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1 Introduction

The Fisher informatin matrixIX of a random vectorX
appears as useful information theoretic tool to describe
the proppagation of information through systems. For
instance, it is directly involved in the derivation of
the Entropy Power Inequality (EPI), that describes the
evolution of the entropy of random variables (vec-
tors) submitted to linear transformations. The first re-
sults about information transformation were given in
the 60’s by Blachman [1] and Stam [2]. Later, Pap-
athanasiou [3] derived an important serie of Fisher In-
formation Inequalities (FII) with applications to char-
acterization of normality. In a fascinating contribu-
tion, Zamir [4] extended the FII to the case of non-
invertible linear systems. He also pointed that such
inequalities may have interesting applications in areas
such as (blind) deconvolution and sources separation.
However, the proofs given in his paper, completed in
the technical report [5], involve complicated deriva-
tions, especially for the characterization of the cases
of equality.

The main contributions of the paper are twofold:
first we give two alternate derivations of Zamir’s FII
inequalitiesand show that how they can be related to
Papathanasiou’s results. Second, we examine the case
of equality and give an interpretation that highlights
the concept of extractible component of the input vec-
tor of a linear system, together with its relationship
with the concepts of pseudoinverse and gaussianity.

2 A new derivation of Zamir’s Fisher
Information Inequalities

2.1 Notations and definitions

In this paper, we consider a linear system with a (n×1)
random vector inputX and a (m × 1) random vector
outputY , represented by am × n matrix A, as

Y = AX.

Matrix A is assumed to have full row rank (rankA =
m).

Let fX and fY denote the probability densities of
X andY . The probability densityfX is suposed to
satisfy the three regularity conditions (cf. [3])

1. fX(x) is continuous and has continuous first and
second order partial derivatives,

2. fX(x) is defined on� andlimx→∞ fX(x) = 0,

3. the Fisher information matrixJX (with respect to
a translation parameter) is defined as

[JX ]i,j = EX

[
∂ ln fX(x)

∂xi

∂ ln fX(x)
∂xj

]
,

and is supposed non singular.

Finally, we denoteφX(.) and φY (.) the score (log
derivative) functions associated withfX andfY .

2.2 A first result

We derive here a first theorem that extends [5, Lemma
1].
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Theorem 1 Under the hypotheses expressed in 2.1,
the best estimate (in the minimum mean square error
sense) of φX(x) from observations Y is

φ̂X (X) = AT φY (Y ) (1)

The proof we propose here relies on elementary al-
gebraic manipulations according to the rules expressed
in the following lemmas.

Lemma 2 If X and Y are two random vectors such
that Y = AX where A is a m×n full row-rank matrix
then for all scalar valued function g

EXg (AX) = EY g (Y ) (2)

Proof. see [6] vol. 2 p.133

Lemma 3 Let X and Y be two random vectors such
that Y = AX where A is a m × n full row-rank ma-
trix. Let us denote JX and JY the Fisher information
matrix of X and Y respectively. Then for any scalar
valued function g and any vector valued function h,

EXφX (X) g (X) = −EX∇Xg (X) (rule 1)

EXφX (X)hT (X) = −EX∇XhT (X) (rule 2)

∇XhT (AX) = AT∇Y hT (Y ) (rule 3)

EX∇XφT
Y (Y ) = −AT JY (rule 4)

The proofs of these algebraic rules are given in Ap-
pendix A. They allow to prove the theorem via the fol-
lowing lemma (see proof in Appendix B):

Lemma 4 For all multivariate function h : �m →
�

n ,

EX

(
φX (X) − φ̂X (Y )

)T
h (Y ) = 0 (3)

where φ̂X (Y ) = AT φY (Y ) .

Finally, the proof of theorem follows directly from
Lemma 4 and from the classical projection result of
Minimum Mean Square Error (MMSE) estimation that
expresses the best (MSE) estimator ofφX(X) as or-
thogonal to any arbitrary functionh(Y ) of the obser-
vations.

Observe that the theorem 1 extends the correspond-
ing lemma in Zamir’s paper where the components of
X are supposed independent.

3 Application to Zamir’s FII

As was shown by Zamir [4], the result of theorem 1
may be used to derive a very interesting Fisher Infor-
mation Inequality. We exhibit here an extension and
two alternate proofs of these results: the first proof
relies on a classical atrix inequality combined with
the algebraic properties of the score functions as ex-
pressed by rules (rule1) to (rule4). The second proof
is deduced as a particular case of results expressed by
Papathanasiou [3]. The theorem is the following.

Theorem 5 Under the assumptions of theorem 1,

JX ≥ AT JY A (4)

and
JY ≤ (

AJ−1
X AT

)−1
(5)

First proof The first proof we propose is based on the
well-known result expressed in the following lemma.

Lemma 6 If U =
[

A B
C D

]
is a block symmetric

non-negative matrix such that D−1 exists, then

A − BD−1C ≥ 0, (6)

(in the sense that A − BD−1C is non-negative defi-
nite), with equality if and only if rank(U) = dim(D)

Proof. (of the inequality). Consider the block L∆M
factorization [7] of matrixU :

U =
[

I BD−1

0 I

]
︸ ︷︷ ︸

L

[
A − BD−1C 0

0 D

]
︸ ︷︷ ︸

∆

[
I 0

D−1C I

]
︸ ︷︷ ︸

MT

(7)
Remark that the symmetry ofU implies thatL = M
and thus

∆ = L−1UL−T (8)

that shows that∆ is a symmetric non-negative matrix.
Hence, all its principal minors are non-negative, and

A − BD−1C ≥ 0 (9)

Using this matrix inequality, we can complete the
proof of theorem 5 by considering the two following
matrices

U1 = E

[
φX (X)
φY (Y )

] [
φT

X (X) φT
Y (Y )

]
(10)

U2 = E

[
φY (Y )
φX (X)

] [
φT

Y (Y ) φT
X (X)

]
(11)
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Applying the result of lemma 6 and of the rules of
3, to matricesU1 andU2 yields straigthforwardly in-
equalities (4) and (5).
Second proof of (5)

A second proof of inequality 5 is now exhibited, as a
consequence of a general result derived by Papathana-
siou [3]. This result states as follows.

Theorem 7 (Papathanasiou [3]) If g(X) is a function
�

n → �
m such that, ∀1 ≤ i ≤ m, gi(x) is differ-

entiable and var[gi(X)]≤ ∞. The covariance matrix
cov[g(X)] of g(X) verifies:

cov[g(X)] ≥ E[∇tg(X)]J−1
X E[∇g(X)].

Now, inequality 5 simply results from the choice
g(X) = φY (AX), since in this casecov[g(X)] = JY

andE[∇tg(X)] = −JY A.

4 Case of equality in Zamir’s FII

4.1 Introduction

We now explicit the cases of equality in both inequal-
ities (4) and (5). Case of equality in 5 was already
cheracterized in [5] and introduces the notion of ‘ex-
tractible’ components of vectorX. Our alternate proof
also make use of this notion and establish a link with
the pseudo inverse of operatorA.

4.2 Case of equality in inequality (4)

The case of equality in inequality (4) is characterized
by the following theorem.

Theorem 8 Suppose that the components Xi of X are
mutually independent. Then equality holds in (4) if
and only of matrix A possesses (n − m) null columns
or, equivalently, if A writes, up to a permutation of its
column vectors

A = [A0|0],
where A0 is a m × m non-singular matrix.

Proof. According to the first proof of theorem 5 and
the case of equality in lemma 6, equality holds in (4)
if there exists a matrixB and a constant vectorc such
that

φX (X) = BφY (Y ) + c

whereB andc are a constant matrix and a constant
vector respectively. However, as the random variables

φX (X) andφY (Y ) are zero-mean, then necessarily
c = 0. Moreover, applying rules 2 and 4

EφX (X) φY (Y )T = AT JY

on one side, and

EφX (X) φY (Y )T = BJY

on the other side, then finallyB = AT and

φX (X) = AT φY (Y )

Now, sinceA has rankm, it can be written under the
following form

A = [A0 |A0M ]

whereA0 is an invertiblem × m matrix, andM is an
m×(n − m) matrix. SupposeM �= 0 and decompose
equivalentlyX as

X =
[

X0

X1

] }m
}n − m

so that

Y = AX (12)

= A0X0 + A0MX1 (13)

= A0X̃ (14)

with X̃ = X0 + MX1. It is easy to check that

φY (Y ) = A−T
0 φX̃

(
X̃

)

so that

φX = AT φY (Y ) (15)

= AT A−T
0 φX̃

(
X̃

)
(16)

=
[

AT
0

MT AT
0

]
A−T

0 φX̃

(
X̃

)
(17)

=
[

I
MT

]
φX̃

(
X̃

)
(18)

=


 φX̃

(
X̃

)
MT φX̃

(
X̃

)

 (19)

As X has independent components,φX can be decom-
posed as

φX =
[

φX0 (X0)
φX1 (X1)

]
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so that finaly

[
φX0 (X0)
φX1 (X1)

]
=


 φX̃

(
X̃

)
MT φX̃

(
X̃

)



from what we deduce that

φX1 (X1) = MT φX0 (X0)

As X0 andX1 are independent, this is not possible un-
lessM = 0, what is the equality condition expressed
in theorem 8.

Reciprocally, if these conditions are met, then obvi-
ously, equality is reached in inequality (4).

4.3 Case of equality in inequality (5)

The case of equality in (5), in the case of independent
components, is characterized as follows:

Theorem 9 Equality holds in (5) if and only if each
component Xi of X belongs to one of the three groups

a Xi is gaussian

b Xi can be recovered from the observation of Y =
AX, i.e. Xi is ‘extractible’

c Xi correspond to a null column of A.

Proof. According to the (first) proof of (5), equality
holds, as previously, if and only if there exists a matrix
C such that

φY (Y ) = CφX(X) (20)

Remark that thenJY = CJXCt, so that, asJ−1
Y =

AJ−1
X At, and C = JY AJ−1

X is such a matrix.
Then denotingφ̃X(X) = J−1

X φX(X) and φ̃Y (Y ) =
J−1

Y φY (Y ), equality (20) writes

φ̃Y (Y ) = Aφ̃X(X). (21)

The rest of the proof relies on the two following well-
known results:

• if X is Gaussian then equality holds in (5),

• if A is a non singular square matrix, equality
holds in (5) irrespectively ofX.

We thus need to isolate the ‘invertible part’ of matrix
A. In this aim, we consider the pseudo inverseA# of
A and form the productA#A. This matrix writes, up
to a permutation of rows and columns

A#A =


 I 0 0

0 M 0
0 0 0




whereI is theni×ni identity,M is anni×nni matrix
and0 is anz × nz matrix with nz = n − ni − nni (i
for invertible,ni for not invertible andz for zero). Re-
mark thatnz is exactly the number of null columns of
A. Following [4, 5],ni is the number of ‘extractable’
components, that is the number of components ofX
that can be deduced from the observationY = AX.
This number can be characterized as follows: there al-
ways exists a vectorZ such that

X = A#Y + (1 − A#A)Z = X0 + (1 − A#A)Z.

HereX0 is the minimum norm solution of the linear
systemY = AX. Thus,ni is exactly the number of
components shared byX andX0. 1

The expression ofA#A allows to decompose�n as
the direct sum�n = �

i + �
ni + �

z , and to decom-
pose accordinglyX asX =

[
XT

i ,XT
ni,X

T
z

]T
. Then

equality in (5) can be studied separately in the three
subspaces as follows:

1. in Ri, A is an invertible operator, and thus equal-
ity holds without condition

2. in Rni, equality (21) writes Mφ̃(Xni) =
φ̃(MXni) that means that necessarily all compo-
nents ofXni are gaussian

3. in Rz, equality holds without condition.

1On the invertibility. Remark that, althoughA is supposed full
rank,ni ≤ rankA. For instance, consider matrix

A =

�
1 0 0
0 1 1

�

for which ni = 1 andnni = 2. This example shows that the no-
tion of extractability as defined by Zamir should not be confused
with the invertibility restricted to a subspace. In the previous ex-
ample,A is clearly invertible in the subspacex3 = 0. However,
such subspace is irrelevant here since we deal with random input
vectors, excluding the case of a deterministic component. We may
also note that anyX in spanAt (the subspace generated by the
columns ofAt) is such thatX = A#Y , and thus ‘invertible’ ; but
in this case the components ofX in this subspace are not neces-
sarily independent, that is an hypothesis in the theorem.
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5 Appendix A – Proof of Lemma 3

Proof. we prove only rules3 and4. Consider compo-
nentk of vectorh, namelyhk and remark that

∂
∂xj

hk (AX) =
m∑

i=1

∂hk(AX)
∂yi

∂yi

∂xj
(22)

=
m∑

i=1

Aij (∇Y hk (AX))i (23)

=
(
AT∇Y hk (AX)

)
j

(24)

Now hT (AX) =
[
hT

1 (AX) , . . . , hT
n (AX)

]
so that ∇XhT (AX) =[∇XhT

1 (AX) , . . . ,∇XhT
n (AX)

]
=

AT∇Y hT (AX)

Rule 4 can be deduced as follows:

EX∇XφT
Y (Y ) (25)

rule 3= AT EX∇Y φT
Y (Y ) (26)

lemma2= AT EY ∇Y φT
Y (Y ) (27)

rule 2= −AT EY φY (Y ) φY (Y )T (28)

6 Appendix B – Proof of Lemma 4

Proof. develop into two terms and compute first term
as

EXφX (X)T h (Y ) (29)

= tr EXφX (X) hT (Y ) (30)
rule 2= −tr EX∇XhT (Y ) (31)

rule 3= −tr AT EX∇Y hT (Y ) (32)

Second term writes

EX φ̂X (Y )T h (Y ) (33)

= tr EX φ̂X (Y )hT (Y ) (34)

= tr EXAT φY (Y ) hT (Y ) (35)

= tr AT EY φY (Y )hT (Y ) (36)
rule 2= −tr AT EY ∇Y hT (Y ) (37)

lemma2= −tr AT EX∇Y hT (Y ) (38)

thus both terms are equal.

7 Appendix C – First proof of theo-
rem 5

Applying the result of lemma 6 and of the rules of 3, to
matricesU1 andU2 yields straigthforwardly inequali-
ties (4) and (5).

For matrixU1, we thus have

EφX (X) φT
X (X) ≥ EφX (X) φT

Y (Y ) (39)(
EφY (Y )φT

Y (Y )
)−1

EφY (Y )φT
X (X)

(40)

and recognizing EφX (X) φT
X (X) = JX ,

EφY (Y )φT
Y Y = JY and

EφX (X) φT
Y (Y ) = −E∇φT

Y (Y ) = AT JY (41)

EφY (Y )φT
X (X) =

(
AT JY

)T
= JY A (42)
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Replacing these expressions in (39), we deduce the
first inequality (4).

Applying the result of the lemma to matrixU2 yields
similarly

JY ≥ JT
Y AJ−1

X AT JY (43)

Multiplying both on left and right byJ−1
Y =

(
J−1

Y

)T

yields inequality (5).


