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ABSTRACT. In this note, we review score functions properties and discuss inequalities on the
Fisher Information Matrix of a random vector subjected to linear non-invertible transformations.
We give alternate derivations of results previously publishedlin [6] and provide new interpreta-
tions of the cases of equality.
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1. INTRODUCTION

The Fisher information matriXy of a random vectoX appears as a useful theoretic tool to
describe the propagation of information through systems. For instance, it is directly involved
in the derivation of the Entropy Power Inequality (EPI), that describes the evolution of the en-
tropy of random vectors submitted to linear transformations. The first results about information
transformation were given in the 60’s by Blachmah [1] and Stam [5]. Later, Papathanasiou [4]
derived an important series of Fisher Information Inequalities (FII) with applications to char-
acterization of normality. In_|6], Zamir extended the Fll to the case of non-invertible linear
systems. However, the proofs given in his paper, completed in the technical report [7], involve
complicated derivations, especially for the characterization of the cases of equality.

The main contributions of this note are threefold. First, we review some properties of score
functions and characterize the estimation of a score function under linear constraint. Second,
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2 C. VIGNAT AND J.-F. BERCHER

we give two alternate derivations of Zamir’s Fll inequalities and show how they can be related
to Papathanasiou’s results. Third, we examine the cases of equality and give an interpretation
that highlights the concept of extractable component of the input vector of a linear system, and
its relationship with the concepts of pseudoinverse and gaussianity.

2. NOTATIONS AND DEFINITIONS

In this note, we consider a linear system witmax(1) random vector inpuk” and a {n x 1)
random vector output’, represented by a x n matrix A, withm < n as

Y =AX.

Matrix A is assumed to have full row rank (rank= m).
Let fx and fy denote the probability densities &f andY. The probability densityfx is
supposed to satisfy the three regularity conditions (cf. [4])

(1) fx(z) is continuous and has continuous first and second order partial derivatives,
(2) fx(z) is defined orR™ andlim| ;). fx(x) =0,
(3) the Fisher information matriXy (with respect to a translation parameter) is defined as

B Oln fx(z) 0ln fx(z)
[JX]i7j N /n |: (9351 (9.1']‘

fx(x)dz,

and is supposed nonsingular.
We also define the score functiopg (-) : R" — R™ associated wittf x according to:

_ 8lan(ac)'

ox () ox

The statistical expectation operatoy, is

Ex [h(X)) = [ ba)fx(o)d

Ex,y andExy will denote the mutual and conditional expectations, computed with the mutual
and conditional probability density functiorfs y- and fx|y respectively.
The covariance matrix of a random vectdrX ) is defined by

covlg(X)] = Ex [(9(X) — Ex [¢(X)])(9(X) — Ex [g(X)])"] .
The gradient operatdv x is defined by

Oh(X oh(x)17*
VXh(X): a%l),...,a(T) .

Finally, in what follows, a matrix inequality such as > B means that matrixA — B) is
nonnegative definite.

3. PRELIMINARY RESULTS

We derive here a first theorem that extends Lemma Llof [7]. The problem addressed is to

find an estimato:zﬁ?(}) of the score functioy (X) in terms of the observatiorts = AX.
Obviously, this estimator depends ®f, but this dependence is omitted here for notational
convenience.
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Theorem 3.1. Under the hypotheses expressed in Se¢fjion 2, the solution to the minimum mean
square estimation problem

(3.1) ¢x (X) = argmin Ex y [llox (X) —w(Y)]|?] subjecttoy = AX,
is
(3.2) bx (X) = AToy (V).

The proof we propose here relies on elementary algebraic manipulations according to the
rules expressed in the following lemma.

Lemma 3.2. If X andY are two random vectors such that = AX, whereA is a full row-
rank matrix then for any smooth functiogps : R™ — R, ¢g» : R* — R, h; : R* — R",
he : R™ — R™,

Rule 0 Ex 91 (AX)] = Ey [g: (V)]

Rule 1 Ex [ox (X) g2 (X)] = —Ex [Vxg2 (X))
Rule 2 Ex [¢x (X) b (X)] = —Ex [Vxh{ (X)]
Rule 3 Vxhi (AX) = ATVyhI (V)

Rule 4 Ex [Vxéy (V)] = —A" Jy.

Proof. [Rule 0 is proved inl[2, vol. 2, p.133[. Rulé 1 and Rule 2 are easily proved using inte-
gration by parts. Fdr Rule 3, denote by the k" component of vectoh = h,, and remark

that

b (4%) - 37 g
=1
= ZA“ [Vyhy (Y)];

1

[ATthk (Y)],

Nowh” (V) = [T (Y),...,hT (V)] sothatV xhT (V) = [VxhT (AX),..., VxhT (AX)] =
ATV BT (V).
[Rule 4 can be deduced as follows:

Ex [Vx¢i (V)]
BIES ATEx [Vy ol (V)]
[m:-e__OATEy [Vy¢1T/ Y }
Ruie2 47, [qsy (Y) éy (Y)T} .

For the proof of Theoreifn 3.1, we will also need the following orthogonality result.
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Lemma 3.3. For all multivariate functions: : R™ — R", gbﬁ) = AT ¢y (V) satisfies

(33) By (6x (X) —dx (X)) h(¥)=0.
Proof. Expand into two terms and compute first term using the trace operatopr
Exy [ox ()" h(Y)] = trExy [6x (X) BT (V)]
RUEARIED 1) By [VxhT (V)]
BEES i ATEy [Vyh" (V)]

Second term writes

— T

Exy PX (X) R (Y)} =trExy [gb;\ }

=trEy [AT¢y (Y)R" (V)]

= tr ATEy [¢y (V) R" (V)]

BEEZ i ATEy [Vyh" (V)]

thus the terms are equal. O
Using Lemma 32 and Lemma B.3 we are now in a position to prove Thgorém 3.1.

Proof of Theorerm 3]1From Lemma 33, we have

Exy [(qu(X) — m)) h(Y)} =Exy [(¢X(X> — AT ¢y (Y)) h(Y)]
= By [Expy [(¢x(X) — ATy (1)) h(Y)]] = 0.
Since this is true for alk, it means the inner expectation is null, so that
Exyy [¢ox(X)] = ATy (Y).

Hence, we deduce that the estimatar(X) = AT¢y (Y) is nothing else but the conditional
expectation obx (X) givenY'. Since itis well known (se¢ [8] for instance) that the conditional
expectation is the solution of the Minimum Mean Square Error (MMSE) estimation problem
addressed in Theorem B.1, the result follows. O

Theoren( 31 not only restates Zamir's result in terms of an estimation problem, but also
extends its conditions of application since our proof does not require,/gs in [7], the independence
of the components oX'.

4. FISHER INFORMATION MATRIX |NEQUALITIES

As was shown by Zamii [6], the result of Theor¢m]|3.1 may be used to derive the pair of
Fisher Information Inequalities stated in the following theorem:

Theorem 4.1. Under the assumptions of Theorem| 3.1,

(4.1) Jx > ATy A
and
4.2) Jy < (AJgtAT) ™
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We exhibit here an extension and two alternate proofs of these results, that do not even rely on
Theorem 3.]1. The first proof relies on a classical matrix inequality combined with the algebraic
properties of score functions as expressefl by Rule[1 to Rule 4. The second (partial) proof is
deduced as a particular case of results expressed by Papathanasiou [4].

The first proof we propose is based on the well-known result expressed in the following
lemma.

Lemmad4.2.1fU = [g‘ g} is a block symmetric non-negative matrix such that' exists, then
A—BD'C >0,
with equality if and only if-ank(U) = dim(D).
Proof. Consider the blocl A M factorization [3] of matrixU :
U_[IBD*}{A-BU%?O}{ I 0]

10 I 0 D D'C I
D1 X T
We remark that the symmetry 6f implies thatZ. = M and thus
A=L'UL "

so thatA is a symmetric nonnegative definite matrix. Hence, all its principal minors are non-
negative, and
A—-BD7'C >0.
O

Using this matrix inequality, we can complete the proof of Thedrern 4.1 by considering the
two following (m + n) x (m + n) matrices

a6 g
n=e| 20 1ok o),

n=e| 00 | lerm o).
For matrixU;, we have, from Lemma 4.2
(4.3) Ex [¢x (X) ok (X)]
> Exy [¢x (X) ¢y (V)] (By [¢v (V) ¢ (Y)])_l Exy [¢v (V) ¢k (X)].
Then, using the rules of Lemrpa B.2, we can recognize that
Ex [ox (X) ¢k (X)] = Jx,
By [oy (V) ¢y (Y)] = Jy,
Exy [¢x (X) dy (V)] = —Ey [Voy (V)] = AT Jy,
Exy [¢y (Y) ¢% (X)} = (ATJy)T = Jy A.

Replacing these expressions in inequality|(4.3), we deduce the first inequality (4.1).
Applying the result of Lemmia 4.2 to matr%, yields similarly

Jy > JEATAT Iy

Multiplying both on left and right by/,.* = (J;l)T yields inequality).
Another proof of inequality[(4]2) is now exhibited, as a consequence of a general result
derived by Papathanasidu [4]. This result states as follows.
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Theorem 4.3. (Papathanasiof4]) If ¢(X) is a functionR™ — R™ such thatyi € [1, m], g;(x)
is differentiable andar(g;(X)] < oo, the covariance matrixov[g(.X)] of g(X) verifies:

cov[g(X)] > Ex [V'g(X)] Jx Ex [Vg(X)].

Now, inequality [(4.R) simply results from the choigeX) = ¢y (AX), since in this case
covlg(X)] = Jy andEy [VTg(X)] = —JyA. Note that Papathanasiou’s theorem does not
allow us to retrieve inequality (4.1).

5. CASE OF EQUALITY IN MATRIX FlI

We now explicit the cases of equality in both inequalities](4.1) (4.2). Case of equality
in inequality [4.2) was already characterized[in [7] and introduces the notion of ‘extractable
components’ of vectoX . Our alternate proof also makes use of this notion and establishes a
link with the pseudoinverse of matrit.

Case of equality in inequality [4.1). The case of equality in inequality (4.1) is characterized
by the following theorem.

Theorem 5.1.Suppose that components of X are mutually independent. Then equality holds
in (4.1) if and only if matrixA possesseg: — m) null columns or, equivalently, ift writes, up
to a permutation of its column vectors

A= [AO | Omx(nfm)]a
whereA, is am x m non-singular matrix.

Proof. According to the first proof of Theoren 4.1 and the case of equality in Lemma 4.2,
equality holds in[(4]1) if there exists a non-random mafi:and a non-random vectersuch

that

However, as random variablesx (X) and ¢y (Y) have zero-meanEx [¢(X)] = 0,

Ey [¢(Y)] = 0, then necessarily = 0. Moreover, applying Rule|2 and Rule 4 yields

Exy [ox (X) oy (V)] = ATJy

on one side, and
Exy |ox (X) oy (V)] = BJy
on the other side, so that finally = A” and
ox (X) = ATy (V).
Now, sinceA has rankm, it can be written, up to a permutation of its columns, under the form
A - [AO ’ AoM] 5
where A, is an invertiblem x m matrix, andM is anm x (n — m) matrix. Supposé/ # 0
and express equivalently as

Xy | jn—m
so that
Y = AX
= Ao Xo + A)M X,
— 4X,
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with X = X, + M X,. SinceA, is square and invertible, it follows that
oy (V) = 43705 (X)

so that

ox = ATy (V)
= ATA 0% (f( )
_| Al 1, (%
- { MT AL ] A 0% (X>
I ~
B { MT ] ox (X)
b% (X )
MT¢% (X )
As X has independent components; can be decomposed as

on=[ oo ]

Lt

¢x, (X1) = M, (Xo) -
As X, and X; are independent, this is not possible unlgéts= 0, which is the equality condi-
tion expressed in Theorgm b.1.
Reciprocally, if these conditions are met, then obviously, equality is reached in inequality

4.3). O

Case of equality in inequality [4.2). Assuming that components &f are mutually indepen-
dent, the case of equality in inequalify (4.2) is characterized as follows:

so that finally

[ P, (Xo) }

x, (X1)

from which we deduce that

Theorem 5.2. Equality holds in inequality (4]2) if and only if each compon&nbf X verifies
at least one of the following conditions

a) X; is Gaussian,

b) X, can be recovered from the observationtot= AX, i.e. X; is ‘extractable’,

c) X; corresponds to a null column of.

Proof. According to the (first) proof of inequality (4.2), equality holds, as previously, if and
only if there exists a matriK’ such that

(5.1) oy (Y) = Cox(X),
which implies that/y = CJxC®. Then, as by assumptiofy.' = AJ; At C = Jy AJ'is
such a matrix. Denotingx (X) = Jx'¢x (X) andgy (Y) = J; '¢y (Y), equality [(5.1) writes
(5.2) Oy (Y) = Adx(X).
The rest of the proof relies on the following two well-known results:

e if X is Gaussian then equality holds in inequaljty [4.2),
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e if Ais a non singular square matrix, equality holds in inequdlity (4.2) irrespectively of
X.

We thus need to isolate the ‘invertible part’ of matrdx In this aim, we consider the pseu-
doinversed” of A and form the producti# A. This matrix writes, up to a permutation of rows
and columns
I 0 0
0 M O

0 0 O
wherel is then; x n, identity, M is an,; X n,; matrix and0 is an, x n, matrix withn, =
n — n; — n,; (¢ stands for invertiblen,; for not invertible and: for zero). Remark that, is
exactly the number of null columns of. Following [6,7],n; is the number of ‘extractable’
components, that is the number of component& dhat can be deduced from the observation
Y = AX. We provide here an alternate characterization;,afs follows: the set of solutions of
Y = AX is an affine set

X = A*Y + (I — A*A)Z = Xo+ (I — A*A)Z,

where X, is the minimum norm solution of the linear systém= AX andZ is any vector.
Thus,n; is exactly the number of components sharedsbgnd X,
The expression ofi* A allows us to expresR” as the direct suriR” = R’ @ R™ @ R?, and
to express accordingl)X asX = [XiT,X}fi,XﬂT. Then equality in inequalit.2) can be
studied separately in the three subspaces as follows:
(1) restricted to subspad®’, A is an invertible operator, and thus equality holds without
condition, . .
(2) restricted to subspad®*, equality ) writesV ¢( X ;) = ¢(M X,,;) that means that
necessarily all components af,; are gaussian,
(3) restricted to subspad, equality holds without condition.

A*A =

9

OJ

As a final note, remark that, althoughis supposed full ranky; < rankA. For instance,
consider matrix
s { 10 0}

011

for whichn; = 1 andn,,; = 2. This example shows that the notion of ‘extractability’ should not

be confused with the invertibility restricted to a subspatés clearly invertible in the subspace

x3 = 0. However, such a subspace is irrelevant here since, as we deal with continuous random
input vectors, X has a null probability to belong to this subspace.
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