
1 / 4

IN3R11 – TP4 2010/2011 v1
Sujet (à n’imprimer qu’une seule fois par poste de travail)

Durée : 3 h

1 OBJECTIFS

• Maîtriser l’héritage et la rédéfinition
• Maîtriser les méthodes de la classe Object
• Savoir aussi structurer une application avec des paquetages
• Attention ! Suivre scrupuleusement les instructions données dans ce sujet, et dans l’ordre.

2 TRAVAIL A REALISER

Nota : le travail demandé doit être terminé, en séance ou, à défaut, hors séance.

2.1 Créer un répertoire de travail

Si pas fait antérieurement, fermer tous les projets ouverts dans Bluej ou, si Bluej n'est pas ouvert, le
lancer. Visualiser le sujet dans un navigateur pour bénéficier des liens ET en pdf pour qu’il soit
plus agréable à lire.
Créer un répertoire tp4 dans In3R11 sur votre compte. C'est dans ce répertoire que devront être
stockés tous les programmes Java et exercices relevant de ce tp.

2.2 Exercice 1 : Projet "DBShapes" (héritage, redéfinition, Object)

Cet exercice va consister à structurer une application affichant des formes géométriques.

2.2.1 Ouvrir le projet

Télécharger le fichier DBShapes.jar lié à cet énoncé, et l’enregistrer dans le répertoire tp4

précédemment créé.

Lancer BlueJ et ouvrir, le fichier .jar sauvegardé ci-dessus. [Ouvrir non-BlueJ].

2.2.2 Découvrir et essayer le projet DBShapes

• Ce projet est quasiment identique au projet Picture du TP2. Instanciez la classe Picture et
vérifiez le dessin obtenu par rapport aux instructions de la méthode draw() de cette classe.

• On souhaite modifier les méthodes moveRight() , moveLeft() , moveUp() ,
moveDown() de la classe Circle pour qu’elles ne déplacent le cercle que de 10 (au lieu
de 20). Est-ce souhaitable d’avoir à effectuer cette modification 4 fois ?

• Déclarez au début de la classe Circle une constante nommée STEP et utilisez-la dans ces 4
méthodes pour que ce genre de modifications soit plus aisé à l’avenir.

• On désire maintenant effectuer la même amélioration dans les classes Square et
Triangle . Est-ce souhaitable d’avoir à effectuer cette modification 3 fois ?
Plus généralement, parcourez le code source des classes Circle , Square , et Triangle .
Que remarquez-vous ? (le paragraphe suivant apporte une solution)

2 / 4

2.2.3 Restructurer ce projet

Comme vous l’avez compris, beaucoup de points communs existent entre ces 3 classes, et il faut
évidemment utiliser l’héritage pour éviter autant de duplication de code. A la fin de l’exercice, on
devrait se retrouver dans cette situation :

Créez une nouvelle classe DBShape ; remplacez tout ce qui s’y trouve par un copier/coller de
l’intégralité de la classe Circle ; avant de compiler, remplacez tous les « Circle » par des
« DBShape ».

2.2.4 La classe DBShape
Elle comprendra uniquement :

• les attributs communs

• un constructeur pour les initialiser (int, int, String) (forme invisible au début)

• un constructeur sans paramètres (0, 0, "black")

• les méthodes communes (donc non spécifiques)

• Compilez DBShape et voir le point suivant qui résout le problème pour trouver …Spec .
(aide : Spec veut dire spécifique)

• 2 méthodes …Spec « bidon » (puisqu’on ne sait pas quelles instructions écrire tant qu’on ne
connaît pas précisément la forme). Elles ne sont pas censées être appelées, mais seront
redéfinies au 2.2.5. Il vaut mieux y mettre un message du style System.out.println(
"Erreur du programmeur !"); pour être prévenu si ça se produisait quand-même …
Cette façon de faire peu séduisante sera améliorée dans un prochain TP.

2.2.5 Les sous-classes
Elles comprendront uniquement :

• les attributs spécifiques, le constructeur avec paramètres (à modifier), et le constructeur sans
paramètre (ne pas changer son comportement !)

• les 2 méthodes …Spec qu’on peut désormais écrire ou plutôt redéfinir .
Soit ça compile mais on a « Erreur du programmeur » (la redéfinition est-elle bien signalée ?)
Soit ça ne compile pas car on ne peut redéfinir une méthode privée (corrigez, mais pas public)
Si ça ne compile toujours pas (droits d’accès trop faibles), corrigez, mais pas public .

2.2.6 Tester les modifications
Tester le bon fonctionnement de cette « application ». Tout fonctionne comme avant ?
Tester « la bonne programmation » en cliquant sur « Exécuter les tests ». Tout est vert ?

Aide-mémoire

Les constructeurs sans paramètre
doivent utiliser les valeurs suivantes.

Circle : 60, 60, yellow, 35
Square : 60, 60, blue, 35
Triangle : 50, 50, red, 20, 40

3 / 4

2.2.7 La comparaison de formes
• Redéfinissez uniquement dans DBShape la méthode equals en traitant tous les cas vus au

TD4. On considérera que la visibilité n’intervient pas dans le résultat de cette méthode.
N’oubliez pas de signaler la redéfinition. Compilez.

• Ajoutez à la fin de la méthode draw() de Picture un affichage du résultat de la
comparaison entre sun et sun2 (ces 2 cercles ont des caractéristiques différentes …)

• Supprimez le changement de couleur de sun2 et déplacez-le horizontalement de 180 au lieu de
160. La comparaison est-elle maintenant vraie ?

• Modifiez la taille de sun2 d’un facteur 2.5 au lieu de 1.5. Testez.
Résultat de la comparaison ? Vous trouvez ça souhaitable ?
Corrigez ce défaut en redéfinissant equals dans les sous-classes. Testez.
Que se passerait-il si on testait aDiameter en premier dans equals() de Circle ?

• Attention ! Une mauvaise méthode equals peut créer des problèmes d’affichage dans Canvas .

2.2.8 Le comptage de formes et le Garbage Collector

• Ajoutez ce qu’il faut dans DBShape pour compter le nombre de formes (en + et en - !), tout en
affichant un message utilisant toString() de Object (Destruction de Circle@...)
(Ce compteur nbShapes devra rester privé ==> accesseur) Ne rien tester pour l’instant.

• La redéfinition (optionnelle) de toString() dans les 3 sous-classes (sans duplication de code !)
permettrait de montrer les valeurs des attributs … (Destruction de Circle@...:10,10,red,30)

• Ajoutez au début de la méthode draw() de Picture un affichage du nombre de formes,
précédé du message p1: . Essayez ; est-ce bien p1:0 ?

• Ajoutez à la fin de la méthode draw() de Picture un affichage du nombre de formes,
précédé du message p2: . Essayez ; est-ce bien p2:5 ?

• Créez une deuxième Picture . Est-ce toujours p1:0 et p2:5 ? Mais heureusement que non !

• Tout à la fin de draw() , mettez ensuite à null wall , roof , et sun2 pour que le Garbage
Collector puisse détruire ces objets, puis réaffichez le nombre de formes, précédé du
message p3: . Est-ce bien p3:2 ?

• Non ? Mais c’est normal. Le GC ne se déclenche que lorsque la JVM a besoin de mémoire ; il
faut donc l’appeler explicitement par System.gc() . Ajoutez un dernier affichage à la fin,
précédé du message p4: . Est-ce bien p4:2 ?

• Non ? Mais c’est normal s’il y a encore des références sur ces 3 objets ; et c’est le cas ! On
peut s’en douter en regardant le dessin où aucun objet n’a disparu. On peut s’en convaincre en
regardant le code de Canvas.draw() qui mémorise effectivement une référence vers l’objet
à dessiner.
Il faut donc faire précéder (pourquoi pas suivre ?) les affectations à null par des erase()
qui auront le double effet de supprimer toute référence aux objets et de les effacer sur le
dessin ! Retestez. Créez une deuxième Picture . Est-ce bien p4:2 ? puis p4:4 ?

• Non ? Mais c’est normal. Le GC a seulement noté les objets qui doivent être « finalisés » c’est-
à-dire détruits, mais il n’a pas eu le temps de le faire effectivement. Ajoutez l’instruction
pause(100); pour lui laisser 100ms avant l’instruction suivante. Est-ce bien p4:2 puis p4:4 ?

• Oui ? Mais on perd 100ms à chaque fois, alors que le GC n’en a besoin que d’une ou deux …
Et si vous faites une pause de 2ms tout en lançant un autre programme en parallèle, on ne
pourra garantir que le GC aura le temps d’effectuer toutes les finalisations possibles.
 Il faut donc le lui demander explicitement en remplaçant la pause par System.
runFinalization() . Retestez. Ouf !

4 / 4

2.2.9 Les paquetages (relire éventuellement ce résumé de cours)

• Séparez « l’application » du reste des classes « utilitaires ».

• Pour cela, créez un nouveau projet paquetages [menu Projet, choix Nouveau projet...].

• Ouvrez une fenêtre Terminal sous Linux, allez dans le répertoire de ce tp, et listez le contenu
du répertoire paquetages .

• Créez un nouveau paquetage application [menu Edition, choix Nouveau paquetage...].

• Double-cliquez sur le nouveau paquetage et ajoutez la classe Picture obtenue au 2.2.8
[menu Edition, choix Copier une classe...].

• Observez la ligne qui a été ajoutée au début de la classe Picture et dans la fenêtre Terminal,
listez le répertoire paquetages , ainsi que le sous-répertoire application .

• Recommencez l’opération en créant un nouveau paquetage graphique pour les 5 autres
classes. Compilez.

• Observez la ligne qui a été ajoutée au début de chaque classe et dans la fenêtre Terminal, listez
le répertoire paquetages , ainsi que le sous-répertoire graphique .

• Retournez dans le paquetage application , et compilez. Que se passe-t-il ?
Ajoutez ce qu’il faut pour corriger ce défaut (uniquement les classes indispensables).
Compilez. Un problème d’accès ?

• Le mode protected nous a permis d’appeler erase() car nous étions dans le même
paquetage, ce qui n’est plus le cas. Passez erase() en public , recompilez et testez.

2.3 Terminer la séance
Si pas fait antérieurement, sauvegarder les projets ouverts, puis fermer BlueJ [menu Projet, choix
Quitter]. Si besoin, envoyer par mél à votre binôme, en fichiers attachés, tous les projets de ce tp
(exportés sous forme de fichiers .jar). Se déloger.

Ce sujet a été élaboré par Denis Bureau.

