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Équipe Communications Num´eriques, ESIEE

93 162 Noisy-le-Grand, FRANCE,

and Laboratoire Syst`emes de Communications, UMLV

bercherj@esiee.fr

C. Vignat

Laboratoire Syst`emes de Communications
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ABSTRACT
We present an estimator of the entropy of a signal. The basic idea
is to adopt a model of the probability law, in the form of an AR
spectrum. Then, the law parameters can be estimated from the
data. We examine the statistical behavior of our estimates of laws
and entropy. Finally, we give several examples of applications: an
adaptive version of our entropy estimator is applied to detection of
law changes, blind deconvolution and sources separation.

1. INTRODUCTION

Entropy is a major tool in information theory. However, this tool
is not directly used in the context of signal processing, but in the-
oretical frameworks, because it is difficult to compute or even to
estimate from a set of data. A few interesting attempts of direct
use of entropy for signal processing applications can be found in
[1, 2].

Let us recall that the entropyHX of a random variableX (!)
with continuous probability lawfX (x) is defined as:

HX = �

Z +1

�1

fX (x) log fX (x)dx: (1)

This formula raises the two main difficulties that characterize
the computation of the entropy:
� the first difficulty is due to the fact that the probability law
fX (x) is generally unknown. However, there exist numerous
methods for estimating probability laws, such as kernel methods.
But these methods share the major drawback of slow convergence
rate (typicallyT�4=5):
� the second difficulty comes from the fact that, even iffX (x) is
known, formula(1) requires numerical integration.

These two remarks illustrate the necessity for finding fast con-
verging and accurate estimates of entropy. The underlying idea for
the new estimate of entropy we propose here states as follows: the
probability law is seeked in a set of functions that are characterized
by two fundamental features:
(i) this set is characterized by a finite set of parameters (parametric
model)
(ii) the functions are chosen in such a manner that computation of
the entropy as defined by(1) reduces to a problem of AR process
identification. Morever, this method inherits regularization tech-
niques allowing integration of a priori informations about the law
(such as its smoothness).

The first property induces obviously a small bias over the esti-
mate entropy. The second property makes of this estimate a new
and potentially powerful tool in signal processing.

This paper is organized as follows: in the first part, we present
theoretical backgrounds of the estimation procedure. Then we
present the statistical behaviour of the estimates. Finally, we ex-
hibit sample applications of this method, such as detection of law
changes, blind deconvolution and sources separation.

2. ESTIMATING ENTROPY

2.1. Construction of the estimate

The main features we wish for our estimate are:
� a fixed number of parameters, as opposed to nonparametric ap-
proaches,
� an easy method to select the best fitting parameters from the sole
observation of samples of the random processX (n; !),
� the capability of iteratively updating these parameters.

2.2. The AR identification problem

Given observationsw (n) of a processW (n; !) and a fixed inte-
ger p; a set of parametersfaig1�i�p is seeked that best fits the
following model :

w(n) =

pX
i=1

aiw(n� i) + �(n)

where� (n) is a white noise with power�2� :
The exact solution of this problem is well known and requires

the knowledge of the correlation functionRw (k) of the process
W (n; !) : This solution is given by

a = R
�1
w rw;

with matrix (Rw)i;j = Rw(i � j) and vector(rw)i = Rw (i) :
The spectrum of this AR process writes

Sw (f) =
�2���1�Pp

k=1
ake�j2�kf

��2 : (2)

2.3. Application to the estimation of entropy

2.3.1. The approach

Application of the AR identification tool to the entropy estimation
problem is straightforward if we look for an estimatef̂X (x) of the



probability lawfX (x), for x 2 [�0:5; 0:5], under the form

f̂X (x) =
�2���1�Pp

k=1
ake�j2�kx

��2 (3)

= Sw (x) (4)

that is the restriction over interval[�0:5;+0:5], of the power spec-
tral densitySw(x) of an AR process denoted asW (n; !).

2.3.2. An underlying process

Given law(3) ; it is possible to exhibit a random processW (n; !)

whose spectrum is preciselySw (f) = f̂X (f). If we define:

W (n; !) = e
j(nX+�(!))

;

whereX is any sample of processX (n; !) (for exampleX =
X (1; !)) and � (!) is a uniformly distributed phase, then
W (n; !) is a centered process whose correlation functionRw (k)
is:

Rw (k) = E [W � (n)W (n+ k)] = E
�
e
jkX

�
= FT

�1
�
f̂X (x)

�

so that obviouslySw (x) = f̂X (x). Note that this process is not
ergodic.

2.3.3. Estimation of entropy

Although an analytical expression of entropy can be derived in
terms of AR parameters [4], the particular choice expressed by(3)
also leads to an easy and natural procedure for the estimation of
entropy.

Denote by�̂X (k) and  ̂X (k) the first and second character-
istic functions ofX (!;n) ; defined respectively bŷ�X (k) =

FT�1
�
f̂X (x)

	
and ̂X (k) = FT�1

�
log f̂X (x)

	
; then

�
�̂X (k) = Rw (k) 8k

 ̂X (k) = Cw (k) 8k
(5)

whereCw (k) denotes the cepstrum function ofW (n; !) :
Application of the Parseval Plancherel identity to the definition

(1) of the entropy writes, with the help of relations(5) ; as follows:

ĤX = �

+1X
k=�1

�̂X (k)  ̂X (k) = �

+1X
k=�1

Rw (k)Cw (k) :

(6)
The entropyHX ofX (n; !) can thus be computed from both cor-
relation and cepstrum functions ofW (n;!).

At this step, we can take advantage of the AR structure, ex-
ploiting the fact that correlation and cepstrum functions of an AR
process verify

Rw (k) =

pX
i=1

aiRw (k � i) + �
2
� � (k) (7)

Cw (k) =

8<
:

�w (k)�
P0

i=k+1

�
i
k

�
Cw (i) �w (k � i) if k < 0

2 logRw (0) if k = 0

�w (k)�
Pk�1

i=1

�
i
k

�
Cw (i) �w (k � i) if k > 0

(8)

where function�w (k) is the normalized correlation (or correlation
coefficient) of processW (n; !) ; defined as�w (k) = Rw(k)

Rw(0)
.

The trick here lies in the fact that the first and second character-
istic functions involved in formula(6) ; being identified with the
correlation and cepstrum function of the AR processW (n; !) ;

can be computed using relations(7; 8). Thus the estimatêHX of
the entropy as defined by(6) can be computed without any numer-
ical integration, and from the sole observation of the data.

2.3.4. Implementation of the method

The proposed method thus consists in the three following steps:
first step: compute a raw estimate of the law ofX; (equivalently
of Sw (x)), involving samplesfxig1�i�n+1 as, for instance:

f̂
(n+1)

X (x) =
1

n+ 1

n+1X
i=1

�(x� xi) � h (x) ;

where functionh is any kernel function: However, as we wish an
iterative estimate, it is useful to notice that

f̂
(n+1)

X (x) =
n

n+ 1
f̂
(n)

X (x) +
1

n+ 1
h(x� xn+1)

so that by inverse Fourier transform:

R
(n+1)
w (k) =

n

n+ 1
R
(n)
w (k) +

1

n+ 1
H(k)ej2�kxn+1 (9)

whereH(k) =FT�1(h(x)).
second step: the set of estimated correlationsR(n+1)

w (k)
0�k�p

allows to compute the set of parametersa(n+1)

i 1�i�p and thus both

series ̂(n+1)

X (k) and�̂(n+1)

X (k), using (7,8).
third step: application of formula(6) gives the estimated entropy
of processX (n; !) computed with the(n+ 1) first samples.

2.4. Estimation of the AR parameters of the law

Accurate estimates of the law parametersfakg have now to be
derived from a finite number of samplesfxig1�i�N . We present
three methods for solving this problem in our special context.

2.4.1. Normal equations

The AR parameters satisfy the well known normal, or Yule-Walker
equations

Rw

�
1
�a

�
=

�
�2

0

�

whereR is the(p+ 1) correlation matrix. The correlation coeffi-
cients are estimated using (9). However, some free parameters re-
main to be chosen : (i) the form and length of the kernelh; (ii) the
orderp of the AR model. The choice of these parameters should
result, as usual in estimation problems, of a trade-off between bias
and variance.

2.4.2. Long AR models and regularization

Accurate modelization of non-AR processes via AR techniques re-
quires the use of long AR models. The counterpart of adopting a
high number of coefficients is a loss in the stability of the estimate.
The exploitation of regularization techniques enables to use long



AR models, and thus to model ‘non-AR’ spectra, without sacrify-
ing stability.

The idea is to use a long AR model with the addition of some
prior knowledge about the ‘smoothness’ of the spectrum. In [3],
Kitagawa and Gersch defined the PSDkth smoothness by

Dk =

Z 1

0

����@
kA (f)

@fk

����
2

df / a
t�ka;

where�k is the diagonal matrix with elements[�k]ii = i2k.
The corresponding regularized least squares estimate is

â = (R̂w + ��k)
�1
r̂w: (10)

The hyperparameter� balances the fidelity to the data and the
smoothness prior. In [3], a bayesian interpretation of this regular-
ized least-squares is derived, that also leads to a selection rule for
the hyperparameter�, as the minimizer of the following marginal
likelihood:

L(�) = log(det(R̂w + ��k))� p log(�)�N log(�2� ); (11)

where�2� is chosen such that the AR probability distribution is
properly normalized.

2.4.3. Maximum a Posteriori estimation of the parameters

Another possible approach is to derive the parameters from the
probabilistic model of the available data. Since the model of the
probability density is given by (3), the probability law of a sample
of data of lengthN is the product law (assuming, without any extra
information, independence of the data). Prior knowledge regarding
the smoothness of the law can be introduced in the form of the
Kitagawa-Gersch gaussian prior fora, fA(a) / e��a

t�ka: This
leads to the posterior distribution

fAjX(ajx) /

NY
i=1

�2�

j1�
Pp

k=1
ake�j2�kxi j2

e
��at�ka

The MAP estimate of the AR parameters can now be computed
as the minimizer of

J(a; �) =

NX
i=1

log

�����1�
pX

k=1

ake
�j2�kxi

�����
2

�N log �2�+�a
t�ka:

2.5. First simulation results

In this section, we give simulation results regarding the estima-
tion of probability laws using our AR modelization approach. We
also examine the accuracy of entropy estimates for several distri-
butions. Experiments were performed on sequences of 500 sam-
ples1. The laws were modelized with an orderp = 50. We tested
the long AR method presented inx 2.4.2. We examined the cases
of a uniform lawU[� 1

20
; 1
20 ]

and a gaussian lawN (0; 0:01) : The

optimal regularization hyperparameter� was selected using the
minimization of a likelihood as in(11).

Typical results are given in Figs1 (a) and (b)

1Since the law is modelized as the restriction of the spectrum on interval�
�

1
2

;+
1
2

�
; the data had to be rescaled on this interval. This does not

restrict our approach because the entropy of the rescaled variable differs
from the original entropy only by a known additive term.
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Figure 1: The AR estimates and theoretical gaussian (a) and uni-
form (b) laws.

We also tested the MAP approach as presented inx 2.4.3. From
the practical point of view, the MAP estimation approach usually
gives more accurate but slowly converging estimates, contrary to
the long AR approach. As far as the accuracy of the estimate of
the entropy is concerned, we evaluated the entropy of Gaussian
and uniform data using a Monte Carlo type simulation over 100
trials. The results are given in the following table, whereMh is
the mean of the estimates and�H their standard deviation.

theoretical Mh �H
Gaussian�2 = 1

8
1.09 0.9544 0.0485

Uniform
�
�

1

6
; 1
6

�
1.58 1.4786 0.0159

These results exhibit the good statistical behaviour of our esti-
mate, that is a low bias and a small variance.

3. SAMPLE APPLICATIONS

3.1. Detecting law changes

3.1.1. An adaptive estimate

As our approach involves iterative evaluations of the empirical
law and the corresponding correlation sequence, it is straightfor-
ward to derive an adaptive version of the entropy estimation. It
suffices to introduce a forgetting factor� in the updating for-
mula (9) of the correlation sequence. Then, the AR parame-
ters and entropy are evaluated for each new sample. The regu-
larized least squares solution(10) can be computed recursively
a(n+1) = a(n) + �

��
R̂(n) + ��k

�
a(n) � r̂(n)

�
:

An interesting application of this adaptive estimate consists in
detecting law changes in signals. As an illustration, we consider a
signalx (n) that consists in 400 samples generated according to a
mixture of two Gaussian distributions, followed by 400 uniformly
distributed samples. First law has entropyH1 = �1:8 whereas
the second has entropyH2 = �1:18:

Figure 2 below showsx (n): it is difficult by a simple inspection
to detect that there is a law change. Figure 3 shows the adaptive
estimate of the negentropy on this test signal, using a forgetting
factor� = 0:98:

The following points are of importance: (i) the law change ap-
pears clearly, (ii) the rupture time is properly revealed, (iii) the
entropy is estimated with high accuracy and (iv) our adaptive es-
timate has a high tracking capability due to its fast convergence
(typically in less than 100 samples).
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Figure 2: x(n) with abrupt law change at sample 400.
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Figure 3: Adaptive estimate of the entropy.

3.2. Blind deconvolution of AR systems

The difficult problem of blind deconvolution lies in recovering the
inputs and parameters of a filter from the sole observation of its
output. The concept of entropy brings an interesting answer to this
problem, relying on the following proposition:

Proposition 1 Let Y (n; !) be the output of a filter G(f) normal-
ized such that

R
1

�1
jG(f)j2df = 1, whose input is a non-gaussian

i.i.d. sequence X(n; !). Then HY > HX .

The intuitive reason behind this result is thatfY (y) is closer to
a gaussian distribution thanfX (x), the gaussian distribution hav-
ing the maximum entropy in the set of distributions of given vari-
ance, see [5]. The deconvolution procedure then simply consists in
adjusting the filter such that the reconstructed input has minimum
(estimated) entropy. If� are the filter parameters, this writes

�opt = argmin
�
ĤX submitted toX (f) = Y (f) =G� (f)

Simulations were performed in the case of non-minimum phase
AR systems. They show that the AR parameters can be identified
with an outstanding accuracy, and the input can be perfectly recon-
structed, even if the AR order is overestimated. These simulations
were performed in the case of uniform and binary inputs, with 500
samples of data.

3.3. Source separation

In the context of source separation,N signals s (n) =
[s1 (n) ; :::; sN (n)] are mixed by an unknownN � N matrixA
to provide observed signalsx (n) = [x1 (n) ; :::; xN (n)]. The
task is, from the sole observation of signalsx (n), to recover the
sources assuming only their independence. This goal is reached by
designing a matrixB such that the reconstructed signalŝ (n) =
Bx (n) has independent components. The information theoretic

measure of independence is the mutual information, that is the
Kullback-Leibler divergence betweenpS1;:::;SN (s1; :::; sN) and
�1�i�N pSi (si) : In the source separation context, this reduces
to minimizing the following cost function

C (B) = � log jdetBj+

NX
i=1

H (ŝi) (12)

In classical methods, as no estimate of the entropy is available,B
is chosen as the solution of:

E [ŝi j (ŝj)] = 0 (i 6= j) (13)

that expresses the stationarity condition ofC (B) : Function
 j (sj) is the so-called score function, the log derivative of the
densitypSj (sj) :

Using our AR parametrization, we can
(i) either estimate the cost functionC (B) and minimize it using

any standard optimization procedure
(ii) or estimate the solution of(13) using an analytical ex-

pression (in terms of the AR parameters) of the score functions
 i (si) :

We performed simulations using the first approach, using500
samples of data in the case of the mixture ofN = 2 sources. The
following table presents, for several distributions of the sources,
the resulting matrixM = AB that should be the identity matrix,
up to a scaling factor and a permutation.

source 1 source 2 M

U[�0:5;0:5]

1

2
fN (0:3; 0:2)

N (�0:3; 0:2)g

�
1 0:0395

0:0011 1

�

U[�0:5;0:5] U[�0:5;0:5]

�
1 0:02

0:0163 1

�

binary�
�

1

2
; 1
2

� N (0; 1)

�
1 0:0354

0:02 1

�

U[�0:5;0:5] N (0; 1)

�
1 0:23

�0:0491 1

�
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