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1 Introduction 2 A new derivation of Zamir’s Fisher

Information Inequalities

2.1 Notations and definitions

In this paper, we consider a linear system withva ()

The Fisher informatin matriXy of a random vectoX .
. . . random vector inpufX and a (n x 1) random vector
appears as useful information theoretic tool to descri .
putY’, represented by s x n matrix A, as

the proppagation of information through systems. F%ur
instance, it is directly involved in the derivation of YV — AX.

the Entropy Power Inequality (EPI), that describes the

evolution of the entropy of random variables (vefjatrix A is assumed to have full row rank (rank=
tors) submitted to linear transformations. The first rgy)

sults about information transformation were given in et ¢\ and f- denote the probability densities of

the 60s by Blachman [1] and Stam [2]. Later, Papr andy. The probability densityfy is suposed to
athanasiou [3] derived an important serie of Fisher Wyisfy the three regularity conditions (cf. [3])
formation Inequalities (FII) with applications to char-

acterization of normality. In a fascinating contribu-1. fx(x) is continuous and has continuous first and

tion, Zamir [4] extended the FIlI to the case of non- second order partial derivatives,

invertible linear systems. He also pointed that such

inequalities may have interesting applications in aread /x (z) is defined oriR andlim, .o fx () = 0,

such as (blind) deconvolution and sources separatiog.

However, the proofs given in his paper, completed in""

the technical report [5], involve complicated deriva-

tions, especially for the characterization of the cases 9n fx(x) Oln fx ()

of equality. [Jxlij = Ex B Dr. ;
? J

the Fisher information matrixXy (with respect to
a translation parameter) is defined as

) o and is supposed non singular.
The main contributions of the paper are twofold:

first we give two alternate derivations of Zamir's FFinally, we denotegx (.) and ¢y (.) the score (log
inequalitiesand show that how they can be relateddtgrivative) functions associated wifl and fy-.
Papathanasiou’s results. Second, we examine the case

of equality and give an interpretation that highlighgs_2 A first result

the concept of extractible component of the input vec-

tor of a linear system, together with its relationshifye derive here a first theorem that extends [5, Lemma
with the concepts of pseudoinverse and gaussianityl].
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Theorem 1 Under the hypotheses expressed in 2.1, 3 Application to Zamir’s FlI
the best estimate (in the minimum mean sgquare error

sense) of ¢x () from observations Y is As was shown by Zamir [4], the result of theorem 1
K may be used to derive a very interesting Fisher Infor-
bx (X) = ATgy (V) (1) mation Inequality. We exhibit here an extension and

two alternate proofs of these results: the first proof
The proof we propose here relies on elementary @lies on a classical atrix inequality combined with
gebraic manipulations according to the rules expresggsl aigebraic properties of the score functions as ex-
in the following lemmas. pressed by rules (rulel) to (rule4). The second proof
is deduced as a particular case of results expressed by

Lemma 2 If X and ¥ are two random vectors such - panathanasiou [3]. The theorem is the following.

thatY = AX where Aisam x n full row-rank matrix
then for all scalar valued function ¢ Theorem 5 Under the assumptions of theorem 1,

T
Exg(AX) =Eyg(Y) () Jx 2 Ay A )
and
Proof. see[6] vol. 2p.133 m _ -1
Lemma 3 Let X and Y’ be two random vectors such - First proof The first proof we propose is based on the
that Y = AX where Aisam x n full row-rank ma- yell-known result expressed in the following lemma.
trix. Let us denote Jx and Jy the Fisher information

valued function g and any vector valued function h, ¢ D
non-negative matrix such that D~! exists, then
E X X)=-F X
Ex¢x (X)h' (X) = —ExVxh' (X) (ule2) (in the sense that A — BD~'C' is non-negative defi-
VxhT (AX) = ATVyhT (V) (rule 3) nite), with equality if and only if rank(U) = dim(D)
ExVxolh (V)= —-ATJy (rule4)  Proof. (of the inequality). Consider the blockAM

factorization [7] of matrixU :
The proofs of these algebraic rules are given in Ap- 1 Bp- A—BD-C 0 7 0
pendix A. They allow to prove the theorem via the fol/ = 1
. . T 0 I 0 D D—C I
lowing lemma (see proof in Appendix B): e

L A
Lemma 4 For all multivariate function 7 : R™ — )
R, Remark that the symmetry éf implies thatl, = M
and thus
~ T _ -1 =T
x (ox (X)=dx (1) h() =0 3 A=LTUL (®)
that shows that\ is a symmetric non-negative matrix.
where gx (V) = AT¢y (V). Hence, all its principal minors are non-negative, and
A—-BD'C>0 9)

Finally, the proof of theorem follows directly from
Lemma 4 and from the classical projection result @i Using this matrix inequality, we can complete the
Minimum Mean Square Error (MMSE) estimation thgroof of theorem 5 by considering the two following
expresses the best (MSE) estimatorggf(X) as or- matrices

thogonal to any arbitrary functioh(Y") of the obser- by (X)

vations. U = { qf; % ] [ % (X) o1 (Y) ] (10)
Observe that the theorem 1 extends the correspond-

ing lemma in Zamir’s paper where the components of 7, — [ zYE )) ] [ oL (V) ok (X)] (11)

X are supposed independent. X
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Applying the result of lemma 6 and of the rules afx (X) and ¢y (Y) are zero-mean, then necessarily
3, to matriced/; and Us yields straigthforwardly in- ¢ = 0. Moreover, applying rules 2 and 4
equalities (4) and (5). - .
Second proof of (5) E¢ox (X) oy (Y) =A"Jy
A second proof of inequality 5 is now exhibited, as a .
. on_ one side, and
consequence of a general result derived by Papathana-

siou [3]. This result states as follows. Eéx (X) oy (V)" = BJy

Theorem 7 (Papathanasiou [3]) If g(X) isafunction on the other side, then finallp = A7 and
R" — R™ such that, V1 < i < m, g;(x) is differ-
entiable and var[ g;(X)] < co. The covariance matrix box (X) = AT¢y (V)
cov[g(X)] of g(X) verifies:
Now, sinceA has rankm, it can be written under the

cov[g(X)] > E[V'g(X)| I E[Vg(X)). following form
Now, inequality 5 simply results from the choice A=[Ag|AgM ]
9(X) = ¢y (AX), since in this caseov[g(X)] = Jy _ _ _ , _
and E[V'g(X)] = —Jy A. where Ay is an invertiblem x m matrix, and)M is an

m % (n — m) matrix. Supposé/ # 0 and decompose
equivalently X as

=w]

4 Case of equality in Zamir’s FlI

4.1 Introduction

We now explicit the cases of equality in both inequae that
ities (4) and (5). Case of equality in 5 was already

cheracterized in [5] and introduces the notion of ‘ex- Y =AX (12)
tractible’ components of vectat. Our alternate proof = Ao Xo + AgM X (13)
also make use of this notion and establish a link with — A X (14)

the pseudo inverse of operatdr

with X = X, + M X;. Itis easy to check that
4.2 Case of equality in inequality (4)

ov (V) = 4,765 (X)

The case of equality in inequality (4) is characterized
by the following theorem.

so that
Theorem 8 Suppose that the components X; of X are T
mutually independent. Then equality holds in (4) if ox = ATy (V) i (15)
and only of matrix A possesses (n — m) null columns = ATA5T¢X (X) (16)
or, equivalently, if A writes, up to a permutation of its T .
column vectors = MT?4T } AyTos (X ) (17)
A = [Agl0], LA
I ~
where Ay isam x m non-singular matrix. =| yr ] % (X> (18)
Proof. According to the first proof of theorem 5 and [ (X
N ; . Pz
the case of equality in lemma 6, equality holds in (4) = . - (19)
if there exists a matriX3 and a constant vectersuch i M7 ¢x (X >
that
éx (X) = By (Y) + ¢ As X has independent components, can be decom-
posed as

whereB andc are a constant matrix and a constant [ ox, (Xo)
vector respectively. However, as the random variables Ox = bx, (X1)
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so that finaly We thus need to isolate the ‘invertible part’ of matrix
A. In this aim, we consider the pseudo inversé of
- % . : :
dxo (Xo) ] b5 <X> A and form the productl” A. This matrix writes, up
X = T ~ to a permutation of rows and columns
¢X1 ( 1) M ng < )
I 0 0
from what we deduce that AFA=|0 M 0
0 0 0

X)) =MT X, . — . .
¢x, (X1) 6o (Xo) wherel is then; x n; identity, M is an,; x n,; matrix

As X, and X; are independent, this is not possible uﬁpd.o IS an. x n. Matrix with n, = n —n; = ny; (i
r invertible, ni for not invertible and: for zero). Re-

lessM = 0, what is the equality condition expressed :
in theorem78 a y P mark thatn, is exactly the number of null columns of

. . " A. Following [4, 5],n; is the number of ‘extractable’
Reciprocally, if these conditions are met, then obvi- .
ously, equality is reached in inequality (4 components, that is the number of components{of

' ' that can be deduced from the observation= AX.
This number can be characterized as follows: there al-

4.3 Case of equality in inequality (5) ways exists a vecta? such that

The case of equality in (5), in the case of independerf = A*Y + (1 — A¥A)Z = X+ (1 — A7 A)Z.

components, is characterized as follows: ) o ] ]
Here X is the minimum norm solution of the linear

systemY = AX. Thus,n; is exactly the number of
components shared by and Xp. 1
The expression ofi” A allows to decomposi” as
the direct sunR” = R* + R™ + R?, and to decom-
pose accordinglyX asX = [XZ.T,XZL;,XZT]T. Then
b X, can be recovered fromthe observation of Y — €quality in (5) can be studied separately in the three
AX,ie X;is‘extractible subspaces as follows:

1. in R%, A is an invertible operator, and thus equal-
ity holds without condition

Theorem 9 Equality holds in (5) if and only if each
component X; of X belongs to one of the three groups

a X, isgaussian

¢ X; correspond to a null column of A.

Proof. According to the (first) proof of (5), equality 2. in R™, equality (21) writes Mé('Xm‘) =
holds, as previously, if and only if there exists a matrix ~ ¢(M X»;) that means that necessarily all compo-

C such that nents ofX,,; are gaussian

¢y (Y) = Cox(X) 20) 3. in R?, equality holds without condition.
Remark that thenly = CJxC?, so that, as/,,' = -
AJSAY and € = JyAJy' is such a matrix.

L~ _q ~ 10n the invertibility. Remark that, although is supposed full
Then denotingx (X) = Jy ¢x(X) andéy (Y) = rank,n; < rankA. For instance, consider matrix

Jy 1oy (Y), equality (20) writes Lo o
A= { 01 1 ]

oy (V) = Agx (X). (21)

for whichn; = 1 andn,,: = 2. This example shows that the no-
tion of extractability as defined by Zamir should not be confused
The rest of the proof relies on the two following wellyith the invertibility restricted to a subspace. In the previous ex-
known results: ample, A is clearly invertible in the subspacg = 0. However,
such subspace is irrelevant here since we deal with random input
vectors, excluding the case of a deterministic component. We may
also note that anyX in spanA® (the subspace generated by the

. . . . _columns ofA?) is such thatX = A#Y, and thus ‘invertible’ ; but

e if A is a non singular square matrix, equality this case the components &f in this subspace are not neces-

holds in (5) irrespectively ok . sarily independent, that is an hypothesis in the theorem.

e if X is Gaussian then equality holds in (5),
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5 Appendix A — Proof of Lemma 3

Proof. we prove only rule$ and4. Consider compo-
nentk of vectorh, namelyh,, and remark that

3

Ohy (AX) dy;
Byi al‘j

gl (AX) = 3

3

= Ay (Vyhi (AX)),

=1

= (ATVyhy (AX)),

Now AT (AX) = [¢n] (AX),...,
SO that Vxh? (AX)
[VxhT (AX),...,Vxhl (AX)]

ATVyhT (AX)

Exéx (X)"h(Y) (29)
=tr Ex¢x (X)h" (Y) (30)
2 _ir ExVxhT (V) (31)
o3 i ATExVyhT (V) (32)

Exdx (V) h(Y) (33)

= tr Ex¢x (Y)h" (V) (34)
=tr ExAT¢y (V) T(Y) (35)
=tr A"Ey¢y (Y)h" (V) (36)
2 i AT By VyhT (V) (37)

emma 4 ATExVyhT (Y) (38)

thus both terms are equak

remb>5

For matrixU;, we thus have

(22) Eéx (X) % (X) > E¢x (X) 6% (V)

(Egy (Y) ¢y (Y))

7 Appendix C — First proof of theo-

Applying the result of lemma 6 and of the rules of 3, to
matricesU; andUs yields straigthforwardly inequali-
ties (4) and (5).

(39)

"Edy (V) 6% (X

(40)

and recognizing E¢x (X) ¢k (X) = Jx,
(24) E¢y (Y)¢LY = Jy and

E¢x (X) ¢y (V) = —EVey (V) = ATy (41)

By (V) 6% (X) = (ATh) =Jva  (42)

)
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Replacing these expressions in (39), we deduce the
first inequality (4).
Applying the result of the lemma to matri% yields
similarly
Jy > JL AT AT gy (43)

Multiplying both on left and right by% ' = (J;1)"
yields inequality (5).



