielding separable criteria. These criteria are given
here in terms of a general object and a measure , not
necessarily related to the “object” in the inverse problem
formulation.

Next, we illustrate the construction of criteria within the
entropic frame while studying a particular family of reference
measure, that give rise to interesting special cases.

A. Table of Criteria

Table I (at the top of the following page) presents several
reference measures and criteria.
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TABLE I
EXAMPLES OF REFERENCEMEASURES�, ASSOCIATED LOG-LAPLACE TRANSFORMSF� (FROM WHICH DUAL CRITERIA ARE

DERIVED) AND CRAMÉR TRANSFORMSF (PRIMAL CRITERIA). THE SETS OF CONSTRAINTS ARE INDICATED IN FIRST COLUMN (THE

NOTATION Xj REFERS TO THECASE OF SEPARABLE CONVEX SETS X = K
j=1 Xj ). BOTTOM PART OF THE TABLE SHOWS

COMPONENTS OFSEPARABLE MEASURES AND CRITERIA (FOR INSTANCE, IN SECOND COLUMN, F�(sss) =
K

j=1

f�j (sssj))

B. Poissonized Sum Distributions

An interesting family of reference measures, proposed in
[12], is obtained with a Poissonized sum of random variables.
We consider a random variable , defined as the sum of

independent random variables with
common distribution ; being a Poisson variable with
parameter

This model may be seen as an image formation model. The
image is a plane divided into cells, and its intensity results
from the fall of a random number of quanta, following a
Poisson distribution, of mean parameter at site . The
intensity of each quanta is variable, and governed by the
distribution .

Suppose now that the closed and convex hull of the support
of is . Let denote the law of and define as
the product

A simple calculation shows that the log-Laplace transform
of depends on the Laplace transform of through

Poisson Distribution: We first apply the construction in
the special case of a deterministic , and we take simply

. The probability distribution of any
sample is thus a Poisson distribution
with mean parameter . We take here the notation .

Then the primal criterion is obtained as the convex
conjugate of , that is, the Craḿer transform of

The functional is none other than the generalized
cross entropy (see [5] and [43]) betweenand . This
is the “ ” entropy (in reference to the title of [44]).
The vector is an initial guess for the sought object and
is often chosen as a flat object, or as the result of some
previous experiment. The “ ” entropic regularization is
often termed and considered as an information theory based
reconstruction method and has been motivated by several
axiomatic works [3]–[5], [43].

This kind of regularization has been used with some success
in several applied problems, such as astronomy, tomography,
RMN, and spectrometry. As far as the positivity constraint is
concerned, criteria like Section III-B built upon logarithmic
expressions, ensure the positivity [45]. Another well-known
example is the “ ” entropy used in spectral analysis, see
Table I.

Poissonnized Sum of Gamma Distributions:Another inter-
esting application is the case of the Poissonnized sums of
Gamma distributions [12]
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The log-Laplace transform is

and

(37)

This expression can be related to the entropy criteria intro-
duced by Jones and Byrne, (see [3, Example 4], and [2]). In
order to highlight the link with other studies we let
and introduce the new parameter . The criterion
then becomes

with . The latter expression is easily related (up to
a constant) to Csiszár’s “projection rule” in [5, eq. (3.7) (third
line)]. Such criteria have been used in certain applied fields.
For instance, in radioastronomy, Narayan and Nityananda have
demonstrated in [45] the efficiency of the criterion (37) with

, that is, the square-root criterion

(38)

compared to the usual entropy criteria “ ” and “ ”
It is interesting to quote these authors [45, p. 144] who called

the criterion (38):
“The success of , which has no information-theoretic

backing (no logarithms!), is a strong point in favor of the
penalty function interpretation mentioned in Section II-V.”
We think that it is now clear to the reader that the square root
criterion (38) does possess an “information-theoretic backing,”
as others which do not exhibit logarithms.

IV. SOLVING REAL PROBLEMS

So far, we have described the principles of our use of
entropy and several examples of reference measures which
lead to interesting criteria. We shall now be concerned with the
practical use of these criteria for real data inversion problems.

A. Criteria for the Noisy Problem

The resolution of an inverse problem begins by the specifi-
cation, or the choice, of the reference measures. The additive
noise has been taken into account through the use of an
extended vector and a separable reference
measure. Concerning the noise term, we have found it useful to
encode in the reference measurethe known characteristics
of the noise. For instance, in the case of noise with known (or
previously estimated), first and second-order characteristics,
we take and a Gaussian distribution for , and

and we find a “logical” term (the log-likelihood function)
arising from the Gaussian behavior of the noise. In the case
of non-Gaussian noise, the resulting term will be the Cramér
transform of the noise reference measure. In the case of an
additive Poisson perturbation of known intensity, we obtain

Here again the second term penalizes a “distance” between
the residual and the noise mean. Observe that in the practical
optimization, it is not necessary to ensure that ,
because of the steepness of , see Property 3 in Section
II-D2.

In the case of Poisson observations, such as in optical
imagery, the data are Poisson-distributed with intensity,
and therefore the “noise” is better described as a multiplicative
process. It is possible to account for this situation in the form of
an additive noise distributed ascenteredPoisson variables with
a variable parameter. The general form of the goodness-of-fit
term is

(39)

Using is a good approximation for high photon count.
It is also interesting to consider the choice , although
we depart here from the assumption of independence between
the object and the noise. However, formally replacingby

in (39) gives (up to a constant)

which is exactly the Poisson log-likelihood.
Other approaches can be used in order to account for

the statistic of the observation noise. The entropic approach
described here can always be used to extend the regularization
term , and, for instance, a “nonentropic” function can be
added to it, or can be minimized subject to a set constraint
defined using the noise distribution.

B. Choice of the Object Reference Measure

The choice of the reference measure is an important and
difficult issue, which is reminiscent of selection of the prior
distribution in the Bayesian setting, and is also an open prob-
lem. In our opinion, there is no general and definitive answer
to this question. Three essential strategies and arguments, not
exclusive, may be applied depending on the particular problem
at hand. First, when the solution must belong to a convex set

, the reference measure should satisfy condition C5. Second,
the measure can be derived using a “physical” model of the
object formation. Third, a measure can be built, as a reasonable
representation of the processes under study (for instance, the
mixture distributions for spiky signals).
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Fig. 1. “Transfer function” in the bounded case, that is,x̂(z) = argmin
x
Fx(x) + �kz � xk2, whereFx is built using a uniform reference over

[0; 1], forcing x̂(z) to belong to [0; 1].

When several measures are possible, one should derive the
“best” reconstruction for the problem at hand from knowledge
about: 1) the desired behavior of the sought object and 2) the
possibilities offered by the general framework of reconstruc-
tion which is used. We intend to give here information about 2)
by illustrating some effects of changes of reference measure.

1) Changes of the Prior Guess:The criteria have
been interpreted as discrepancy measures betweenand the
prior guess , the mean of the reference measure. It is useful
to be able to modify in order to adapt, or refine, the
procedure to another problem, while keeping the same form
of criterion. The Bregman distances (35) are designed for
this task. Suppose that a criterion is associated with
the reference measure and default object . In order to
change the default object into a new object , one can
choose as the new reference measure the distributionin
the exponential family generated by , with expectation
parameter and natural parameter. Then, the new primal
criterion is derived using (35)

Concerning the dual criterion, one can readily verify that the
log-Laplace transform of is simply related to the
log-Laplace transform of by

Hence changing the initial guess reduces to the addition of a
linear term in the primal criterion, or equivalently, to shift the
dual criterion.

In order to reduce the bias toward the default object,
some authors have proposed an iterative process, where the
result of one inversion step is used as the new prior guess
in the next inversion. Though the theoretical properties of
this procedure have not, to our knowledge, been investigated,
improved results have been reported, in [46] for instance.

2) Tuning the Nonlinear Effects:Nonquadratic regulariza-
tion is characterized by nonlinear behavior of the reconstruc-
tion process, that allows, for instance, a convex constraint to
be respected, and more generally, to go beyond the limitations
of linear reconstruction. There have been several studies on
“superresolution properties” of some nonlinear inversion meth-
ods, especially those deriving from entropic regularization.
References can be found in physics (among others [7] and
[45]) and in applied mathematics (see, for example, [11] and
[47]). In [11], the superresolution phenomenon is linked to the
nonlinear primal-dual relationship (33). Let us also mention
the operational study of entropic reconstruction methods done
by Narayan and Nityananda in [45], who have described
the peak-sharpening and sidelobe-attenuating effects of these
nonquadratic regularizers. Narayan and Nityananda argued
that, from a pragmatic point of view, these effects were the
real interest of entropic criteria if they were recognized and
correctly used.

We can illustrate such nonlinear behavior using the notion
of “ transfer function” of the reconstruction process. We use the
simple model (that is, the observation is scalar, and

), and define + . Then,
we plot the reconstruction as a function of the “observation”
. Quadratic regularization, , would give a

linear estimate, which is simply . Thus
has a constant slope. In contrast, reconstructions obtained
with entropic criteria using non-Gaussian reference measures
exhibit a variable slope: Fig. 1 shows the result with a bounded
uniform measure, illustrating the nonlinear effect associated to
the convex domain constraint. In the case of a measure defined
as a mixture of Gaussian measures, two “transfer functions,”
in the sense precised above, are given in Fig. 2(a) and (b) for
two different values of the mixture parameter. The nonlinear
effect here is athresholdthat separates the signalinto weak
components, which are attenuated and large ones, which are
respected. This effect is well adapted to the reconstruction of
signals composed of rare spikes over a weak noise background,
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(a)

(b)

Fig. 2. “Transfer functions” in the case of a mixture of Gaussian;
x̂(z) = argmin

x
Fx(x) + �kz � xk2. There is here a nonlinear effect,

like a thresholdthat separates the signalz into weak and large components.
(a) First set of parameters. (b) Second set of parameters. See [31] for an
application of mixture of Gaussian to spike sparse train deconvolution.

as may occur in seismic data processing (see [16] and the
reference therein). Varying the mixture parameter is equivalent
to varying the threshold.

C. Some Extensions of the Entropic Setting

1) Nonlinear Operator: Thus far, we considered that the
observations are alinear and noisy transform of the object,
and we derived the form of the regularized criterion, together
with its dual formulation. The case of a nonlinear operator
is a straightforward extension, when one recognizes that the
entropy functional is unchanged

Then, incorporating the observation equation ,
one simply obtains

Despite the apparent simplicity of the last relation, the problem
is far more complicated: the functional

is often no longer convex, and therefore the solution may
not be unique and practical optimization may be much more
difficult. An example of such approach can be found in [14]
and [35], where the observations are modulus of some Fourier
coefficients of the object.

2) Correlations: Correlations between the components of
the objects are difficult to introduce directly in the entropic
construction: the main difficulty being the computation of the
log-Laplace transform of a nonseparable measure.

Indirect approaches can be found in [48] and [49]. Our
approach [17] consists of the introduction of a “hidden” object

that is a linear transform of . We take, for example,
, where is a differentiation matrix: .

We then use a reference measure for, encoding, for example,
concentration, boundness, or a “spiky” character of the first-
order derivatives. Then, using a separability assumption, one
obtains the new entropy functional

Finally, using the constraint , with a first-order
differentiation matrix (for example), we have

This approach gives very interesting results [17]. Actually, the
resulting criteria can be compared to convex potentials arising
in a Markovian context. Other approaches can be found in
[13] and [19].

D. Examples

1) Image Deblurring: An image FOC-f/96 (faint object
camera) of Supernova SN1987A which exploded in February
1987 is given in Fig. 3. Data in Fig. 3(a) are blurred by
the large impulse response (Fig. 3(b)) of the Hubble Space
Telescope (HST) (before its correction in January 1994).
The transfer matrix was derived from this known impulse
response. At this point, the problem is to deconvolve the data
in Fig. 3(a) using the point-spread function (psf) (Fig. 3(b)).
Because the psf has a very large support, spreading the energy
in a large domain (although the main feature of the psf is
narrow), this deconvolution problem is ill-conditioned, and a
simple inversion, using for instance a generalized inverse, is
unsatisfactory and does not provide more information than the
direct data. In this problem, the goal is to be able to precisely
measure distances between the features, and the repartition of
energy in the reconstruction.

In order to cope with this problem, one is led to complete
the data with some constraint ora priori information. A first
kind of information is positivity, since the data are an energy
distribution. In Fig. 3 (d), we applied a standard maximum-
entropy “ ” reconstruction for positive objects, using
the criterion

with chosen as a “flat” object. For the reconstruction of
astronomical objects, experimentators sometimes use a support
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(a) (b)

(c)

(d) (e)

Fig. 3. Deconvolution of the data of the Supernova SN1987a, before its correction in January 1994: (a) data, (b) point-spread function, (c) higher bounds
on the intensity of the object, deduced from the data, (d) “x log x” reconstruction (positivity constraint), and (e) proposed entropic reconstruction in the
domain defined by (c). Due to their very large dynamics, reconstructions in (d) and (e) are in logarithmic scale.

constraint, that is, the object exists is some areas and not in
others, because

• they knowa priori the position of the object;
• this introduces a kind of regularization, thus improving

the conditioning of the problem and the quality of the
reconstruction;

• this speeds up the reconstruction process.

Using the entropic frame, we can refine this approach, by
using variable bounds on the intensity of the object to be
reconstructed. These bounds are derived from the observations
in Fig. 3 (a). This bounded domain is represented
in Fig. 3 (c), with , (positivity constraint). We then
took a uniform measure over each interval, see Table I. The

resulting criterion is not explicit and the problem was solved
using its dual form

with

and

Due to their very large dynamics, the results of Fig. 3(d) and
(e) are in logarithmic scale. They show the improvement that
could be provided by refining the search space.
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(a)

(b)

(c)

(d)

(e)

Fig. 4. Comparisons in Fourier synthesis: this figure compares different reconstructions in a simple Fourier synthesis problem. The test object is in(a),
magnitude of its Fourier transform and of the available data in (b). Then three reconstructions corresponding to different reference measures of theproposed
entropic scheme, and also to different constraint sets, are given. They show the improvement with the reduction of the set of admissible solutions.

2) Fourier Synthesis:Fourier synthesis is a classical in-
verse problem. Examples of such situations can be found in
radioastronomy or tomography, see for instance [50], [51]. The
following one-dimensional synthetic example, Fig. 4(a)–(e), is
intended to illustrate the impact of the definition of the “set
of admissible solutions,” together with the flexibility of the
method, which provides here three different criteria.

Fig. 4(a) shows the original signal made of 64 values
between and 2 (these values are given in Table II). The
observation is accessible in the form of seven of the Fourier

TABLE II
NONZERO VALUES OF THE TEST OBJECT xxx

coefficients, for the points to , and of the discrete
Fourier transform of the object, Fig. 4(b).

As the operator is a Fourier matrix, the problem is well-
conditioned and a nonregularized Fourier inversion yields a
correct but low-resolution reconstruction shown in Fig. 4(c).
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Taking positivity into account by using a Poisson reference
measure (hence a “ ” regularizer) leads to the recon-
struction of Fig. 4(d), which shows a far better resolution, but
also a split of the main feature of the original signal, which
cannot be removed without prejudicial decrease of resolution.
Knowing that the object is actually between the boundsand

can be accounted for with a reference measure made of
product of uniform probability densities over , and after
dual optimization of the implicit convex primal problem, a
close-to-perfect reconstruction is obtained in Fig. 4 (e).

V. CONCLUSIONS

The general entropic framework we have presented is based
on a combination of stochastic models designed to account
for prior information both on the object and the measure-
ment process—as in Bayesian estimation. The specific rule of
combination of these “prior” measures is based on Kullback
information. As such, the resulting criteria share interesting
properties, some of them previously observed in axiomatic
constructions of inversion processes, and others simplifying
the practical implementation. All this is obtained with a degree
of freedom provided by the choice of reference measures. Thus
design of an efficient criterion in view of a particular applied
problem is made possible by the proposed framework. New
criteria have been presented and illustrated.

It should be mentioned that these results highly rely on
convex analysis results. In particular, the importance of dual
formulations is tantamount. For instance, some of the pre-
sented criteria are only defined by their dual formulation.

The entropic framework has been also linked with large
deviation theory, see the work of F. Gamboaet al. for further
developments on this subject.

Although we derived the methodology in view of a pe-
nalized approach of inversion, it should be emphasized that
the resulting criteria are merely divergence measures between
members of convex sets, and as such can be used in other
contexts, for instance, set-theoretic estimation.

Among the features of this work is the explicit accounting
of observation noise in the methodology. Indeed, this is an
essential element in real inverse problems.

In view of real data processing, we have presented some
practical guidelines and illustrations of the potential of the
method. Along the same lines, the issue of enabling “corre-
lations” between components of objects, and the case of a
nonlinear operator have been considered.

Throughout this paper a general entropic framework for
the resolution of linear inverse problems has been presented.
It gives a unified view of numerous results and criteria for
reconstruction—until now scattered in several fields (electri-
cal engineering, physics, astronomy, crystallography, applied
mathematics, and statistics)—and provides an “entropic” basis
to many known reconstruction criteria.
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