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Abstract — New 5 GHz Wireless Local Area Networks standards
uses OFDM modulation in order to increase data rate transfer.
OFDM transmitter needs linearization technique due to non-
linearities of the power amplification operation. EER architecture
can be used to solve this problem while keeping a high efficiency.
However several sources of imperfections lower the quality of the
signal. Time mismatch has especially a great impact on EVM and
spectral re-growths. This paper presents a Monte Carlo study of
envelope/phase delay influence on the OFDM signal. The
Autocorrelation is estimated considering the OFDM signal as
complex Gaussian.

I. INTRODUCTION

New 3" Generation standards such as Hiperlan2 or IEEE
802.11a uses OFDM (Orthogonal Frequency Division
Multiplex) at 5 GHz. The advantages are a high data rate
transfer and robustness in multi-paths environment. Each of the
sub-carriers (64) uses a QAM modulation scheme. The high
disadvantage of OFDM is that the envelope of the emitted
signal exhibits a large amplitude range. Consequently the
power is un-constant. This results in distortions caused by non-
linearities in the radio-frequency transmitter (especially the
power amplifier). Linearization methods are necessary. EER
(Envelope Elimination and Restoration) introduced by Kahn in
1957 [1] is a solution to linearize the transmitter while keeping
high efficiency. EER is based on the decomposition of the
emitted signal in a magnitude signal (envelope varying) and a
phase signal (constant power). Each signal is amplified
separately. As shown on Fig. 1, recombination of the envelope
and phase information is done by supply modulation of the
high efficiency RF power amplifier (PA)
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Fig. 1: EER architecture principle

In this architecture, several sources of imperfections lower
the quality of the transmission [2]. The major impact is due to
time mismatch A between envelope and phase signals at the
recombination. This is caused by different operations on each
of the two path. Consequences are noise on the information and
phase rotation [2] of the sub-carriers constellation. A statistical
Monte Carlo analysis enables a characterization of delay
influence on the emitted signal. The design of such architecture

needs to precisely quantify the spectral effects of the previous
defaults. A possible approach would be to study statistically the
power spectrum obtained at the output of a simulated system,
while varying values of the potential defaults. In fact, the
impact of these defaults can be directly analysed using
simulated signal generated with the same statistical properties
as those of the potential outputs of the system. Hence, the
results are obtained without resorting on a complete simulation
of the whole system, that is interesting as far as computational
load and simulation duration are concerned. It is also
interesting in the fact that it focuses on the actual defaults
under concern and not on other ‘hidden’ defaults on the
simulation process.

II. THE SHIFTED OFDM SIGNAL

Because of time mismatch between envelope and phase
components, the actual emitted signal is formed as the product
of the envelope with a delayed version of the phase factor: if
x(t) = p(t)e’?™ is the original OFDM signal, then the
‘shifted’ (distorted) OFDM signal is x, (1) = p(t)e’?*™. In the
OFDM context, the emitted signal x(¢) can be modelled as a
complex circular Gaussian process, when the number of sub-
carrier Nsub is high enough (typically greater than 30), because
of the central limit theorem. Such a signal is completely
characterized by its mean and autocorrelation function, which
is here analytically known (as a function of the emission filter).
But what can be said about the statistical properties of the
shifted signal? As a non-linear transform of a gaussian process,
x,(t) may not be a gaussian process itself. Since the envelope

p(t) and phase ¢(r) derive from a correlated process, there
might be some statistical dependence between p) and
#(t—A). In the case of a complex circular gaussian process

(e.g. a band-pass signal with a symmetric spectrum around its
central frequency and I/Q parts with gaussian amplitude, such
as our OFDM signal) it is well known that the envelope and
phase are independent and respectively distributed according to
Rayleigh and uniform distributions, The case of delayed
envelope and phase is not given in the standard literature and
seems to be little or not known. In fact, it appears that p ()

and g(r—A) are also independent variables with Rayleigh and
uniform distributions, for all A, so that the distribution of NG
is also gaussian. The proof is as follows: at time ¢ and ¢ + 7 the
joint distribution of p and ¢ is
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where ¢? is the variance of x(?) and R2? = ‘Rxx (r)‘z /207 if
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R, (7) denotes the autocorrelation function of x(z). The joint
and - 4(c-4)
marginalization of p(p,,é,,0,,0,) Withrespectto ¢ and p,,

that is p(p,.9,)=[[p(p,.0,.0,.9,)d¢,dp,. Beginning by the
integration versus ¢ and using the integral representation of

distribution between p(r) is obtained by

modified Bessel function, we obtain
Ay Al
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and then using the integration formula [11-4-29] in [5],
together the relation between regular and modified Bessel

functions, we arrive at
LA pL
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that does not depend on the correlation coeffient anymore and
shows that p(¢) and ¢(r—A) are independent with Rayleigh
and uniform distributions respectively. Therefore, the
amplitude of x,(t) is gaussian distributed. But this does not
mean that x,(t) is a gaussian process. For that, all joint
distributions between several instants should only depend on a
correlation function. What we are ultimately interested in is the
emitted spectrum. By Wiener-Kintchine theorem, it is the
Fourier transform of the autocorrelation function Rxm (r) of

the shifted OFDM signal x(t) This writes
R, , (t)=E|x (0)x (¢t~} . thatis

XpX

R, (@) = Elp0e™®p-ne 0] )
where E[.] is the statistical average operator with the
underlying probability distribution

plp@), 9t =), pt = 7), (1 = A=17)).
Note that even in the case A=0 it can be shown that
p(p(t)aﬂt_A)sp(t_f)5ﬂt_A_T))7&p(p(t)ap(t_f))xp(ﬂt)aﬂt_T))
That indicates that the processes p(t) and ¢(t) are not
independent, the latter being only true for the statistic at one

instant. The last distribution (1) can only be expressed by
marginalizing the 8 variables joint distribution

p(p@), (), plt = 2), 9t = A), p(1 =), (1 = 7), p(t = A~7), (¢t = A~ 7))
with respect to ¢(¢), p(t—A),¢(t—7) and p(t—A—7). This is a
formidable, if not impossible task, and have to resort to another

technique so as to evaluate the spectrum of the “shifted' OFDM
signal.
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III.  SIMULATIONS
For Hiperlan2 (Nsub = 64) we model the OFDM signal as a
Gaussian signal with known autocorrelation Rxx(t). The
Autocorrelation may be estimated as the time average from the
output x,(t) of a simulated system :

A~ N )
Rx,x,(1)= %z pli-1)e 708 (i)l
i=1

The idea here is to estimate the autocorrelation (1) by
ensemble average. This means that Rx,x,(t) is computed as the
mean of function of K independent realisations of 4 random
variables {p;, 02, ps, @3} With the correct statistics:

. 1 & » :

Reux, @)= Yo ke ™ p (e O
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Hence, the random variables {p;, ¢, ps, @3} in (3) must have

the same joint distribution as the variables {pw), Q(-a), Per) and

Q@eayy in (2). Equivalently, we shall generate a vector

W={w,w,,w,,w, } with same joint distribution as a vector

of samples of our OFDM signal X:
X={x()x(t-4),x(t-A-1),x(t-1) }
X :{ PO p(t- A)™ D p(t- A-T)e D, p(t-1)e }

As X, the samples of our OFDM signal, is a Gaussian vector,
it suffices to impose that W and X have the same correlation
matrix. This correlation matrix is analytically known (since it
depends on the known autocorrelation Rxx(t)), and it is easy to
generate W as a simple transform of a random gaussian vector
G with uncorrelated components. The correlation matrix is
given by: (where * denotes the hermitian transpose)

Rx§0) Rx{A) Rx{A+1) Rxx1)

. Rxx-A) Rxx{0) Rx§1) RxxEA+1)

R, =xx]- RoCA-D) Rold)  Rel))  Rxxed)
Rx{-1) Rx{A-1) Rxx{A) Rxx0)

The key of the simulation process is to remark that given any
square root C of R (i.e. a cholesky factor or a matrix of
eigenvectors) such that R = CC*, we have:

E[W.W*EE|[cGG*CrE|cCHkR |

with W = CG and G a random zero mean Gaussian vector with
uncorrelated components. So, for a given A, the simulation
consist in:

for some values of t, t,, with n=1..N

for k=1 to K number of realizations
- Generate a Gaussian vector G with uncorrelated components.
- Compute Wy, = CG
- A k,n:| Wk,n(])‘r Bk,n: e(j.phase(Wk,n(Z)))’ Ck,n: e(_j.phase(Wk,n (3)))’ and

Dk,n:‘ Wkn(4)‘ Set Tk’n =4 k,nB k,nC/wxD kn -
end for.

- Compute : R

XpXp

K
(7,)= EIT1= 03" 4,,8,,C,, Dy,
K k=1
end for.

And finally compute the spectrum by Fourier transform.
Results of autocorrelation simulation are reported on Fig. 2
where the delay is varied from 0 to 40% of the symbol time (20
nano-sec in Hipertlan2 case) considering a 20 MHz OFDM
signal with a root raised cosine shape filter (roll-off = 0.5).
Results show that delay causes small variations on the
autocorrelation response. Resulting spectrums, for the same
time mismatch, show spectral re-growths. When compared to
Hiperlan2 spectral limit, a delay of 5 nsec is too high to fulfil
standard requirements. Simulations are compared with HP-
ADS Hiperlan2 ones (Fig. 4). Results we reported in [2]
showed a limit of 3 nsec.



Normalised Autocorrelation (dB) for A = 0 to 40% time mismatch (N=5000)
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Fig. 2: Autocorrelation response from simulations

Spectrum for 0 to 10 nsec delay
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Fig. 3: Spectrum from simulated autocorrelations

The difference is explained by difference in spectrum
calculation (windowing, averaging...) in HP-ADS, non-ideal
Gaussian behaviour of Hiperlan2 simulated signal, or defaults
in the simulation model. The accuracy can be improved by
increasing K (10000 here). Confidence intervals can be
computed using Student tests.

Normalised emitted spectrum for 2,3 and 10 nsec delay
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Fig. 4: Simulated spectrum with HP-ADS

The measure of maximum spectral re-growths is plotted on
Fig.5 as a function of time delay. The spectral re-growths have
an exponential behaviour with A, which confirms the great
impact of the delay on the quality of emitted signal.

IV. CONFIDENCE INTERVAL OF THE ESTIMATION
The quality of autocorrelation estimation can be assessed using
confidence intervals, that give the interval around the current
estimate where should lie the true value, at a given level of
probability. It is well known that the normalized variable

JKR,, (0)-R,, ()
S

n

(3)

with S, to be the unbiaised variance estimate, follows a (K-1)

Student law.
Maximum of spectral re-growth in function of A

Normalised dB/10 of spectral re-growths

A i:;% of th[e symboi :pen'od ’
Fig. 5 : Maximum of spectral re-growths in function of A
A confidence interval is typically defined at 95% probability.
In our case , it writes

P[_ ty < R(ﬁXAXA (;)_ RXAXA (T))

with P the probability function of (K-1) Student law. For high
K, this law T(K-1) converges to a normalized Gaussian N(0, 1),
and one can substitute the Gaussian statistics to the Student’s,
for say K>50. The 95% confidence interval of the
autocorrelation is then defined as:

n

S%J=%%

R S ~ S
P[RXAXA (T)_T;( tur SRy, (r)< Ryx, (T)"‘T;( tu/Z] =95%
bottor;'l/ limit
For 95 % and K > 1000, t,, is set to 1.96 (the value given by
T(K-1) is 1.598), and it remains to specify the value of S,
An unbiased estimator of the variance is given by

1 k=K 1 k=K n
Skax= z ( Tone— E[Tk,A,t] )2 = z ( Tia:—Ryyx, (T) )Z
K-1:3 K-1i3
The estimation of the standard deviation for any given A and t©
is reported on Fig. 6.

108+ Standard deviation of Rx,x,(t) for A = 0 to 40% (K=1500)
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Fig. 6 : Standard deviation and Lapack indicator for K=1500
Values of the standard deviation at T = 0 and infinity are
constant whatever A. The Lapack indicator reveals that R is
badly conditioned for low values of 1, especially when A and t
are in the same range. But in fact the variance of IQXM (z,) can

be derived analytically. Indeed, because the vectors 7, are
independent

~ 1 &
R..(t,)=—)).T
XAxA( n) K ; kon



the variance of fex . (z,) is simply pgr [T, 1K and it remains to

find yar (7,1 = Var(4,,B,,C,,D;,]1-

Let y = 4,,B,, andZ=C,,D,,. Now, let Z = Z, + Z,, where Z,;
is perfectly correlated with variable Y, i.e. Z, =/av, and Z, is
uncorrelated with Y. Then E[yz’] :JEE[‘Y‘z]and E[YZ,]=0.
The variance can be expressed : Var[T,] = E[|YZ*]*]-[E[YZ*].

Expanding, we obtain: E[YZ* ] = J&Ehﬂz J+ E[Y]E[Zz*]
EUYZ*\Z] - aly|' [+ E[r |z, ]+ 26 2. [z, ]

From our discussion in section II, Y and Z are complex
circular Gaussian process with zero mean, independent real and
imaginary parts with variances equal to ¢2. It remains finally:

and

2

VarlT, 1= oE|1|' |+ (1 - Za)‘EﬁY\z
because Y and Z are centered, and lastly ya{r ]=4c*, since
EhY“‘J:go-“, and EhY‘lezo'z. Hence it appears that the

variance is constant for any 7z or A. That corresponds to Fig. 6
results, where 62 = Y.

Finally the confidence interval can be plotted. At any given
A, the evolution of the 95% estimation is reported on Fig. 7.
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Fig. 7 : 95% confidence interval for A = 8% and K =500 to 2000

The Confidence interval width is proportional to the variance
of the autocorrelation estimation with

N 1K 40*
VAR IR =VAR| — > T =
( XyX, (T)) (K n,A,t] K

n=1

That can be confirmed by comparing the proportional width
of the confidence interval relative to the estimate of the
autocorrelation for different K. Results of table 1 show the
importance of keeping K greater than 1000 and reveal a
degradation of our estimation for increasing t and time
mismatch A. The last step is to take into account theses results
in order to derive a confidence interval for the spectrum

estimate. Since the estimates 12’” (r,)

independently for all 7, , the errors are independent, but with

are computed

the same variance. Hence, the estimate of the autocorrelation
can be understood as the true value corrupted with a Gaussian
white noise:

R, (t)=R,, (z,)+&(@,).

Table 1 : Confidence interval width for different K
| Evolution of confidence interval width in function of K, A, and t©

Values Average Value
=0 t040% | 1=401t080% | 1=0toTs |t=14 to2.Ts
ol a0 <42% <89% 7% 34%
ela=12% <43% <8.9% 7% 34.2%
a=3en]|  <48% <9% 7% 49%
g[ 2-0 <3% <6.8% 5.2% 15%
Sla-%|  <32% <6.8% 5.2% 16.3%
2[a=36% <34% <7% 53% 19.8%
<[ a0 <1.5% <32% 25% 11.6%
Jla=12% <15% <32% 2.5% 12%
2[a=36% <17% <33% 25% 15.7%

Therefore, the estimated spectrum writes

S (N=8,, (N+E,
where £(f), the Fourier transform of the white Gaussian

XpXp

noise, is a white Gaussian noise with variance 4¢*/K, and a
confidence interval can be plotted accordingly (see Fig. 8).

Normalised Spectrum for A = 8% time mismatch (K=1500)
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Fig. 8 : Emitted spectrum and confidence interval for A=8% and K=1500

V. CONCLUSION

An estimation of envelope/phase time mismatch influence on
an OFDM signal was presented. This is particularly important
in a sensibility analysis of EER architecture. Results showed a
good agreement between simulated Monte Carlo study results
and HP-ADS Hiperlan2 simulation ones. Characterizing the
autocorrelation of the envelope delayed OFDM signal is
possible. With simulated spectrums values, the delay
imperfection can be analysed, and the impact of delay
imperfection can be investigated. Accuracy of our Monte Carlo
model is discussed and quantified in terms of confidence
intervals.
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