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ABSTRACT This paper is organized as follows: in the first part, we present

We present an estimator of the entropy of a signal. The basic idegheoretical backgrounds of the estimation procedure. Then we
is to adopt a model of the probability law, in the form of an AR present the statistical behaviour of the estimates. Finally, we ex-
spectrum. Then, the law parameters can be estimated from th&libit sample applications of this method, such as detection of law
data. We examine the statistical behavior of our estimates of lawschanges, blind deconvolution and sources separation.

and entropy. Finally, we give several examples of applications: an
adaptive version of our entropy estimator is applied to detection of

. 4 . 2. ESTIMATING ENTROPY
law changes, blind deconvolution and sources separation.

2.1. Construction of the estimate
1. INTRODUCTION
The main features we wish for our estimate are:

Entropy is a major tool in information theory. However, this tool e a fixed number of parameters, as opposed to nonparametric ap-
is not directly used in the context of signal processing, but in the- proaches,
oretical frameworks, because it is difficult to compute or even to e an easy method to select the best fitting parameters from the sole
estimate from a set of data. A few interesting attempts of direct observation of samples of the random proc&s@, w),
use of entropy for signal processing applications can be found ine the capability of iteratively updating these parameters.
[1, 2].

Let us recall that the entropi{x of a random variableX (w)

with continuous probability lawfx (z) is defined as: 22. The AR identification problem

+oo Given observations (n) of a proces$¥ (n,w) and a fixed inte-
Hx = —/ fx (z)log fx (z) dz. Q) ger p, a set of parameterga; }1<2< is seeked that best fits the
—o0 following model :
This formula raises the two main difficulties that characterize
the computation of the entropy: . _ .
e the first difficulty is due to the fact that the probability law w(n) = Zalw(n —i) +e(n)
fx (z) is generally unknown. However, there exist numerous i=1
methods for estimating probability laws, such as kernel methods. h ) hi . ith 2
But these methods share the major drawback of slow convergenc@' eree (n) isaw _|te noise wit power. . .
rate (typically?=+/%). The exact solution of this problem is well known and requires
o the second difficulty comes from the fact that, evefkif(z) is the knowledge of the correlation functid, (k) of the process
known, formula(1) requires numerical integration. W (n,w). This solution is given by
These two remarks illustrate the necessity for finding fast con-

p

_ —1
verging and accurate estimates of entropy. The underlying idea for a =Ry ru,
the new estimate of entropy we propose here states as follows: the .
probability law is seeked in a set of functions that are characterlzed_l_'th matrix ( i = Ru (i - j) and vector(ru); = Ruw (7).
by two fundamental features: he spectrum oft is AR process writes
(i) this set is characterized by a finite set of parameters (parametric N
model) Sw(f) = T 3 @)
(ii) the functions are chosen in such a manner that computation of |1 — Zzzl ake—ﬂ"kf|

the entropy as defined Kyt ) reduces to a problem of AR process
identification. Morever, this method inherits regularization tech-
niques allowing integration of a priori informations about the law
(such as its smoothness). 2.3.1. Theapproach

The first property induces obviously a small bias over the esti-
mate entropy. The second property makes of this estimate a nevApplication of the AR identification tool to the entropy estimation
and potentially powerful tool in signal processing. problem is straightforward if we look for an estimgte (z) of the

2.3. Application to the estimation of entropy



probability law fx (z), for z € [-0.5,0.5], under the form

~ 0-2
fx(z) = < |2 3)

— P —j2rkz
|1 Zk:l axe™?

= Su(z) (4)

that is the restriction over intervgt0.5, +0.5], of the power spec-
tral densityS,, (z) of an AR process denoted #8(n, w).

2.3.2. Anunderlying process
Given law(3) , itis possible to exhibit a random procd85s(n, w)
whose spectrum is precisefy, (f) = fx (f). If we define:

W (n,w) = ej(nX+¢(w)),

where X is any sample of procesX (n,w) (for exampleX =
X (1,w)) and ¢ (w) is a uniformly distributed phase, then
W (n,w) is a centered process whose correlation funcRor(k)

is:

Ry (k) = EW* (W)W (n+k)] = E ["**] = FT " [fx (2)]
so that obviouslyS,, (z) = fx (z). Note that this process is not
ergodic.

2.3.3. Estimation of entropy

where functiorp,, (k) is the normalized correlation (or correlation

coefficient) of proces¥ (n,w) , defined ap,, (k) = gz E’g;

The trick here lies in the fact that the first and second character-
istic functions involved in formuld6) , being identified with the
correlation and cepstrum function of the AR procégqn,w),
can be computed using relatio(® 8). Thus the estimat& x of
the entropy as defined i{$) can be computed without any numer-
ical integration, and from the sole observation of the data.

2.3.4. Implementation of the method

The proposed method thus consists in the three following steps:
first step: compute a raw estimate of the law &f, (equivalently
of Sy (z)), involving sampleg{:}, ., ., as, for instance:

n+1

pntny oy 1 _
@)= g Db - a) +h(@),
i=1

where functionk is any kernel functionHowever, as we wish an
iterative estimate, it is useful to notice that

(n n o am
(@) = 2 A @) + = h(e - 2ni)
so that by inverse Fourier transform:
(n+1) _ n (n) 1 H J2mK®T, 41
R (k) = 2R (k) + — H(k)e ©)

Although an analytical expression of entropy can be derived inwhere (k) =FT ' (h(z)).

terms of AR parameters [4], the particular choice express€@ by

also leads to an easy and natural procedure for the estimation o

entropy.

ﬁcond step: the set of estimated correlatior) ™" (K)ock<p

allows to compute the set of parametej’éﬁl%i <, and thus both

Denote bydx (k) andi)x (k) the first and second character- series s ™™ (k) andg ™ (k), using (7,8).

istic functions of X (w,n), defined respectively bpx (k) =
FT*{fx (z)} andx (k) = FT~* {log fx ()}, then

éx (k) = Rw (k) VEk
{Q;X (k) =Cw (k) VE ®)

whereC,, (k) denotes the cepstrum functiondf (n, w) .

Application of the Parseval Plancherel identity to the definition

(1) of the entropy writes, with the help of relatio(f) , as follows:

+o0 +oo
Hx =~ % dx(K)dx (k) =~ ) Ru(k)Cu (k).
k=—o00
(6)

k=—oc0

The entropyHx of X (n,w) can thus be computed from both cor-

relation and cepstrum functions Bf (n, w).

third step: application of formula6) gives the estimated entropy
of processX (n,w) computed with thén + 1) first samples.
2.4. Estimation of the AR parameters of the law

Accurate estimates of the law parametéus } have now to be
derived from a finite number of sampl¢s;}, .. . We present
three methods for solving this problem in our special context.

2.4.1. Normal equations

The AR parameters satisfy the well known normal, or Yule-Walker

equations
1 | o?
[ L]-[%]

whereR is the(p + 1) correlation matrix. The correlation coeffi-

At this step, we can take advantage of the AR structure, ex-cients are estimated using (9). However, some free parameters re-
ploiting the fact that correlation and cepstrum functions of an AR main to be chosen : (i) the form and length of the kerngii) the

process verify

p

Ry (k)= aiRu (k — i) + 026 (k) (7)
puw (k) = i (£) Cu (i) pu (k—1d) i k<0
Cuw (k) = 2log R (0 ifk=0
po (k) =307 (£) Cu 6) pu (ki) i k>0

(8)

orderp of the AR model. The choice of these parameters should
result, as usual in estimation problems, of a trade-off between bias
and variance.

2.4.2. Long AR models and regularization

Accurate modelization of non-AR processes via AR technigues re-
quires the use of long AR models. The counterpart of adopting a
high number of coefficients is a loss in the stability of the estimate.
The exploitation of regularization techniques enables to use long



AR models, and thus to model ‘non-AR’ spectra, without sacrify-
ing stability. ) o M

The idea is to use a long AR model with the addition of some - s by
prior knowledge about the ‘smoothness’ of the spectrum. In [3], =

W\j
Kitagawa and Gersch defined the PSH smoothness by = '

1
- [
0

whereAy, is the diagonal matrix with elemenitd];; = i
The corresponding regularized least squares estimate is

15|
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R Figure 1: The AR estimates and theoretical gaussian (a) and uni-
4= (Ruw + A\AL) Py, (10) form (b) laws.

The hyperparametek balances the fidelity to the data and the
smoothness prior. In [3], a bayesian interpretation of this regular-
ized least-squares is derived, that also leads to a selection rule for \we also tested the MAP approach as present§®id.3. From
the hyperparametey, as the minimizer of the following marginal  the practical point of view, the MAP estimation approach usually
likelihood: gives more accurate but slowly converging estimates, contrary to
_ . 2 the long AR approach. As far as the accuracy of the estimate of

L(A) = log(det(Rw + AAs)) — plog(A) — Nlog(or), (11) the entropy is concerned, we evaluated the entropy of Gaussian
whereo? is chosen such that the AR probability distribution is @nd uniform data using a Monte Carlo type simulation over 100
properly normalized. trials. The results are given in the_ following tablg, WhMQ is

the mean of the estimates atg their standard deviation.

2.4.3. Maximum a Posteriori estimation of the parameters

theoretical| M}, oH
Another possible approach is to derive the parameters from the Gaussiaw” = £ 1.09 0.9544 | 0.0485
probabilistic model of the available data. Since the model of the Uniform [_%, %] 1.58 1.4786| 0.0159

probability density is given by (3), the probability law of a sample
_ofdata O.f Ien_gth’\f is the product law (assum'”g’ without any extrg These results exhibit the good statistical behaviour of our esti-
information, independence of the data). Prior knowledge regarding, 5te that is a low bias and a small variance

the smoothness of the law can be introduced in the form of the ' '

Kitagawa-Gersch gaussian prior fey f4(a) oc e ** 2%, This

leads to the posterior distribution 3. SAMPLE APPLICATIONS
N o2 CatAna 3.1. Detecting law changes
faix(alz) o H 1 D “jznka; 2 S * ; :
i1 1 =2 =y are i 3.1.1. An adaptive estimate

The MAP estimate of the AR parameters can now be computedAs our approach involves iterative evaluations of the empirical

as the minimizer of law and the corresponding correlation sequence, it is straightfor-
5 ward to derive an adaptive version of the entropy estimation. It
il ? suffices to introduce a forgetting facter in the updating for-
—j2nrkx; 2 t .
J(a,\) = Zl(’g - Zake P —Nlog o +Aa’Aga. mula (9) of the correlation sequence. Then, the AR parame-
i=1 k=1 ters and entropy are evaluated for each new sample. The regu-

larized least squares solutigi0) can be computed recursively
2.5. First smulation results o) = o) 4 ((R(") + )\Ak) a™ — ,:(n)) .

In this section, we give simulation results regarding the estima- AN interesting application of this adaptive estimate consists in
tion of probability laws using our AR modelization approach. We d_etectmg law change_s |n_5|gnals. As an illustration, we c0n_5|der a
also examine the accuracy of entropy estimates for several distriSignalz (n) that consists in 400 samples generated according to a
butions. Experiments were performed on sequences of 500 samixture of two Gaussian distributions, followed by 400 uniformly
ples. The laws were modelized with an order= 50. We tested distributed samples. First law has entrofly = —1.8 whereas

the long AR method presented §r2.4.2. We examined the cases the second has entrogy, = —1.18.

20° 20 to detect that there is a law change. Figure 3 shows the adaptive

optimal regularization hyperparametgrwas selected using the . : ) : .
minimization of a likelihood as iff11). ]?;éltr(;lrite_o(f) Eahse negentropy on this test signal, using a forgetting
Typical results are given in Figsl (a) and (b T . .
P g gsl (a) (b) The following points are of importance: (i) the law change ap-
LSince the law is modelized as the restriction of the spectrum onintervalpears clearly, (ii) the rupture time is properly revealed, (iii) the
[f%, +%] , the data had to be rescaled on this interval. This does not€ntropy is estimated with high accuracy and (iv) our adaptive es-

restrict our approach because the entropy of the rescaled variable differimate has a high tracking capability due to its fast convergence
from the original entropy only by a known additive term. (typically in less than 100 samples).




o.z2s5

measure of independence is the mutual information, that is the
Kullback-Leibler divergence between, .....s, (s1,-.., sn) and

cu ﬂ II:<i<n ps; (si). In the source separation context, this reduces
ool I to minimizing the following cost function
Conl] |
| N
o] I C(B) = —log|det B| + Y _ H (5:) (12)
—o0.2 i=1

In classical methods, as no estimate of the entropy is avail&ble,

Figure 2: x(n) with abrupt law change at sample 400. is chosen as the solution of
Elsip; (8;)]=0 (i #J) (13)
- | that expresses the stationarity condition @f(B). Function
2 1 ¥; (s;) is the so-called score function, the log derivative of the

densityps; (s;) .

Using our AR parametrization, we can
af : (i) either estimate the cost functi@i(B) and minimize it using
any standard optimization procedure

(i) or estimate the solution of13) using an analytical ex-

55 =55 o6 ago =00 B 755 500 pression (in terms of the AR parameters) of the score functions
Yi (si) -
Figure 3: Adaptive estimate of the entropy. We performed simulations using the first approach, usibgy

samples of data in the case of the mixture\of= 2 sources. The

following table presents, for several distributions of the sources,

the resulting matrix/ = AB that should be the identity matrix,
3.2. Blind deconvolution of AR systems up to a scaling factor and a permutation.

The difficult problem of blind deconvolution lies in recovering the

inputs and parameters of a fllter_from tht_a sole c_)bservatlon of |t_s [ source 1 | Source 2 I i ]
output. The concept of entropy brings an interesting answer to this -
problem, relying on the following proposition: U 5{N(0.3,0.2) 1 0.0395
(=0:5.0.5] N (-0.3,0.2)} 0.0011 1
Proposition 1 Let Y (n,w) bethe output of a filter G(f) normal- 1 0.02
ized such that f_oo |G(f)|"df = 1, whoseinput isa non-gaussian [-0.5,0.5] [-0.5,0.5] 0.0163 1
i.i.d. sequence X (n,w). Then Hy > Hx. binary N D) 1 0.0354
— N : : -1 ’ 02 1
The intuitive reason behind this result is thfat(y) is closer to [ 2’ 2] 0 01 053
a gaussian distribution thafy (z), the gaussian distribution hav- Uo.5.0.5) N(0,1) oo 5
ing the maximum entropy in the set of distributions of given vari- :

ance, see [5]. The deconvolution procedure then simply consists in
adjusting the filter such that the reconstructed input has minimum

(estimated) entropy. # are the filter parameters, this writes 4. REFERENCES
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