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Abstract: Quality of the diagnostic of some system strongly depends on the precision of 
the data obtained by the measurement. The error of the measurement can lead to the mistakes 
in the diagnostic process. The aim of this research is to design method that enables to avoid 
impact of measurement system on experimental evidence, mitigate noises and increases 
precision of obtained data. One of the possible solutions is the Maximum Entropy on the 
Mean Method (MEMM) that deals with the solving of the linear and noisy inverse problem of 
the form y=Ax+b. Another method is Expectation-Minimization Algorithm (EM algorithm) 
consisting of two steps. The expectation step (E step) compute an estimator x̂  and is followed 
by the maximization step (M step) that provides new estimation. Both steps have to be iterated 
until convergence. In the exponential family, the E step gives similar results as the MEMM 
that is why we combine both methods in order to explore the advantages of both. The 
measured data (y) processed by proposed algorithm allows to eliminate the noise b and the 
influence of the measurement system properties (presented by degradation matrix A). Thus, 
this algorithm enables to reconstruct real data x that object produces. Importance of this 
method in the signal and image processing and diagnostics is obvious.  
 
1. MAXIMUM ENTROPY ON THE MEAN METHOD (MEMM) 

 
The Maximum Entropy on the Mean Method (MEMM) solve the linear and noisy 

inverse problem of the form of y=Ax+b, where y are the observations, A is the supposed 
degradation matrix, vector x is the measured object (typically a signal or image) and b is the 
noise which has to be estimated. The measured data processing by this algorithm allows to 
eliminate the noise b and the influence of the measurement system properties (presented by 
degradation matrix A) to the measured data y and so to obtain real data that the object 
produces. Given reference measure µ defined on the object x and noise b, the MEMM 
consists of selecting the distribution p̂  which is the closest to µ according to the Kullback 
distance and which satisfy a given constraint, in this case the observation equation. The 
MEMM estimation x̂ is the mean of the selected distribution p̂ . So, it is the minimizer of a 
convex cost function defined on x and b. 
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Let have a linear inverse problem y=Ax+b. The observation matrix A is supposed to be 
known and some statistical characteristics of the noise b too. When the observation matrix A 
is not regular or ill-conditioned, the problem is ill-posed. It means the convex constraint  

Cx∈ ,             (1) 
where C is a convex set, is necessary. In some specific problems where the lower and upper 
bound (ak,bk) are known, the convex set can be defined as  
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For the estimation x̂  we select the distribution p̂  which is the closest to reference measure µ 
according to the Kullback distance. The Kullback distance D(p||µ) is defined for a reference 
measure µ and probability measure P by  
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Thus, the MMEM method begins by the specification of the convex set C and the reference 
measure dµ(x) over it. The actual observations y are considered as the mean Ep(X) of the 
probability distribution P defined on C. The distribution P is selected as the minimizer of the 
µ-entropy submitted on the constraints of the mean AEp(x) = y in the noiseless case. It means 
the P is the nearest distribution respect to the Kullback distance D(p||µ) to the reference 
measure µ satisfying equation AEp(x) = y. MEMM problem in the noiseless case is given by: 
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The solution exists if it is belongs the exponential family. For each Cx∈ , the AEp(x) = y. 
We define the function F(x) as the optimum value of the Kullback distance.  
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Than the problem can be posed as: 
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This method amounts to minimizing the convex criterion and so admits the dual 
formulation. The dual function is defined as 

( ) ( )AFyD tt λλλ *−= ,          (7) 
and allows to calculate numerically the expectation Ep(x). The function ( )AF tλ*  is the 
convex conjugate of the function F(x). It means that dual formulation of the problem that 
have to be solved is to find estimator λ̂  by maximizing the dual function D(λ): 
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The problem number one of the MEMM is to define and the function ( )AF tλ*  and to 
maximize it. The problem is that in the noisy case the function ( )AF tλ*  has to be separated: 
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The solution of this problem is really complicated. In the exponential family, the 
MEMM gives similar results as the E step of the EM algorithme. That is why we tried to use 
the EM algorithm to eliminate the need of the function ( )AF tλ*  separation in the noisy case. 

       
2. E-M  ALGORITHM 

       
Expectation-Minimization Algorithm (EM algorithm) consists of two steps: the 

expectation step followed by the maximization step. The E step computes an estimation 
x̂ using the current estimation of the parameter satisfying the conditions upon the 
observations. Let have x the data, the y observations, f(x|θ) probability density function and θ 
set of parameters of the density, then for E step we compute: 

[ ]( ) ( )[ ]kk yxfEQ θθθθ ,||log= , it means ( ) [ ]ktk yxAEyQ λλλλ ,|,, = .   (10) 
In the exponential family, the MEMM gives similar results as the E step of the EM 

algorithm that is why the MEMM was used as the E step. 
 The M step provides new estimation.  

( ) [ ]ktk yxAEyQ θλλλ ,|,, = , it means [ ] ( )AFyxAE tktk λλλλ
λ

*1 ,|maxarg −=+ . (11) 

These two steps must be iterated until convergence occurs - it may be determined as:  
[ ] [ ] εθθ <− −1kk , it means  [ ] [ ] ελλ <− −1kk  .       (12) 

 
3. RESULTS 

       
In the exponential family, the E step gives similar results as the MEMM that is why for 

the first estimation of the estimator x̂  the MEMM has bee used. Than the new estimation was 
proposed by the M step of EM algorithm and the process was iterated until convergence 
condition occurred. Results of the data reconstruction are well seen in the simulations below. 
The simulations were made to reconstruct real signal x (xtrue) from the measured observations 
y (ymeasured). On the right side of each figure you can see the iteration process of estimating x̂ . 
The real signal x is presented by dotted line, last iteration of the computed signal xME by bold. 
On the left side, there is the comparison of the real signal x (normal) and signal xME (bold) 
computed by the MEMM with EM algorithm. Experimental evidence y is presented by points. 
The noise is supposed to be Gaussian. Various values of the σ2 have been considered.  

Fig. 1 Simulation of the MEMM with EM algorithm (Parameters: σ2=0.01, 100 iter. cycles) 



Fig. 2 Simulation of the MEMM with EM algorithm (Parameters: σ2=0.2, 1000 iter. cycles) 

Fig. 3 Simulation of the MEMM with EM algorithm (Parameters: σ2=0.5, 10 iter. cycles) 
 

4. CONCLUSIONS 
 

The proposed algorithm reconstructs the real data x from measured, noisy observations 
y. This method enables to mitigate the noise b and the measurement system impact. The 
problem is to find the best estimation x̂ of the real data and satisfy the given constraints. 
Because of difficulties in the computation process in the noisy case, the MEMM is used as the 
first step of the EM algorithm that allows to converge to the real signal x by the iteration 
process. The method is still in progress.  
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