SIGNAL V4 - INRIA version: Reference Manual (working version)

Loïc Besnard ${ }^{1}$ Thierry Gautier ${ }^{2}$ Paul Le Guernic ${ }^{3}$

March 16, 2004

[^0]
Abstract

SIGNAL is a synchronized data flow language designed for programming real-time systems. A SIGNAL program defines both data and control processing, from a system of equations, the variables of the system are signals. These equations can be organized as sub-systems (or processes). A signal is a sequence of values which has a clock associated with; this clock specifies the instants at which the values are available.

This reference manual defines the syntax and the semantics of the INRIA version of the SIGNAL V4 language. The original official definition of the SIGNAL V4 language was published in french in june 1994. It is available at the following address: ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz It was defined together with François Dupont, from TNI ${ }^{1}$. Some of the evolutions described in this document have been defined too in cooperation with François Dupont. However, the SIGNAL version implemented by TNI in the SILDEX environment is slightly different in some aspects from the version described here. A description of SILDEX may be found at the following address: http://www.tni-valiosys.com/ The definition of the SIGNAL version described in this manual is subject to evolutions. It is (partly) implemented in the INRIA Polychrony environment. Consult the following site: http://www.irisa.fr/espresso/Polychrony

[^1]
Main evolutions of this document

From version dated December 18, 2002 to the present one:

- correction of errors and update of implementation notes;
- addition of the predefined function indices (cf. section IX-10, page 156) and other precisions related to spatial processing (cf. chapter IX, page 147).

Table of contents

A INTRODUCTION 11
I Introduction 13
I-1 Main features of the language 13
I-1.1 Signals 13
I-1.2 Events 14
I-1.3 Models 14
I-1.4 Modules 14
I-2 Model of sequences 14
I-3 Static semantics 14
I-3.1 Causality 15
I-3.2 Explicit definitions 15
I-4 Subject of the reference 15
I-5 Form of the presentation 16
II Lexical units 19
II-1 Characters 19
II-1.1 Sets of characters 19
II-1.2 Encodings of characters 22
II-2 Vocabulary 23
II-2.1 Names 23
II-2.2 Boolean constants 23
II-2.3 Integer Constants 24
II-2.4 Real constants 24
II-2.5 Character constants 24
II-2.6 String constants 25
II-2.7 Comments 25
II-3 Reserved words 25
B THE KERNEL LANGUAGE 27
III Model of sequences 29
III-1 Syntax 29
III-2 Events 30
III-3 Traces 31
III-3.1 Definition 31
III-3.2 Partial observation of a trace 32
III-3.3 Prefix order on traces 32
III-3.4 Product of traces 33
III-3.5 Reduced trace 33
III-4 Flows 34
III-4.1 Equivalence of traces 35
III-4.2 Partial flow 36
III-4.3 Flow-equivalence 36
III-5 Processes 36
III-5.1 Definition 36
III-5.2 Partial observation of a process 37
III-5.3 Composition of processes 37
III-5.4 Order on processes 37
III-6 Semantics of basic Signal terms 39
III-6.1 Declarations 39
III-6.2 Monochronous processes 39
2-a Static monochronous processes 40
2-b Dynamic monochronous processes: the delay 40
III-6.3 Polychronous processes 40
3-a Sub-signals 40
3-b Merging of signals 41
III-6.4 Composition of processes 41
III-6.5 Restriction 41
III-7 Composite signals 41
III-7.1 Tuples 42
III-7.2 Arrays 44
III-8 Classes of processes 50
III-8.1 Iterations of functions 50
III-8.2 Endochronous processes 50
III-8.3 Deterministic processes 50
III-8.4 Reactive processes 51
III-9 Composition properties 52
III-9.1 Asynchronous composition of processes 52
III-9.2 Isochrony 52
III-9.3 Endo-isochrony 52
III-10 Clock system and implementation relation 52
III-11 Transformation of programs 53
IV Calculus of synchronizations and dependences 55
IV-1 Clocks 55
IV-1.1 Clock homomorphism 55
1-a Monochronous definitions 56
1-b Polychronous definitions 56
1-c Hiding 56
1-d Composition 56
IV-1.2 Verification 56
IV-1.3 Clock calculus 57
3-a Monochronous definitions 57
3-b Polychronous definitions 57
3-c Hiding 57
3-d Composition 57
3-e Static and dynamic clock calculus 58
IV-2 Context clock 58
IV-3 Dependences 59
IV-3.1 Formal definition of dependences 60
IV-3.2 Implicit dependences 61
2-a Monochronous definitions 61
2-b Polychronous definitions 61
IV-3.3 Micro automata 62
3-a Definition of micro automata 62
3-b Construction of basic micro automata 63
C THE SIGNALS 67
V Domains of values of the signals 69
V-1 Scalar types 69
V-1.1 Synchronization types 70
V-1.2 Integer types 70
V-1.3 Real types 71
V-1.4 Complex types 72
V-1.5 Character type 73
V-1.6 String type 73
V-2 External types 73
V-3 Enumerated types 74
V-4 Array types 75
V-5 Tuple types 76
V-6 Structure of the set of types 78
V-6.1 Set of types 78
V-6.2 Order on types 79
V-6.3 Conversions 81
3-a Conversions between comparable types 81
3-b Conversions toward the domain "Synchronization-type" 82
3-c Conversions toward the domain "Integer-type" 82
3-d Conversions toward the domain "Real-type" 83
3-e Conversions toward the domain "Complex-type" 83
3-f Conversions toward the types character and string 83
3-g Conversions of arrays 84
3-h Conversions of tuples 84
V-7 Denotation of types 84
V-8 Declarations of constant identifiers 85
V-9 Declarations of sequence identifiers 87
V-10 Declarations of state variables 88
VI Expressions on signals 91
VI-1 Systems of equations on signals 91
VI-1.1 Elementary equations 91
1-a Equation of definition of a signal 92
1-b Equation of multiple definition of signals 93
1-c Equation of partial definition of a signal 94
1-d Equation of partial definition of a state variable 95
1-e Equation of partial multiple definition 96
VI-1.2 Invocation of a model 97
2-a Macro-expansion of a model 97
2-b Positional macro-expansion of a model 99
2-c Call of a model 100
2-d Expressions of type conversion 100
VI-1.3 Nesting of expressions on signals 102
VI-2 Elementary expressions 104
VI-2.1 Constant expressions 105
VI-2.2 Occurrence of signal or tuple identifier 106
VI-2.3 Occurrence of state variable 106
VI-3 Dynamic expressions 107
VI-3.1 Initialization expression 107
VI-3.2 Simple delay 108
VI-3.3 Sliding window 109
VI-3.4 Generalized delay 110
VI-4 Polychronous expressions 112
VI-4.1 Merging 112
VI-4.2 Extraction 113
VI-4.3 Memorization 114
VI-4.4 Variable clock signal 115
VI-4.5 Counters 115
VI-4.6 Properties of polychronous expressions 117
VI-5 Constraints and expressions on clocks 117
VI-5.1 Expressions on clock signals 117
1-a Clock of a signal 117
1-b Clock extraction 118
1-c Empty clock 119
VI-5.2 Operators of clock lattice 119
VI-5.3 Relations on clocks 121
VI-6 Identity equations 122
VI-7 Boolean synchronous expressions 123
VI-7.1 Expressions on Booleans 123
1-a Negation 123
1-b Operators of Boolean lattice 123
VI-7.2 Boolean relations 124
VI-8 Synchronous expressions on numeric signals 127
VI-8.1 Binary expressions on numeric signals 127
VI-8.2 Unary operators 128
VI-9 Synchronous condition 129
VII Expressions on processes 131
VII-1 Elementary processes 131
VII-2 Composition 131
VII-3 Hiding 132
VII-4 Confining with local declarations 133
VII-5 Labelled processes 134
VII-6 Choice processes 135
D THE COMPOSITE SIGNALS 141
VIII Tuples of signals 143
VIII-1 Constant expressions 143
VIII-2 Enumeration of tuple elements 143
VIII-3 Denotation of field 144
VIII-4 Destructuration of tuple 144
VIII-5 Equation of definition of tuple component 145
IX Spatial processing 147
IX-1 Dimensions of arrays and bounded values 148
IX-2 Constant expressions 149
IX-3 Enumeration 149
IX-4 Concatenation 149
IX-5 Repetition 150
IX-6 Definition of index 151
IX-7 Array element 151
IX-7.1 Access without recovery 152
IX-7.2 Access with recovery 152
IX-8 Extraction of sub-array 153
IX-9 Array restructuration 154
IX-10 Generalized indices 156
IX-11 Extended syntax of equations of definition 157
IX-12 Cartesian product 157
IX-13 Iterations of processes 158
IX-14 Sequential definition 163
IX-15 Sequential enumeration 164
IX-16 Operators on matrices 165
IX-16.1 Transposition 165
IX-16.2 Matrix products 165
2-a Product of matrices 166
2-b Matrix-vector product 166
2-c Vector-matrix product 167
2-d Scalar product 167
X Extensions of the operators 169
X-1 Rules of extension 169
X-2 Examples 170
E THE MODULARITY 171
XI Models of processes 173
XI-1 Classes of process models 173
XI-1.1 Processes 175
XI-1.2 Actions 175
XI-1.3 Nodes 175
XI-1.4 Functions 176
XI-2 Local declarations of a process model 176
XI-3 Declarations of labels 178
XI-4 References to signals with extended visibility 178
XI-5 Interface of a model 179
XI-6 Graph of a model 180
XI-6.1 Specification of properties 181
XI-6.2 Dependences 182
XI-7 Directives 184
XI-8 Models as types and parameters 187
XII Modules 191
XII-1 Declaration and use of modules 191
XIII Intrinsic processes 195
XIII-1 Assertions 195
XIII-2 "Left true" process 196
XIII-3 Mathematical functions 196
XIII-4 Complex functions 197
XIII-5 Input-output functions 198
F ANNEX 199
XIV Grammar of the SIGNAL language 201
XIV-1 Lexical units 201
XIV-1.1 Characters 201
XIV-1.2 Vocabulary 203
XIV-2 Domains of values of the signals 205
XIV-2.1 Scalar types 205
XIV-2.2 External types 206
XIV-2.3 Enumerated types 207
XIV-2.4 Array types 207
XIV-2.5 Tuple types 207
XIV-2.6 Denotation of types 208
XIV-2.7 Declarations of constant identifiers 208
XIV-2.8 Declarations of sequence identifiers 208
XIV-2.9 Declarations of state variables 209
XIV-3 Expressions on signals 209
XIV-3.1 Systems of equations on signals 209
XIV-3.2 Elementary expressions 211
XIV-3.3 Dynamic expressions 212
XIV-3.4 Polychronous expressions 213
XIV-3.5 Constraints and expressions on clocks 214
XIV-3.6 Constraints on signals 215
XIV-3.7 Boolean synchronous expressions 215
XIV-3.8 Synchronous expressions on numeric signals 216
XIV-3.9 Synchronous condition 217
XIV-4 Expressions on processes 217
XIV-4.1 Composition 217
XIV-4.2 Hiding 218
XIV-4.3 Confining with local declarations 218
XIV-4.4 Labelled processes 218
XIV-4.5 Choice processes 218
XIV-5 Tuples of signals 219
XIV-5.1 Enumeration of tuple elements 219
XIV-5.2 Denotation of field 219
XIV-5.3 Equation of definition of tuple component 220
XIV-6 Spatial processing 220
XIV-6.1 Enumeration 221
XIV-6.2 Concatenation 221
XIV-6.3 Repetition 221
XIV-6.4 Definition of index 221
XIV-6.5 Array element 222
XIV-6.6 Extraction of sub-array 222
XIV-6.7 Array restructuration 222
XIV-6.8 Extended syntax of equations of definition 222
XIV-6.9 Cartesian product 223
XIV-6.10Iterations of processes 223
XIV-6.11 Sequential definition 224
XIV-6.12Sequential enumeration 224
XIV-6.13 Operators on matrices 225
XIV-7 Models of processes 225
XIV-7.1 Classes of process models 225
XIV-7.2 Local declarations of a process model 226
XIV-7.3 Declarations of labels 226
XIV-7.4 References to signals with extended visibility 227
XIV-7.5 Interface of a model 227
XIV-7.6 Graph of a model 227
XIV-7.7 Directives 228
XIV-7.8 Models as types and parameters 229
XIV-8 Modules 229
XIV-8.1 Declaration and use of modules 229
List of figures 233
List of tables 235
Index 237

Part A

INTRODUCTION

Chapter I

Introduction

The Signal language has been defined at INRIA/IRISA with the collaboration and support from the CNET. This reference manual defines the syntax and semantics of the INRIA version of the language, which is an evolution of the V4 version. The V4 version resulted from a synthesis of experiments made by IRISA and by the TNI company. An environment of the SIGNAL language can be built in a style and in a way it is not the objective of this manual to define. However, such an environment will have to provide functions for reading and writing programs in the form specified in this manual; the translation scheme will give the semantics of the texts built in this environment.

I-1 Main features of the language

A program expressed in the SIGNAL language defines some data and control processing from a system of equations, the variables of which are identifiers of signals. These equations can be organized in subsystems (or processes). A model of process is a sub-system which may have several using contexts; for that purpose, a model is designated by an identifier. It can be provided with parameters specifying data types, initialization values, array sizes, etc. In addition, sets of declarations can be organized in modules.

I-1.1 Signals

A signal is a sequence of values, with which a clock is associated.

1. All the values of a signal belong to a same sub-domain of a domain of values, designated by their common type. This type can be:

- predefined (the Booleans, sub-domains of the Integers, sub-domains of the Reals, sub-domains of the Complex...),
- defined in the program (Arrays, Tuples),
- or referenced in the program but known only by the functions that handle it (Externals).

2. The clock of a signal allows to define, relatively to a totally ordered set containing at least as much elements as the sequence of values of this signal, the subset of instants at which the signal has a value. A pure signal, the value of which belongs to the singleton event, can be associated with each signal. This pure signal is present exactly at the presence instants of the signal; the event type is a sub-domain of the Booleans. By extension, this pure signal will be called clock. A pure signal is its own clock. In a process, the clock of a signal is the representative of the equivalence
class of the signals with which this signal is synchronous (synchronous signals have their values at the same instants).
3. These values are expressed in equations of definition and in constraints.

I-1.2 Events

A valuation associates, at a logical instant of the program (transition of the automaton), a value with a variable.

An event is a set of simultaneous valuations defining a transition of the automaton. In an event, a variable may have no associated value: it will be said that the corresponding signal is absent and its "value" will be written \perp. An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuation) in an event results from the solving of a system of equations in \mathcal{F}_{3}, the field of integers modulo 3 .

The value associated with a variable in an event results from the evaluation of its expression of definition (thus it should not be implicit: circular definitions of non Boolean signals are not allowed).

I-1.3 Models

A model associates with an identifier a system of equations with local variables, sub-models and external variables (free variables). The parameters of a model are constants (size of arrays, initial values of signals, etc.).

A model may be defined outside the program; in that case, it is visible only through its interface. Calling a model defined in a program is equivalent to replacing this call by the associated system of equations (macro-substitution).

Invoking a model defined outside the program can produce side-effects on the context in which the program is executed; these effects can be directly or indirectly perceived by the program and they can affect the set of instants or the set of values of one or more interface signals. Such a model will be said non functional (for example a random "fonction" is such a non functional model).

I-1.4 Modules

The notion of module allows to describe an application in a modular way. In particular, it allows the definition and use of libraries written in Signal or external ones, and constitutes an access interface to external objects.

I-2 Model of sequences

A program expressed in the SIGNAL language establishes a relation between the sequences that constitute its external signals. The set of programs of the Signal language is a subset of the space of subsets of sequences (part B, chapter III).

I-3 Static semantics

The relations on sequences presented in the formal model describe a set of programs among them are only considered as legal programs those for which the ordering of each set of instants is in accordance
with the ordering induced by the dependencies (causality principle), and which do not contain implicit definitions of values of non Boolean signals.

I-3.1 Causality

A real-time program has to respect the causality principle: according to this principle, the value of an event at some instant t cannot depend on the value of a future event. The respect of this principle is obtained in Signal language by the implicit handling of time: the user has a set of terms that allow him/her to make reference to passed or current values of a signal, not to future ones.

I-3.2 Explicit definitions

The synchronous hypothesis on which is based the definition of the Signal language allows to develop a calculus on the time considered as a pre-order in a discrete set.

I-4 Subject of the reference

This manual defines the syntax, the semantics, and formal resolutions applied by a compiler to a program expressed in the Signal language. The Signal language has four classes of syntactic structures:

1. The structures of the kernel language for which a formal definition is given in the model of sequences. The kernel language contains a minimal set of operators on sequences of signals of type event and boolean on which the temporal structure of the program is calculated; it contains also a mechanism allowing to designate signals of external types and non interpreted functions aplying to these signals. Removing anyone of these structures would strictly reduce the expressiveness of the language.
2. The structures of the minimal language that can be subdivided in three sub-classes:
(a) the non Boolean types and the associated operators, which allow to write a program completely in the Signal language; the open vocation of the Signal language is nevertheless clearly asserted: it is possible to use external functions/processes, defined in another language, or even realized by some hardware component; this is even advised when specific properties exist, that are not handled by the formal calculi made possible in the Signal language;
(b) the syntactic structures providing to the language an extensability necessary for its specialization for a particular application domain, and for its opening toward other environments or languages;
(c) the operators and constructors of general use providing a programming style that favours the development of associated methodologies and tools.
3. The standard (or intrinsic) process models which form a library common to all the compilers of the Signal language;
4. The specific process models which constitute specific extensions to the standard library.

This manual describes the structures of the kernel language and of the minimal language.

I-5 Form of the presentation

Three classes of terms are distinguished for the description of the syntax of the language:

- the vocabulary of the lexical level: each one of the terminals designates an enumerated set of indivisible sequences of characters;
- the lexical structures: the Terminals of the syntactic level are defined, at a lexical level, by rules in a grammar the vocabulary of which is the union of the terminals sets; no implicit character (separators, for instance) is authorized in the terms constructed following these rules;
- the syntactic structures: the NON-TERMINALS are defined, at a syntactic level, by rules in a grammar the vocabulary of which is composed of the Terminals; any number of separators can be inserted between two Terminals.

Every unit of the language is introduced and then described, individually or by category, with the help of all or part of the following items. Generally, a generic term representing the unit is given:
$\operatorname{Expression}\left(E_{1}, E_{2}, \ldots\right)$
where E_{1}, E_{2}, \ldots are formal arguments of the generic term. This representative is used to define the general properties of the unit in the rubrics that describe them.

The grammar gives the context-free syntax of the considered structure in one of the following forms:

1. Context-free syntax

```
STRUCTURE ::=
    DERIVATION1
    DERIVATION2
    | ...
Terminal ::=
        DERIVATION1
    | DErivation2
    | ...
terminal ::=
    SET1
    SET2
    | ...
```

Derivation1, Derivation2 are rewritings of the variable STRUCTURE (respectively, of the variable Terminal). Set1, Set2 are rewritings of the variable terminal; they are Derivations reduced to one single element (cf. below).
Each Derivation is a sequence of elements, each of them can be:

- a set of characters, written in this typography (lexical level only),
- a terminal symbol (of the syntactic grammar) composed of letters, in this typography, for which only the lower case form is explicited in the grammar;
- a terminal symbol (composed of other acceptable characters), in this typography,
- a Terminal, in this typography,
- a syntactic STRUCTURE, in this typography (syntactic level only),
- a non empty sequence of elements in their respective typography, with or without comment in this typography, respectively in the following forms:

- element $\{\text { symbol element }\}^{*}$
 - \{ element $\}^{+}$

- an optional element, denoted [element],
- a difference of sets, denoted \{element $\mathbf{~} \backslash$ element 2 \}, allowing to derive the texts of element 1 that are not texts of element2.

The syntactic structures may appear either in the plural, or in the singular, following the context. They may be completed by a contextual information, in this typography. Finally, several derivations may be placed on a same line.

2. Profile

This item describes the sets of input and output signals of the expression. This description is done with the notations ? (E) that designates the list of input signals (or ports) of E, and ! (E) that designates the list of output signals (or ports) of E. The notation ? $\left\{a_{1}, \ldots, a_{n}\right\}$ (respectively, $!\left\{a_{1}, \ldots, a_{n}\right\}$) designates explicitly the set of input ports (respectively, output ports) a_{1}, \ldots, a_{n}. Finally, the set operations $A \cap B, A \cup B$ and $A-B$ (the latter to designate the set of elements of A that are not in B).

3. Types

This item describes the properties of the types of the arguments using equations on the types of value of the signals. The notation $\tau(E)$ is used to designate the type (domain of value) of the expression E. Given a process model with name P (cf. part E, section XI-1, page 173), the notations $\tau(? P)$ and $\tau(!P)$ are used to designate respectively the type of the tuple formed by the list of the inputs declared in the interface of the model, and the type of the tuple formed by the list of the outputs declared in this interface (cf. part E, section XI-5, page 179).
(a) EQUATION

4. Semantics

When the term cannot be redefined in the Signal language, its semantics is given in the space of equations on sequences.

5. Definition in SIGNAL

$\operatorname{TERM}\left(E_{1}, E_{2}, \ldots\right)$
is a generic term of the SIGNAL language, to which is equal, by definition, the representative of the current unit.

6. Clocks

This unit describes the synchronization properties of the arguments (values of Booleans and clocks) with a list of equations in the space of synchronization. The notation $\omega(E)$ is used to designate the clock of the expression E and the notation \hbar to designate the clock of the constant expressions, or more generally, the clock of the context. An equation has generally the following form:
(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$

7. Graph

This item defines the conditional dependencies between the arguments with a list of triples:
(a) $E_{1} \xrightarrow{E_{3}} E_{2}$

The signal E_{1} precedes the signal E_{2} at the clock which is the product of the clock of E_{1}, the clock of E_{2} and the clock representing the instants at which the Boolean signal E_{3} has the value true: at this clock, E_{2} cannot be produced before E_{1}.

8. Properties

This item gives a list of properties of the construction (for example, associativity, distributivity, etc.).
(a) Property

9. Examples

(a) One or more Examples in the Signal language illustrate the use of the unit.

Chapter II

Lexical units

The text of a program of the SIGNAL language is composed of words of the vocabulary built on a set of characters.

II-1 Characters

The characters used in the Signal language are described in this section (Character). They can be designated by an encoding which is usable only in the comments, the character or string constants, and the directives, as precised in the syntax.

1. Context-free syntax

Character ::= character | CharacterCode

II-1.1 Sets of characters

The set of characters (denoted character) used in the Signal language contains the following subsets:

1. Context-free syntax
character ::= name-char | mark | delimitor | separator | other-character
(i) The set name-char of characters used to build identifiers:

(a) Context-free syntax

```
name-char ::= letter-char | numeral-char | \(\quad-\)
letter-char ::=
        upper-case-letter-char | lower-case-letter-char | other-letter-char
upper-case-letter-char ::=
```

A	B	C	D	E	F	G	H	I
J	K	L	M	N	0	P	Q	R
S	T	U	V	W	\mathbf{X}	Y	Z	

lower-case-letter-char ::=

other-letter-char ::=

numeral-char ::=

Excepted for the reserved words of the language (keywords), the upper case and lower case forms of a same letter (letter-char) are distinguished. The reserved words should appear totally in lower case or totally in upper case.
(ii) The set mark composed of the distinctive characters of the lexical units, and the set of characters used in operator symbols:
(a) Context-free syntax

(iii) The delimitors are terminals of the syntactic level built with other characters than letters and numerals:

(a) Context-free syntax

(iv) The separators given here in their ASCII hexadecimal code (the space character and the longseparators are distinguished) :
(a) Context-free syntax
separator $::=\underset{\left\lvert\, \frac{\backslash \mathbf{x 2 0}}{\mid}\right. \text { space }}{\mid \text { long-separator }}$

(v) The other printable characters, usable in the comments, the directives and the denotations of constants. This subset, other-character, is not defined by the manual.

II-1.2 Encodings of characters

All the characters (printable or not) can be designated by an encoded form (CharacterCode) in the comments, the character constants, the string constants and the directives. The authorized codes are those of the norm ANSI of the language C (possibly extended with codes for other characters), plus the escape character $\backslash \%$ used in the comments. An encoded character is either a special character (escape-code), or a character encoded in octal form (OctalCode), or a character encoded in hexadecimal form (HexadecimalCode). The numeric codes (OctalCode and HexadecimalCode) contain at most the number of digits necessary for the encoding of 256 characters; the manual does not define the use of unused codes.

1. Context-free syntax

$$
\begin{aligned}
& \text { CharacterCode }::=\underset{\mid \text { escape-code }}{\text { OctalCode } \mid \text { HexadecimalCode }} \\
& \text { OctalCode }::=\backslash \text { octal-char [octal-char [octal-char]] }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HexadecimalCode }::=\backslash \mathbf{x} \text { hexadecimal-char [hexadecimal-char] } \\
& \text { hexadecimal-char }::=\text { numeral-char }
\end{aligned}
$$

II-2 Vocabulary

A text of the Signal language is a sequence of elements of the Terminal vocabulary (cf. section I-5, page 16) of the Signal language. Between these elements, separators can appear in any number (possibly zero). A Terminal of the Signal language is the longest sequence of contiguous terminals and a terminal is the longest sequence of contiguous characters that can be formed by a left to right analysis respecting the rules described in this chapter. A terminal can contain a distinctive mark; the next mark is not a character (it is used as escape mark):

1. Context-free syntax

$$
\text { prefix-mark }::=\backslash \text { start of CharacterCode }
$$

II-2.1 Names

A name allows to designate a directive, a signal (or a group of signals), a parameter, a constant, a type, a model or a module, in a context composed of a set of declarations. Two occurrences of a same name in distinct contexts can designate distinct objects.

A Name is a lexical unit formed by characters among the set composed of letter-chars plus the character \square_{-}plus numeral-chars; a Name cannot start with a numeral-char. A Name cannot be a reserved word. All the characters of a Name are significant.

1. Context-free syntax

Name $::=$ begin-name-char [$\{\text { name-char }\}^{+}$]

$$
\text { begin-name-char }::=\quad\{\text { name-char } \backslash \text { numeral-char }\}
$$

2. Examples

(a) a and A are distinct Names.
(b) X_25, The_password_12Xs3 are Names.

In this document we will sometimes designate a Name from a particular category X by Name- X.

II-2.2 Boolean constants

A Boolean constant is represented by true or false which are reserved words (hence they can also appear under their upper case forms, TRUE and FALSE .

1. Context-free syntax

$$
\text { Boolean-cst }::=\text { true } \mid \text { false }
$$

II-2.3 Integer Constants

An Integer-cst is a positive or zero integer in decimal representation composed of a sequence of numerals.

1. Context-free syntax

$$
\text { Integer-cst }::=\{\text { numeral-char }\}^{+}
$$

II-2.4 Real constants

A Real-cst denotes the approximate value of a real number. There are two sets of reals: the simple precision reals and the double precision ones that contain the former. The Real-csts are words of the lexical level so they cannot contain separators.

1. Context-free syntax

Real-cst ::= Simple-precision-real-cst
 | Double-precision-real-cst

Simple-precision-real-cst ::=
Integer-cst Simple-precision-exponent
| Integer-cst \quad. Integer-cst [Simple-precision-exponent]
(a Simple-precision-real-cst may have an exponent)

Double-precision-real-cst ::=

Integer-cst Double-precision-exponent

Integer-cst $\quad \cdot$ Integer-cst Double-precision-exponent
(a Double-precision-real-cst must have an exponent)
Simple-precision-exponent $::=\mathrm{e}$ Relative-cst $\mid \mathrm{E}$ Relative-cst
Double-precision-exponent ::= \mathbf{d} Relative-cst \mid D Relative-cst

Relative-cst ::= Integer-cst

2. Examples

(a) The notations contained in the following tables are simple precision representations respectively equivalent to the unit value and to the centesimal part of the unit.

	1 e 0	$1 \mathrm{e}+0$	$10 \mathrm{e}-1$
1.0	0.1 e 1	$0.1 \mathrm{e}+1$	$10.0 \mathrm{e}-1$

			$1 \mathrm{e}-2$
0.01	0.001 e 1	$0.001 \mathrm{e}+1$	$1.0 \mathrm{e}-2$

II-2.5 Character constants

A Character-cst is formed of a character or a code of character surrounded by two occurrences of the character ${ }^{\prime}$.

1. Context-free syntax

Character-cstCharacter ::= $\{$ Character \backslash character-spec-char \}

```
character-spec-char ::= \
```


II-2.6 String constants

A String-cst value is composed of a list of sequences of characters surrounded by two occurrences of the character \square

1. Context-free syntax
```
String-cst ::= { " [{ String-cstCharacter }}\mp@subsup{}{}{+}]="}\mp@subsup{}}{}{+
```

String-cstCharacter ::= \{ Character \backslash string-spec-char \}
string-spec-char $::=\underset{|=| \text { long-separator }}{\square}$

II-2.7 Comments

A comment may appear between any two lexical units and may replace a separator. It is composed of a seuqence of characters surrounded by two occurrences of the character $\%$.

1. Context-free syntax

```
Comment \(::=\%\left[\{\text { CommentCharacter }\}^{+}\right] \%\)
CommentCharacter ::= \(\{\) Character \(\backslash\) comment-spec-char \}
comment-spec-char \(::=\%\)
```


II-3 Reserved words

A reserved word must be either totally in lower case or totally in upper case. In this manual, only the lower case form (in general) appears explicitly in the grammar rules. It can be replaced, for each reserved word, by the corresponding upper case form.

The reserved words used by the Signal language are the following ones:

1. Context-free syntax

(operator is currently hidden in the syntax of the language.)

Part B

THE KERNEL LANGUAGE

Chapter III

Model of sequences

III-1 Syntax

We consider:

- $\mathbf{A}=\left\{a, a_{1}, \ldots, a_{n}, b, \ldots\right\}$
a denumerable set of typed variables (or ports);
- $\mathbf{F}=\left\{f, f_{1}, \ldots, g, \ldots\right\}$
a finite set of symbols of typed functions;
- $\mathbf{T}=\{$ event, boolean, $. ., t, \ldots\}$
a finite set of basic types (sets of values);
- $\mathbf{T T}=\bigcup_{n \in \mathbb{N}}[0 . . n] \rightarrow \mathcal{T} \mathcal{T}$
the set of array types,
- $\mathbf{S S}=\bigcup_{\mathbf{B} \in \mathbf{A}} \mathbf{B} \rightarrow \mathcal{T} \mathcal{T}$
the set of tuple types,
- $\mathcal{T} \mathcal{T}=\mathbf{T} \cup \mathbf{T T} \cup \mathbf{S S}$
the set of types.
- the symbols default, when, $\$$.

We define the following sets of terms, defining the basic syntax of the Signal language:

- $\mathbf{G D}=\{t a\}$
the set of declarations (association of a type with a variable);
- $\mathbf{G S S}=\left\{a_{n+1}:=: f\left(a_{1}, \ldots, a_{n}\right)\right\}$
the set of static synchronous generators (elementary processes), among them the set of generators on arrays and tuples are distinguished;
- $\mathbf{G D S}=\left\{a_{2}:=: a_{1}\right.$ \$ init $\left.a_{0}\right\}$
where a_{0} is a constant with same domain as a_{1}, the set of dynamic synchronous generators (elementary processes);
- $\mathbf{G E}=\left\{a_{3}:=: a_{1}\right.$ when $\left.a_{2}\right\}$ the set of extraction generators (elementary processes);
- $\mathbf{G M}=\left\{a_{3}:=: a_{1}\right.$ default $\left.a_{2}\right\}$
the set of merge generators (elementary processes);
- recursively the set PROC of syntactic processes as the least set containing:
- $\mathbf{G}=\mathbf{G D} \cup \mathbf{G S S} \cup \mathbf{G D S} \cup \mathbf{G E} \cup \mathbf{G M}$
the set of generators,
$-\mathbf{P C}=\{P 1 \mid P 2 \quad$ where $P 1$ and $P 2$ belong to $\mathbf{P R O C}\}$ (composition process),
- $\mathbf{P R}= \begin{cases}\mathrm{P} 1 / a \quad \text { (denoted also } \mathrm{P} 1 \text { where } a) \quad \text { where } \mathrm{P} 1 \text { belongs to PROC and } a\end{cases}$ belongs to A\} (restriction process).

III-2 Events

Let \mathbb{D} be the set of values that can be taken by the variables, an event is an occurrence of the simultaneous valuation of distinct variables (synchronous commmunication). The values respect the properties resulting from the interpretation of the terms which are used. In \mathbb{D}, the set of Boolean values, $\mathbb{B}=\{$ true, false $\}$, is distinguished.

For a variable $a_{i} \in A$, and a subset A_{j} of variables in A, we consider:
$\mathbb{D}_{a_{i}}$ the domain of values (Booleans, integers, reals...) that may be taken by a_{i}.
$\mathbb{D}_{A_{j}}=\bigcup_{a_{i} \in A_{j}} \mathbb{D}_{a_{i}}$
$\mathbb{D}_{A}=\mathbb{D}$
The symbol $\perp(\perp \notin \mathbb{D})$ is introduced to designate the absence of valuation of a variable. Then we denote:

$$
\begin{array}{r}
\mathbb{D}^{\perp}=\mathbb{D} \cup\{\perp\} \\
\mathbb{D}_{A_{i}}^{\perp}=\mathbb{D}_{A_{i}} \cup\{\perp\}
\end{array}
$$

Considering A_{1} a non empty subset of A, we call event on A_{1} any application

$$
e: A_{1} \rightarrow \mathbb{D}_{A_{1}}^{\perp}
$$

- $e(a)=\perp$ indicates that a has no value for the event m.
- $e(a)=v$ indicates, for $v \in \mathbb{D}_{a}$, that a takes the value v for the event e.
- $e\left(A_{1}\right)=\left\{x / a \in A_{1}, e(a)=x\right\}$

The set of events on $A_{1}\left(A_{1} \rightarrow \mathbb{D}{ }_{A_{1}}^{\perp}\right)$ is denoted $\mathcal{E}_{A_{1}}^{*}$.
By convention, 1_{e} is the single event defined on the empty set of ports \emptyset (it is called unit event).
The absent event on $A_{1}\left(A_{1} \rightarrow\{\perp\}\right)$ is denoted $\perp_{e}\left(A_{1}\right)$.
The set

$$
\mathcal{E}_{\subseteq A_{1}}^{*}=\bigcup_{A_{i} \subseteq A_{1}} \mathcal{E}_{A_{i}}^{*}
$$

is the set of all events on the subsets of A_{1}.
It is defined a special event on A, denoted \sharp, which is called blocking event (or impossible event).
The following notations are used:

$$
\begin{array}{r}
\mathcal{E}_{A_{1}}=\mathcal{E}_{A_{1}}^{*} \cup\{\sharp\} \\
\mathcal{E}_{\subseteq A_{1}}=\mathcal{E}_{\subseteq A_{1}}^{*} \cup\{\sharp\}
\end{array}
$$

Partial observation of an event

Let $A_{1} \subseteq A$ and $A_{2} \subseteq A$ two subsets of A and $e \in \mathcal{E}_{A_{1}}$ some event on A_{1}.
The restriction of e on A_{2}, or partial observation of e on A_{2}, is denoted $e_{\mid A_{2}}$:

$$
e_{\mid A_{2}} \in \mathcal{E}_{A_{1} \cap A_{2}}
$$

It is defined as follows:

- $\left(\left(A_{1} \cap A_{2} \neq \emptyset\right) \wedge(e \neq \sharp)\right) \Rightarrow \quad\left(\left(\forall a \in A_{1} \cap A_{2}\right) \quad\left(\left(e_{\mid A_{2}}\right)(a)=e(a)\right)\right)$
- $\left(\left(A_{1} \cap A_{2} \neq \emptyset\right) \wedge(e=\sharp)\right) \Rightarrow \quad\left(e_{\mid A_{2}}=\sharp\right)$
- $\left(A_{1} \cap A_{2}=\emptyset\right) \Rightarrow\left(e_{\mid A_{2}}=e_{\mid \emptyset}=1_{e}\right)$

Product of events

Let $e_{1} \in \mathcal{E}_{A_{1}}$ and $e_{2} \in \mathcal{E}_{A_{2}}$ two events.
Their product is denoted $e_{1} \cdot e_{2}$:

$$
e=e_{1} \cdot e_{2} \in \mathcal{E}_{A_{1} \cup A_{2}}
$$

It is defined as follows:

- $(e=\sharp) \Leftrightarrow\left(\left(\left(e_{1}=\sharp\right) \bigvee\left(e_{2}=\sharp\right)\right) \bigvee\left(e_{1 \mid A_{1} \cap A_{2}} \neq e_{2 \mid A_{1} \cap A_{2}}\right)\right)$
- $(e \neq \sharp) \Rightarrow \quad\left(\left(e_{\mid A_{1}}=e_{1}\right) \wedge\left(e_{\mid A_{2}}=e_{2}\right)\right)$

Corollary $1\left(\mathcal{E}_{\subseteq A_{1},,}, 1_{e}\right)$ is a commutative monoid.
The product operator \cdot is idempotent and \sharp is an absorbent (nilpotent) element.

III-3 Traces

A trace is a sequence of events (sequence of observations) without the blocking event.
For any subset A_{1} of A, we consider the following definition of the set $\mathcal{T}_{A_{1}}$ of traces on A_{1}.

III-3.1 Definition

$\mathcal{T}_{A_{1}}^{*}$ is the set of non empty sequences of events on A_{1}, composed of:

- finite sequences: they are the set of applications $\mathbb{N}_{<k} \rightarrow \mathcal{E}_{A_{1}}^{*}$ where $\mathbb{N}_{<k}$ represents the set of finite initial segments of \mathbb{N} (set of natural integers),
- infinite sequences: they are the set of applications $\mathbb{N} \rightarrow \mathcal{E}_{A_{1}}^{*}$.

The set

$$
\mathcal{T}_{\subseteq A_{1}}^{*}=\bigcup_{A_{i} \subseteq A_{1}} \mathcal{T}_{A_{i}}^{*}
$$

is the set of all non empty sequences of events on the subsets of A_{1}.
The empty sequence of events is denoted 0_{T}.
A trace on A_{1} is either a sequence of $\mathcal{T}_{A_{1}}^{*}$ or the empty sequence. The set of traces on A_{1} is:

$$
\mathcal{T}_{A_{1}}=\mathcal{T}_{A_{1}}^{*} \cup\left\{0_{T}\right\}
$$

The set of traces on subsets of A_{1} is:

$$
\mathcal{T}_{\subseteq A_{1}}=\mathcal{T}_{\subseteq A_{1}}^{*} \cup\left\{0_{T}\right\}
$$

The set of traces defined on A, denoted \mathcal{T}, is the union of the sets $\mathcal{T}_{A_{1}}$ for all subsets $A 1$ of A.
The single infinite sequence defined on $\mathcal{T}_{\emptyset}^{*}$ is denoted 1_{T} and is called unit trace. It is equal to the infinite repetition $\left(1_{e}\right)^{\omega}$ of the unit event 1_{e}.

The absent trace on $A_{1}\left(\mathbb{N} \rightarrow\left\{\perp_{e}\left(A_{1}\right)\right\}\right.$: the infinite sequence formed by the infinite repetition of $\perp_{e}\left(A_{1}\right)$) is denoted $\perp_{A_{1}}$.

Notations

The smallest set of variables of A on which a given trace T is defined (definition domain of the events composing T) is referred to as $\operatorname{var}(T)$. By convention, $\operatorname{var}\left(0_{T}\right)=A$.

For a trace T and t an integer, we will note frequently T_{t} the event $T(t)$ of T at the instant t, and we will note sometimes a_{t} the value of a variable a for this event.

III-3.2 Partial observation of a trace

Let $A_{1} \subseteq A$ and $A_{2} \subseteq A$ two subsets of A and $T \in \mathcal{T}_{A_{1}}$ some trace on A_{1}.
The restriction of T on A_{2}, or partial observation of T on A_{2}, is denoted $T_{\| A_{2}}$.
If $A_{1} \cap A_{2} \neq \emptyset, T_{\| A_{2}}$ is the trace T_{2} such that:

$$
\left\{\begin{array}{l}
\operatorname{dom}\left(T_{2}\right)=\operatorname{dom}(T) \\
\forall t \in \operatorname{dom}(T) \quad T_{2}(t)=T(t)_{\mid A_{2}}
\end{array}\right.
$$

If $A_{1} \cap A_{2}=\emptyset, T_{\| A_{2}}=T_{\| \emptyset}=1_{T}$.
If $A_{2} \neq \emptyset, 0_{T \| A_{2}}=0_{T}$.

III-3.3 Prefix order on traces

The following relation is defined on traces:
$T_{1} \angle T_{2}$ if and only if:

$$
\left\{\begin{array}{l}
\operatorname{dom}\left(T_{1}\right) \subseteq \operatorname{dom}\left(T_{2}\right) \\
(\forall t) \quad\left(\left(t \in \operatorname{dom}\left(T_{1}\right)\right) \quad \Rightarrow \quad\left(T_{1}(t)=T_{2}(t)\right)\right)
\end{array}\right.
$$

It is said that T_{1} is a prefix of T_{2}.

Corollary 2

- \angle is an order relation on $\mathcal{T}, 0_{T}$ is the minimum for this order.
- The set of prefixes of a trace is a chain.
- Any subset of prefixes of a trace has an upper bound.

The notation $T_{\leq t}$ represents the prefix of a trace T such that $t \in \operatorname{dom}\left(T_{\leq t}\right)$ and $t+1 \notin \operatorname{dom}\left(T_{\leq t}\right)$.

III-3.4 Product of traces

The product $T=T_{1} \cdot T_{2}$ of two traces T_{1} and T_{2} defined respectively on A_{1} and A_{2} is the greatest trace for the order relation \angle such that:

$$
\left(T_{\| A_{1}} \angle T_{1}\right) \wedge\left(T_{\| A_{2}} \angle T_{2}\right)
$$

(it is defined on $A_{1} \cup A_{2}$ and is obtained by termwise products of respective events).
Corollary $3\left(\mathcal{T}_{\subseteq A_{1},}, 1_{T}\right)$ is a commutative monoid.
The product operator \cdot is idempotent and 0_{T} is an absorbent (nilpotent) element.

III-3.5 Reduced trace

A trace T_{1} is said to be a sub-trace of a non empty trace T_{2} if and only if there exists an infinite sequence f_{1}, strictly increasing (i.e., injective and increasing) on \mathbb{N} (such a sequence is called expansion function on T_{1}), such that:

$$
T_{2} \circ f_{1 \mid \operatorname{dom}\left(T_{1}\right)}=T_{1}
$$

(the notation $f_{\mid X}$ designates the restriction of a given function f on the domain X).

Remarks

- 0_{T} is a sub-trace of any trace;
- any prefix T_{1} of T_{2} is a sub-trace of T_{2}.

Corollary 4 The sub-trace relation is a preorder (reflexive and transitive).
The sub-trace relation is not antisymmetric, as shown by the following sequences: $(\alpha \beta)^{\omega}$ and $(\beta \alpha)^{\omega}$ (with $f_{1}(n)=n+1$).

Definition A trace T_{1} (defined on A_{1}) is said to be a reduced trace of a non empty trace T_{2} (defined on A_{2}) if and only if T_{1} is a sub-trace of T_{2} and:

- $\left(\operatorname{dom}\left(T_{1}\right)\right.$ is finite $) \Rightarrow\left(\operatorname{dom}\left(T_{2}\right)\right.$ is finite $)$
- for any expansion function f_{1} on T_{1} such that $T_{2} \circ f_{1 \mid \operatorname{dom}\left(T_{1}\right)}=T_{1}$, then:

$$
\left(\forall t \in\left(\operatorname{dom}\left(T_{2}\right)\right) \backslash f_{1}\left(\operatorname{dom}\left(T_{1}\right)\right)\right) \quad\left(T_{2}(t)=\perp_{e}\left(A_{2}\right)\right)
$$

Proposition The relation "is a reduced trace of" is an order relation.
" T_{1} is a reduced trace of T_{2} " is denoted:

$$
T_{1} \subseteq_{\downarrow} T_{2}
$$

Proof of antisymmetry: $T_{1} \subseteq_{\downarrow} T_{2}$ and $T_{2} \subseteq_{\downarrow} T_{1}$
$\operatorname{dom}\left(T_{2}\right)=\operatorname{dom}\left(T_{1}\right)$
If $\operatorname{dom}\left(T_{1}\right)$ is finite then the single possible expansion function on T_{1} is the identity.
For any trace T, T is a prefix of T_{1} if and only if it is a prefix of T_{2} is proved by recurrence on the length of T.

Then the existence of an upper bound to any subset of prefixes of a trace proves the equality.

For a given expansion function f and a trace T_{1}, there exists a least trace (for the prefix order \angle), T_{2}, such that $T_{1} \subseteq_{\downarrow} T_{2}$.

We denote by \uparrow the function that, to an expansion function f and a trace T, associates this least trace $f \uparrow T$ (example on figure B-III.1).

Then we have, by definition:

$$
T \subseteq_{\downarrow} f \uparrow T
$$

Figure B-III.1: $f 1 \uparrow T$ with $f 1(0)=0, f 1(1)=3, f 1(2)=4, f 1(3)=5 \ldots$

Property:

$$
f_{2} \uparrow\left(f_{1} \uparrow T\right)=\left(f_{2} \circ f_{1}\right) \uparrow T
$$

For any f, we have also $f \uparrow 0_{T}=0_{T}$.
By convention: $f \uparrow 1_{T}=1_{T}$.

III-4 Flows

Definition A flow is a trace which is minimal for the relation \subseteq_{\downarrow}.

Comment: A flow F on A_{1} is a trace that does not contain the absent event on A_{1} between two events which have valued variables.

Corollary 5

- (F is a flow and $\left.F_{1} \angle F\right) \Rightarrow\left(F_{1}\right.$ is a flow $)$;
- 0_{T} is a flow;
- 1_{T} is a flow;
- if F is a finite flow on A_{1}, then $\left(F \perp_{e}\left(A_{1}\right)^{\omega}\right)$ is a flow;
- $\perp_{A_{1}}$ is a flow.

III-4.1 Equivalence of traces

Definition Two traces T_{1} and T_{2} are said to be equivalent modulo \perp (this is denoted: $T_{1} \equiv{ }_{\downarrow} T_{2}$) if and only if there exists some trace T such that $T \subseteq_{\downarrow} T_{1}$ and $T \subseteq_{\downarrow} T_{2}$.

This relation is indeed an equivalence relation.

Property For any trace T, the equivalence class of T modulo \perp is a lattice.

Proof

- By definition, every pair T_{1}, T_{2} in an equivalence class has a lower bound.
- Every pair T_{1}, T_{2} in an equivalence class has an upper bound:

Let f_{1}, f_{2} such that:

$$
\begin{aligned}
& T_{1} \circ f_{1}=\min \left(T_{1}, T_{2}\right) \\
& T_{2} \circ f_{2}=\min \left(T_{1}, T_{2}\right)
\end{aligned}
$$

The upper bound is the trace

$$
\max \left(T_{1}, T_{2}\right)=f_{1}^{\prime} \uparrow T_{1}=f_{2}^{\prime} \uparrow T_{2}
$$

with $f_{1}^{\prime}, f_{2}^{\prime}$ defined as follows:
$\forall t$, if $\exists s, f_{1}(s)=t$ then $f_{1}^{\prime}(s)=\max \left(t, f_{2}(s)\right)$,
if $s \notin f_{1}\left(\operatorname{dom}\left(\min \left(T_{1}, T_{2}\right)\right)\right)$ then if $s=0$ then $f_{1}^{\prime}(s)=0$ else $f_{1}^{\prime}(s)=f_{1}^{\prime}(s-1)+1$
(f_{2}^{\prime} is defined symmetrically).
Then

$$
\left(f_{1}^{\prime} \circ f_{1}\right) \uparrow \min \left(T_{1}, T_{2}\right)=\left(f_{2}^{\prime} \circ f_{2}\right) \uparrow \min \left(T_{1}, T_{2}\right)=\max \left(T_{1}, T_{2}\right)
$$

Each equivalence class has a flow as lower bound. For a trace T, this flow is denoted T_{\downarrow}.
Notation The set of flows on A_{1} is denoted $\mathcal{S}_{A_{1}}$.

III-4.2 Partial flow

Let $A_{1} \subseteq A$ and $A_{2} \subseteq A$ two subsets of A and $F \in \mathcal{S}_{A_{1}}$ some flow on A_{1}.
The projection of F on A_{2}, denoted $\Pi_{A_{2}}(F)$, is defined by:

$$
\Pi_{A_{2}}(F)=\left(F_{\| A_{2}}\right)_{\downarrow}
$$

The following equalities hold:

- $\forall F, \Pi_{\emptyset}(F)=1_{T}$
- $\Pi_{A_{2}}\left(0_{T}\right)=0_{T}$
- $\Pi_{A_{2}}\left(\perp_{A_{1}}\right)=\perp_{A_{1} \cap A_{2}}$

III-4.3 Flow-equivalence

Equivalence modulo \perp is an equivalence relation that preserves the simultaneousness of valuations within an event and the ordering of events within a trace: traces which are equivalent modulo \perp possess the same synchronization relations.

A weaker relation is introduced, which is called flow-equivalence. It allows to compare traces with respect to the sequences of values that variables hold.

Definition A trace T^{\prime} defined on A_{1} is a relaxation of a trace T defined on the same set of variables A_{1} if and only if for all $a \in A_{1}, T_{\|\{a\}} \subseteq_{\downarrow} T^{\prime}{ }_{\|\{a\}}$. This is denoted: $T \sqsubseteq T^{\prime}$.

Corollary The relaxation relation \sqsubseteq is an order relation.
Definition Two traces T_{1} and T_{2} are said to be flow-equivalent (this is denoted: $T_{1} \approx T_{2}$) if and only if there exists some trace T such that $T \sqsubseteq T_{1}$ and $T \sqsubseteq T_{2}$.

The class of flow-equivalence of a trace T is a semi-lattice. It admits a lower bound which is a flow, written T_{\approx}.

III-5 Processes

III-5.1 Definition

A process on $A_{1} \subseteq A$ is a set of flows on A_{1} which are non comparable by the prefix relation.
Example Let us represent a flow by the sequence of its events, where an event is represented by the variables which are valued for it (successive events are separated by the sign ";").

Consider the following flows defined on variables a, b :
$F_{1}: a ; a b ; b$
$F_{2}: a ; a b ; a b$
$F_{3}: a ; a b ; b ; b$
The flows F_{1} and F_{2} (respectively, F_{2} and F_{3}) can belong to a same process. However, F_{1} and F_{3} cannot belong to a same process since they are comparable.

The set of processes on A_{1} is denoted $\mathcal{P}_{A_{1}}$. It is a subset of $\mathcal{P}\left(\mathcal{S}_{A_{1}}\right)$, the set of subsets of $\mathcal{S}_{A_{1}}$. The set

$$
\mathcal{P}_{\subseteq A_{1}}=\bigcup_{A_{i} \subseteq A_{1}} \mathcal{P}_{A_{i}}
$$

is the set of processes on the subsets of A_{1}.
The process $\mathbf{1}_{\mathcal{P}}=\left\{1_{T}\right\}$, defined on the empty set of ports \emptyset, and with the unit trace as single element, is called unit process.

The process on A_{1} defined by the empty set of flows is denoted $\mathbf{0}_{\mathcal{P}}\left(A_{1}\right)$.

Notation

The notation $\operatorname{var}(P)$ is used to designate the smallest set of variables of A on which the process P is defined.

III-5.2 Partial observation of a process

Let $A_{1} \subseteq A$ and $A_{2} \subseteq A$ two subsets of A and P a process on A_{1}.
The projection of P on A_{2}, denoted $\Pi_{A_{2}}(P)$, is defined by:

$$
\Pi_{A_{2}}(P)=\left\{\Pi_{A_{2}}(F) / F \in P \text { and } \Pi_{A_{2}}(F) \text { is maximal for } \angle\right\}
$$

III-5.3 Composition of processes

Let P_{1} and P_{2} two processes defined respectively on A_{1} and A_{2}.
The composition (or synchronous composition of P_{1} and P_{2}, denoted $P_{1} \mid P_{2}$, is a process on $A_{1} \cup A_{2}$ defined by:

$$
\begin{aligned}
P_{1} \mid P_{2}=\left\{F \in \mathcal{S}_{A_{1} \cup A_{2}} /\right. & \left(\left(\exists F_{1} \in P_{1}\right)\left(\Pi_{A_{1}}(F) \angle F_{1}\right)\right) \\
& \bigwedge\left(\left(\exists F_{2} \in P_{2}\right)\left(\Pi_{A_{2}}(F) \angle F_{2}\right)\right) \\
& \bigwedge(F \text { is maximal for } \angle)\}
\end{aligned}
$$

Corollary $6\left(\mathcal{P}_{\subseteq A_{1}, \mid,}, \mathbf{1}_{\mathcal{P}}\right)$ is a commutative monoid.
The composition operator \mid is idempotent and $\mathbf{0}_{\mathcal{P}}\left(A_{1}\right)$ is an absorbent (nilpotent) element.

III-5.4 Order on processes

The following relation is defined on processes:
$P_{1} \angle P_{2} \quad$ if and only if:

$$
\left(\forall F_{1} \in P_{1}\right) \quad\left(\left(\exists F_{2} \in P_{2}\right) \quad\left(F_{1} \angle F_{2}\right)\right)
$$

This relation is an order relation.

Proof of antisymmetry:
$\left(P_{1} \angle P_{2}\right) \Rightarrow\left(\left(\forall F_{1} \in P_{1}\right) \quad\left(\left(\exists F_{2} \in P_{2}\right) \quad\left(F_{1} \angle F_{2}\right)\right)\right)$
$\left(P_{2} \angle P_{1}\right) \Rightarrow\left(\left(\exists F_{3} \in P_{1}\right) \quad\left(F_{2} \angle F_{3}\right)\right)$
Then $F_{1}=F_{3}$ since flows in a process are not comparable by \angle.
Then $F_{1}=F_{2}$. Thus $P_{1}=P_{2}$.

Corollary 7

- $\Pi_{A_{2}}\left(\mathbf{0}_{\mathcal{P}}\left(A_{1}\right)\right)=\mathbf{0}_{\mathcal{P}}\left(A_{1} \cap A_{2}\right)$
- $\Pi_{\operatorname{var}(P)}(P)=P$
- $\Pi_{A_{1} \cap A_{2}}(P)=\left(\Pi_{A_{1}} \circ \Pi_{A_{2}}\right)(P)$
- $\Pi_{A_{1} \cup A_{2}}(P)<\Pi_{A_{1}}(P) \mid \Pi_{A_{2}}(P)$
- $\Pi_{\operatorname{var}\left(P_{1}\right)}\left(P_{1} \mid P_{2}\right) \angle P_{1}$
- Π is monotonic: $\left(P_{1} \angle P_{2}\right) \quad \Rightarrow \quad\left(\Pi_{B}\left(P_{1}\right) \angle \Pi_{B}\left(P_{2}\right)\right)$
- \mid is monotonic: $\left(P_{1} \angle P_{2}\right) \quad \Rightarrow \quad\left(Q\left|P_{1} \angle Q\right| P_{2}\right)$
- $\Pi_{B}\left(P_{1} \mid P_{2}\right) \angle \Pi_{B}\left(P_{1}\right) \mid \Pi_{B}\left(P_{2}\right)$

Proposition Let P_{1} and P_{2} two processes defined respectively on A_{1} and A_{2}.

$$
\left(P_{1}=\Pi_{A_{1}}\left(P_{1} \mid P_{2}\right)\right) \quad \Leftrightarrow \quad\left(\Pi_{A_{1} \cap A_{2}}\left(P_{1}\right) \angle \Pi_{A_{1} \cap A_{2}}\left(P_{2}\right)\right)
$$

Sketch of the proof:

Since $\Pi_{A_{1}}\left(P_{1} \mid P_{2}\right) \angle P_{1}$ it is sufficient to prove that

$$
\left(P_{1}<\Pi_{A_{1}}\left(P_{1} \mid P_{2}\right)\right) \quad \Leftrightarrow \quad\left(\Pi_{A_{1} \cap A_{2}}\left(P_{1}\right)<\Pi_{A_{1} \cap A_{2}}\left(P_{2}\right)\right)
$$

\Rightarrow) Assume that $P_{1} \angle \Pi_{A_{1}}\left(P_{1} \mid P_{2}\right)$.
Let $F \in \Pi_{A_{1} \cap A_{2}}\left(P_{1}\right)$
$\left(\exists F_{1} \in P_{1}\right) \quad\left(F=\Pi_{A_{1} \cap A_{2}}\left(F_{1}\right)\right)$
Since $F_{1} \in P_{1}$, by hypothesis, $\left(\exists F^{\prime} \in \Pi_{A_{1}}\left(P_{1} \mid P_{2}\right)\right) \quad\left(F_{1} \angle F^{\prime}\right)$
Thus $\left(\exists F^{\prime \prime} \in P_{1} \mid P_{2}\right) \quad\left(F_{1} \angle \Pi_{A_{1}}\left(F^{\prime \prime}\right)\right)$
By definition of the composition, $\left(\exists F_{2}^{\prime \prime} \in P_{2}\right) \quad\left(\Pi_{A_{2}}\left(F^{\prime \prime}\right) \angle F_{2}^{\prime \prime}\right)$
Let $F_{2}^{\prime \prime \prime}=\Pi_{A_{1} \cap A_{2}}\left(F_{2}^{\prime \prime}\right)$
Then $F \angle F_{2}^{\prime \prime \prime}$
$\Leftarrow)$ Assume that $\Pi_{A_{1} \cap A_{2}}\left(P_{1}\right)<\Pi_{A_{1} \cap A_{2}}\left(P_{2}\right)$.
If $F_{1} \in P_{1}$, then $\left(\exists F_{2} \in \Pi_{A_{1} \cap A_{2}}\left(P_{2}\right)\right) \quad\left(\Pi_{A_{1} \cap A_{2}}\left(F_{1}\right) \angle F_{2}\right)$
Thus $\left(\exists F_{2}^{\prime} \in P_{2}\right) \quad\left(\Pi_{A_{1} \cap A_{2}}\left(F_{1}\right)<\Pi_{A_{1} \cap A_{2}}\left(F_{2}^{\prime}\right)\right)$
Thus $\left(\exists F \in P_{1} \mid P_{2}\right) \quad\left(F_{1} \angle \Pi_{A_{1}}(F)\right)$

Consequences

- if $A_{1} \cap A_{2}=\emptyset: P_{1}=\Pi_{A_{1}}\left(P_{1} \mid P_{2}\right)$ and $P_{2}=\Pi_{A_{2}}\left(P_{1} \mid P_{2}\right)$
- if $A_{1} \subseteq A_{2}:\left(P_{1}=\Pi_{A_{1}}\left(P_{1} \mid P_{2}\right)\right) \quad \Leftrightarrow \quad\left(P_{1} \angle \Pi_{A_{1}}\left(P_{2}\right)\right)$
- if $A_{2} \subseteq A_{1}:\left(P_{1}=P_{1} \mid P_{2}\right) \quad \Leftrightarrow \quad\left(\Pi_{A_{2}}\left(P_{1}\right) \angle P_{2}\right)$
- if $A_{1}=A_{2}:\left(P_{1}=P_{1} \mid P_{2}\right) \quad \Leftrightarrow \quad\left(P_{1} \angle P_{2}\right)$

As an application, if P_{2} represents a safety property defined on the same set of variables as P_{1}, P_{1} satisfies the property P_{2}, which means that any flow of P_{1} is a flow of P_{2} (P_{2} is less constrained than P_{1}), if and only if $P_{1}=P_{1} \mid P_{2}$.

Note that there is the same result when P_{2} is defined on a subset of the variables of P_{1}.
More generally, if $A_{2} \subseteq A_{1}, P_{1}=P_{1} \mid P_{2}$ means that P_{2} is an abstraction of P_{1}.

III-6 Semantics of basic Signal terms

The semantics of each primitive operator is defined by a set of flows: a Signal process on $A_{1} \subseteq A$ is a non empty set of flows on A_{1} (i.e., a subset of $\mathcal{S}_{A_{1}}$) defined, from primitive operators and composition, by constraints (relations) on the flows.

In the following, we denote generically $\mathbf{P}: \mathcal{P}_{A_{1}}$ a process on A_{1}, to define the semantics of the corresponding term. In addition, we denote $\operatorname{var}\left(x_{1}, \ldots, x_{n}\right)$ the set of the x_{i} variables $(i=1, \ldots, n)$ which are distinct.

III-6.1 Declarations

Let μ designate a type whose domain of values is $\tau(\mu)$.
The term

$$
\mu \mathrm{X}
$$

defines a process $\mathbf{P}: \mathcal{P}_{\{X\}}$ representing all the possible sequences of values of the signal X .

$$
\begin{aligned}
& \mathbf{P}={ }_{\Delta}\left\{\quad T \in \mathcal{S}_{\{X\}} /\right. \\
& \left.(\forall t) \quad\left(\left(T_{t}(X) \neq \perp\right) \quad \Rightarrow \quad\left(T_{t}(X) \in \tau(\mu)\right)\right) \quad\right\}
\end{aligned}
$$

III-6.2 Monochronous processes

A process P defined on A_{1} is said monochronous if, at each instant t for which one of the signals is present (respectively, absent), all of them are also present (respectively, absent). Flows defining monochronous processes are called also monochronous flows.

$$
(\forall T \in P) \quad\left((\forall t) \quad\left(\left(\left(\exists X \in A_{1}\right) \quad\left(T_{t}(X)=\perp\right)\right) \quad \Rightarrow \quad\left(\left(\forall Y \in A_{1}\right) \quad\left(T_{t}(Y)=\perp\right)\right)\right)\right)
$$

2-a Static monochronous processes

Let F be an operator. Under some interpretation I for which the interpretation of F is denoted $[|F|]_{I}$, the term
$\mathrm{X}_{\mathrm{n}+1}:=: \mathrm{F}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)$
defines a process $\mathbf{P}: \mathcal{P}_{\operatorname{var}\left(X_{1}, \ldots, X_{n}, X_{n+1}\right)}$ by some relation between the sequence of values of the signal $\mathrm{X}_{\mathrm{n}+1}$ and the sequence obtained by the pointwise extension of the application of F , under this interpretation, to the sequence of tuples of values of the signals $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ (note that the sign ": $=:$ " makes explicit the fact that this term represents a non oriented equation).

$$
\begin{aligned}
& \mathbf{P}={ }_{\Delta}\left\{\quad T \in \mathcal{S}_{\operatorname{var}\left(X_{1}, \ldots, X_{n}, X_{n+1}\right)} /\right. \\
& T \text { is monochronous and } \\
& \left.(\forall t) \quad\left(\left(T_{t}\left(X_{n+1}\right) \neq \perp\right) \Rightarrow \quad\left(T_{t}\left(X_{n+1}\right)=[|F|]_{I}\left(T_{t}\left(X_{1}\right), \ldots, T_{t}\left(X_{n}\right)\right)\right)\right) \quad\right\}
\end{aligned}
$$

2-b Dynamic monochronous processes: the delay

The term
$\mathrm{X}_{2}:=: \mathrm{X}_{1}$ \$ init V_{0}
defines a process $\mathbf{P}: \mathcal{P}_{\operatorname{var}\left(X_{1}, X_{2}\right)}$ by the relation constraining the equality of the sequence of values of the signal X_{2} and the sequence of values of the signal X_{1}, delayed by $1 ; \mathrm{V}_{0}$ is the initial value of X_{2}.

$$
\begin{aligned}
\mathbf{P}=_{\Delta}\{ & T \in \mathcal{S}_{v a r}\left(X_{1}, X_{2}\right) / \\
& T \text { is monochronous } \\
& \text { and }(\forall t>0)\left(\left(T_{t}\left(X_{2}\right) \neq \perp\right) \Rightarrow\left(T_{t}\left(X_{2}\right)=T_{t-1}\left(X_{1}\right)\right)\right) \\
& \text { and } \left.\left(T_{0}\left(X_{1}\right) \neq \perp\right) \Rightarrow\left(T_{0}\left(X_{2}\right)=V_{0}\right)\right\}
\end{aligned}
$$

III-6.3 Polychronous processes

A process defined on A_{1} is said polychronous if it contains a flow T for which there exists some instant t in which one of the signals is present while another one is not. By extension, a term is said polychronous if it allows to define polychronous processes.

3-a Sub-signals

The term
$X_{3}:=: X_{1}$ when X_{2}
defines a process $\mathbf{P}: \mathcal{P}_{\operatorname{var}\left(X_{1}, X_{2}, X_{3}\right)}$ by the relation constraining the equality of the sequence of values of the signal X_{3} and the sequence of occurrences of value of the signal X_{1} when the Boolean signal X_{2} carries the value true.

$$
\left.\begin{array}{rl}
\mathbf{P}=_{\Delta}\{\quad & T \in \mathcal{S}_{\text {var }\left(X_{1}, X_{2}, X_{3}\right) /(\forall t)}(\\
\left(\left(T_{t}\left(X_{2}\right)=\text { true }\right) \Rightarrow\left(T_{t}\left(X_{3}\right)=T_{t}\left(X_{1}\right)\right)\right) \\
& \left.\wedge\left(\left(T_{t}\left(X_{2}\right) \neq \text { true }\right) \Rightarrow\left(T_{t}\left(X_{3}\right)=\perp\right)\right)\right)
\end{array}\right\}
$$

3-b Merging of signals

The term
$\mathrm{X}_{3}:=: \mathrm{X}_{1}$ default X_{2}
defines a process $\mathbf{P}: \mathcal{P}_{\operatorname{var}\left(X_{1}, X_{2}, X_{3}\right)}$ by the relation constraining the equality of the sequence of values of the signal X_{3} and the sequence formed by the occurrences of value of the signal X_{1} or by default the occurrences of value of the signal X_{2}.

$$
\begin{aligned}
& \mathbf{P}={ }_{\Delta}\left\{\quad T \in \mathcal{S}_{\operatorname{var}\left(X_{1}, X_{2}, X_{3}\right)} /(\forall t) \quad(\right. \\
& \left(\left(T_{t}\left(X_{1}\right) \neq \perp\right) \quad \Rightarrow \quad\left(T_{t}\left(X_{3}\right)=T_{t}\left(X_{1}\right)\right)\right) \\
& \left.\left.\wedge\left(\left(T_{t}\left(X_{1}\right)=\perp\right) \Rightarrow\left(T_{t}\left(X_{3}\right)=T_{t}\left(X_{2}\right)\right)\right)\right) \quad\right\}
\end{aligned}
$$

III-6.4 Composition of processes

The term
$P_{1} \mid P_{2}$
where P_{1} and P_{2} define respectively processes \mathbf{P}_{1} and \mathbf{P}_{2} on the sets of variables A_{1} and A_{2}, defines a process $\mathbf{P}: \mathcal{P}_{A_{1} \cup A_{2}}$ by the greatest relation constraining their common signals to respect the constraints imposed respectively by P_{1} and P_{2} (see an example on the figure B-III.2).

$$
\mathbf{P}={ }_{\Delta} \mathrm{P}_{1} \mid \mathrm{P}_{2}
$$

III-6.5 Restriction

The term
$\mathrm{P}_{1} / \mathrm{a}$
(or P_{1} where a)
where P_{1} defines a process \mathbf{P}_{1} on the set of variables A_{1}, defines a process $\mathbf{P}: \mathcal{P}_{A_{1} \backslash\{a\}}$ by the projection of \mathbf{P}_{1} on the subset of ports of P_{1} which are different from a.

$$
\mathbf{P}={ }_{\Delta} \Pi_{A_{1} \backslash\{a\}}\left(\mathbf{P}_{1}\right)
$$

III-7 Composite signals

The types of the Signal language contain elementary types such as Booleans, integers, etc., but also structured types allowing to declare composite objects. Structured types are tuple types and array types.

Figure B-III.2: Two flows of the composition of P1 and P2

III-7.1 Tuples

Construction of tuple

If $\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}$ designate m signals of respective types μ_{1}, \ldots, μ_{m}, the term
$\left(E_{1}, \ldots, E_{m}\right)$
defines a tuple of signals, of type $\left(\mu_{1} \times \ldots \times \mu_{m}\right)$ (where \times designates the product of domains), such that

$$
(\forall t) \quad\left(\left(\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{m}}\right)_{t}=\left(E_{1 t}, \ldots, E_{m t}\right)\right)
$$

Tuple types

Let m types $\mu_{1}, \ldots, \mu_{m}, m$ names of variables $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}$, and a process of synchronization C.
The term
bundle $\left(\mu_{1} \mathrm{~A}_{1} ; \ldots ; \mu_{m} \mathrm{~A}_{\mathrm{m}} ;\right)$ spec C
defines a tuple type (with named fields A_{1}, \ldots, A_{m}) as the set of functions:
$\Xi:\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\} \rightarrow \bigcup_{i=1}^{m} \tau\left(\mu_{i}\right)$ such that $\Xi\left(\mathrm{A}_{\mathrm{i}}\right) \in \tau\left(\mu_{i}\right)$.
It is reminded that the notation $\tau\left(\mu_{i}\right)$ designates the domain of values (type) associated with μ_{i}.
When C is the process of synchronization that defines all the fields of the tuple (recursively) as being synchronous, the corresponding type is then denoted by the term:
struct $\left(\mu_{1} \mathrm{~A}_{1} ; \ldots ; \mu_{m} \mathrm{~A}_{\mathrm{m}} ;\right)$
It can be considered, generically, that a tuple type, represented by a tuple with named or unnamed fields (cf. section V-5, page 76), can be viewed as a product of domains $\left(\mu_{1} \times \ldots \times \mu_{m}\right)$
where μ_{k} is the type of the $k^{t h}$ element of the tuple.

Declaration of a tuple variable (with named fields)

The association of a tuple type with synchronization C, with a variable, denoted by the term
bundle ($\mu_{1} \mathrm{~A}_{1} ; \ldots ; \mu_{m} \mathrm{~A}_{\mathrm{m}} ;$) spec $C \mathrm{X}$
defines a polychronous tuple of signals, such that
$(\forall t) \quad($

$$
\left((\forall i) \quad\left(\left(X_{t}\left(\mathrm{~A}_{\mathrm{i}}\right) \neq \perp\right) \quad \Rightarrow \quad\left(X_{t}\left(\mathrm{~A}_{\mathrm{i}}\right) \in \tau\left(\mu_{i}\right)\right)\right)\right)
$$

$\wedge($ the relation defined by the process denoted by C is verified))
Remark:
Such a declaration is a SIGNAL process with as interface, $\mu_{1} \mathrm{~A}_{1}, \ldots, \mu_{m} \mathrm{~A}_{\mathrm{m}}$ in input, and the empty set in output.

For the particular case of a monochronous tuple, the association denoted by the term
struct $\left(\mu_{1} A_{1} ; \ldots ; \mu_{m} A_{m} ;\right) \mathrm{X}$
defines a monochronous tuple signal, such that

$$
(\forall t) \quad\left(\left(X_{t} \neq \perp\right) \Rightarrow\left((\forall i) \quad\left(X_{t}\left(\mathrm{~A}_{\mathrm{i}}\right) \in \tau\left(\mu_{i}\right)\right)\right)\right)
$$

Access to an element

When X designates a polychronous tuple the type of which is defined as the set of functions
$\Xi:\left\{\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{m}}\right\} \rightarrow \bigcup_{i=1}^{m} \mu_{i}$ such that $\Xi\left(\mathrm{A}_{\mathrm{i}}\right) \in \mu_{i}$,
the term
Y : =: X. A_{i}
defines a process allowing to access to a component of the tuple:

$$
(\forall t) \quad\left(Y_{t}=X_{t}\left(\mathrm{~A}_{\mathrm{i}}\right)\right)
$$

Particular case: when X designates a monochronous tuple, the term
Y $\quad:=: X . A_{i}$
defies a monochronous process allowing to access to a component of the tuple:

$$
(\forall t) \quad\left(\left(X_{t} \neq \perp\right) \Rightarrow\left(Y_{t}=X_{t}\left(\mathrm{~A}_{\mathrm{i}}\right)\right)\right)
$$

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise extension) to tuples.

Let us consider some operator F defined with the following signature:
$\mu_{1} \times \ldots \times \mu_{N} \rightarrow \mu_{N+1}$
(note that operators may be polymorphic on some of their operands, so that a given μ_{k} may stand here for some set of types).

We will denote
($X_{-} a_{1 k}, \ldots, X_{-} a_{m k}$)
the elements of a tuple X_{k} with m elements.
If at least one of the X_{k} is a tuple the elements of which are correspondingly possible arguments of the operator F, more precisely, if
$(\exists \mathrm{m}) \quad\left(\left((\forall \mathrm{k}) \quad\left(\left(\tau\left(\mathrm{X}_{\mathrm{k}}\right)=\left(\dot{\mu}_{k_{1}} \times \ldots \times \dot{\mu}_{k_{m}}\right)\right) \bigvee\left(\tau\left(\mathrm{X}_{\mathrm{k}}\right)=\ddot{\mu}_{k}\right)\right)\right) \bigwedge(\right.$

$$
\left.\left.(\exists \mathrm{k}) \quad\left(\tau\left(\mathrm{X}_{\mathrm{k}}\right)=\left(\dot{\mu}_{k_{1}} \times \ldots \times \dot{\mu}_{k_{m}}\right)\right)\right)\right)
$$

(where $\dot{\mu}_{k_{1}}, \ldots, \dot{\mu}_{k_{m}}$ and $\ddot{\mu}_{k}$ represent some particular instances of type μ_{k}), the term
$X_{N+1}:=: F\left(X_{1}, \ldots, X_{N}\right)$
under some interpretation I, specifies a process which defines the tuple with m elements $\mathrm{X}_{\mathrm{N}+1}$ by a pointwise application of F :

$$
\begin{align*}
& \quad(\forall i, 1 \leq i \leq m) \quad\left(X_{-} a_{i N+1 t}=[|F|]_{I}\left(v_{1 _} a_{i t}, \ldots, v_{n-} a_{i t}\right)\right) \\
& \text { where } \\
& \left(\left(\tau\left(\mathrm{x}_{\mathrm{k}}\right)=\left(\dot{\mu}_{k_{1}} \times \ldots \times \dot{\mu}_{k_{m}}\right)\right) \quad \Rightarrow \quad\left(v_{k-} a_{i t}=X_{-} a_{i k t}\right)\right) \bigwedge(\\
& \left.\left.\left(\left(\tau\left(\mathrm{X}_{\mathrm{k}}\right) \neq\left(\dot{\mu}_{k_{1}} \times \ldots \times \dot{\mu}_{k_{m}}\right)\right) \bigwedge\left(\tau\left(\mathrm{X}_{\mathrm{k}}\right)=\ddot{\mu}_{k}\right)\right) \quad \Rightarrow \quad\left(v_{k-} a_{i t}=X_{k t}\right)\right)\right)
\end{align*}
$$

This defines recursively new signatures of the operators, so that the pointwise extension can be applied recursively.

III-7.2 Arrays

\mathbb{D} being the set of values that can be carried by a variable, we introduce a distinguished value, denoted nil, such that, semantically, nil $\notin \mathbb{D}$ and nil $\neq \perp$. This value is in particular the value of a non defined element of an array. In the language, a value equal to nil may be any (non determined) value of the correct type.

Array types

Let m integers $n_{1}, \ldots, n_{m}\left(n_{i} \in \mathbb{N}\right)$, and a type ν.
The term
$\left[n_{1}, \ldots, n_{m}\right] \nu$
defines an array type as the set of functions:
$\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \tau(\nu)$,
where $\left[0 . . n_{i}-1\right]$ denotes the set of integers included between 0 and $n_{i}-1$, and $\tau(\nu)$ denotes the domain of values of type ν.

The curryfied and non curryfied forms of the functions defining an array type are considered as equivalent.
Thus, when the type ν is itself an array type, defined by the set of functions
$\left(\left[0 . . n_{m+1}-1\right] \times \ldots \times\left[0 . . n_{m+p}-1\right]\right) \rightarrow \tau(\mu)$,
the type denoted by $\left[n_{1}, \ldots, n_{m}\right] \nu$ is defined by the set of functions
$\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m+p}-1\right]\right) \rightarrow \tau(\mu)$.

Declaration of an array variable

The association of an array type with a variable, denoted by the term
$\left[n_{1}, \ldots, n_{m}\right] \nu \mathrm{X}$
defines an array signal such that
$(\forall t) \quad($

$$
\begin{aligned}
&\left(X_{t} \neq \perp\right) \\
&\left.\Rightarrow \quad\left((\forall k, 1 \leq k \leq m) \quad\left(\left(\forall i_{k}, 0 \leq i_{k} \leq n_{k}-1\right) \quad\left(X_{t}\left(i_{1}, \ldots, i_{m}\right) \in \tau(\nu)\right)\right)\right)\right)
\end{aligned}
$$

For X an array of type $\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$, the set of tuples of types $\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{p}-1\right]$ where $1 \leq p \leq m$ is designated by $\operatorname{Dom}(X)$.

Complete arrays and partial arrays

An array of type $\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$ is said complete if the function $\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$ that defines it is total.

If this function is partial, the array is said partial.
In this case, it is defined by the total function
$\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu \cup\{n i l\}$
that extends this partial function by associating nil with the non defined elements.

When the array defined by one of the following operators may be partial, the function described by this semantics is necessarily a restriction of the function that defines the array. The corresponding extension is such that any element non defined by the semantics is equal to nil.

Array element

When X designates an array the type of which is defined as the set of functions
$\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$,
and I_{1}, \ldots, I_{m} are signals of type integer,
the term
Y $\quad:=: X\left[I_{1}, \ldots, I_{m}\right]$
defines a monochronous process allowing to access to an element of the array X :
$(\forall t) \quad($

$$
\begin{aligned}
&\left(X_{t} \neq \perp\right) \\
&\left.\Rightarrow \quad\left(\left(\left(\forall I_{k t}\right) \quad\left(0 \leq I_{k t} \leq n_{k}-1\right)\right) \wedge\left(Y_{t}=X_{t}\left(I_{1 t}, \ldots, I_{m t}\right)\right)\right)\right)
\end{aligned}
$$

This operator is generalized below (see "extraction of sub-array").

Static enumeration of array

The term
X $:=:\left[\mathrm{E}_{1}, \ldots, \mathrm{E}_{\mathrm{n}}\right]$
defines a monochronous process enumerating the elements of an array:

$$
(\forall t) \quad\left(\left(X_{t} \neq \perp\right) \Rightarrow\left((\forall i=1, \ldots, n) \quad\left(X_{t}(i)=E_{i t}\right)\right)\right)
$$

Iterative enumeration of array

The term
K : : : N recurffrom V_{0}
(where N , maximum number of iterations, denotes a positive integer, which has a stricly positive upper bound, upper_bound $(\mathrm{N}) ; \mathrm{V}_{0}$ denotes a value (or a tuple of values) of type μ; and f is a function from μ into μ),
defines a process enumerating elements of a vector of μ of size upper_bound(N$)$:
$(\forall t) \quad($

$$
\begin{aligned}
&\left(K_{t} \neq \perp\right) \\
& \Rightarrow \quad\left((\forall i) \left(\left(\left(0 \leq i<N_{t}-1\right) \wedge\left(\left(K_{t}(0)=V_{0 t}\right) \wedge\left(K_{t}(i+1)=[|f|]_{I}\left(K_{t}(i)\right)\right)\right)\right)\right.\right. \\
&\left.\left.\vee \quad\left(\left(N_{t} \leq i<\text { upper_bound }(\mathrm{N})\right) \bigwedge\left(K_{t}(i)=\text { nil) }\right)\right)\right)\right)
\end{aligned}
$$

The equation $K_{t}(i)=n i l$ expresses the fact that the corresponding value exists (since all the elements of an array have the same clock), but it is not determined. In the language, this can be represented by: $K_{t}(i)=K_{t}(i)$.

This form is not provided as such in the concrete syntax of the language.
A particular form is $0 . . N-1$ which represents the term N recur f from 0 where f designates the function on integers such that $\mathrm{f}(x)=x+1$.

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise extension) to arrays.

Let us consider some operator F defined with the following signature:
$\mu_{1} \times \ldots \times \mu_{N} \rightarrow \mu_{N+1}$
(note that operators may be polymorphic on some of their operands, so that a given μ_{k} may stand here for some set of types).

If at least one of the TX_{k} has one dimension more than the corresponding argument in the definition of the operator F , more precisely, if
$(\exists \mathrm{m}) \quad\left(\left((\forall \mathrm{k}) \quad\left(\left(\tau\left(\mathrm{TX}_{\mathrm{k}}\right)=[0 . . m-1] \rightarrow \dot{\mu}_{k}\right) \bigvee\left(\tau\left(\mathrm{TX}_{\mathrm{k}}\right)=\ddot{\mu}_{k}\right)\right)\right) \wedge(\right.$

$$
\left.\left.(\exists \mathrm{k}) \quad\left(\tau\left(\mathrm{TX}_{\mathrm{k}}\right)=[0 . . m-1] \rightarrow \dot{\mu}_{k}\right)\right)\right)
$$

(where $\dot{\mu}_{k}$ and $\ddot{\mu}_{k}$ represent some particular instances of type μ_{k}), the term
$T X_{N+1}:=: F\left(T X_{1}, \ldots, T X_{N}\right)$
under some interpretation I, defines a monochronous process which defines the array $\mathrm{TX}_{\mathrm{N}+1}$ by a pointwise application of F :
$(\forall t) \quad($

$$
\begin{aligned}
& \quad\left(T X_{N+1_{t}} \neq \perp\right) \\
& \Rightarrow \quad\left((\forall i, 0 \leq i \leq m-1) \quad\left(T X_{N+1_{t}}(i)=[|F|]_{I}\left(v_{1 t}(i), \ldots, v_{n t}(i)\right)\right)\right. \\
& \quad \text { where } \\
& \left(\left(\tau\left(\mathrm{TX}_{\mathrm{k}}\right)=[0 . . m-1] \rightarrow \dot{\mu}_{k}\right) \Rightarrow \quad\left(v_{k t}(i)=T X_{k t}(i)\right)\right) \wedge(\\
& \left.\left.\left.\left(\left(\tau\left(\mathrm{TX}_{\mathrm{k}}\right) \neq[0 . . m-1] \rightarrow \dot{\mu}_{k}\right) \bigwedge\left(\tau\left(\mathrm{TX}_{\mathrm{k}}\right)=\ddot{\mu}_{k}\right)\right) \quad \Rightarrow \quad\left(v_{k t}(i)=T X_{k t}\right)\right)\right)\right)
\end{aligned}
$$

This defines recursively new signatures of the operators, so that the pointwise extension can be applied recursively.

Cartesian product

With I and J arrays of respective types
$\tau(\mathrm{I})=[0 . . m-1] \rightarrow \mu$ and $\tau(\mathrm{J})=[0 . . n-1] \rightarrow \nu$,
the term

$$
(\mathrm{II}, \mathrm{JJ}):=: \ll \mathrm{I}, \mathrm{~J} \gg
$$

defines a monochronous tuple of signals, (II, JJ), with II and JJ of respective types $\tau(\mathrm{II})=[0 . . m * n-1] \rightarrow \mu$ and $\tau(\mathrm{JJ})=[0 . . m * n-1] \rightarrow \nu$, such that:

$$
\begin{aligned}
(\forall t) \quad(\quad & \left(I_{t} \neq \perp\right) \\
\Rightarrow & ((\forall k, 0 \leq k \leq m-1) \quad((\forall p, 0 \leq p \leq n-1) \\
& \left.\left.\left.\left.\left.\left(I I_{t}(k * n+p)=I_{t}(k)\right) \wedge\left(J J_{t}(k * n+p)=J_{t}(p)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

More generally, if I is a tuple (with unnamed fields) of type $\tau(\mathrm{I})=[0 . . m-1] \rightarrow \mu_{1} \times \ldots \times[0 . . m-1] \rightarrow \mu_{p}$
and J is an array of type $\tau(\mathrm{J})=[0 . . n-1] \rightarrow \nu$,
the term
$\left(I I_{1}, \ldots, I I_{p}, \mathrm{JJ}\right):=: \ll I, J \gg$
defines a monochronous tuple of signals, $\left(I_{1}, \ldots, I I_{p}, \mathrm{JJ}\right)$, with, if $I I$ designates the tuple $\left(I I_{1}, \ldots, I I_{\mathrm{p}}\right)$, II and JJ of respective types
$\tau(\mathrm{II})=[0 . . m * n-1] \rightarrow \mu_{1} \times \ldots \times[0 . . m * n-1] \rightarrow \mu_{p}$, $\tau(\mathrm{JJ})=[0 . . m * n-1] \rightarrow \nu$,
and:

$$
\begin{aligned}
(\forall t) \quad(\quad & \left(I_{t} \neq \perp\right) \\
\Rightarrow & ((\forall k, 0 \leq k \leq m-1) \quad((\forall p, 0 \leq p \leq n-1) \quad(\\
& \left.\left.\left.\left.\left(I I_{t}(k * n+p)=I_{t}(k)\right) \bigwedge\left(J J_{t}(k * n+p)=J_{t}(p)\right)\right)\right)\right)\right)
\end{aligned}
$$

The cartesian product is used in particular to define jointly indexes used for multi-dimensional iterations of processes.

Remark: $\ll I_{1}, \ldots, I_{m} \gg=\ll I_{1}, \ll I_{2}, \ldots, I_{m} \ggg>$

Partial definition of array

The term
$\mathrm{Y} \quad:=:\left(\mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}\right): \mathrm{X}$
where I_{1}, \ldots, I_{n} are integers or arrays of integers:
$\tau\left(\mathrm{I}_{1}\right)=\ldots=\tau\left(\mathrm{I}_{\mathrm{n}}\right)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \nu$
with ν an integer type, and the basic integer values of the I_{i} are positive or zero,
$\tau(\mathrm{X})=\left(\left[0 . . c_{1}\right] \times \ldots \times\left[0 . . c_{p}\right]\right) \rightarrow \mu$ with $c_{1} \geq b_{1}, \ldots, c_{p} \geq b_{p}$,
and $\tau(\mathrm{Y})=\left(\left[0 . . a_{1}\right] \times \ldots \times\left[0 . . a_{n}\right]\right) \rightarrow \mu \cup\{$ nil $\}$ with for $1 \leq i \leq n, a_{i}=\max _{K \in \operatorname{Dom}\left(\mathrm{I}_{\mathrm{i}}\right)} \mathrm{I}_{\mathrm{i}}(K)$
defines a monochronous process which specifies, in the general case, a partially defined array:
$(\forall t)$

$$
\begin{aligned}
&\left(X_{t} \neq \perp\right) \\
& \Rightarrow(\\
&((p=0) \bigwedge(\\
&\left(Y_{t}\left(I_{1 t}, \ldots, I_{n t}\right)=X_{t}\right) \bigwedge(\\
&\left.\left.\left.(\forall J \in \operatorname{Dom}(\mathrm{Y})) \quad\left(\left(J \neq\left(I_{1 t}, \ldots, I_{n t}\right)\right) \Rightarrow\left(Y_{t}(J)=n i l\right)\right)\right)\right)\right) \\
& \vee((p \geq 1) \bigwedge(\\
&\left(\left(\forall\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}\right) \quad(\right. \\
&\left.\left.K=\left\{\left(k_{1}, \ldots, k_{p}\right) \in \mathbb{N}^{p} / \forall i, 1 \leq i \leq n, I_{i t}\left(k_{1}, \ldots, k_{p}\right)=j_{i}\right\}\right)\right) \Rightarrow(\\
&\left((K=\emptyset) \Rightarrow\left(Y_{t}\left(j_{1}, \ldots, j_{n}\right)=n i l\right)\right) \bigwedge(\\
&\left.\left.\left.\left.\left.\left.(K \neq \emptyset) \Rightarrow\left(\left(K_{\max }=\max _{k \in K} k\right) \Rightarrow\left(Y_{t}\left(j_{1}, \ldots, j_{n}\right)=X_{t}\left(K_{\max }\right)\right)\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

where the $K_{\max }$ are obtained by the maximal elements in the sets K, using the lexicographic order on \mathbb{N}^{p} 。

Extraction of sub-array

The definition of the operator of access to an element of array given above is generalized in the following way to define the extraction of sub-array.

The term
$\mathrm{X} \quad:=: Y\left[I_{1}, \ldots, I_{n}\right]$
where I_{1}, \ldots, I_{n} are integers or arrays of integers:
$\tau\left(\mathrm{I}_{1}\right)=\ldots=\tau\left(\mathrm{I}_{\mathrm{n}}\right)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \nu$
with ν an integer type, and the basic integer values of the I_{i} are positive or zero,
$\tau(\mathrm{Y})=\left(\left[0 . . a_{1}\right] \times \ldots \times\left[0 . . a_{n}\right]\right) \rightarrow \mu$
and $\tau(\mathrm{x})=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \mu \cup\{n i l\}$
defines a monochronous process which, in the general case, extracts some sub-array from Y :

$$
\begin{aligned}
(\forall t) \quad(& \left(Y_{t} \neq \perp\right) \\
\Rightarrow & (\\
& \left(\left(\left(I_{1 t}, \ldots, I_{n t}\right) \in \operatorname{Dom}(\mathrm{Y})\right) \Rightarrow\left(X_{t}=Y_{t}\left(I_{1 t}, \ldots, I_{n t}\right)\right)\right) \wedge(\\
& \left.\left.\left(\left(I_{1 t}, \ldots, I_{n t}\right) \notin \operatorname{Dom}(\mathrm{Y})\right) \Rightarrow\left(X_{t}=n i l\right)\right)\right) \\
\vee & \left(\left(\forall\left(j_{1}, \ldots, j_{p}\right) \in \mathbb{N}^{p}, \forall k, 1 \leq k \leq p, 0 \leq j_{k} \leq b_{k}\right) \quad((\right. \\
& \left(\left(I_{1 t}\left(j_{1}, \ldots, j_{p}\right), \ldots, I_{n t}\left(j_{1}, \ldots, j_{p}\right)\right) \in \operatorname{Dom}(\mathrm{Y})\right) \Rightarrow(\\
& \left.X_{t}\left(j_{1}, \ldots, j_{p}\right)=Y_{t}\left(I_{1 t}\left(j_{1}, \ldots, j_{p}\right), \ldots, I_{n t}\left(j_{1}, \ldots, j_{p}\right)\right)\right) \wedge(\\
& \left(\left(I_{1 t}\left(j_{1}, \ldots, j_{p}\right), \ldots, I_{n t}\left(j_{1}, \ldots, j_{p}\right)\right) \notin \operatorname{Dom}(\mathrm{Y})\right) \Rightarrow(\\
& \left.\left.\left.\left.\left.\left.X_{t}\left(j_{1}, \ldots, j_{p}\right)=n i l\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

Sequential definition
The term
T :=: T1 next T2
where:
$\tau(\mathrm{T} 1)=\left(\left[0 . . c_{1}\right] \times \ldots \times\left[0 . . c_{p}\right]\right) \rightarrow \mu_{1} \cup\{n i l\}$,
$\tau(\mathrm{T} 2)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \mu_{2} \cup\{$ nil $\}$ with $c_{1} \geq b_{1}, \ldots, c_{p} \geq b_{p}$,
and $\tau(\mathrm{T})=\left(\left[0 . . c_{1}\right] \times \ldots \times\left[0 . . c_{p}\right]\right) \rightarrow\left(\mu_{1} \sqcup \mu_{2}\right) \cup\{n i l\}$
defines a monochronous process which specifies, in the general case, a sequential definition of an array:
$(\forall t) \quad($

$$
\begin{aligned}
&\left(T_{t} \neq \perp\right) \\
& \Rightarrow\left(\left(\forall\left(j_{1}, \ldots, j_{p}\right) \in \mathbb{N}^{p}, \forall k, 1 \leq k \leq p, 0 \leq j_{k} \leq c_{k}\right) \quad((\right. \\
&\left(\left(\left(j_{1}, \ldots, j_{p}\right) \in \operatorname{Dom}(T 2)\right) \wedge\left(T 2_{t}\left(j_{1}, \ldots, j_{p}\right) \neq n i l\right)\right) \quad \Rightarrow \quad(\\
&\left.\left.X_{t}\left(j_{1}, \ldots, j_{p}\right)=T 2_{t}\left(j_{1}, \ldots, j_{p}\right)\right)\right) \wedge(\\
&\left(\left(\left(j_{1}, \ldots, j_{p}\right) \notin \operatorname{Dom}(\mathrm{T} 2)\right) \bigvee\left(T 2_{t}\left(j_{1}, \ldots, j_{p}\right)=n i l\right)\right) \quad \Rightarrow \quad(\\
&\left.\left.\left.\left.\left.X_{t}\left(j_{1}, \ldots, j_{p}\right)=T 1_{t}\left(j_{1}, \ldots, j_{p}\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

III-8 Classes of processes

The following classes of processes are usefully distinguished.

III-8.1 Iterations of functions

Let P a process defined on $A_{1} . P$ is an iteration of function on $A_{2} \subseteq A_{1}$ if and only if:

$$
\left(\forall F_{1}, F_{2} \in P\right) \quad\left(\left(\forall t_{1}, t_{2}\right) \quad\left(\left(F_{1 \| A_{2}}\left(t_{1}\right)=F_{2 \| A_{2}}\left(t_{2}\right)\right) \quad \Rightarrow \quad\left(F_{1}\left(t_{1}\right)=F_{2}\left(t_{2}\right)\right)\right)\right)
$$

Remark: An iteration of function does not need memory.

III-8.2 Endochronous processes

Let P a process defined on A_{1}. P is endochronous on $A_{2} \subseteq A_{1}$, where A_{2} is considered as a totally ordered set $\left\{a_{1}, \ldots, a_{n}\right\}$, if and only if the function

$$
\begin{aligned}
& \Phi: P \rightarrow \Pi_{\left\{a_{1}\right\}}(P) \times \ldots \times \Pi_{\left\{a_{n}\right\}}(P) \\
& \text { such that } \\
& \Phi(F)=\left(\Pi_{\left\{a_{1}\right\}}(F), \ldots, \Pi_{\left\{a_{n}\right\}}(F)\right)
\end{aligned}
$$

is injective (and thus bijective, since it is necessarily surjective).
Informally, a process is endochronous on a set of variables if any flow of this process is entirely determined by the sequences of values carried by these variables, independently of their relative presence and absence.

In other words, a process is endochronous on a set of variables if given an external (asynchronous) stimulation of these variables, it is capable of reconstructing a unique synchronous behavior (up to \perp equivalence). Then, it can be implemented as a process which is mostly insensitive to internal and external propagation delays. This implementation and its context have only to agree on activation starts and on the availability of data.

Property A process P defined on A_{1} is endochronous on $A_{2} \subseteq A_{1}$ if and only if:

$$
\left(\forall F, F^{\prime} \in P\right) \quad\left(\left(\left(\Pi_{A_{2}}(F)\right) \approx=\left(\Pi_{A_{2}}\left(F^{\prime}\right)\right) \approx\right) \quad \Rightarrow \quad\left(F \equiv_{\downarrow} F^{\prime}\right)\right)
$$

III-8.3 Deterministic processes

A process is deterministic on a set of variables if any flow of this process is entirely determined by its restriction to this set of variables.

Let P a process defined on $A_{1} . P$ is deterministic on $A_{2} \subseteq A_{1}$ if and only if the function

$$
\begin{aligned}
& \Phi: P \rightarrow \Pi_{A_{2}}(P) \\
& \text { such that } \\
& \Phi(F)=\Pi_{A_{2}}(F)
\end{aligned}
$$

is injective (and thus bijective, since it is necessarily surjective).
In other words, a process is deterministic on a set of variables if any two flows of this process that have the same projection on this set of variables upto some instant t, have the same behaviors upto t.

Property A process P defined on A_{1} is deterministic on $A_{2} \subseteq A_{1}$ if and only if:

$$
\left(\forall F, F^{\prime} \in P\right) \quad\left((\forall t) \quad\left(\left(\left(\Pi_{A_{2}}(F)\right)_{\leq t}=\left(\Pi_{A_{2}}\left(F^{\prime}\right)\right)_{\leq t}\right) \quad \Rightarrow \quad\left(F_{\leq t}=F_{\leq t}^{\prime}\right)\right)\right)
$$

Remarks and examples:

- For any elementary process P of the Signal language of the form $x:=: E\left(y_{1}, \ldots, y_{n}\right)$, if $x \in\left\{y_{1}, \ldots, y_{n}\right\}$, then P is deterministic on $\left\{y_{1}, \ldots, y_{n}\right\}$.
- For any elementary process P of the Signal language of the form $x:=: E\left(y_{1}, \ldots, y_{n}\right)$, if $x \notin\left\{y_{1}, \ldots, y_{n}\right\}$, then P is deterministic on $\left\{y_{1}, \ldots, y_{n}\right\}$.
- X :=: Y default X
is not deterministic on $\{\mathrm{Y}\}$.
- The determinism on A_{i} is not stable by composition and restriction.

Properties:

If a process P is an iteration of function on A_{1}, then it is deterministic on A_{1}.
If a process P is endochronous on A_{1}, then it is deterministic on A_{1}.

III-8.4 Reactive processes

Reactivity of a process with respect to some set of variables may be defined as the ability of the process to react to each configuration of these variables in all states.

Let P a process defined on $A_{1} . P$ is reactive on $A_{2} \subseteq A_{1}$ if and only if for each flow $F \in P$, for each $t \in \operatorname{dom}(F)$, for each event e on A_{2}, there exists a flow $F^{\prime} \in P$ such that:

$$
\left(F_{\leq t-1}^{\prime}=F_{\leq t-1}\right) \wedge\left(F^{\prime}(t)_{\mid A_{2}}=e\right) .
$$

P is strictly reactive on $A_{2} \subseteq A_{1}$ if and only if for each flow $F \in P$, for each $t \in \operatorname{dom}(F)$, for each event e on A_{2} different from the absent event $\perp_{e}\left(A_{2}\right)$, there exists a flow $F^{\prime} \in P$ such that:

$$
\left(F_{\leq t-1}^{\prime}=F_{\leq t-1}\right) \bigwedge\left(F^{\prime}(t)_{\mid A_{2}}=e\right) .
$$

A process which is reactive on a non empty set A_{2} is obviously strictly reactive on A_{2}.

Examples:

- $Z \quad:=: X$ default Y
is strictly reactive on $\{\mathrm{X}, \mathrm{Y}\}$.
- Z : =: X and Y
is neither strictly reactive, nor reactive on $\{\mathrm{X}, \mathrm{Y}\}$.

III-9 Composition properties

III-9.1 Asynchronous composition of processes

The partial order of relaxation is used to define the semantics of the asynchronous composition of processes: roughly, the asynchronous composition of two processes P_{1} and P_{2} is defined by the flows the projection of which on common variables of P_{1} and P_{2} are relaxations of the projections on these common variables of flows of P_{1} and of flows of P_{2}.

Definition Let P_{1} and P_{2} two processes defined respectively on A_{1} and A_{2}.
The parallel composition (or asynchronous composition of P_{1} and P_{2}, denoted $P_{1} \| P_{2}$, is a process on $A_{1} \cup A_{2}$ defined by:

$$
\begin{aligned}
P_{1} \| P_{2}=\left\{F \in \mathcal{S}_{A_{1} \cup A_{2}} /\right. & \left((\exists F _ { 1 } \in \mathcal { S } _ { A _ { 1 } } , \exists F _ { 1 } ^ { \prime } \in P _ { 1 }) \quad \left(\left(F_{1} \angle F_{1}^{\prime}\right)\right.\right. \\
& \bigwedge\left(\Pi_{A_{1} \cap A_{2}}\left(F_{1}\right) \sqsubseteq \Pi_{A_{1} \cap A_{2}}(F)\right) \\
& \left.\left.\bigwedge\left(\Pi_{A_{1} \backslash A_{2}}\left(F_{1}\right) \equiv \Pi_{A_{1} \backslash A_{2}}(F)\right)\right)\right) \\
& \bigwedge\left((\exists F _ { 2 } \in \mathcal { S } _ { A _ { 2 } } , \exists F _ { 2 } ^ { \prime } \in P _ { 2 }) \left(\left(F_{2} \angle F_{2}^{\prime}\right)\right.\right. \\
& \bigwedge\left(\Pi_{A_{1} \cap A_{2}}\left(F_{2}\right) \sqsubseteq \Pi_{A_{1} \cap A_{2}}(F)\right) \\
& \left.\bigwedge\left(\Pi_{A_{2} \backslash A_{1}}\left(F_{2}\right) \equiv \downarrow \Pi_{A_{2}}(F)\right)\right) \\
& \bigwedge(F \text { is maximal for } \angle)\}
\end{aligned}
$$

III-9.2 Isochrony

The property of isochrony characterizes processes for which synchronous and asynchronous compositions are equivalent. It means that a synchronous design composed of isochronous processes is robust to their distribution.

Definition Two processes P_{1} and P_{2} are said isochronous if and only if:

$$
P_{1} \mid P_{2}=P_{1} \| P_{2}
$$

III-9.3 Endo-isochrony

A special case of practical interest is the one of endochronous processes.
Definition Let P_{1} and P_{2} two endochronous processes defined respectively on A_{1} and A_{2}. Their composition $P_{1} \mid P_{2}$ is said endo-isochronous if and only if $\Pi_{A_{1} \cap A_{2}}\left(P_{1}\right) \mid \Pi_{A_{1} \cap A_{2}}\left(P_{2}\right)$ is endochronous.

Property If $P_{1} \mid P_{2}$ is endo-isochronous, then P_{1} and P_{2} are isochronous.

III-10 Clock system and implementation relation

The refinement of a system specification consists in transforming its abstract behaviors into more concrete ones that make intermediate computational steps explicit. Conversely, the abstraction of a behavior consists in discarding some intermediate calculations. Thus it is useful to have an implementation relation between processes, that takes into account a notion of time refinement.

Sampler system

Let T a trace on A_{1}. A sampler system for T is a function $s: A_{1} \rightarrow A_{1}$ such that s is acyclic, and for all $a \in A_{1}, s(a)$ is a Boolean and

$$
(\forall t) \quad\left(\left(T_{t}(s(a))=\text { true }\right) \quad \Rightarrow \quad\left(T_{t}(a) \neq \perp\right)\right)
$$

A function s is a sampler system for a process P if and only if it is a sampler system for every flow of P.

Clock system

Let T a trace on A_{1}. A clock system for T is a sampler system such that for all $a \in A_{1}$,

$$
(\forall t) \quad\left(\left(T_{t}(s(a))=\text { true }\right) \quad \Leftrightarrow \quad\left(T_{t}(a) \neq \perp\right)\right)
$$

A function s is a clock system for a process P if and only if it is a clock system for every flow of P.

Sampling

Let T a trace on A_{1} and s a sampler system for T. The sampling of T by s is the trace $T^{\prime}=S_{s}(T)$ defined on A_{1} such that for all $a \in A_{1},(\forall t) \quad\left(T_{t}^{\prime}(a)=S^{*}\left(T_{t}(a)\right)\right)$ where S^{*} is recursively defined as follows:
if s is not defined on a, then $S^{*}\left(T_{t}(a)\right)=T_{t}(a)$,
if s is defined on a, then

$$
\begin{aligned}
& S^{*}\left(T_{t}(a)\right)=T_{t}(a) \text { if } S^{*}\left(T_{t}(s(a))\right)=\text { true }, \\
& S^{*}\left(T_{t}(a)\right)=\perp \text { if } S^{*}\left(T_{t}(s(a))\right) \neq \text { true } .
\end{aligned}
$$

Let P a process defined on A_{1}. The sampling of P by a sampler system s for P is the process P^{\prime}, denoted $P^{\prime}=\Sigma_{s}(P)$, defined as the set of flows which are equivalent to samplings of flows of P :

$$
P^{\prime}=\left\{T_{\downarrow}^{\prime} \in \mathcal{S}_{A_{1}} /(T \in P) \wedge\left(T^{\prime}=S_{s}(T)\right)\right\}
$$

Well-clocked implementation

Let P a process on A_{1} and Q a process on A_{2} such that there exists a one-to-one correspondence σ such that $\sigma\left(A_{1}\right) \subseteq A_{2}$, and let s a clock system on Q.
Q is a well-clocked implementation of P with respect to s (denoted $Q \preceq_{s} P$) if and only if:

$$
\Pi_{\sigma\left(A_{1}\right)}\left(\Sigma_{s}(Q)\right)=P .
$$

III-11 Transformation of programs

A general principal of transformation of programs (which is applied for Signal programs all along the design of an application, for example for verification purpose, for implementation purpose, or to calculate abstractions of behaviors) consists in the following generic rewritting scheme: homomorphisms of programs are defined such that a program is contained in the composition of its transformations by
these homomorphisms. Typically, one of these transformations is an abstract interpretation of the initial program.

Let A_{1} a set of variables. We consider:

- an interpretation homomorphism, f, which associates with each elementary process P defined on A_{1} a process $Q_{f}=f(P)$ on A_{2},
- an homomorphism r, which associates with each elementary process P defined on A_{1} a process $Q_{r}=r(P)$ on $A_{1}^{\prime} \subseteq A_{1}$,
such that $\Pi_{A_{1} \cap A_{2}}(P)<\Pi_{A_{1} \cap A_{2}}\left(Q_{f} \mid Q_{r}\right)$
and thus $P=\Pi_{A_{1}}\left(P \mid\left(Q_{f} \mid Q_{r}\right)\right)$.
Then we define a transformation of programs (which is an homomorphism)
$\mathcal{T}_{f r}: \mathcal{P}_{A_{1}} \rightarrow \mathcal{P}_{A_{1}^{\prime} \cup A_{2}}$
such that
$\mathcal{T}_{f r}(P)=\operatorname{left}\left(\mathcal{T} \mathcal{T}_{f r}(P)\right) \mid \operatorname{right}\left(\mathcal{T} \mathcal{T}_{f r}(P)\right)$
with:
- $\operatorname{left}(<X, Y>)=X$
- $\operatorname{right}(<X, Y>)=Y$
- $\mathcal{T} \mathcal{T}_{f r}(P)=<f(P), r(P)>$ if P is an elementary process
- $\mathcal{T} \mathcal{T}_{f r}\left(P_{1} \mid P_{2}\right)=<\operatorname{left}\left(\mathcal{T} \mathcal{T}_{f r}\left(P_{1}\right)\right)\left|\operatorname{left}\left(\mathcal{T} \mathcal{T}_{f r}\left(P_{2}\right)\right), \operatorname{right}\left(\mathcal{T} \mathcal{T}_{f r}\left(P_{1}\right)\right)\right| \operatorname{right}\left(\mathcal{T} \mathcal{T}_{f r}\left(P_{2}\right)\right)>$

Then, $P=\Pi_{A_{1}}\left(P \mid \mathcal{T}_{f r}(P)\right)$.

Chapter IV

Calculus of synchronizations and dependences

IV-1 Clocks

As said before, the clock of a signal represents the presence instants of this signal, relatively to the other ones. A system of clock relations is associated with any system of Signal equations (Signal process), in order to represent specifically the synchronizations of the process.

For that purpose, an homomorphism, $\mathcal{C l o c k}$, is defined on processes, which has the following property:
Clock $(\mathrm{P}) \mid \mathrm{P}=\mathrm{P}$
or equivalently: $\mathrm{P} \angle \mathcal{C}$ lock (P)
(by abuse of notation, we use the same notation for the syntactic and semantic homomorphisms).
Then, the system of clock relations is encoded as a system of polynomial equations on the field of integers modulo 3 .

IV-1.1 Clock homomorphism

Let us consider the following derived elementary processes, in order to make easier the expression of clock equations:

- $a_{2}:=:{ }^{-} a_{1}$
is defined by $a_{2}:=: a_{1}==a_{1}$
where $==$ represents the equality operator defined on values of any type. The signal a_{2} is defined at the same instants as the signal a_{1} and at each one of these instants, its value is the Boolean value true (the type of a_{2} is the subtype called event of the Boolean type, which contains as single value the value true). It is said that ${ }^{\wedge} a_{1}$ represents the event clock of the signal a_{1}.
- $a_{1}{ }^{\wedge}=a_{2}$
is defined by $\left(a_{3}:=: \widehat{a} a_{1}==\widehat{a} a_{2}\right)$ where a_{3}
and is generalized to n variables $\left(a_{1} \wedge=\ldots \wedge=a_{n}\right)$. It expresses that the signals a_{1} and a_{2} (more generally, a_{1}, \ldots, a_{n}) are present at the same instants (their clocks are equal).

The $\mathcal{C l o c k}$ homomorphism is defined as follows, depending on the types of the signals (the notation $\tau(x)$ designates the type of x): Boolean equations are left unchanged in the homomorphism.

1-a Monochronous definitions

- Definitions by extension:
if $\tau(b)=\tau\left(a_{1}\right)=\ldots=\tau\left(a_{n}\right)=$ boolean:
$b:=: f\left(a_{1}, \ldots, a_{n}\right) \mapsto b:=: f\left(a_{1}, \ldots, a_{n}\right)$
else:
$b:=: f\left(a_{1}, \ldots, a_{n}\right) \mapsto b^{\wedge}=a_{1}{ }^{\wedge}=\ldots \wedge=a_{n}$
- Clock:
$b:=: \wedge a \mapsto b:=: \widehat{a}$
- Delay:
if $\tau(b)=$ boolean:
$b:=: a$ \$ init $v \mapsto b:=: a$ \$ init v
else:
$b:=: a$ init $v \mapsto b^{\wedge}=a$

1-b Polychronous definitions

- Extraction:
if $\tau(b)=$ boolean:
$b:=: a_{1}$ when $a_{2} \mapsto b:=: a_{1}$ when a_{2}
else:
$b:=: a_{1}$ when $a_{2} \mapsto b^{\wedge}=\widehat{a} a_{1}$ when a_{2}
- Merging:
if $\tau(b)=$ boolean:
$b:=: a_{1}$ default $a_{2} \mapsto b:=: a_{1}$ default a_{2}
else:
$b:=: a_{1}$ default $a_{2} \mapsto b^{\wedge}=a_{1}$ default ${ }^{\text {a }} a_{2}$

1-c Hiding

$\operatorname{Clock}(P$ where $a)=\operatorname{Clock}(P)$ where a

1-d Composition

$\operatorname{Clock}\left(P_{1} \mid P_{2}\right)=\operatorname{Clock}\left(P_{1}\right) \mid \operatorname{Clock}\left(P_{2}\right)$

IV-1.2 Verification

As a consequence, if R is a safety property satisfied by $\mathcal{C l o c k}(P)$, which is expressed by $R \mid \operatorname{Clock}(P)=\operatorname{Clock}(P)$, R is also satisfied by P since $P=\operatorname{Clock}(P) \mid P$.

IV-1.3 Clock calculus

Since the system of clock relations handles only values of Boolean signals, and presence/absence for the other types of signals, there is a natural encoding of these values in the field $\mathbf{Z} / 3 \mathbf{Z}$ of integers modulo 3 (or Galois field \mathcal{F}_{3} with three elements):
$\mathcal{F}_{3}=[\{-1,0,1\},+, *]$
with the usual meanings for operations and values (+ is the usual addition modulo $3, *$ is the usual multiplication).

We define the set of polynomials on \mathcal{F}_{3} and a set of variables isomorphic to the variables of a SIGNAL program. The association of the value 0 with a variable indicates the absence of value for the associated signal in the corresponding instant. With each present Boolean signal, the value -1 (which is equal to 2 in $\mathbf{Z} / 3 \mathbf{Z}$) is associated if its current value is false, and the value +1 is associated if its current value is true. Thus, the square of the value of the variable associated with a present Boolean signal is equal to 1 ; for each non Boolean signal, we are interested only in the presence or absence of a value at the current instant. So we associate with such a signal a squared variable.

The synchronization of a SIGNAL program is expressed by a system of equations in the set of polynomials on \mathcal{F}_{3} defined by the homomorphism described below.

3-a Monochronous definitions

- Definitions by extension:
$b:=: f\left(a_{1}, \ldots, a_{n}\right) \mapsto b^{2}=a_{1}^{2}=\ldots=a_{n}^{2}$
(some relation on the values of b, a_{1}, \ldots, a_{n} is obtained when f designates a Boolean operator).
- Clock:

$$
b:=: \widehat{a} \mapsto b=a^{2}
$$

- Delay:
$b:=: a$ \$ init $v \mapsto \xi_{n+1}=\left(1-a^{2}\right) * \xi_{n}+a, \xi_{0}=v, b=a^{2} * \xi_{n}$

3-b Polychronous definitions

- Extraction:
$b:=: a_{1}$ when $a_{2} \mapsto b=a_{1} *\left(-a_{2}-a_{2}^{2}\right)$
- Merging:
$b:=: a_{1}$ default $a_{2} \mapsto b=a_{1}+\left(1-a_{1}^{2}\right) * a_{2}$

3-c Hiding

Replaces, in the system, the hidden variable by an internal one.

3-d Composition

The system obtained for P1|P2 is the union of the systems obtained for P1 and for P2.

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) of a SIGNAL program is done by studying a dynamic system such as:

$$
\begin{cases}X_{n+1} & =P\left(X_{n}, Y_{n}\right) \\ Q\left(X_{n}, Y_{n}\right) & =0 \\ Q_{0}\left(X_{0}\right) & =0\end{cases}
$$

where X is a state vector in $(\mathbf{Z} / 3 \mathbf{Z})^{p}$ and Y is a vector of events (abstract interpretations of signals) that make the system evolve.

Such a dynamic system is a particular form of finite state transition system. Thus it is a model of discrete event system on which it is possible to verify properties or to make control.

Studying such a system then consists in:

- studying its static part, i.e., the set of constraints

$$
Q\left(X_{n}, Y_{n}\right)=0
$$

- studying its dynamic part, i.e., the transition system

$$
\begin{aligned}
X_{n+1} & =P\left(X_{n}, Y_{n}\right) \\
Q_{0}\left(X_{0}\right) & =0
\end{aligned}
$$

and the set of its reachable states, etc.

IV-2 Context clock

The clock relations imposed by SIGNAL operators imply the existence of context clocks for the various occurrences of the signal variables.

A particular case of this situation is for the occurrence of constants, since such a context clock is the only way to assign a clock to the occurrence of a constant.

Occurrences of constants are allowed in SIGNAL expressions as a practical way to designate constant signals, i.e., signals with a constant value. The occurrence of such a constant, v, in some expression, stands for the occurrence of some hidden signal x, defined as $x:=: x$ init v.

Each occurrence of a constant has a particular clock (which cannot be fixed explicitly since the corresponding signal is hidden): this clock is defined by the context of utilization of the constant.

It is defined a utilization mode of the constants:

- allowing as much flexible use as possible
(we want to be able to write $\mathrm{x}+5$ but also $\mathrm{x}+(\mathrm{y}$ default 5));
- allowing intuitive handling of their clocks (a constant is delivered at the clock necessary for the coherence of a synchronous expression);
- free of interpretation for the synchronous operations and in particular, preserving possible properties of commutativity, associativity... of these operators;
- preserving the spirit, if not the letter, of the substitution principle;
- preserving the properties of the temporal operators:
- "associativity" of when,
- associativity of default,
- "right distributivity" of when on default.

These requirements lead to consider that the occurrence of a constant has a clock which is provided by the context. This has the consequence that the substitution principle cannot apply in general.

The rules for the definition of the context clock are introduced informally below.

- For a definition

$$
X:=: E
$$

the context clock of E is the clock of X.

- For a monochronous expression, the context clock of each argument is the context clock of the expression.
- For a delay

$$
E_{1} \$
$$

the context clock of E_{1} is undefined, which means that the argument of a delay cannot be a constant (note that it has also consequences on derived operators).

- For an extraction

$$
E_{1} \text { when } C
$$

having H as context clock, the context clock of C is H, that of E_{1} is the clock product of H and of the clock at which C has the value true
(this can be used to assign explicitly a clock to a constant).

- For a merging of signals

$$
E_{1} \text { default } E_{2}
$$

having H as context clock, the context clock of E_{1} and of E_{2} is H.
For example, 5 default x is equivalent to 5 .
In the sequel, the clock of a constant outside some context will be denoted \hbar.
The rules for the calculation of the clock of a constant in a given context apply also for the signals the clock of which is undefined; such a signal is obtained by the operator var. The clock of var E outside some context is also denoted \hbar.

IV-3 Dependences

The equations on signals imply, at the execution, an evaluation order which is described by the dependence graph.

Figure B-IV.1: Formal meaning of the dependence statement.

IV-3.1 Formal definition of dependences

The following informal definition of dependences can be stated:
A signal x depends on a signal y "at" a Boolean condition $c($ noted $\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}$) if, at each instant for which c is present and true, the event setting a value to x cannot precede the event setting a value to y.

A formal definition in the form of an automaton is presented here. We give the formal meaning of the statement

$$
\begin{equation*}
\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x} \tag{IV.1}
\end{equation*}
$$

in Figure B-IV.1. In the figure, the clock equations in states can be read as follows: $y^{2}\left(c+c^{2}\right)=0$ means "absent $(y) \vee\left(\operatorname{absent}(c) \vee c=\right.$ false)" (at the considered instant); $y^{2}=0$ means "absent (y) "; $c+c^{2}=0$ means "(absent $\left.(c) \vee c=f a l s e\right)$ ". This figure describes a non deterministic automaton which represents the legal schedulings of calculi in one instant as conform with statement (IV.1).

- States of the automaton are made of dependence graphs and clock equations. Clock equations can be represented as equations in \mathcal{F}_{3}.
- Transitions are labelled by signals (y, c, x), or by the empty word ε. A transition labelled by y reads: "signal y occurs, with any legal value". A transition labelled by $c(1)$ (respectively, $c(-1)$)
reads: "signal c occurs, with value true (respectively, false)"; the empty word ε represents the occurrence of any signal but (y, c, x).
- In the automaton of Figure B-IV.1, all the states have an additional transition (not represented in the Figure), labelled by ε, toward the initial state (which is represented with a thick circle in the Figure).

The automaton describing all legal schedulings of calculi for a program in one instant is obtained by a synchronous product of such basic automata, as described in section IV-3.3. Since these automata describe instantaneous behaviors, they are called micro automata. The states of the transition system describing the overall behavior of a program are the forced states (or initial states) of the micro automata.

IV-3.2 Implicit dependences

The equations defining a process may induce implicit dependences, such as described in the following.
Notations: For a Boolean c, we use the notation [c] to represent the clock at which c has the value true, and $[\neg c]$ to represent the clock at which c has the value false.

In addition to the implicit dependences described below, the following implicit dependences apply equally:

- for any signal $x, \widehat{x} \xrightarrow{\widehat{x}} \mathrm{x}$
- for any Boolean signal $c, \mathrm{c} \xrightarrow{\widehat{c}}[c]$ and $\mathrm{c} \xrightarrow{\widehat{c}}[\neg c]$
- any dependence $\mathrm{y} \xrightarrow{\mathbf{c}} \mathbf{x}$ implies implicitly a dependence $[c] \xrightarrow{[c]} \mathrm{x}$.

2-a Monochronous definitions

- Definitions by extension:
$b:=: f\left(a_{1}, \ldots, a_{n}\right)$
The following implicit dependences exist:
$a_{1} \rightarrow b, \ldots, a_{n} \rightarrow b$
- Clock:
$b:=: \widehat{a}$
b is identified with the clock of a, there is no implicit dependence.
- Delay:
$b:=: a$ \$init v
There is no implicit dependence.

2-b Polychronous definitions

- Extraction:
$b:=: a_{1}$ when a_{2}
The following implicit dependences exist:
$a_{1} \xrightarrow{\text { b }} b$
$a_{2} \xrightarrow{\text { b }} b$
- Merging:
$b:=: a_{1}$ default a_{2}
The following implicit dependences exist:
$a_{1} \xrightarrow{\widehat{a_{1}}} b$
$a_{2} \xrightarrow{\widehat{a_{2}}{ }^{\wedge}-\widehat{a_{1}}} b$
where $\widehat{a_{2}} \widehat{ } \widehat{-} a_{1}$ designates the clock representing the instants of a_{2} that are not instants of a_{1}.

IV-3.3 Micro automata

3-a Definition of micro automata

The micro automaton associated with a program describes the legal schedulings of calculi in one instant.
Let A be a set of variables; $A^{s}=A^{+} \cup A^{-}$is the set of variables of A labelled by + or - .
A word on A is any subset m of A^{s} such that

$$
a^{s} \in m \Rightarrow a^{\bar{s}} \notin m \text { where } \bar{\mp}=- \text { and }==+
$$

A micro automaton on A is a tuple

$$
<S, \mathcal{P}\left(A^{s}\right), S_{I}, \Gamma \subset S \times \mathcal{P}\left(A^{s}\right) \times S>
$$

such that:

- $S_{I} \subset S: S$ is the set of states and S_{I} is a set of initial states;
- if $s_{1} \stackrel{m_{1}}{\sim} s_{2} \in \Gamma$ (Γ is the set of transitions, m_{1} is the label of the transition), and $s_{2} \stackrel{m_{2}}{\sim} s_{3} \in \Gamma$, and \ldots and $s_{n} \stackrel{m_{n}}{\sim} s_{n+1} \in \Gamma$, then:

$$
\begin{aligned}
& \forall i \neq j, m_{i} \cap m_{j}=\emptyset \\
& \text { and } m=\bigcup_{i=1}^{n} m_{i} \text { is a word on } A .
\end{aligned}
$$

- if $s_{1} \stackrel{\emptyset}{\sim} s_{2} \in \Gamma \quad$ then $\quad s_{2} \in S_{I}{ }^{1}$

The micro automaton is said saturated if, in addition,

$$
s_{1} \stackrel{m_{1}}{\sim} s_{2} \in \Gamma \text { and } s_{2} \stackrel{m_{2}}{\sim} s_{3} \in \Gamma \Rightarrow s_{1} \xrightarrow{m_{1} \cup m_{2}} s_{3} \in \Gamma
$$

Let $A U T$ be a micro automaton, $\mathcal{S} a t(A U T)$ is the saturated micro automaton which contains $A U T$. Consider two micro automata defined respectively on A_{1} and A_{2} with $A_{1} \cap A_{2}=A$. Two labels of transitions, m_{1} on A_{1}, and m_{2} on A_{2}, are said to coincide on A if and only if:

$$
\left(m_{1} \cap A^{s}\right)=\left(m_{2} \cap A^{s}\right)
$$

Let $A U T_{1}=<S_{1}, \mathcal{P}\left(A_{1}^{s}\right), S_{1 I}, \Gamma_{1}>$ and $A U T_{2}=<S_{2}, \mathcal{P}\left(A_{2}^{s}\right), S_{2 I}, \Gamma_{2}>$ two micro automata. Their product, denoted $A U T=A U T_{1} \| A U T_{2}$, is the micro automaton on $A_{1} \cup A_{2}$, defined by:

$$
A U T=\operatorname{Sat}\left(<S_{1} \times S_{2}, \mathcal{P}\left(A_{1}^{s} \cup A_{2}^{s}\right), S_{1 I} \times S_{2 I}, \Gamma>\right)
$$

[^2]with Γ defined as follows:
\[

$$
\begin{aligned}
& \left(s_{1}, s_{2}\right) \stackrel{m_{1}}{\sim}\left(s_{1}^{\prime}, s_{2}\right) \in \Gamma \quad \text { iff } m_{1} \cap A_{2}^{s}=\emptyset \text { and } s_{1} \stackrel{m_{1}}{\sim} s_{1}^{\prime} \in \Gamma_{1} \\
& \left(s_{1}, s_{2}\right) \xrightarrow{m_{2}}\left(s_{1}, s_{2}^{\prime}\right) \in \Gamma \quad \text { iff } m_{2} \cap A_{1}^{s}=\emptyset \text { and } s_{2} \xrightarrow{m_{2}} s_{2}^{\prime} \in \Gamma_{2} \\
& \left(s_{1}, s_{2}\right) \xrightarrow{m_{1} \cup m_{2}}\left(s_{1}^{\prime}, s_{2}^{\prime}\right) \in \Gamma \quad \text { iff } m_{1} \text { and } m_{2} \text { coincide on } A_{1} \cap A_{2} \\
& \text { and } s_{1} \stackrel{m_{1}}{\sim} s_{1}^{\prime} \in \Gamma_{1} \text { and } s_{2} \xrightarrow{m_{2}} s_{2}^{\prime} \in \Gamma_{2}
\end{aligned}
$$
\]

3-b Construction of basic micro automata

(i) Micro automaton associated with a system of equations

Let us consider a system of equations on a set of variables A :

$$
\Sigma: R(A)=0
$$

having at least one solution (the system encodes clock equations of a program).
A partial valuation of Σ is any system of equations $\Sigma^{\prime}: R^{\prime}\left(A^{\prime}\right)=0$ equivalent to $R(A)=0$ in which a non empty subset $\left\{a_{1}, \ldots, a_{n}\right\}$ of variables of A have been replaced by values $v_{1}, \ldots, v_{n} \in\{-1,1\}$ such that Σ^{\prime} has at least one solution.

If σ denotes such a substitution, the following notations are used:

$$
\begin{array}{ll}
\sigma\left(a_{i}\right)=v_{i} & \text { denotes the value assigned to } a_{i} \text { by } \sigma \\
\sigma(R(A)) & \text { denotes the system } R^{\prime}\left(A^{\prime}\right) \text { obtained by the substitution. }
\end{array}
$$

Then we consider $\mathcal{P}(\Sigma)$ the set of $R^{\prime}\left(A^{\prime}\right)$ such that there exists σ verifying $\sigma(R(A))=R^{\prime}\left(A^{\prime}\right)$.

The micro automaton associated with Σ is the saturated micro automaton

$$
<S, \mathcal{P}\left(A^{s}\right),\left\{s_{0}\right\}, \Gamma>
$$

such that:

- there exists a bijection $\phi: \mathcal{P}(\Sigma) \rightarrow S$ with $\phi(R)=s_{0}$
- for any valuation σ of $R^{\prime}\left(A^{\prime}\right) \in \mathcal{P}(R(A))$,

$$
\phi\left(R^{\prime}\right) \xrightarrow{T} \phi\left(\sigma\left(R^{\prime}\right)\right) \in \Gamma
$$

if and only if:

$$
\begin{array}{ll}
a^{+} \in T \quad \text { iff } & \sigma(a)=1 \text { and } \\
a^{-} \in T & \text { iff } \\
\sigma(a)=-1
\end{array}
$$

- for all $\Sigma^{\prime}: R^{\prime}\left(A^{\prime}\right)=0$ such that

$$
\forall a, a \in A^{\prime} \Rightarrow a=0 \text { is a solution of } \Sigma^{\prime}
$$

then

$$
\phi\left(R^{\prime}\right) \stackrel{Ð}{\sim} s_{0} \in \Gamma
$$

(ii) Micro automaton associated with a dependence

The micro automaton associated with

$$
y \xrightarrow{c} x
$$

is defined as follows.
We consider the following states of resolution \mathcal{E} :
$\mathrm{y} \xrightarrow{\mathbf{C}} \mathrm{x}, \mathrm{y} \rightarrow \mathrm{x},\{y, x\},\{c, x\},\left(y^{2}\left(c+c^{2}\right)=0\right),\{y\},\{x\},\{c\},\left(c+c^{2}=0\right),\left(y^{2}=0\right)$
The micro automaton associated with $\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}$ is the saturated micro automaton

$$
\mathcal{S a t}\left(<S, \mathcal{P}\left(\{y, x, c\}^{s}\right),\left\{s_{0}\right\}, \Gamma>\right)
$$

such that there exists a bijection $\phi: \mathcal{E} \rightarrow S$ with $\phi(y \xrightarrow{c} x)=s_{0}$
and with Γ defined as follows:

$$
\begin{aligned}
& \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \xrightarrow{\stackrel{c}{+}_{\rightarrow}^{c}} \phi(\mathrm{y} \rightarrow \mathrm{x}) \in \Gamma \\
& \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \stackrel{c^{-}}{\leadsto} \phi(\{y, x\}) \in \Gamma \\
& \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \stackrel{y^{ \pm}}{\leadsto} \phi(\{c, x\}) \in \Gamma \\
& \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \xrightarrow{x^{ \pm}} \phi\left(y^{2}\left(c+c^{2}\right)=0\right) \in \Gamma \\
& \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \stackrel{\emptyset}{\sim} \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \in \Gamma \\
& \phi(\mathrm{y} \rightarrow \mathrm{x}) \xrightarrow{y^{ \pm}} \phi(\{x\}) \in \Gamma \\
& \phi(\mathrm{y} \rightarrow \mathrm{x}) \xrightarrow{x^{ \pm}} \phi\left(y^{2}=0\right) \in \Gamma \\
& \phi(\mathrm{y} \rightarrow \mathrm{x}) \xrightarrow{\square} \phi(\mathrm{y} \xrightarrow{\mathrm{c}} \mathrm{x}) \in \Gamma
\end{aligned}
$$

In addition, Γ contains all other transitions providing from resolutions such as described in (i).
The corresponding micro automaton is displayed in Figure B-IV.1, where c^{+}and c^{-}are denoted respectively $c(1)$ and $c(-1)$, and $y^{ \pm}$and $x^{ \pm}$are denoted y and x; moreover, the \emptyset transitions have been omitted in the figure. The complete micro automaton is the saturated micro automaton which contains this one.

(iii) Micro automaton associated with a memorization

The encoding presented in IV-3.1 considers not only the clocks, but also the values of the Boolean flows: delayed Boolean flows are the state variables of the program.

The micro automaton associated with $x:=: y$ init v where x and y are Boolean flows is the saturated micro automaton obtained from the micro automaton depicted on Figure B-IV.2. The initial states of this micro automaton are the states represented with a thick circle in the Figure.

(iv) Micro automaton associated with a process

The micro automaton associated with a process is the product of the micro automata associated with each definition involved in the process.

Figure B-IV.2: Micro automaton of $x:=: y$ init v

Part C

THE SIGNALS

Chapter V

Domains of values of the signals

A signal is a sequence of values associated with a clock. These values have all the same type, which is considered as the type of the sequence. The objective of this chapter is to present the notations used to represent these types and the processings which are applied on them. An element of the set of types of the Signal language is denoted type.

Let E be a term of the Signal language; we denote by $\tau(\mathrm{E})$ the type associated with the term E and, when E is a constant expression, $\varphi(\mathrm{E})$ the value of this expression, elaborated in the context in which E appears.

The set of types of the SIGNAL language contains the scalar types, the external types, the array types and the tuple types.

1. Context-free syntax

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

V-1 Scalar types

Scalar types are the following: synchronization types, integer types, real types, complex types, character type, string type; the integer, real and complex types compose the set of numeric types; character and string types compose the set of alphabetic types.

1. Context-free syntax

Scalar-type $::=$\begin{tabular}{l}
Synchronization-type

$|$| Numeric-type |
| :--- |
| |
| \mid Alphabetic-type |

\end{tabular}

Numeric-type $::=$ Integer-type
Real-type
| Complex-type
Alphabetic-type ::= char
string

V-1.1 Synchronization types

The synchronization types are used to define the clocks of the signals. They are the type event (or pure signal) and the type boolean.

Denotations of types

1. Context-free syntax

2. Types

(a) τ (event) $=$ event
(b) $\tau($ boolean $)=$ boolean

Denotations of values

- A signal of type event takes its values in a single-element set: there is no associated constant and a parameter cannot be of that type.
- The constants of type boolean are the logical values denoted with the syntax of a Boolean-cst (cf. part A, section II-2.2, page 23).
- The default initial value of type boolean is the value false.

V-1.2 Integer types

Integer values can be in short representation (type short), normal representation (type integer), or long representation (type long); a given implementation may not distinguish these types. In this document, the notations max long, min long, max integer, min integer, max short and min short will be used to designate respectively: the greatest representable integer (of type long), the smallest representable integer (of type long), the greatest integer of type integer, the smallest integer of type integer, the greatest integer of type short and the smallest integer of type short. These values depend of the implementation and respect the following order:
min long \leq min integer \leq min short $\leq 0<\max$ short \leq max integer \leq max long min integer <0

Denotations of types

1. Context-free syntax

2. Types

(a) $\tau($ short $)=$ short
(b) $\tau($ integer $)=$ integer
(c) $\tau(\mathrm{long})=$ long

Denotations of values

The positive values of an integer type are denoted following the syntax of an Integer-cst (cf. part A, section II-2.3, page 24). A negative value has not a direct representation: it is obtained using the operator -- applied to a positive value.

1. Types

(a) The type of an Integer-cst E is the smallest integer type that contains it.
2. Semantics

- An Integer-cst denotes an integer value represented in decimal base, contained between 0 and max long.
- An occurrence of an integer value of type short (respectively, integer and long) smaller than min short (respectively, min integer and min long) or greater than max short (respectively, max integer and max long) results, in the considered type, in a value depending of the implementation.
- For an Integer-type, the default initial value is the value 0 .

Bounded integers

Integers have a special role since they can be used to index arrays. In that case, we have to consider bounded values.

In this document, for a given signal E, we will use sometimes the following notations:

- lower_bound (E) designates the lower bound of the values of E;
- upper_bound (E) designates the upper bound of the values of E.

These bounds are constant integers.

V-1.3 Real types

The real values can be in simple precision representation (type real) or double precision representation (type dreal); a given implementation may not distinguish these types.

Denotations of types

1. Context-free syntax

$$
\begin{array}{rl|}
\text { Real-type }::= & \begin{array}{|l|}
\text { real } \\
\\
\\
\hline \text { dreal } \\
\hline
\end{array} \\
\hline
\end{array}
$$

2. Types

(a) $\tau($ real $)=$ real
(b) $\tau($ dreal $)=$ dreal

Denotations of values $E_{1} \cdot E_{2} \mathrm{e} E_{3}$ (simple precision) or $E_{1} \cdot E_{2} \mathrm{~d} E_{3}$ (double precision)
A value of real type is denoted following the syntax of a Real-cst (cf. part A, section II-2.4, page 24). A Real-cst denotes the approximate value of a real number.

1. Types

(a) A Simple-precision-real-cst is of type real.
(b) A Double-precision-real-cst is of type dreal.

2. Semantics

- The value $\varphi\left(E_{i}\right)$, when E_{i} is omitted, is 0 .
- If E_{2} has n digits, the value of the constant is the approximate value of $\left(\varphi\left(E_{1}\right)+\varphi\left(E_{2}\right) *\right.$ $\left.10^{-n}\right) *{ }_{10} \varphi\left(E_{3}\right)$.
- For a Real-type, the default initial value is the value 0.0 or 0.0 do following the type.

V-1.4 Complex types

The complex values have the common representation of their components (simple or double precision, respectively types complex and dcomplex); both types are distinguished in a given implementation if and only if the type dreal is distinguished from the type real.

Denotations of types

1. Context-free syntax

2. Types

(a) τ (complex) $=$ complex
(b) τ (dcomplex $)=d$ complex

Denotations of values

A value of complex type is obtained for example in the following expression, the first element of which is the real part and the second one the imaginary part (cf. part C, section VI-8.1, page 128).

1. Examples

(a) $1.0 @(-1.0)$

For a Complex-type, the default initial value is the pair of default real initial values.

V-1.5 Character type

The type character contains the set of the admitted characters in the language.

Denotation of type

1. Types

(a) τ (char) $=$ character

Denotations of values

A value of type character is denoted by a Character-cst (cf. part A, section II-2.5, page 24).
The default initial value of type character is the character ${ }^{\prime} \backslash 000^{\prime}$.

V-1.6 String type

The type string allows to represent any sequence of admitted characters. The value of the maximal authorized size for a string, maxStringLength, depends of the implementation.

Denotation of type

1. Types

(a) $\tau($ string $)=$ string

Denotations of values

A value of type string is denoted by a String-cst (cf. part A, section II-2.6, page 25).
The default initial value of type string is the empty string " ".

V-2 External types

External types make possible the use of signals the type of which is not a type of the language.
Denotation of type A
An external type is designated by a name.

1. Context-free syntax

External-type ::= Name-type
2. Types
(a) For an external type with name $A, \tau(A)=A$

Two external types with distinct names are not comparable.

3. Examples

(a) pointer is an external type with name pointer.

Denotations of values

An external constant can be denoted by a name; the value of an external constant can be defined by the environment of the program (cf. part E, chapter XII, page 191).

For example the identifier nil can represent a constant of type pointer.
For any external type A, it is possible to define a constant that represents the default initial value of type A (cf. section V-7, page 84).

The only operations the semantics of which is defined on external type signals are operations of description of communication graphs (which are polymorphic operations).

V-3 Enumerated types

Enumerated types allow to represent finite domains of values represented by distinct names. These values (the enumerated values) are the constants of the type to which they belong.

Denotation of types enum (a_{1}, \ldots, a_{m})
An enumerated type is defined by the list (considered as an ordered list) of its values (the enumerated values) and by its name (cf. section V-7, page 84): type $\mathrm{A}=$ enum (a_{1}, \ldots, a_{m});
However, like for the other types, such a name does not necessarily exist. In that case, the name of the type is empty.
The definition of an enumerated type declares its enumerated values.

1. Context-free syntax

ENUMERATED-TYPE ::=

enum	$(\square$ Name-enum-value $\{\square$,	Name-enum-value $\}^{*} \square$

2. Types

(a) The type of the enumerated type is:
$\tau\left(\mathrm{A}=\operatorname{enum}\left(a_{1}, \ldots, a_{m}\right)\right)=A \times\left\{a_{1}, \ldots, a_{m}\right\}$
where $\left\{a_{1}, \ldots, a_{m}\right\}$ represents the finite set of ordered values a_{1}, \ldots, a_{m}. It means that the name of an enumerated type (the name that is given in the declaration of the type) is part of that type. Depending on the implementation, it can be the case or not that synonyms (cf. section V-7, page 84) are considered in the definition of the type.
If the enumerated type is not designated by a name, then its type is just the finite set of its ordered values.
(b) The type of the enumerated values of an enumerated type is this enumerated type: $\tau\left(a_{1}\right)=$ $\ldots=\tau\left(a_{m}\right)=\tau\left(\right.$ enum $\left.\left(a_{1}, \ldots, a_{m}\right)\right)$
(c) Two enumerated types are considered to be equal if they have both the same name, and the same set of enumerated values, in the same order. Two enumerated types that are not designated by a name are considered to be equal if they have the same set of enumerated values, in the same order.
3. Semantics

The enumerated values of an enumerated type are ordered (syntactic order of their declaration). All the values of a given type are distinct; these values are distinguished by their name.

4. Examples

(a) type color $=$ enum (yellow, orange); andtype fruit $=$ enum (apple, orange) ; are two enumerated types, each one defining an enumerated value named "orange". Both enumerated values named "orange" are distinct values, with different types. The next paragraph describes the way allowing to distinguish them.

Denotation of values

$\# a_{i}$ or $A \# a_{i}$
where A is the name of the enumerated type.
Note: the symbol \# does not appear in the definition of the type (and its enumerated values), but only for the use of an enumerated value.

1. Context-free syntax

ENUM-CST ::=

2. Semantics

- The notation $\# a_{i}$ can be used to reference an enumerated value a_{i} in a context in which there is no possible ambiguity on the referenced value. If it is not the case, the notation $A \# a_{i}$ has to be used, where A designates the enumerated type.
- The default initial value of an enumerated type is the first value of its declaration.

3. Clocks An enumerated value a_{i} (designated by \# a_{i} or $A \# a_{i}$) is a constant.
(a) $\omega\left(a_{i}\right)=\hbar$

4. Examples

(a) color\#orange and fruit\#orange designate two different enumerated values (of two different types) with the same name.

V-4 Array types

An array is a structure allowing to group together synchronous elements of a same type. The description of such a structure and of the access to its elements uses constant expressions that have the general syntax of signal expressions (S-EXPR).

Denotation of types $\left[n_{1}, \ldots, n_{m}\right] \nu$
An array type is defined by its dimensions and by the type of its elements.

1. Context-free syntax

ARRAY-TYPE ::=

$$
\left[\text { S-EXPR }\{\square \text {, S-EXPR }\}^{*} \square\right. \text { SIGNAL-TYPE }
$$

2. Types

(a) The elaborated values of $n_{1}\left(\varphi\left(n_{1}\right)\right), \ldots, n_{m}\left(\varphi\left(n_{m}\right)\right)$ are strictly positive integers.
(b) The type of the array is:
$\tau\left(\left[n_{1}, \ldots, n_{m}\right] \nu\right)=\left(\left[0 . . \varphi\left(n_{1}\right)-1\right] \times \ldots \times\left[0 . . \varphi\left(n_{m}\right)-1\right]\right) \rightarrow \tau(\nu)$.
(c) When the type $\tau(\nu)$ itself is an array type $\left[n_{m+1}, \ldots, n_{m+p}\right] \mu$, then the type of the array is:
$\tau\left(\left[n_{1}, \ldots, n_{m}\right] \nu\right)=\left(\left[0 . . \varphi\left(n_{1}\right)-1\right] \times \ldots \times\left[0 . . \varphi\left(n_{m+p}\right)-1\right]\right) \rightarrow \tau(\mu)$.
3. Clocks The integers n_{i} must be constant expressions.
(a) $\omega\left(n_{i}\right)=\hbar$

4. Properties

(a) The types $\left[n_{1}, n_{2}\right] \nu$ and $\left[n_{1}\right]\left[n_{2}\right] \nu$ are the same.

5. Examples

(a) $[10,10]$ integer is a two dimensions integer array (the bounds of the array begin implicitly at index 0 in each dimension).
(b) [n$]$ pointer is a vector of values of external type pointer.

Denotations of values

A constant array is defined by a constant expression of array (cf. part D, section IX-2, page 149); the elements that compose a constant array are from the same domain.

For an ARRAY-TYPE, the default initial value is an array of which each element has the default initial value of the type of the elements of the array.

V-5 Tuple types

The Signal language allows to define structured types, called in a generic way tuple types. Two categories of tuple types, called also tuple types with named fields, can be associated with the objects of the Signal language in declarations:

- polychronous tuples (designated by the keyword bundle) ${ }^{1}$;
- monochronous tuples (designated by the keyword struct)
(remark: the objects declared of tuple type can also be called tuples).
An object declared of type polychronous tuple is in fact a gathering of objects (family of objects). In this way, a polychronous tuple of signals is not a signal (for example, in the general case, it has no clock); it cannot be used as the type of the elements of an array. At the opposite, an object declared of

[^3]type monochronous tuple can be a signal: it has a clock (delivered by the operator ${ }^{\text {(}}$) and it can be used as the type of the elements of an array.

A general rule is that operators on signals do not apply on polychronous tuples, but they are pointwise extended on the fields of these tuples (cf. part D, chapter X, page 169).

The Signal language allows also to manipulate gatherings (or tuples) of objects with no explicit declaration of these gatherings. They define in fact tuples with unnamed fields, the type of which is a product of types (cf. section V-6.2, paragraph "Order on tuples", page 80). The operators defined on signals are pointwise extended to tuples with unnamed fields (cf. part D, chapter X, page 169). By extension, it will be possible to refer to the clock of a tuple of signals if all the signals of the tuple have the same clock.

Denotation of types

```
struct ( }\mp@subsup{\mu}{1}{}\mp@subsup{X}{1}{\prime;}...; \mp@subsup{\mu}{m}{}\mp@subsup{X}{m}{\prime};
or
bundle ( }\mp@subsup{\mu}{1}{}\mp@subsup{X}{1}{\prime};\ldots;\mp@subsup{\mu}{m}{}\mp@subsup{X}{m}{\prime};)\mathrm{ spec C
```

A tuple type is defined by a list of typed and named fields; in addition, clock properties can be specified on the fields of a tuple.

The description of such a type uses lists of declarations of sequence identifiers S-DECLARATION (cf. section V-9, page 87) for the designation of the fields, and properties SPECIFICATION-OFPROPERTIES (cf. part E, section XI-6, page 180) to express the clock properties that must be respected by the signals corresponding to the fields defined by the type. These properties should describe exclusively clock properties on the fields of the tuple, excluding for instance graph properties. Note that constraints on values can be specified under the form of constraints on clocks.

A tuple type can be multi-clock (polychronous) or mono-clock (monochronous). If it is multi-clock, it is distinguished by the keyword bundle and it can contain specifications of clock properties applying on its fields. If it is mono-clock, it is distinguished by the keyword st ruct and all its fields are implicitly synchronous; in this case, it can be used as type of the elements of an array.

1. Context-free syntax

TUPLE-TYPE ::=

NAMED-FIELDS ::=

\{ S-DECLARATION \} ${ }^{+}$

2. Types

(a) From the point of view of the domains of associated values, the polychronous or monochronous tuple types with named fields are designated in the same way in this document. The domain is a non associative product (i.e., preserving the structuring) of typed named fields.
(b) τ (struct $\left.\left(\mu_{1} X_{1} ; \ldots ; \mu_{m} X_{m} ;\right)\right)$ $=$ bundle $\left(\left\{X_{1}\right\} \rightarrow \tau\left(\mu_{1}\right) \times \ldots \times\left\{X_{m}\right\} \rightarrow \tau\left(\mu_{m}\right)\right)$
(c) τ (bundle ($\mu_{1} X_{1} ; \ldots ; \mu_{m} X_{m}$;) spec C) $=\operatorname{bundle}\left(\left\{X_{1}\right\} \rightarrow \tau\left(\mu_{1}\right) \times \ldots \times\left\{X_{m}\right\} \rightarrow \tau\left(\mu_{m}\right)\right)$
(d) A type
bundle $\left(\left\{X_{1}\right\} \rightarrow \tau\left(\mu_{1}\right) \times \ldots \times\left\{X_{m}\right\} \rightarrow \tau\left(\mu_{m}\right)\right)$
defines a set of functions

$$
\Xi:\left\{X_{1}, \ldots, X_{m}\right\} \rightarrow \bigcup_{i=1}^{m} \tau\left(\mu_{i}\right) \text { such that } \Xi\left(X_{i}\right) \in \tau\left(\mu_{i}\right)
$$

3. Semantics

The tuple types with named fields (struct and bundle) allow to define structured types as non associative grouping of typed named fields: ($\mu_{1} X_{1} ; \ldots ; \mu_{m} X_{m}$;). The specifications of properties spec C apply on the fields of the tuple. They establish constraints that must be respected by the signals defined with such a type (space of synchronization of the values of the domain).

4. Examples

(a) struct (integer X1, X2;)
is a tuple of two synchronous integers.
(b) bundle (integer A; boolean $B ;$) spec (|A $\#$ B |) defines a union of types as a tuple the fields of which are mutually exclusive.

Denotations of values

A constant tuple is defined by a constant expression of tuple (cf. part D, section VIII-1, page 143). For a TUPLE-TYPE, the default initial value is recursively the tuple of initial values of its fields.

V-6 Structure of the set of types

A partial order is defined on the types such that there exists a "natural" plunging of a smaller set into a greater one. The types are organized into domains corresponding to theoretical sets (non constrained by the implementation). In this way, the domain of synchronization values (Synchronization-type) contains the types event and boolean; the domain of integers (Integer-type) contains the types short, integer, and long; the domain of reals (Real-type) contains the types real and dreal; the domain of complex (Complex-type) contains the types complex and dcomplex.

V-6.1 Set of types

The set of types is composed of the types the expressions of which, in the Signal language, described in the following summary, are derived from the variable SIGNAL-TYPE:

SIGNAL-TYPE

Scalar-type

External-type

Name-type

Generic form of the external types: name

ENUMERATED-TYPE

enum	(Name-enum-value $\left.\{\square \text { Name-enum-value }\}^{*} \quad\right)$

Generic form of the enumerated types: $A \times\left\{a_{1}, \ldots, a_{m}\right\}$

ARRAY-TYPE

$\left[\right.$ S-EXPR $\left.\{\boxed{,} \text { S-EXPR }\}^{*} \square\right]$ SIGNAL-TYPE
Generic form of the array types: $\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$

TUPLE-TYPE

$\left\{\begin{array}{|l|l|l|l|}\hline \text { struct } & \text { (} & \text { NAMED-FIELDS } & \text {) } \\ \hline \text { bundle } & \text { (} & \text { NAMED-FIELDS } & \text {) } \\\right.$\cline { 1 - 4 } \& [SPECIFICATION-OF-PROPERTIES]\end{array}
Generic form of the tuple types with named fields:
bundle $\left(\left\{X_{1}\right\} \rightarrow \mu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \mu_{m}\right)$

V-6.2 Order on types

Order on scalar and external types

The order on scalar and external types of the Signal language is described in the figure C-V.1. A downward solid arrow (\longrightarrow) links a type with a type directly superior from the same domain (two types of a same domain are comparable); the other arrows represent basic conversions, the semantics of which is described below. The other conversions are obtained by composition of conversions. The partial order is denoted \sqsubseteq.

The notion of "comparable types" is extended to arrays and tuples.

Figure C-V.1: Order and conversions on scalar and external types

Order on arrays

The order on scalar and external types is extended to arrays:

- $\left(\left[0 . . m_{1}-1\right] \times \ldots \times\left[0 . . m_{k}-1\right]\right) \rightarrow \mu \sqsubseteq\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{l}-1\right]\right) \rightarrow \nu$ if and only if

$$
* k=l
$$

$$
* \forall i \quad 1 \leq i \leq k \Rightarrow m_{i} \leq n_{i}
$$

$$
* \text { and } \mu \sqsubseteq \nu
$$

Order on tuples

A product of types is a type, called tuple type with unnamed fields, which preserves the structuring. There is no syntactic designation of such a type (it is not possible to declare some object of type tuple with unnamed fields); however, it is possible to manipulate objects of type tuple with unnamed fields (product of types). A tuple with unnamed fields with a single element is considered as isomorphic to this element.

The product of types μ_{1}, \ldots, μ_{n} (in this order) is denoted $\left(\mu_{1} \times \ldots \times \mu_{n}\right)$.
The order on the types of signals is extended as follows on tuples:

- bundle $\left(\left\{X_{1}\right\} \rightarrow \mu_{1} \times \ldots \times\left\{X_{n}\right\} \rightarrow \mu_{n}\right) \sqsubseteq$ bundle $\left(\left\{Y_{1}\right\} \rightarrow \nu_{1} \times \ldots \times\left\{Y_{p}\right\} \rightarrow \nu_{p}\right)$ if and only if:
$p=n$
and $(\forall i) \quad\left(X_{i}=Y_{i}\right.$ et $\left.\mu_{i} \sqsubseteq \nu_{i}\right)$
- $\left(\mu_{1} \times \ldots \times \mu_{n}\right) \sqsubseteq$ bundle $\left(\left\{Y_{1}\right\} \rightarrow \nu_{1} \times \ldots \times\left\{Y_{p}\right\} \rightarrow \nu_{p}\right)$ if and only if:
$\left(\mu_{1} \times \ldots \times \mu_{n}\right) \sqsubseteq\left(\nu_{1} \times \ldots \times \nu_{p}\right)$
- $\left(\mu_{1} \times \ldots \times \mu_{n}\right) \sqsubseteq\left(\mu_{1} \times\left(\mu_{2} \times \ldots \times \mu_{n}\right)\right)$
- $\left(\mu_{1} \times \ldots \times \mu_{n}\right) \sqsubseteq\left(\nu_{1} \times \ldots \times \nu_{p}\right)$ if and only if:

$$
\left((n=p) \bigwedge\left((\forall i) \quad\left(\mu_{i} \sqsubseteq \nu_{i}\right)\right)\right)
$$

or
$\left((\exists k, l) \quad\left(\left((i<k) \Rightarrow \quad\left(\mu_{i} \sqsubseteq \nu_{i}\right)\right)\right.\right.$
$\wedge\left(\left(\left(\mu_{k} \times \ldots \times \mu_{k+l}\right) \sqsubseteq \nu_{k}\right)\right.$
$\wedge(((k+l=n) \wedge(k=p))$
or $\left.\left.\left.\left.\quad\left(((k+l<n) \bigwedge(k<p)) \bigwedge\left(\left(\mu_{k+l+1} \times \ldots \times \mu_{n}\right) \sqsubseteq\left(\nu_{k+1} \times \ldots \times \nu_{p}\right)\right)\right)\right)\right)\right)\right)$

Notation

The notation $\mu \sqcup \nu$ is used to designate the upper bound of two comparable types μ and ν.

V-6.3 Conversions

A conversion is a function for which the image of an object of the type μ of the argument is an object of the type ν required by the context of utilization. The conversion functions for the types defined in the Signal language have the name of the reserved designation of the expected type or in general the name of the expected type. In this document, these functions are denoted as follows, in order to describe their semantics:
$\mathcal{C}_{\nu}^{\mu}: \mu \rightarrow \nu$
Direct conversion functions are available in the language, even if their semantics is described in terms of composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types $\mu \sqsubseteq \nu$, the two following conversions are defined:

1. the conversion \mathcal{C}_{ν}^{μ} from a smaller type μ to a greater type ν lets the values unchanged;
2. the conversion $\mathcal{C}_{\mu}^{\nu}: \nu \rightarrow \mu$ which is the inverse of the previous one for the values of type μ.

The conversion functions are extended to any pair of comparable types:

- if $\nu_{1} \sqsubseteq \mu \sqsubseteq \nu_{2}$ then $\mathcal{C}_{\nu_{2}}^{\nu_{1}}=\mathcal{C}_{\nu_{2}}^{\mu} \circ \mathcal{C}_{\mu}^{\nu_{1}}$;
- \mathcal{C}_{μ}^{μ} is the identity function.

Implicit conversions

The only implicit conversions are the conversions \mathcal{C}_{ν}^{μ} for which $\mu \sqsubseteq \nu$. Implicit conversions do not need to be explicited in the language.

3-b Conversions toward the domain "Synchronization-type"

The conversions $\mathcal{C}_{\text {event }}^{\mu}$ are defined for each μ (except if μ is a polychronous tuple); Trivially, they deliver the single value of type event.
the conversions $\mathcal{C}_{\text {boolean }}^{\mu}$ depend of the implementation while respecting the following rules:

- The conversion $\mathcal{C}_{\text {boolean }}^{\text {long }}$ verifies:

$$
\begin{aligned}
& -\mathcal{C}_{\text {boolean }}^{\text {long }}(0)=\text { false } \\
& -\mathcal{C}_{\text {boolean }}^{\text {long }}(1)=\text { true }
\end{aligned}
$$

- For a Scalar-type μ distinct from event $\mathcal{C}_{\text {boolean }}^{\mu}=\mathcal{C}_{\text {boolean }}^{\text {long }} \circ \mathcal{C}_{\text {long }}^{\mu}$

3-c Conversions toward the domain "Integer-type"

The conversions $\mathcal{C}_{\text {short }}^{\mu}$ depend of the implementation while respecting the following rules:

- $\mathcal{C}_{\text {short }}^{\text {integer }}(v)=v$ if v is greater than min short and smaller than max short (non strictly in both cases),
- $\mathcal{C}_{\text {short }}^{\text {long }}=\mathcal{C}_{\text {short }}^{\text {integer }} \circ \mathcal{C}_{\text {integer }}^{\text {long }}$
- for a Scalar-type or ENUMERATED-TYPE μ $\mathcal{C}_{\text {short }}^{\mu}=\mathcal{C}_{\text {short }}^{\text {long }} \circ \mathcal{C}_{\text {long }}^{\mu}$

The conversions $\mathcal{C}_{\text {integer }}^{\mu}$ depend of the implementation while respecting the following rules:

- $\mathcal{C}_{\text {integer }}^{\text {long }}(v)=v$ if v is greater than min integer and smaller than max integer (non strictly in both cases),
- for a Scalar-type μ which is not smaller than integer (for the order defined on the types), or for μ an ENUMERATED-TYPE
$\mathcal{C}_{\text {integer }}^{\mu}=\mathcal{C}_{\text {integer }}^{\text {long }} \circ \mathcal{C}_{\text {long }}^{\mu}$
The conversions $\mathcal{C}_{\text {long }}^{\mu}$ depend of the implementation while respecting the following rules:
- the conversion $\mathcal{C}_{\text {long }}^{\text {boolean }}$ is defined by the following rules:

$$
\begin{aligned}
& -\mathcal{C}_{\text {long }}^{\text {boolean }}(\text { false })=0 \\
& -\mathcal{C}_{\text {long }}^{\text {boolean }}(\text { true })=1
\end{aligned}
$$

- the value of $\mathcal{C}_{\text {long }}^{\text {character }}(C)$ is the numerical value of the code of the character C,
- the value of $\mathcal{C}_{\text {long }}^{\text {dreal }}(v)$ is the integer part n of v if n is greater than min long and smaller than max long (non strictly in both cases),
- for a Scalar-type μ which is not smaller than long (for the order defined on the types) $\mathcal{C}_{\text {long }}^{\mu}=\mathcal{C}_{\text {long }}^{\text {dreal }} \circ \mathcal{C}_{\text {dreal }}^{\mu}$
- for an ENUMERATED-TYPE μ equal to $A \times\left\{a_{1}, \ldots, a_{m}\right\}$, the conversion $\mathcal{C}_{\text {long }}^{\mu}$ is defined by: $\mathcal{C}_{\text {long }}^{\mu}\left(a_{1}\right)=0, \ldots, \mathcal{C}_{\text {long }}^{\mu}\left(a_{m}\right)=m-1$.

3-d Conversions toward the domain "Real-type"

For each Real-type, a given implementation distinguihes the safe numbers (in the same sense as in Ada), which have an exact representation.

The conversions $\mathcal{C}_{\text {real }}^{\mu}$ depend of the implementation while respecting the following rules:

- if v, of type dreal, is a safe number in the type real, $\mathcal{C}_{\text {real }}^{\text {dreal }}(v)=v$
- the conversion preserves the order on the real numbers included between the smallest and the greatest safe number in the type real,
- for a Scalar-type μ
$\mathcal{C}_{\text {real }}^{\mu}=\mathcal{C}_{\text {real }}^{\text {dreal }} \circ \mathcal{C}_{\text {dreal }}^{\mu}$
The conversions $\mathcal{C}_{\text {dreal }}^{\mu}$ depend on the implementation while respecting the following rules:
- the conversion preserves the order on the real numbers included between the smallest and the greatest safe number in the type dreal,
- $\mathcal{C}_{\text {dreal }}^{\text {dcomplex }}($ re@im $)=$ re
- $\mathcal{C}_{\text {dreal }}^{\text {complex }}=\mathcal{C}_{\text {dreal }}^{\text {dcomplex }} \circ \mathcal{C}_{\text {dcomplex }}^{\text {complex }}$
- if v, of type long, is a safe number in the type dreal, $\mathcal{C}_{\text {dreal }}^{\text {long }}(C)=v$
- for a Scalar-type distinct of the previous ones, $\mathcal{C}_{\text {dreal }}^{\mu}=\mathcal{C}_{\text {dreal }}^{\text {long }} \circ \mathcal{C}_{\text {long }}^{\mu}$

3-e Conversions toward the domain "Complex-type"

There are no conversions toward the domain Complex-type except those internal to that domain. However, a given implementation can provide such conversion functions. Note that the conversion of a real re into a complex (respectively, of a dreal re into a dcomplex) can be obtained by re@0.0.

The conversion $\mathcal{C}_{\text {complex }}^{\text {dcomplex }}$ depends on the implementation while respecting the following rule:

- $\mathcal{C}_{\text {complex }}^{\text {dcomplex }}($ re $@ i m)=\left\{\mathcal{C}_{\text {real }}^{\text {dreal }}(\right.$ re $\left.), \mathcal{C}_{\text {real }}^{\text {dreal }}(i m)\right\}$

3-f Conversions toward the types character and string

The conversions $\mathcal{C}_{\text {character }}^{\mu}$ depend on the implementation while respecting the following rules:

- the value of $\mathcal{C}_{\text {character }}^{\text {long }}(v)$ is the character (if it exists) whose decimal value of its code is equal to v,
- for a Scalar-type $\mu \mathcal{C}_{\text {character }}^{\mu}=\mathcal{C}_{\text {character }}^{\text {long }} \circ \mathcal{C}_{\text {long }}^{\mu}$

There is no conversion toward the type string.

3-g Conversions of arrays

For any tuple of strictly positive integers n_{1}, \ldots, n_{m}, and any conversion \mathcal{C}_{ν}^{μ}, the conversion $\mathcal{C}_{\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \mu}^{\left(\left[0 . n_{1}-1\right] \times \nu\right.}$ is defined by:
$\mathcal{C}_{\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu}^{\left(\left[0 . n_{1}-1\right] \times{ }_{2}\right.}(T)=\mathcal{C}_{\nu}^{\mu} \circ T$

3-h Conversions of tuples

Conversions of tuples with unnamed fields

For any conversions $\mathcal{C}_{\nu_{1}}^{\mu_{1}}, \ldots, \mathcal{C}_{\nu_{n}}^{\mu_{n}}$,
the conversion $\mathcal{C}_{\left(\nu_{1} \times \ldots \times \nu_{n}\right)}^{\left(\mu_{1} \times \ldots \times \mu_{n}\right)}$ is defined by:
$\mathcal{C}_{\left(\nu_{1} \times \ldots \times \nu_{n}\right)}^{\left(\mu_{1} \times \ldots \times \mu_{n}\right)}\left(x_{1}, \ldots, x_{n}\right)=\left(\mathcal{C}_{\nu_{1}}^{\mu_{1}}\left(x_{1}\right), \ldots, \mathcal{C}_{\nu_{n}}^{\mu_{n}}\left(x_{n}\right)\right)$

Conversions of tuples with unnamed fields toward tuples with named fields

For any conversions $\mathcal{C}_{\nu_{1}}^{\mu_{1}}, \ldots, \mathcal{C}_{\nu_{n}}^{\mu_{n}}$ and any tuple with named fields of type
bundle $\left(\left\{X_{1}\right\} \rightarrow \nu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \nu_{m}\right)$ that defines a function Ξ (cf. section V-5, page 76),
the conversion $\mathcal{C}_{\text {bundle }\left(\left\{X_{1}\right\} \rightarrow \nu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \nu_{m}\right)}^{\left(\mu_{1} \times \ldots \mu_{n}\right)}$ is defined by:
$\left.\mathcal{C}_{\text {bundle }\left(\left\{X_{1}\right\}\right.}^{\left(\mu_{1} \times \ldots \times \mu_{n}\right)} \nu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \nu_{m}\right)=\Xi \circ \mathcal{C}_{\left(\nu_{1} \times \ldots \times \nu_{n}\right)}^{\left(\mu_{1} \times \ldots \times \mu_{n}\right)}$

V-7 Denotation of types

A type can be designated by an identifier, declared in a DECLARATION-OF-TYPES (it cannot be an identifier of predefined type). In particular, such a type identifier can designate a generic type, which can represent a type of the language or an external type.

Denotation of type A

1. Context-free syntax

SIGNAL-TYPE ::=
Name-type
2. Types
(a) The type designated by a Name-type A is the type associated with A in the declaration of the type A.

Declarations of types

type $A=\mu$; or
type A;

1. Context-free syntax

DECLARATION-OF-TYPES ::=
type DEFINITION-OF-TYPE $\{\square \text { DEFINITION-OF-TYPE }\}^{*} \quad ;$

DEFINITION-OF-TYPE ::=

Name-type
Name-type $=$ DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

TYPE-INITIAL-VALUE ::=

init Name-constant

2. Types

(a) The declaration type $A=\mu$; defines the type A as being equal to the type μ : $\tau(A)=\tau(\mu)$
(b) When it appears in the formal parameters of a model (cf. part E, section XI-5, page 179), the declaration type A; defines a formal generic type whose actual value is provided within the call of the model (cf. section VI-1.2, page 97).
Otherwise, the declaration type A; is an abbreviated form for type A = external; that specifies A as an externally defined type. It means that A is either an external type the actual definition of which is provided in the environment of the program, or it is a formal generic type, whose actual value is defined elsewhere in the context or is provided in a module (cf. part E, section XII-1, page 191).
It is possible to specify, in the declaration of an external type A, a constant name (which must be the name of an external constant of type A-cf. section V-8, page 85), that allows to designate the default initial value of that type.
A given compiler may consider that such a constant name appearing as default initial value of an external type constitutes an implicit declaration of this external constant.
(c) If A is defined as an external type, then:
$\tau(A)=A$
(d) Two external types with distinct names A and B are considered as different types.

3. Properties

(a) With the declarations type $A=\mu$; and type $B=\mu$;
then $\tau(A)=\tau(B)=\tau(\mu)$.
Some implementations may not ensure this property.

4. Examples

(a) type $T=[n]$ integer; declares the type T as vector of integers, of size n.

V-8 Declarations of constant identifiers

```
constant }\mu\mp@subsup{X}{1}{}=\mp@subsup{E}{1}{},\ldots,\mp@subsup{Y}{j}{\prime},\ldots,\mp@subsup{X}{n}{}=\mp@subsup{E}{n}{\prime}
```

A constant sequence is a sequence each element of which has the same value. Such a sequence can be designated by an identifier.

1. Context-free syntax

DECLARATION-OF-CONSTANTS ::=

constant SIGNAL-TYPE
DEFINITION-OF-CONSTANT $\{\square \text { DEFINITION-OF-CONSTANT }\}^{*} ;$

DEFINITION-OF-CONSTANT ::=

Name-constant
Name-constant $=$ DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR

EXTERNAL-NOTATION

2. Types

(a) $(\forall i) \quad\left(\tau(\mu)=\tau\left(X_{i}\right)\right)$
(b) $(\forall i) \quad\left(\tau\left(E_{i}\right) \sqsubseteq \tau\left(X_{i}\right)\right)$
(c) When the constant declaration does not contain an expression, for example for Y_{j}, it is in fact an abbreviated form for $Y_{j}=$ external; that defines Y_{j} as an externally defined constant. It means that the value of Y_{j} is provided either in a module (cf. part E, section XII-1, page 191), or in the environment of the program.

3. Semantics

- Any expression defining a constant must be monochronous and functional (without side effect). With this reserve, the set of expressions admitted by a compiler contains the operators and intrinsic functions and can contain a set of functions depending of a particular environment.
- The elaboration of the expression E_{i}, in the context \mathcal{C}_{D} of the declaration D, minus the identifier X_{i}, provides a constant value (determined at compile time) $\varphi\left(E_{i}\right)=v$;
- the declaration D hides any higher declaration of X_{i} for the context \mathcal{C}_{D} and the included contexts;
- in a context where D is visible, the elaboration of an occurrence of the identifier X_{i} provides the value $\varphi\left(X_{i}\right)=v$.

4. Clocks An occurrence of use of X_{i} (or Y_{j}) is considered as an occurrence of the designated constant.
(a) $\omega\left(E_{i}\right)=\hbar$
(b) $\omega\left(X_{i}\right)=\hbar$
(c) $\omega\left(Y_{j}\right)=\hbar$

5. Examples

(a) The declaration
constant real PI = 3.14;
defines the identifier PI of type real and with value $\varphi(3.14)$.
(b) The declaration
constant [2,2] real UNIT $=[[1.0,0.0],[0.0,1.0]]$;
defines the identifier UNIT as a unit real matrix.
(c) The declaration
constant RECTANGLE BASE;
where RECTANGLE is an identifier of external type, defines a constant of that type: BASE, the value of which should be provided at code generation.
(d) The declaration
constant integer $\mathrm{L}=\mathrm{M}+\mathrm{N}$;
is incorrect if M or N does not designate a constant or a parameter; if it is correct, it defines the identifier L as being equal to the sum of the constants $\varphi(\mathrm{M})$ and $\varphi(\mathrm{N})$.

V-9 Declarations of sequence identifiers

$\mu I D_{1}, \ldots, I D_{j}$ init $V_{j}, \ldots, I D_{n}$;
A sequence of values is provided with a type (the one of its elements); this type is associated with an identifier in a declaration. In such a declaration, an identifier can designate a static parameter (formal "signal"), a signal, or a tuple of signals. Initialization values can be associated with signals and tuples of signals ($I D_{j}$ init V_{j}) in order to define their initial value(s) when these initial values are not defined elsewhere.

1. Context-free syntax

S-DECLARATION ::=
 SIGNAL-TYPE DEFINITION-OF-SEQUENCE $\left\{\begin{array}{l}\text { DEFINITION-OF-SEQUENCE }\}^{*} \quad ; \\ \hline\end{array}\right.$ DEFINITION-OF-SEQUENCE ::=

Name-signal
Name-signal init S-EXPR

2. Types

(a) The declared names must be mutually distinct. The same type $\tau(\mu)$ is given to the identifiers $I D_{1}, \ldots, I D_{n}$ in the context of the declaration.
(b) For a signal expression ("assignment", passage of static parameter or positional identification) associating a value v with an identifier $I D_{i}$ declared with type μ, we must have $\tau(v)$ $\sqsubseteq \mu$.
(c) The rules applying to initial values are exactly those described in the section "Initialization expression" (cf. section VI-3.1, page 107).

3. Semantics

- $\mu I D_{1}, \ldots, I D_{n}$; declares the sequences (signals or parameters) $I D_{1}, \ldots, I D_{n}$. If μ designates a polychronous tuple type then the identifiers $I D_{1}, \ldots, I D_{n}$ designate tuples of signals (and not, strictly speaking, signals); the signals represented by these tuples are, recursively, the fields of the tuples (the fields can be themselves tuples). For example, if μ designates a tuple type with named fields bundle ($\mu_{1} X_{1}$; \ldots; $\mu_{m} X_{m}$;) ... then each tuple $I D_{i}$ gathers the signals (or, recursively, the tuples of signals) designated by $I D_{i} . X_{1}, \ldots, I D_{i} . X_{m}$ (cf. part D, section VIII-3, page 144), which have respectively the types μ_{1}, \ldots, μ_{m}.
- The semantics of an initialization expression specified in a declaration is exactly the same as that described in the section "Initialization expression" (cf. section VI-3.1, page 107). The association of an initialization with a signal declaration specifies a default initialization for the corresponding signal. It can be overloaded by the definition of that signal (in that case, it is unnecessary or only partly necessary).

4. Clocks

(a) The relations on the clocks of initialization expressions are described in the section "Initialization expression" (cf. section VI-3.1, page 107).

5. Examples

(a) The declaration real X, Y; declares the signals X and Y of type real.
(b) The declaration [n] integer V; declares the vector of integers V, of size n.

V-10 Declarations of state variables

statevar $\mu I D_{1}$ init $V_{1}, \ldots, I D_{j}, \ldots, I D_{n}$ init V_{n};
A state variable is a typed sequence the elements of which are present as frequently as necessary (it is available at a clock which is upper than the upper bound of the clocks of all the signals of the compilation unit in which it is declared). A state variable is defined via partial definitions the clock of which are well defined. It keeps its previous value as long as a new one is defined. It should have an initial value associated with its declaration (if it has not, it takes as initial value the default initial value of its type). A state variable can be used only in a context which defines a context clock. A state variable cannot be declared as input or output of a model of process.

1. Context-free syntax

DECLARATION-OF-STATE-VARIABLES ::= statevar SIGNAL-TYPE DEFINITION-OF-SEQUENCE $\{\square \text { DEFINITION-OF-SEQUENCE }\}^{*} ;$

2. Types

(a) The declared names must be mutually distinct. The same type $\tau(\mu)$ is given to the identifiers $I D_{1}, \ldots, I D_{n}$ in the context of the declaration.
(b) For a signal expression (partial "assignment" associating a value v with an identifier $I D_{i}$ declared with type μ, we must have $\tau(v) \sqsubseteq \mu$.
(c) The rules applying to initial values are exactly those described in the section "Initialization expression" (cf. section VI-3.1, page 107).

3. Semantics

- statevar $\mu I D_{1}, \ldots, I D_{n}$; declares the state variables $I D_{1}, \ldots, I D_{n}$.
- The semantics of an initialization expression specified in a declaration is exactly the same as that described in the section "Initialization expression" (cf. section VI-3.1, page 107).

Note: The INRIA Polychrony environment allows in some cases that the type of a constant, a sequence identifier or a state variable is not provided explicitly in their declaration (the corresponding SIGNAL-TYPE is simply omitted). The corresponding type must be deduced from the context of use of the object.

Chapter VI

Expressions on signals

The values associated with signals are determined by equations on signals; these equations are built by composition of sub-systems of equations (named also processes) from elementary equations.

This chapter presents the expressions of definition of signals (S-EXPR). This presentation is preceded by an introduction to the expressions of composition of definitions (P-EXPR).

VI-1 Systems of equations on signals

Composition of definitions of signals

The equations of definition of signals can be composed by the operator \square (see chapter VII, "Expressions on processes"). An expression on processes $E_{1} \mid E_{2}$
defines the signals (or, equivalently, has as outputs the signals) defined in each one of its sub-expressions, and has as inputs the input signals of each one of these sub-expressions which are not outputs of the other one. The value of an input signal of a sub-expression, which is defined in the other one, is the value associated by this definition. As a signal cannot have a double complete definition, a given signal identifier representing a totally defined signal cannot be output of two sub-expressions. However, it is possible to have several partial definitions, in different sub-expressions, for a given signal (partial definitions are syntactically distinguished).

An expression on processes can be parenthesized by $\square(\mid$ on the left and by $\triangle)$ on the right (note the presence of the symbol \square
A given output of an expression on processes can be hidden through the operator $/$ (see chapter VII, "Expressions on processes"). An expression on processes
E_{1} / a_{1}
has as outputs the outputs of E_{1} distinct from a_{1} and for inputs the inputs of E_{1}.
The signals are defined by explicit elementary equations of DEFINITION-OF-SIGNALS, CONSTRAINTs (cf. section VI-5.3, page 121), or by referring to systems of equations declared as models of processes (INSTANCE-OF-PROCESS).

VI-1.1 Elementary equations

A definition of signals allows to define a signal or a set of signals with the syntax given below. A definition of signals is an expression of processes.

1-a Equation of definition of a signal

$X:=E$

1. Context-free syntax

ELEMENTARY-PROCESS ::=
 DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=

$$
\text { Name-signal } \:=\text { S-EXPR }
$$

2. Profile

An equation of definition of a signal has as output the defined signal and as inputs the inputs of the expression E distinct of the output.

- ! $(X:=E)=\{X\}$
- The inputs of E are the signal identifiers that have at least one occurrence in E. $?(X:=E)=?(\mathrm{E})-!(X:=E)$

3. Types
(a) $\tau(E) \sqsubseteq \tau(X)$

4. Semantics

The signal X is equal to the signal resulting from the evaluation of E. An occurrence of X in the expression E builds a recursive definition.

5. Definition in SIGNAL

Though it is the most frequently form of equation used in the Signal language, $X:=E$ is not the basic form. The sign $\square:=$ expresses that the equation is oriented, while in the basic form (cf. part B, chapter III, page 29) the sign $:=:=$ is used to express the fact that equations are non oriented (cf. section VI-6, page 122).
It is equal to the following process, where the dependences are made explicit:

$$
\begin{aligned}
& \text { (| } X \quad:=: E \\
& \mid E-->X \\
& \mid)
\end{aligned}
$$

6. Clocks A signal represented by an identifier and the signal that defines it are synchronous.
(a) $\omega(X)=\omega(E)$

7. Graph

(a) $E \rightarrow X$

8. Examples

(a) if $\mathrm{x}, \mathrm{y}, \mathrm{z}$ designate signals:
$\mathrm{x}:=\mathrm{y}+\mathrm{z}$ defines the signal designated by x , equal to the sum of the signals designated respectively by y and z ; this expression has as inputs y and z and as output x .

1-b Equation of multiple definition of signals

$\left(X_{1}, \ldots, X_{n}\right):=E$

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

2. Profile

An equation of multiple definition of signals has the inputs and outputs defined by the following rules.

- The identifiers of defined signals represent the outputs of the equation:

$$
!\left(\left(X_{1}, \ldots, X_{n}\right):=E\right)=\left\{X_{1}, \ldots, X_{n}\right\}
$$

- The inputs of the equation are the inputs of E which are not outputs of the equation: $?\left(\left(X_{1}, \ldots, X_{n}\right):=E\right)=?(\mathrm{E})-!\left(\left(X_{1}, \ldots, X_{n}\right):=E\right)$

3. Types

(a) $\tau\left(\left(X_{1}, \ldots, X_{n}\right)\right)=\left(\tau\left(X_{1}\right) \times \ldots \times \tau\left(X_{n}\right)\right)$
(b) $\tau(E) \sqsubseteq\left(\tau\left(X_{1}\right) \times \ldots \times \tau\left(X_{n}\right)\right)$

4. Semantics

- X_{1}, \ldots, X_{n} designate signals or tuples of signals.
- E can be viewed as a tuple of n elements: let $\left(E_{1}, \ldots, E_{n}\right)$ this tuple.
- Each signal or tuple X_{i} is respectively equal to the signal or tuple E_{i} that corresponds to it positionally as output of E.

5. Definition in SIGNAL

$\left(X_{1}, \ldots, X_{n}\right):=E$
is equal to the following process:

```
(| \(\quad X_{1}:=E_{1}\)
    \(\vdots\)
| \(X_{n}:=E_{n}\)
|)
```

As a particular case, when the defined signal or tuple is unique, $(X):=E$ is equivalent to:
$X:=E$
(the syntax without parentheses as described in 1-a can be used when X is a tuple).
6. Clocks A signal represented by an identifier and the signal E_{i} that defines it are synchronous. In this case, there is:
(a) $\omega\left(X_{i}\right)=\omega\left(E_{i}\right)$

7. Graph

(a) $E_{i} \rightarrow X_{i}$

8. Examples

(a) if x, y, z, a designate signals and P a model with one formal parameter, one input and three outputs:
$(x, y, z):=P\{n\}(a+5)$ defines the signals designated by x, y and z, equal respectively to the first, second and third output of the model P instantiated with the parameter n and taking $\mathrm{a}_{t}+5$ as input at each occurrence of a ; this expression has as input a and as outputs x , y and z;
(b) if $\mathrm{w}, \mathrm{v}, \mathrm{b}$ also designate signals:
$(w, x, y, z, v):=(a, P\{n\}(a+5), b)$ defines the signals w, x, y, z and v, equal respectively to the signal a, to the first, the second and the third output of the process P, and to the signal b ; this expression has as inputs a and b and as outputs $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ and v ; it is equivalent to the composition

```
(| (w,v) := (a,b) | (x,y,z) := P{n } (a+5 ) | );
```

(c) if x designates a tuple with named fields whose fields are respectively x 1 and x 2 , and a, b designate signals:
$(a, b):=(x \cdot x 1, x \cdot x 2)$ defines the signals a and b equal respectively to the first and the second component of the tuple x;
(d) if x designates a tuple with named fields and a, b designate signals:
$x:=(a, b) \quad$ defines the tuple x the components of which are respectively equal to the signals a and b.

1-c Equation of partial definition of a signal

Equations of partial definition of a signal are a way to avoid the syntactic single assignment rule, even if semantically, this rule applies. Each one of the partial definitions of a given signal contributes to the overall definition of this signal. These partial definitions can appear in different syntactic contexts. All these partial definitions have to be mutually compatible. One default partial definition can appear for a given signal: it allows to complete the definition of the signal by a default value when the partial definitions do not apply. The overall definition of the signal is considered as complete in a compilation unit.

Equations of partial definition are syntactically distinguished by the use of the special symbol $::=$. The use of this symbol is mandatory to allow the presence of different syntactic definitions of a given signal. The syntactic single assignment rule still applies when the assignment symbol $:=$ is used. In particular, it is not possible to have both complete definition and partial ones for a given signal.

```
X: :=E
X ::= defaultvalue E
```


1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

2. Profile

An equation of partial definition of a signal has as output the partially defined signal and as inputs
the inputs of the expression E distinct of the output.

- ! $(X::=E)=\{X\}$
- ? $(X::=E)=$? $(\mathrm{E})-!(X::=E)$
-! $(X::=$ defaultvalue $E)=\{X\}$
- ? $(X::=$ defaultvalue $E)=?(E)-!(X::=$ defaultvalue $E)$

3. Types

(a) $\tau(E) \sqsubseteq \tau(X)$
4. Definition in SIGNAL

Let the following composition represent the whole set of partial definitions of a signal X in a given compilation unit:

```
(| \(X::=E_{1}\)
    \(\vdots\)
    | \(X\) ::= \(E_{n}\)
    \(X\) ::= defaultvalue \(E_{n+1}\)
    |)
```

It is semantically equivalent to:

```
(| X := E E default X
    \vdots
    | X := En default X
    | X := (E En+1 when ( X ^- (E1^ + ...^ + E En))) default X
```



```
|)
```

5. Clocks For the above set of partial definitions of the signal X, any two different expressions E_{i} must have the same value at their common instants if they have such common instants. The clock of X is greater than the upper bound of the clocks of the expressions $E_{i}, i=1, \ldots, n$.
(a) $\forall i, j=1, \ldots, n \quad \omega\left(E_{i}{ }^{*} * E_{j}\right)=\omega\left(\right.$ when $\left(\left(E_{i}\right.\right.$ when $\left.{ }^{\wedge} E_{j}\right)=\left(E_{j}\right.$ when^$\left.\left.\left.E_{i}\right)\right)\right)$
(b) $\omega(X)=\omega\left(E_{1} \uparrow+\ldots \widehat{ }+E_{n}{ }^{\wedge}+X\right)$
(c) For $i=1, \ldots, n$, the clock of any expression E_{i} cannot be a context clock: in particular, E_{i} cannot be a constant expression or a direct reference to a state variable.
The clock of E_{n+1} can be a context clock.

1-d Equation of partial definition of a state variable

State variables (cf. section V-10, page 88) can be defined exclusively by equations of partial definition. These equations define the next values of a state variable. The last defined value, which is the only one that can be accessed at every instant, is referred to via the special notation X ? (cf. section VI-2.3, page 106).
$X::=E$

1. Context-free syntax

The syntax is the same as that of an equation of partial definition of a signal.

2. Types

(a) $\tau(E) \sqsubseteq \tau(X)$

3. Definition in SIGNAL

Let the following composition represent the whole set of partial definitions of a state variable X in a given compilation unit:

```
(| \(X::=E_{1}\)
    | \(X::=E_{n}\)
    |)
```

It is semantically equivalent to:

```
(| next_X := E 1 default next_X
    \vdots
    | next_X := En default next_X
    | X := next_X $
    |) / next_X
```

4. Clocks For the above set of partial definitions of the state variable X, any two different expressions E_{i} must have the same value at their common instants if they have such common instants.
(a) $\forall i, j \quad \omega\left(E_{i}{ }^{*} * E_{j}\right)=\omega\left(\right.$ when $\left(\left(E_{i}\right.\right.$ when $\left.{ }^{\wedge} E_{j}\right)==\left(E_{j}\right.$ when $\left.\left.\left.{ }^{\wedge} E_{i}\right)\right)\right)$
(b) The clock of any expression E_{i} has to be well defined: it cannot be a context clock. In particular, E_{i} cannot be a constant expression or a non-clocked reference to another state variable.
(c) The clock of X is upper than the upper bound of the clocks of all the signals of the compilation unit in which X is declared.

1-e Equation of partial multiple definition

$$
\begin{aligned}
& \left(X_{1}, \ldots, X_{n}\right)::=E \\
& \left(X_{1}, \ldots, X_{n}\right)::=\text { defaultvalue } E
\end{aligned}
$$

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

2. Types

(a) $\tau\left(\left(X_{1}, \ldots, X_{n}\right)\right)=\left(\tau\left(X_{1}\right) \times \ldots \times \tau\left(X_{n}\right)\right)$
(b) $\tau(E) \sqsubseteq\left(\tau\left(X_{1}\right) \times \ldots \times \tau\left(X_{n}\right)\right)$

3. Semantics

- X_{1}, \ldots, X_{n} designate signals, or tuples of signals, or state variables (only signals or tuples of signals for (X_{1}, \ldots, X_{n}) : := defaultvalue E)
- This is the same generalization of 1-c and 1-d (only of 1-c for $\left(X_{1}, \ldots, X_{n}\right)::=$ defaultvalue E) as that of 1-b with respect to 1-a.
- Each signal, tuple or state variable X_{i} is respectively partially defined by the signal or tuple v_{i} that corresponds to it positionally as output of E.

VI-1.2 Invocation of a model

The invocation of a model of process provides an INSTANCE-OF-PROCESS by macro-expansion of the text of the model, or by reference to this model if the text of the model is defined externally or is compiled separately.

Depending on the fact that a model:

- has or not parameters,
- has or not inputs,
- has or not outputs,
the invocation of the model can take different syntactic forms. In all cases, the composition with the context is done positionally, on the inputs and on the outputs.

If the model has no outputs, and only in this case, its invocation appears as an expression on processes (ELEMENTARY-PROCESS); in any other case, an invocation of model appears as an expression on signals (S-EXPR).

The table C-VI. 1 gives the generic forms of the invocation of a model (which can be either an expression on processes or an expression on signals).

	Positional definition of the inputs	No inputs
Without parameters	$P\left(E_{1}, \ldots, E_{n}\right)$	$P(\quad)$
With parameters	$P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)$	$P\left\{V_{1}, \ldots, V_{m}\right\}(\quad)$

Table C-VI.1: Syntactic forms of an invocation of model

The different forms are detailed below.

1. Context-free syntax

ELEMENTARY-PROCESS ::=

INSTANCE-OF-PROCESS

2-a Macro-expansion of a model

One has to take care that this basic form is used here to describe the semantics of any invocation of model. The composition with the context is made by identity of names. However, this form is not available as an external form in the language, except if the corresponding model of process does not have inputs.
$P\left\{V_{1}, \ldots, V_{m}\right\}$
The static parameters are parenthesized by \square and \square; these parameters are types or constant expressions mainly used as initial values of signals or array size. Note that parameters can also be models (cf. part E, section XI-8, page 187).

1. Context-free syntax

INSTANCE-OF-PROCESS ::=
EXPANSION
| Name-model (\quad)
EXPANSION ::=
Name-model
\square S-EXPR-PARAMETER $\{\square \text { S-EXPR-PARAMETER }\}^{*} \square$
S-EXPR-PARAMETER ::=
S-EXPR
SIGNAL-TYPE

2. Profile

- ! $\left(P\left\{V_{1}, \ldots, V_{m}\right\}\right)$ is equal to the set of the names of the outputs of the visible declaration of P, let $\left\{Y_{1}, \ldots, Y_{q}\right\}$.
- ? $\left(P\left\{V_{1}, \ldots, V_{m}\right\}\right)$ is equal to the set of the names of the inputs of the visible declaration of P, let $\left\{X_{1}, \ldots, X_{p}\right\}$.

3. Types

(a) Let, in this order, P_{1}, \ldots, P_{l} be the names of the formal parameters of the visible declaration of P.
(b) The actual parameters (S-EXPR-PARAMETER) of the invocation of the model must correspond positionally to the formal parameters of the declaration of the model (cf. part E, section XI-5, page 179). In particular, to the parameter types can only correspond types (SIGNAL-TYPE), and to the "constant sequences" parameters can only correspond expressions on sequences (S-EXPR).
(c) $\left(\tau\left(V_{1}\right) \times \ldots \times \tau\left(V_{m}\right)\right) \sqsubseteq\left(\tau\left(P_{1}\right) \times \ldots \times \tau\left(P_{l}\right)\right)$
(d) $\tau\left(P\left\{V_{1}, \ldots, V_{m}\right\}\right)=\tau(!P)$
(cf. part E, section XI-5, page 179)

4. Semantics

- P being the name of a model of visible process, the expressions V_{1}, \ldots, V_{m} are the actual parameters of the expansion, corresponding positionally to the formal parameters of this model. The expansion $P\left\{V_{1}, \ldots, V_{m}\right\}$ is equivalent to the body of the visible declaration of P in which each formal parameter has been substituted by the corresponding actual parameter.
- $P(\quad)$ is the expansion of P when P has no parameters.

5. Clocks The actual parameters of sequences V_{i} must be constant expressions.
(a) $\omega\left(V_{i}\right)=\hbar$

2-b Positional macro-expansion of a model

$P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right) \quad$ or $\quad P\left(E_{1}, \ldots, E_{n}\right) \quad$ with $n \geq 1$
In the external form of the language, the input signals are associated with an instance of model, respecting their "position": a list of expressions between the symbols \square and \square) redefines the input signals declared in the model respecting the order of these declarations.

1. Context-free syntax

INSTANCE-OF-PROCESS ::=

PRODUCTION

PRODUCTION ::=

$$
\begin{aligned}
& \text { MODEL-REFERENCE } \square \text { S-EXPR }\{\square \text {, } \text { S-EXPR }\}^{*} \square \\
& \text { MODEL-REFERENCE }::= \\
& \text { EXPANSION } \\
& \text { | Name-model }
\end{aligned}
$$

2. Profile

- ! $\left(P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)\right)$ is equal to the set of the names of the outputs of the visible declaration of P, let $\left\{Y_{1}, \ldots, Y_{q}\right\}$.
- ? $\left(P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)\right)=\bigcup_{i=1}^{n} ?\left(E_{i}\right)-\left\{Y_{1}, \ldots, Y_{q}\right\}$.

3. Types

(a) Let, in this order, P_{1}, \ldots, P_{l} be the names of the formal parameters and X_{1}, \ldots, X_{p} the names of the inputs of the visible declaration of P.
(b) $\left(\tau\left(V_{1}\right) \times \ldots \times \tau\left(V_{m}\right)\right) \sqsubseteq\left(\tau\left(P_{1}\right) \times \ldots \times \tau\left(P_{l}\right)\right)$
(c) $\left(\tau\left(E_{1}\right) \times \ldots \times \tau\left(E_{n}\right)\right) \sqsubseteq\left(\tau\left(X_{1}\right) \times \ldots \times \tau\left(X_{p}\right)\right)$
(d) $\tau\left(P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)\right)=\tau(!P)$
(cf. part E, section XI-5, page 179)

4. Semantics

The form $P\left(E_{1}, \ldots, E_{n}\right)$ is used when P has no parameters.

5. Definition in SIGNAL

$P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)$
is equal to the process defined below in which $\left\{S X_{i}\right\}$ is a set of signal names that do not belong to the inputs of the expressions $E_{i}\left(\bigcup_{i=1}^{n} ?\left(E_{i}\right)\right)$, or to the sets of input or output names of P.

```
(| (SX1,\ldots,SX ) := ( }\mp@subsup{E}{1}{\prime},\ldots,\mp@subsup{E}{n}{}
    | (| (X1,\ldots,Xp) := (SX1,\ldots,SX )
            P{ V1,\ldots,V济}
        |) / X X, ..., X X
|) / SXX1, ..., SX 
```

6. Clocks The actual parameters of sequences V_{i} must be constant expressions.
(a) $\omega\left(V_{i}\right)=\hbar$

2-c Call of a model

$\left(S S_{1}, \ldots, S S_{r}\right):=P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)$
(the form $P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)$ is used here generically to represent one of the forms defined in 2-a or in 2-b; moreover, it can also appear as argument of any expression on signals)

1. Context-free syntax

S-EXPR ::=

INSTANCE-OF-PROCESS

2. Definition in SIGNAL

$\left(S S_{1}, \ldots, S S_{r}\right):=P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)$, with the model P having the output signals $\left\{Y_{1}, \ldots, Y_{q}\right\}$, is equal to the process defined below in which $\left\{S Y_{i}\right\}$ is a set of signal names that do not belong to the inputs of the expressions $E_{i}\left(\bigcup_{i=1}^{n} ?\left(E_{i}\right)\right)$, or to the sets of input or output names of P, or to the set $\left\{S S_{1}, \ldots, S S_{r}\right\}$.

```
\(\left(\mid \quad\left(S S_{1}, \ldots, S S_{r}\right):=\left(S Y_{1}, \ldots, S Y_{q}\right)\right.\)
    (| \(P\left\{V_{1}, \ldots, V_{m}\right\}\left(E_{1}, \ldots, E_{n}\right)\)
    \(\mid\left(S Y_{1}, \ldots, S Y_{q}\right):=\left(Y_{1}, \ldots, Y_{q}\right)\)
    |) / \(Y_{1}, \ldots, Y_{q}\)
|) / \(S Y_{1}, \ldots, S Y_{q}\)
```

The table C-VI. 2 gives the different forms of the invocation of a model together with the priority of their arguments (refer to the tables C-VI. 3 and C-VI.4).

2-d Expressions of type conversion

$T(E)$
The conversions of values between distinct effective types can be explicited as call of a model (INSTANCE-OF-PROCESS); the name of this model is the name of the destination type of the conversion; the expressions of conversion can only appear as expressions on signals, but not as expressions on processes.

1. Context-free syntax

Scheme	Type	
	Arguments $\quad \rightarrow$ Result	
$P\left\{V_{1}^{0}, \ldots, V_{m}^{0}\right\}\left(E_{1}^{0}, \ldots, E_{n}^{0}\right)$		
$P\left\{V_{1}^{0}, \ldots, V_{m}^{0}\right\}()$	$\left(\mu_{1} \times \ldots \times \mu_{m}\right) \times\left(\nu_{1} \times \ldots \times \nu_{n}\right)$	
$P\left\{V_{1}^{0}, \ldots, V_{m}^{0}\right\}$		
$P\left(E_{1}^{0}, \ldots, E_{n}^{0}\right)$		$\left(\nu_{1} \times \ldots \times \nu_{n}\right)$
$P()$		

Table C-VI.2: INSTANCE-OF-PROCESS E^{25}

- When the inputs E_{i} are absent, it is a model without input (the tuple $\left(\left(\nu_{1} \times \ldots \times \nu_{n}\right)\right)$ is then empty);
- When the model has at least one input, the types $\nu_{1}^{\prime}, \ldots, \nu_{p}^{\prime}$ being, in this order, those of the declaration of the inputs of P, there is
$\left(\nu_{1} \times \ldots \times \nu_{n}\right) \sqsubseteq\left(\nu_{1}^{\prime} \times \ldots \times \nu_{p}^{\prime}\right)$
- The type ρ_{i} is that of the signal declaration corresponding positionally in output in P.

S-EXPR ::=

CONVERSION

CONVERSION ::=

Type-conversion (S-EXPR \square

Type-conversion ::=

Scalar-type
Name-type

2. Types

(a) If the conversion $\mathcal{C}_{\tau(T)}^{\tau(E)}$ exists, $\tau(T(E))=\tau(T)$
(b) If the conversion $\mathcal{C}_{\tau(T)}^{\tau(E)}$ does not exist, $T(E)$ is incorrect.
3. Semantics

- If v is an element of the sequence of values represented by E, the corresponding element is $\mathcal{C}_{\tau(T)}^{\tau(E)}(v)$ in the sequence represented by $T(E)$ (if the conversion $\mathcal{C}_{\tau(T)}^{\tau(E)}$ exists).
- If the type T or the type of E is an external type, the applied conversion, when it exists, depends on the environment while respecting the general rules concerning conversions (cf. section V-6.3, page 81).

4. Clocks A conversion is a monochronous expression.
(a) $\omega(T(E))=\omega(E)$

5. Examples

(a) integer (3.14) has the value 3 .

VI-1.3 Nesting of expressions on signals

The expressions on signals can be nested in the respect of the priorities of the operators: any expression with lower priority than the expression of which it is an argument must be parenthesized. Parenthesizing is possible but not necessary in the other cases. Non parenthesized expressions which contain operators with the same priority are evaluated from left to right, unless it is explicitly mentioned.

1. Context-free syntax

S-EXPR ::=

2. Profile

The expressions S-EXPR do not return a named output; their inputs are the set obtained by the union of the sets of inputs of their operands.

3. Semantics

In the respect of the rules of priority, an equation $S:=: T\left(E_{1}, \ldots, E_{n}\right)$ formed by a function (or an operator) and sub-expressions E_{1}, \ldots, E_{n} is equal to the composition

- of the equations calculating these expressions in auxiliary variables:
$\left(X_{i, 1}, \ldots, X_{i, m_{i}}\right):=: E_{i}$
- of the equation $S:=: T\left(X_{1,1}, \ldots, X_{n, n_{m}}\right)$ equal to the equation $S:=: T\left(E_{1}, \ldots, E_{n}\right)$ in which has been substituted, to each expression E_{i}, the tuple ($X_{i, 1}, \ldots, X_{i, m_{i}}$) of the auxiliary variables in which it is evaluated,
- and of the clock equations depending on the context of each one of these expressions.

Priorities and types of the operators on signals The tables C-VI. 3 and C-VI. 4 contain a summary of the properties of expressions on signals. In these tables:

- the priorities are described in the first column (priority of the expression) and the second column (priorities of its arguments) by using E^{i} to describe an expression of priority i; the expressions are evaluated in the decreasing order of priorities;
- the third column describes the types of the arguments and of the result:
- $a n y_{i}$ represents any type (however, one must refer to the definition of the operators for a more precise description)
- bool ${ }_{i}$ is the type boolean or event
- compar $_{i}$ is any type in which there exists a partial order
- int t_{i} is an integer type (i.e., among short, integer, long)
- real is a real type (i.e., among real, dreal)
- cmplx x_{i} is a complex type (i.e., among complex, dcomplex)
- num $_{i}$ is a numeric type (i.e., among int $_{i}$, real $_{i}$, cmpl $_{i}$);

$\begin{gathered} \hline \hline \text { Prio- } \\ \text { rity } \\ \hline \end{gathered}$	Scheme	Type		
		Arguments	\rightarrow Result	
E^{0}	0	event		
E^{1}	E^{1} next E^{2}	$\begin{aligned} & \left(\left[0 . n_{1}\right] \times \ldots \times\left[0 . n_{p} 1\right) \rightarrow a n y_{1} \times\right. \\ & \left(\left[0 . m_{1}\right] \times \ldots \times\left[0 . m_{p} 1\right) \rightarrow a n y_{2}\right. \\ & \hline \end{aligned}$	$\rightarrow\left(\left[0 . n_{1}\right] \times \ldots \times\left[0 . n_{p}\right]\right) \rightarrow a n y_{1} \sqcup$ any ${ }_{2}$	a
E^{2}	$E^{3}: E^{3}$	$\begin{aligned} & \left(\left[0 . l_{1}\right] \times \ldots \times\left[0 . . l_{p}\right]\right) \rightarrow i n t_{1}{ }^{n} \times \\ & \left(\left[0 . m_{1}\right] \times \ldots \times\left[0 . m_{p}\right]\right) \rightarrow a n y_{1} \\ & \hline \end{aligned}$	$\left.\rightarrow\left(0.0 . r_{1}\right] \times \ldots \times\left[0 . r_{n}\right]\right) \rightarrow a n y_{1}$	
E^{3}	E^{3} default E^{4}	$a n y_{1} \times a n y_{2}$	$\rightarrow a n y_{1} \sqcup a n y_{2}$	a
E^{4}	E^{4} when E^{5}	$a^{\text {an }} y_{1} \times$ bool $_{1}$	$\rightarrow a n y_{1}$	
E^{5}	E^{6} after E^{6}	event \times event	\rightarrow integer	
	E^{6} from E^{6}			
	E^{6} count E^{6}			
E^{6}	$E^{6}+E^{7}, E^{6}-E^{7}$	$a n y_{1} \times a n y_{2}$	\rightarrow event	
E^{7}	$E^{7} * E^{8}$			
E^{8}	when E^{8}	bool_{1}		
E^{9}	if E^{0} then E^{0} else E^{9}	bool $_{1} \times$ any $_{1} \times$ any $_{2}$	$\rightarrow a n y_{1} \sqcup a n y_{2}$	a
E^{10}	$\begin{gathered} \hline \hline E^{11} \cdot E^{11} \text { step } E^{11} \\ E^{11} \ldots E^{11} \end{gathered}$	$\begin{array}{r} \hline \hline \text { int }_{1} \times \text { int }_{2} \times \text { int }_{3} \\ \text { int }_{1} \times \text { int }_{2} \end{array}$	$\begin{aligned} & \rightarrow[0 . . n] \rightarrow \text { int }_{1} \sqcup \text { int }_{2} \\ & \rightarrow[0 . . n] \rightarrow \text { int }_{1} \sqcup \text { int }_{2} \\ & \hline \end{aligned}$	
E^{11}	E^{11} xor E^{12}	bool $_{1} \times$ bool $_{2}$	\rightarrow bool $_{1} \sqcup$ bool $_{2}$	
E^{12}	E^{12} or E^{13}			
E^{13}	E^{13} and E^{14}			
E^{14}	not E^{14}	bool_{1}	\rightarrow boolean \rightarrow boolean	
E^{15}	$E^{16}==E^{16}$	$a n y_{1} \times a n y_{2}$		a
	E^{16} «= E^{16}	compar $_{1} \times$ compar $_{2}$		a
E^{16}	$E^{17} \mathbf{O p} E^{17}$	$a n y_{1} \times a n y_{2}$		a, b
		compar $_{1} \times$ compar $_{2}$		a, c
E^{17}	$E^{17}+E^{18}, E^{17}-E^{18}$	num $_{1} \times$ num $_{2}$	\rightarrow num $_{1} \sqcup$ num $_{2}$	
	$E^{17} \mid+E^{18}$	$\left[0 . m_{1}\right] \rightarrow$ any ${ }_{1} \times\left[0 . m_{2}\right] \rightarrow$ any ${ }_{2}$	$\rightarrow\left[0 . m_{1}+m_{2}+1\right] \rightarrow a n y_{1} \sqcup$ any $_{2}$	a
E^{18}	$E^{18} * E^{19}, E^{18} / E^{19}$	$n u m_{1} \times$ num $_{2}$	\rightarrow num $_{1} \sqcup$ num $_{2}$	
	$E^{18} \mid * E^{19}$	$a n y_{1} \times i n t_{1}$	$\rightarrow[0 . . m] \rightarrow a n y_{1}$	
	E^{18} modulo E^{19}	$i n t_{1} \times$ int $_{2}$	\rightarrow int $_{2}$	
	$E^{18} * . E^{19}$			d
E^{19}	$E^{20} * * E^{20}$	$\mathrm{num}_{1} \times \mathrm{int}_{1}$	\rightarrow num $_{1}$	
	$E^{20} @ E^{20}$	$\mathrm{real}_{1} \times \mathrm{real}_{2}$	\rightarrow cmpl x_{1}	e
E^{20}	$+E^{21},-E^{21}$	num $_{1}$	\rightarrow num $_{1}$	
E^{21}	$\operatorname{var} E^{22}$ init E^{22}	$a n y_{1} \times a n y_{2}$	$\rightarrow a n y_{1}$	f
	$\operatorname{var} E^{22}$	$a n y_{1}$		
	E^{21} cell E^{22} init E^{22}	$a n y_{1} \times$ bool $_{1} \times a n y_{2}$	$\rightarrow a n y_{1}$	f
	$E^{21} \mathrm{cell} E^{22}$	$a n y_{1} \times{ }^{\text {bool }} 1$		
		S-EXPR-DYNAMIC		C-VI. 6

Table C-VI.3: Expressions on signals

Table C-VI.4: Expressions on signals
[a] for types belonging to the same domain
[b] for $\mathbf{O p}=$ or $/=$
[c] for $\mathbf{O p}<=$ or $>=$ or $<$ or $>$, a partial order being defined in the type compar
[d] matrix products
[e] cmpl x_{1} is of type complex if both arguments are of type real, it is of type dcomplex otherwise
[f] for $a n y_{2} \sqsubseteq a n y_{1}$
[g] Iterative enumeration
[h] Conversion
[i] $\tau(\mathrm{Id})$ is the type of the declaration of the signal identifier Id
when, on a same line, two notations de type have the same index, the they designate the same type;

- the last column is a reference to the notes that follow the table (lowercase letter) or a reference to another table.

VI-2 Elementary expressions

The expressions of elementary signals are the following:

1. Context-free syntax

S-EXPR-ELEMENTARY ::=

CONSTANT
Name-signal
Label
Name-state-variable?

VI-2.1 Constant expressions

A constant expression is a CONSTANT, an occurrence of constant identifier, an occurrence of parameter identifier, a constant expression of tuple (cf. part D, section VIII-1, page 143), a constant expression of array (cf. part D, section IX-2, page 149), or one of the following expressions having recursively as arguments constant expressions:

- an INSTANCE-OF-PROCESS (only if it is the call of a monochronous function with constant arguments), or a CONVERSION,
- an S-EXPR-TEMPORAL
- an S-EXPR-BOOLEAN,
- an S-EXPR-ARITHMETIC.

Clock expressions (S-EXPR-CLOCK) and dynamic expressions (S-EXPR-DYNAMIC) cannot be part of a constant expression.

A constant is a denotation of value of a Scalar-type or of an ENUMERATED-TYPE:

1. Context-free syntax

CONSTANT ::=

```
            Boolean-cst
            Integer-cst
            Real-cst
            Character-cst
            String-cst
            ENUM-CST
```

These syntactic categories are described elsewhere (cf. part A, section II-2, page 23).

1. Profile

A constant and consequently a constant expression have neither named input, nor named output.
2. Types
(a) The type of a constant expression is evaluated in accordance with the type of the S-EXPR having the same syntax.

3. Clocks

(a) The clock of a constant expression and of its arguments is \hbar.

The table C-VI. 5 contains a summary of these properties and gives the priority of the constant lexical expressions.

Scheme	Type
true	event
false	boolean
Integer-cst	Integer-type following its value
Simple-precision-real-cst	real
Double-precision-real-cst	dreal
Character-cst	character
String-cst	string

Table C-VI.5: Types of the constants E^{27}

VI-2.2 Occurrence of signal or tuple identifier

An occurrence of signal identifier has as value the signal that defines this identifier, as clock, the clock of this signal and as type the type of its most internal declaration; the profile which is associated with it contains as input this single identifier and does not contain a named output.

An occurrence of tuple identifier has as value the tuple of the signals that define this identifier.
In the rules describing the context-free syntax of the language, Name-signal can designate, following the context, a signal name, a tuple name, or a field name in a tuple.

The occurrence of a label is more specifically described in chapter VII, section VII-5, page 134.

VI-2.3 Occurrence of state variable

The notation X ? allows to refer to the last defined value of a state variable X (cf. section $\mathrm{V}-10$, page 88). State variables can be defined exclusively by equations of partial definition, that define the next values of the state variable (cf. section VI-1.1, paragraph 1-d, page 91). For a declared state variable X, the direct reference to X is not allowed in expressions on signals; the only way to refer to the last defined value of the state variable is by using the notation X ?. The notation X ? designates the value of the state variable X at the beginning of the "current step". Moreover, this notation must be used in a context in which a context clock is well defined.

X ?

1. Types

$$
\text { (a) } \tau(X ?)=\tau(X)
$$

2. Definition in SIGNAL

Let H be the context clock of X ?, then, with the definition of X as it is given in section section VI-1.1, paragraph 1-d, page $91, X$? is equivalent to:
X when H

3. Clocks

(a) The clock of X ?, which is equal to the clock of X, is upper than the upper bound of the clocks of all the signals of the compilation unit in which X is declared.

VI-3 Dynamic expressions

Dynamic expressions allow the handling of values of signals having distinct dates. They require the definition of the value of the signals at their initial instants.

1. Context-free syntax

S-EXPR-DYNAMIC ::=
SIMPLE-DELAY
WINDOW
GENERALIZED-DELAY

The table C-VI. 6 gives the different forms of dynamic expressions.

Scheme	Type	
	Arguments	\rightarrow Result
E^{21} window E^{22} init E^{22}	$A_{1} \times E_{1} \times W_{1}$	$\rightarrow W_{2}$
E^{21} window E^{22}	$A_{1} \times E_{1}$	$\rightarrow W_{2}$
$E^{21} \$ E^{22}$ init E^{22}	$A_{1} \times E_{11} \times W_{11}$	$\rightarrow A_{1}$
$E^{21} \$$ init E^{22}	$A_{1} \times A_{2}$	$\rightarrow A_{1}$
$E^{21} \$ E^{22}$	$A_{1} \times E_{11}$	$\rightarrow A_{1}$
$E^{21} \$$	$A_{1} \rightarrow A_{1}$	

Table C-VI.6: S-EXPR-DYNAMIC E ${ }^{21}$
A_{1} any ${ }_{1}$
E_{1} constant M of Integer-type, strictly positive
$W_{1}[0 . . M-2] \rightarrow A_{2}$
$W_{2}[0 . . M-1] \rightarrow A_{1}$
E_{11} signal i of Integer-type, positive or zero, bounded by a constant N, of implicit value 1
$W_{11}[0 . . N-1] \rightarrow A_{2}$
$A_{i} A_{2} \sqsubseteq A_{1}$

VI-3.1 Initialization expression

E init V

The initialization expression allows to define the initial value(s) of a signal.

1. Types

(a) E is a signal of any type.
(b) The type of V can be, depending on the context of the initialization:

- a type ν such that $\nu \sqsubseteq \tau(E)$,
- a type $[0 . . n-1] \rightarrow \nu$ such that $\nu \sqsubseteq \tau(E)$.

2. Semantics

- If V has a type ν such that $\nu \sqsubseteq \tau(E)$, the value of V defines an initial value for the expression E init V.
- If V has a type $[0 . . n-1] \rightarrow \nu$ such that $\nu \sqsubseteq \tau(E)$, then the value of V defines n initial values for the expression E init V : the value $\varphi(V[0])$ defines the value of this expression at its first instant, the value $\varphi(V[1])$ defines the value of the expression at its second instant, etc.

If V defines more values than required by the initialization of the expression E, the extra values are not taken into account.
If V defines less values than required by the initialization of the expression E, the missing values are defined by the default initial value of type ν.
An initialization expression can be associated with a signal either in an expression on signals, as it is the case here, or in the declaration of a signal (cf. section V-9, page 87). When both forms of initialization are defined for a same signal, the one which has the priority is that appearing in the expression of definition of the signal. The presence of an initialization expression in the definition of a signal specifies, with the same semantics as above, a default initialization for the signal, when no initialization is specified in its expression of definition. For a state variable (cf. section V-10, page 88), it is recommended that its initialization is described in its declaration, and not in its expressions of definition.
When several initialization expressions are associated with a signal in different partial definitions, they should be compatible.

3. Clocks

(a) $\omega(E$ init $V)=\omega(E)$
(b) $\omega(V)=\hbar$

VI-3.2 Simple delay

E \$ init v_{0}

1. Context-free syntax

SIMPLE-DELAY ::=

S-EXPR $\$$ [init S-EXPR]

2. Types

(a) E is a signal of any type.
(b) $\tau\left(E\right.$ \$ init $\left.v_{0}\right)=\tau(E)$
(c) $\tau\left(v_{0}\right) \sqsubseteq \tau(E)$
3. Semantics

The semantics of the delay is described formally in part B, section III-6.2, page 39 .
The value of the signal E \$ init v_{0} is at each instant t the value of the delayed signal E at the instant $t-1$. Initially, this value is the value defined by the initialization $\left(\varphi\left(v_{0}\right)\right)$.

4. Definition in SIGNAL

When the initial value is omitted, it is equal to the "null" value of type $\tau(E)$ (which implies that it is defined for any type, including external one), $0 \tau(E)$:
$E \$=E$ Sinit $0 \tau(E)$,
except if an initial value is associated with the defined signal, in its declaration (cf. section VI-3.1, page 107).

5. Clocks

(a) $\omega\left(v_{0}\right)=\hbar$
(b) $\omega\left(E\right.$ \$ init $\left.v_{0}\right)=\omega(E)$

6. Examples

(a) the values taken by y for y defined by $\mathrm{y}:=\mathrm{x} \$$ init 0 are described below for the corresponding values of x in input:

VI-3.3 Sliding window

E window M init $T E_{0}$

1. Context-free syntax

WINDOW ::=
S-EXPR window S-EXPR [init S-EXPR]

2. Types

(a) E is a signal of any type.
(b) The size of the window, M, is an integer constant expression the value of which is greater than or equal to 1 . If it is equal to 1 , the initialization has no effect.
(c) $\tau\left(E\right.$ window M init $\left.T E_{0}\right)=[0 . . \varphi(M)-1] \rightarrow \tau(E)$
(d) $\tau\left(T E_{0}\right)=[0 . . n-1] \rightarrow \mu$,
where $\mu \sqsubseteq \tau(E), n \geq \varphi(M)-1$, and $n>0$
(in the particular case where $\varphi(M)=2$, the single initialization value can be given by an element of type $\tau\left(T E_{0}\right)=\mu$, where $\mu \sqsubseteq \tau(E)$)
3. Semantics

For a signal X defined by $X:=E$ window M init $T E_{0}$:

- $(t+i \geq \varphi(M)) \quad \Rightarrow \quad\left(X_{t}[i]=E_{t-\varphi}(M)_{+i+1}\right)$
- $(1 \leq t+i<\varphi(M)) \Rightarrow\left(X_{t}[i]=T E_{0}[\mathrm{t}-\varphi(M)+i+2]\right)$

4. Definition in SIGNAL

$X:=E$ window M init $T E_{0}$
whose right side of $:=$ represents an expression of sliding window, is equal to the process defined as follows, when $\varphi(M)>1$:

$$
\begin{aligned}
& \left(\mid \quad X_{0}:=E\right. \\
& X_{1}:=X_{0} \text { S init } T E_{0}[M-2] \\
& \vdots \\
& X_{M-1}:=X_{M-2} \$ \text { init } T E_{0}[0] \\
& \mid X:=\left[X_{M-1}, \ldots, X_{0}\right] \\
& \mid) / X_{0}, \ldots, X_{M-1}
\end{aligned}
$$

5. Definition in SIGNAL
E window M is equal, when $\varphi(M)>1$, to the following expression on signals:
E window M init $0[0 . . \varphi(M)-2] \rightarrow \tau(E)$

6. Definition in SIGNAL

$X:=E$ window 1 is equal to the process defined as follows:
$X:=\left[\begin{array}{ll}{[}\end{array}\right]$

7. Clocks

(a) $\omega(M)=\hbar$
(b) $\omega\left(T E_{0}\right)=\hbar$
(c) $\omega\left(E\right.$ window M init $\left.T E_{0}\right)=\omega(E)$

8. Examples

(a) the values taken by y for y defined by $\mathrm{y}:=\mathrm{x}$ window 3 init $[-1,0$] are described below for the corresponding values of x in input:
$\begin{array}{llll}\mathrm{x} & = & 1 & 2\end{array}$
$\mathrm{y}=[-1,0,1] \quad[0,1,2] \quad[1,2,3][2,3,4] \ldots$

VI-3.4 Generalized delay

$E \$ I$ init $T E_{0}$

1. Context-free syntax

GENERALIZED-DELAY ::=

2. Types

(a) E is a signal of any type.
(b) I is a positive or equal to zero integer, with an upper bound.

Let N be the upper bound (if I is an integer constant, N is equal to I).
(c) $\tau\left(E \$ I\right.$ init $\left.T E_{0}\right)=\tau(E)$
(d) $\tau\left(T E_{0}\right)=[0 . . n-1] \rightarrow \mu$,
where $\mu \sqsubseteq \tau(E), n \geq \varphi(N)$, and $n>0$
(in the particular case where $\varphi(N)=1$, the single initialization value can be given by an element of type $\tau\left(T E_{0}\right)=\mu$, where $\mu \sqsubseteq \tau(E)$)

3. Definition in SIGNAL

$X:=E$ \$ I init $T E_{0}$

whose right side of := represents an expression of generalized delay bounded by the maximal value N, is equal to the process defined as follows:

```
(| \(T X:=E\) window \(N+1\) init \(T E_{0}\)
    \(X:=T X[N-I]\)
    |) / \(T X\)
```


4. Definition in SIGNAL

$X:=E$ \$ I
is equal to the process defined as follws:
(| $T X:=E$ window $N+1$
$X:=T X[N-I]$
|) / TX

5. Clocks

(a) $\omega(I)=\omega(E)$
(b) $\omega\left(T E_{0}\right)=\hbar$
(c) $\omega(E \$ I)=\omega(E)$

6. Examples

(a) the values taken by y for y defined by $\mathrm{y}:=\mathrm{x} \$ 3$ init $[-2,-1,0$] are described below for the corresponding values of x in input:

$$
\begin{array}{llccccccc}
\mathrm{x} & = & 1 & 2 & 3 & 4 & 5 & 6 & \ldots \\
\mathrm{y} & = & -2 & -1 & 0 & 1 & 2 & 3 & \ldots
\end{array}
$$

(b) the values taken by y for y defined by $\mathrm{y}:=\mathrm{x}$ \$ i init $[-2,-1,0$] are described below for the corresponding values of x and i in input:

i	$=$	1	3	3	1	2	1	\ldots
x	$=$	1	2	3	4	5	6	\ldots
y	$=$	0	-1	0	3	3	5	\ldots

VI-4 Polychronous expressions

The polychronous expressions are built on signals which have possibly different clocks.

1. Context-free syntax

S-EXPR-TEMPORAL ::=
 MERGING
 EXTRACTION
 MEMORIZATION
 VARIABLE
 COUNTER

VI-4.1 Merging

E_{1} default E_{2}

1. Context-free syntax

MERGING ::=
S-EXPR default S-EXPR

2. Types

(a) $\tau\left(E_{1}\right)$ and $\tau\left(E_{2}\right)$ are signals of a same domain.
(b) $\tau\left(E_{1}\right.$ default $\left.E_{2}\right)=\tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)$

3. Semantics

The semantics is described formally in part B, section III-6.3, page 40 .

4. Clocks

(a) $\omega\left(E_{1}\right.$ default $\left.E_{2}\right)=\omega\left(E_{1}\right)+\left(\left(1-\omega\left(E_{1}\right)\right) * \omega\left(E_{2}\right)\right) \quad$ if $\omega\left(E_{2}\right) \neq \hbar$
(b) $\omega\left(E_{1}\right.$ default $\left.E_{2}\right)=\omega\left(E_{1}\right)+\left(\left(1-\omega\left(E_{1}\right)\right) * \omega\left(E_{1}\right.\right.$ default $\left.\left.E_{2}\right)\right)$ if $\omega\left(E_{2}\right)=\hbar$
5. Graph

When $\tau\left(E_{1}\right.$ default $\left.E_{2}\right) \neq$ boolean and $\tau\left(E_{1}\right.$ default $\left.E_{2}\right) \neq$ event:
(a) $E_{1} \rightarrow E_{1}$ default E_{2}
(b) $E_{2} \xrightarrow{1-\omega\left(E_{1}\right)} E_{1}$ default E_{2}

6. Properties

(a) $\left(E_{1}\right.$ default E_{2}) default $E_{3}=E_{1}$ default (E_{2} default E_{3})
(b) E_{1} default $E_{2}=E_{1}$ default (E_{2} when not ${ }^{\wedge} E_{1}$ default ${ }^{\wedge} E_{2}$)
(c) $\left(\omega\left(E_{1}\right) * \omega\left(E_{2}\right)=\widehat{0}\right) \Rightarrow\left(E_{1}\right.$ default $E_{2}=E_{2}$ default $\left.E_{1}\right)$
(d) $\left(\left(\omega\left(E_{1}\right) \geq \omega\left(E_{2}\right)\right) \bigvee\left(\omega\left(E_{1}\right)=\hbar\right)\right) \Rightarrow\left(E_{1}\right.$ default $\left.E_{2}=E_{1}\right)$

7. Examples

(a) the values taken by Y defined by $Y:=$ E1 default E2 are described below for the corresponding values of E1 and E2 in input:

$$
\begin{array}{rlllllll}
\mathrm{E} 1 & = & 1 & 3 & \perp & 5 & 7 & \ldots \\
\mathrm{E} 2 & = & 2 & 4 & 6 & \perp & 8 & \ldots \\
\mathrm{Y} & = & 1 & 3 & 6 & 5 & 7 & \ldots
\end{array}
$$

VI-4.2 Extraction

E when B

The values of a signal can be produced by extraction of the values of another signal when the values of a Boolean signal are equal to true.

1. Context-free syntax

EXTRACTION ::=

S-EXPR when S-EXPR

2. Types

(a) E is a signal of any type.
(b) $\tau(B) \sqsubseteq$ boolean
(c) $\tau(E$ when $B)=\tau(E)$

3. Semantics

The semantics is described formally in part B, section III-6.3, page 40 .

4. Clocks

(a) $\omega(E$ when $B)=\omega(E) * \omega(B) *(-1-B) \quad$ if $\omega(E) \neq \hbar$
(b) $\omega(E$ when $B)=\omega(B) *(-1-B) \quad$ if $\omega(E)=\hbar$

5. Graph

When $\tau(E$ when $B) \neq$ boolean and $\tau(E$ when $B) \neq$ event:
(a) $E \rightarrow E$ when B
(b) $B \rightarrow \omega(E$ when $B)$ when B is a free condition

6. Properties

(a) $(\tau(B)=$ event $) \Rightarrow(B$ when $B=B)$
(b) $\left(E\right.$ when $\left.B_{1}\right)$ when $B_{2}=E$ when $\left(B_{1}\right.$ when $\left.B_{2}\right)$
(c) E when $(B$ when $B)=E$ when B

7. Examples

(a) the values taken by X when C are described below for the corresponding values of X and C in input:

```
    X = 1 3 \perp 5 \perp 7 \ldots
    C = T \perp T F F T ...
X when C = 1 \perp \perp \perp \perp 7 ...
```


VI-4.3 Memorization

E cell B init V_{0}
The memorization allows to memorize a given signal at the clock defined by the upper bound of the clock of the signal and the clock defined by the instants at which a Boolean signal has the value true.

1. Context-free syntax

MEMORIZATION ::=
 S-EXPR cell S-EXPR [init S-EXPR]

2. Types

(a) E is a signal of any type.
(b) $\tau(B) \sqsubseteq$ boolean
(c) $\tau\left(E\right.$ cell B init $\left.V_{0}\right)=\tau(E)$
(d) $\tau\left(V_{0}\right) \sqsubseteq \tau(E)$
3. Definition in SIGNAL
$X:=E$ cell B init V_{0}
whose right side of $:=$ represents an expression of memorization of E at the instants at which B is true, is equal to the process defined as follows:

```
(| \(X:=E\) default ( \(X\) \$ init \(V_{0}\) )
    \(X^{\wedge}=E{ }^{\wedge}+(\) when \(B)\)
    |)
```


4. Definition in SIGNAL

When the initial value is omitted, it is equal to the "null" value of type $\tau(E), 0_{\tau(E)}$:
E cell $B=E$ cell B init $0 \tau(E)$,
except if an initial value is associated with the defined signal, in its declaration (cf. section VI-3.1, page 107).

5. Clocks

(a) $\omega\left(E\right.$ cell B init $\left.V_{0}\right)=\omega(E)+((1-\omega(E)) * \omega(B) *(-1-B))$

6. Examples

(a) the values taken by X cell C init 0 are described below for the corresponding values of X and C in input:

	X	\perp	1	3	\perp	\perp	\perp	5	\perp	7
	C	T	F	T	T	F	T	\perp	T	\perp
X cell C init	0	0	1	3	3	\perp	3	5	5	7

VI-4.4 Variable clock signal

var E init V_{0}
The var operator allows to use a signal at any clock defined by the context.

1. Context-free syntax

VARIABLE ::=
var S-EXPR [init S-EXPR]

2. Types

(a) E is a signal of any type.
(b) $\tau\left(\operatorname{var} E\right.$ init $\left.V_{0}\right)=\tau(E)$
(c) $\tau\left(V_{0}\right) \sqsubseteq \tau(E)$
3. Definition in SIGNAL

Let:

- F an expression on processes containing an occurrence $v a r i_{i}$ of the expression on signals var E init V_{0},
- H the context clock of $v a r_{i}$ in F,
- $F F$ the expression on processes equal to F in which $X X$ has been substituted to $v a r_{i}$.
F is then equivalent to:

```
(| FF
    \(X:=E\) default ( \(X\) \$ init \(V_{0}\) )
    | \(X X:=X\) when \(H\)
    \(X^{\wedge}=E^{\wedge}+H\)
    |) / \(X, X X\)
```


4. Definition in SIGNAL

When the initial value is omitted, it is equal to the "null" value of type $\tau(E), 0_{\tau}(E)$: $\operatorname{var} E=\operatorname{var} E$ init $0 \tau(E)$
except if an initial value is associated with the defined signal, in its declaration (cf. section VI-3.1, page 107).

5. Clocks

(a) $\omega\left(\right.$ var E init $\left.V_{0}\right)=\hbar$

VI-4.5 Counters

H_{1} modality H_{2} or H_{1} count M

The counter expressions (modality after or from, or counter modulo: count) allow the numbering of the occurrences of a clock.

1. Context-free syntax

COUNTER ::=

S-EXPR	after	S-EXPR
\| S-EXPR	from	S-EXPR
\| S-EXPR	count	S-EXPR

2. Types

(a) $\tau\left(H_{1}\right)=\tau\left(H_{2}\right)=$ event
(b) M is an integer constant expression.
(c) $\tau\left(H_{1}\right.$ modality $\left.H_{2}\right)=$ integer
(d) $\tau\left(H_{1}\right.$ count $\left.M\right)=$ integer

3. Definition in SIGNAL

$N:=H_{1}$ after H_{2}
whose right side of $:=$ represents an expression of counter of the events H_{1} after the reinitialization H_{2}, is equal to the process defined as follows:

$$
\begin{aligned}
& \left(\mid \quad C N:=\left(0 \text { when } H_{2}\right) \text { default }\left(((N \text { \$ init } 0)+1) \text { when } H_{1}\right)\right. \\
& C N \wedge=H_{1} \hat{+} H_{2} \\
& N:=C N \text { when } H_{1} \\
& \mid) / C N
\end{aligned}
$$

The signal N counts the number of occurrences of the signal $H_{1}\left(o_{1}\right)$ since the last occurrence of the signal $H_{2}\left(o_{2}\right)$; but the occurrences o_{1} which are simultaneous to occurrences o_{2} are not counted.
4. Definition in SIGNAL
$N:=H_{1}$ from H_{2}
whose right side of $:=$ represents an expression of counter of the events H_{1} since the reinitialization H_{2}, is equal to the process defined as follows:

```
(| \(C N:=\left(\left(\left(1\right.\right.\right.\) when \(\left.H_{1}\right)\) default 0\()\) when \(\left.H_{2}\right)\) default (( \(N\) init 0\(\left.)+1\right)\) when \(\left.H_{1}\right)\)
    \(C N \wedge=H_{1} \uparrow+H_{2}\)
| \(N:=C N\) when \(H_{1}\)
|) / \(C N\)
```

The signal N counts the number of occurrences of the signal $H_{1}\left(o_{1}\right)$ since the last occurrence of the signal $H_{2}\left(o_{2}\right)$; the occurrences o_{1} which are simultaneous to occurrences o_{2} are counted.

5. Definition in SIGNAL

$N:=H_{1}$ count M
whose right side of $:=$ represents an expression of counter of the events H_{1} modulo $\varphi(M)$, is
equal to the process defined as follows:

```
(| \(N:=(0\) when \(Z N>=(M-1))\) default \((Z N+1)\)
    \(Z N:=N\) init ( \(M-1\) )
    \(N{ }^{\wedge}=H_{1}\)
|) / ZN
```

The signal N has 0 as initial value and is incremented by 1 , modulo $\varphi(M)$, at each new occurrence of the signal H_{1}.
6. Clocks
(a) $\omega\left(H_{1}\right.$ modality $\left.H_{2}\right)=\omega\left(H_{1}\right)$
(b) $\omega(M)=\hbar$
(c) $\omega\left(H_{1}\right.$ count $\left.M\right)=\omega\left(H_{1}\right)$

7. Examples

(a) the values taken by E1 from E2, E1 after E2 and E1 count 3 are described below for the corresponding signals E1 and E2 in input:

VI-4.6 Properties of polychronous expressions

- $\left(E_{1}\right.$ default $\left.E_{2}\right)$ when $B=\left(E_{1}\right.$ when $\left.B\right)$ default (E_{2} when $\left.B\right)$
- $(\tau(B)=$ event $) \Rightarrow\left(B\right.$ when $\left(E_{1}\right.$ default $\left.E_{2}\right)=\left(B\right.$ when $\left.E_{1}\right)$ default $\left(B\right.$ when $\left.\left.E_{1}\right)\right)$

VI-5 Constraints and expressions on clocks

A CONSTRAINT is an expression of processes which contributes to the construction of the system of clock equations of the program. It is the tool for constraint programming. Such an expression can take as arguments expressions on clocks or expressions on signals.

1. Context-free syntax

ELEMENTARY-PROCESS ::= CONSTRAINT

VI-5.1 Expressions on clock signals

1-a Clock of a signal

The clock of a signal (of any type) is obtained by applying the operator ${ }^{\wedge}$ to this signal.

1. Context-free syntax

S-EXPR-CLOCK ::=

SIGNAL-CLOCK

SIGNAL-CLOCK ::=S-EXPR
2. Types
(a) E is a signal of any type.
(b) $\tau(\wedge E)=$ event
3. Definition in SIGNAL
$E==E$
Remark: this definition uses the operator of relation $==$ defined on any type (cf. section VI-7.2, page 124).
4. Examples
(a) the values taken by \mathcal{X} are described below for the corresponding values of X in input:

$$
\begin{array}{rl}
\mathrm{X} & =1 \\
\widehat{\mathrm{X}}^{\mathrm{X}} & =\mathrm{T} \\
\mathrm{~T} & \mathrm{~T} \\
\mathrm{~T} & \mathrm{~T} \\
\ldots
\end{array}
$$

Remark: the expression ${ }^{\wedge} E$ and the conversion event (E) have the same result.

1-b Clock extraction

when B
The extraction of the true values of a Boolean condition are obtained by applying the operator unary when:

1. Context-free syntax

S-EXPR-CLOCK ::=
CLOCK-EXTRACTION

CLOCK-EXTRACTION ::=

when S-EXPR
2. Types
(a) $\tau(B) \sqsubseteq$ boolean
(b) $\tau($ when $B)=$ event
3. Definition in SIGNAL
${ }^{\wedge} B$ when B

4. Clocks

(a) $\omega($ when $B)=\omega(B) *(-1-B)$

5. Examples

(a) the values taken by when C are described below for the corresponding values of C in input:

$$
\begin{array}{rlcccccc}
\mathrm{C} & =\mathrm{T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \ldots \\
\text { when } \mathrm{C} & =\mathrm{T} & \mathrm{~T} & \perp & \perp & \mathrm{~T} & \ldots
\end{array}
$$

1-c Empty clock

©
The empty clock is the clock that does not "contain" any instant.

1. Context-free syntax

S-EXPR-CLOCK ::=

0
2. Types
(a) $\tau\left({ }^{(} 0\right)=$ event
3. Definition in SIGNAL

0 is the lexical expression of the empty clock; it is equal to the solution of the following equation: when not $0^{\wedge}={ }^{`} 0$

4. Clocks

(a) $\omega\left(\wedge_{0}\right)=\widehat{0}$

VI-5.2 Operators of clock lattice

$E_{1}{ }^{\wedge} \mathbf{O p} E_{2}$

1. Context-free syntax

S-EXPR-CLOCK ::=

| S-EXPR | + | S-EXPR |
| :--- | :--- | :--- | :--- |
| \| S-EXPR | - | S-EXPR |
| \| S-EXPR | $\ddots *$ | S-EXPR |

2. Types
(a) E_{1} and E_{2} are signals of any types.
(b) $\tau\left(E_{1}{ }^{\wedge} \mathbf{O p} E_{2}\right)=$ event

3. Definition in SIGNAL

$$
X:=E_{1} \widehat{ }+E_{2}
$$

defines a signal equal to the upper bound of the clocks of the signals E_{1} and E_{2}; this expression is equal to the process defined as follows:

```
(| X := `}\mp@subsup{}{}{`}\mp@subsup{E}{1}{}\mathrm{ default }\mp@subsup{}{}{`}\mp@subsup{E}{2}{
```


4. Definition in SIGNAL

$X:=E_{1} * E_{2}$
defines a signal equal to the lower bound of the clocks of the signals E_{1} and E_{2}; this expression is equal to the process defined as follows:

```
\({ }^{\text {(|) }} X:={ }^{\wedge} E_{1}\) when \({ }^{\wedge} E_{2}\)
```


5. Definition in SIGNAL

$$
X:=E_{1} \widehat{-}-E_{2}
$$

defines a signal equal to the complementary clock of $E_{1} \widehat{*} E_{2}$ in ${ }^{\wedge} E_{1}$; this expression is equal to the process defined as follows:

```
(| X := when (( not }\mp@subsup{}{}{`}\mp@subsup{E}{2}{})\mathrm{ default }\mp@subsup{}{}{`}\mp@subsup{E}{1}{}
```


6. Clocks

(a) $\omega\left(E_{1}{ }^{\text {a }}+E_{2}\right)=\omega\left(E_{1}\right)+\left(\left(1-\omega\left(E_{1}\right)\right) * \omega\left(E_{2}\right)\right)$
(b) $\omega\left(E_{1}{ }^{*} * E_{2}\right)=\omega\left(E_{1}\right) * \omega\left(E_{2}\right)$
(c) $\omega\left(E_{1}{ }^{\wedge}-E_{2}\right)=\omega\left(E_{1}\right)-\left(\omega\left(E_{1}\right) * \omega\left(E_{2}\right)\right)$

7. Properties

(a) $E_{1} \widehat{\gamma}+\left(E_{2} \widehat{+}+E_{3}\right)=\left(E_{1} \widehat{+} E_{2}\right) \widehat{ }+E_{3}$
(b) $E_{1} \widehat{+}+E_{2}=E_{2} \widehat{+} E_{1}$
(c) $E^{\wedge}+\uparrow=\widehat{\wedge}$
(d) $E^{\wedge}+E={ }^{\wedge} E$
(e) $E_{1} \widehat{*}\left(E_{2} \widehat{*} E_{3}\right)=\left(E_{1} \widehat{*} E_{2}\right) \widehat{*} E_{3}$
(f) $E_{1} \widehat{*} E_{2}=E_{2} \widehat{*} E_{1}$
(g) $E^{\wedge} * \bigcirc 0=0$
(h) $E \widehat{*} E=\widehat{ } E$
(i) $\left(E_{1} \widehat{*} E_{2}\right) \widehat{ }+E_{3}=\left(E_{1} \widehat{ }+E_{3}\right) \widehat{ } *\left(E_{2} \widehat{+}+E_{3}\right)$
(j) $\left(E_{1} \widehat{\imath}+E_{2}\right) \widehat{\wedge} E_{3}=\left(E_{1} \widehat{*} E_{3}\right) \widehat{ }+\left(E_{2} \widehat{*} E_{3}\right)$

VI-5.3 Relations on clocks

$E_{1}{ }^{\wedge} \mathbf{O p} \quad E_{2}$
The following expressions are expressions on processes describing constraints between clocks of signals.

1. Context-free syntax

CONSTRAINT ::=

S-EXPR $\left\{\begin{array}{r}\text { - }\end{array}\right.$	S-EXPR ${ }^{*}$
S-EXPR \{	S-EXPR $\}^{*}$
S-EXPR \{	S-EXPR ${ }^{*}$
S-EXPR \{	S-EXPR ${ }^{*}$

2. Profile

A relation on clocks of signals is a process with no output and with:
$?\left(E_{1}{ }^{\wedge} \mathbf{O p} \ldots{ }^{\wedge} \mathbf{O p} E_{n}\right)=\bigcup_{i=1}^{n} ?\left(E_{i}\right)$.

3. Types

(a) The arguments E_{i} are signals of any types, possibly distinct.

4. Definition in SIGNAL

$E_{1}{ }^{\wedge} \mathbf{O p} E_{2}{ }^{`}$ Op $E E$
(where ${ }^{\wedge} \mathbf{O p}$ is one of the operators ${ }^{\wedge}=,{ }^{\wedge}<,{ }^{\wedge}>$ and ${ }^{\wedge} \#$, and where $E E$ is an expression on clocks or recursively a relation on clocks), builds the composition of the expressions $E_{i}{ }^{\wedge} \mathbf{O p} E_{j}$, for any pair of distinct indexes i and j, and thus expresses the conjunction of the associated relations. It is recursively defined by the composition of the following expressions of processes:

```
(| \(E_{1}{ }^{\wedge} \mathbf{O p} \quad E_{2}\)
| \(E_{1}{ }^{\wedge} \mathbf{O p} E E\)
| \(E_{2}{ }^{\wedge} \mathbf{O p} E E\)
|)
```


5. Definition in SIGNAL

$E_{1} \wedge=E_{2}$
constrains the clock of the expression on signals E_{1} to be equal to that of E_{2}; this expression, when $H_{1} \notin ?\left(E_{1} \wedge=E_{2}\right)$, is equal to the process with no output defined as follows:
(|) $H_{1}:=\left(\uparrow E_{1}\right) \quad==\left(\uparrow E_{2}\right)$
|) / H_{1}

6. Definition in SIGNAL

$E_{1}{ }^{\wedge}<E_{2}$
constrains the clock of the expression on signals E_{1} to be smaller than (or equal to) that of E_{2}; this
expression is equal to the process with no output defined as follows:
$E_{1} へ=E_{1} \uparrow * E_{2}$

7. Definition in SIGNAL

$E_{1}{ }^{\wedge}>E_{2}$
constrains the clock of the expression on signals E_{1} to be greater than (or equal to) that of E_{2}; this expression is equal to the process with no output defined as follows:
$E_{1}{ }^{\wedge}=E_{1}{ }^{\wedge}+E_{2}$

8. Definition in SIGNAL

$E_{1}{ }^{\wedge} E_{2}$ specifies the mutual exclusion of the clocks of the expressions on signals E_{1} and E_{2}; hence $\omega\left(E_{1}\right) * \omega\left(E_{2}\right)=\widehat{0}$. This expression is equal to the process with no output defined as follows:
$0^{\wedge}=E_{1}{ }^{\wedge} * E_{2}$

VI-6 Identity equations

$E_{1}:=: E_{2}$

Identity equations are expressions on processes describing equality constraints between the sequences of values (and clocks) of two expressions.

1. Context-free syntax

CONSTRAINT ::=
 S-EXPR :=: S-EXPR

2. Profile

An identity equation is a process with no output and with:
$?\left(E_{1}:=: E_{2}\right)=?\left(E_{1}\right) \cup ?\left(E_{2}\right)$.
3. Types
(a) E_{1} and E_{2} are of comparable types.

4. Semantics

If E_{1} and E_{2} can be viewed respectively as tuples ($E_{11}, \ldots, E_{1 n}$) and ($E_{21}, \ldots, E_{2 n}$), the identity equation $E_{1}:=: E_{2}$ constrains the sequences of values of the expressions $E_{1 i}$ and $E_{2 i}$ to be respectively equal.
An equation $E_{1}:=: E_{2}$ is the basic identity equation between signals in the language (cf. part B , chapter III, page 29). It is a non oriented equation, that does not induce dependences between E_{1} and E_{2}.

5. Clocks

If $E_{1 i}$ and $E_{2 i}$ designate signals, they are synchronous. In this case:
(a) $\omega\left(E_{1 i}\right)=\omega\left(E_{2 i}\right)$

6. Properties

(a) $E_{1}:=: E_{2}$
is equal to the following process:

```
(| (when ( }\mp@subsup{E}{11}{}==\mp@subsup{E}{21}{\prime}))^= = E 11
        \vdots
    | (when ( }\mp@subsup{E}{1n}{}==\mp@subsup{E}{2n}{}))^==\mp@subsup{E}{1n}{
    |)
```


VI-7 Boolean synchronous expressions

The Boolean expressions are synchronous expressions on signals. The operators defining such expressions are the standard operators on Boolean elements extended to sequences of elements. The Boolean expressions (or expressions with Boolean result) are either expressions of the Boolean lattice, or relations.

VI-7.1 Expressions on Booleans

1-a Negation

not E_{1}

1. Context-free syntax

S-EXPR-BOOLEAN::=
not S-EXPR
2. Types
(a) $\tau\left(E_{1}\right) \sqsubseteq$ boolean
(b) $\tau\left(\right.$ not $\left.E_{1}\right)=$ boolean
3. Semantics

The operator of negation has, on the occurrences of signals, its usual semantics.
4. Clocks
(a) $\omega\left(\right.$ not $\left.E_{1}\right)=\omega\left(E_{1}\right)$

1-b Operators of Boolean lattice

$E_{1} \mathbf{O p} E_{2}$

1. Context-free syntax

S-EXPR-BOOLEAN::=

| S-EXPR | or | S-EXPR |
| :--- | :--- | :--- | :--- |
| \| S-EXPR | and | S-EXPR |
| \| S-EXPR | xor | S-EXPR |

2. Types

(a) $\tau\left(E_{1}\right) \sqsubseteq$ boolean
(b) $\tau\left(E_{2}\right) \sqsubseteq$ boolean
(c) $\tau\left(E_{1} \mathbf{O p} E_{2}\right)=$ boolean

3. Semantics

The expressions on Boolean signals have, on the synchronous occurrences of these signals, their usual semantics; however, they are not primitive operators of the Signal language.

4. Definition in SIGNAL

$X:=E_{1}$ and E_{2}
is equal to the process defined as follows:

$$
\begin{aligned}
& \left(\mid \quad X:=\left(E_{1} \text { when } E_{2}\right) \text { default (not }{ }^{\wedge} E_{1}\right) \\
& \mid E_{1} \wedge=E_{2} \\
& \mid)
\end{aligned}
$$

5. Definition in SIGNAL

$X:=E_{1}$ or E_{2}
is equal to the process defined as follows:

```
(| \(X:=\left(E_{1}\right.\) when not \(\left.E_{2}\right)\) default \({ }^{\wedge} E_{1}\)
    | \(E_{1} \wedge=E_{2}\)
    |)
```


6. Definition in SIGNAL

$X:=E_{1}$ xor E_{2}
is equal to the process defined as follows:

```
(| X := not ( }\mp@subsup{E}{1}{}==\mp@subsup{E}{2}{\prime}
|)
```


7. Clocks

(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$
(b) $\omega\left(E_{1} \mathbf{O p} E_{2}\right)=\omega\left(E_{1}\right)$

VI-7.2 Boolean relations

The Boolean relations are equality, difference, and strict and non strict greater and lower relations.
Two classes of relation operators are distinguished according to their denotation:

- the operators which have a pointwise extension on elements of arrays (cf. part D, chapter X, page 169), denoted respectively $\angle, \angle=,>,>=,\langle<$ et $<=$; for example, the operator $\quad=$ applied on two vectors has as result a vector of Booleans;
- the operators which have a Boolean result, whatever is the type of the signals on which they are applied; in this class are only defined the operator of equality, denoted $\equiv=$ and the operator of
inferior or equal relation order, denoted \square (these operators are pointwise extended to families of signals: polychronous tuples with named fields and tuples with unnamed fields).

```
\(E_{1}\) Op \(E_{2}\)
```


1. Context-free syntax

S-EXPR-BOOLEAN::=

RELATION

RELATION ::=

2. Types

(a) $\tau\left(E_{1} \mathbf{O p} E_{2}\right)=$ boolean
(b) For $E_{1}==E_{2}$:
E_{1} and E_{2} are signals of a same domain, which is any domain.
(c) For $E_{1}=E_{2}$ and $E_{1} /=E_{2}$:
E_{1} and E_{2} are signals of a same domain Scalar-type or ENUMERATED-TYPE.
(d) For $E_{1} \ll=E_{2}$:
E_{1} and E_{2} are signals of a same domain Scalar-type (other than a Complex-type), or of ENUMERATED-TYPE, or of a same type for which the environment defines this operator while respecting the properties enounced in this section.
(e) For $E_{1}>E_{2}, E_{1}>=E_{2}, E_{1}<E_{2}$, and $E_{1}<=E_{2}$:
E_{1} and E_{2} are signals of a same domain Scalar-type (other than a Complex-type), or of ENUMERATED-TYPE.

3. Semantics

- Two objects of array types are equal if and only if both arrays have the same dimension, are of comparable types and the elements of same index are respectively equal.
- Two objects of monochronous tuple types are equal if and only if both objects are of comparable types and the elements of corresponding fields are respectively equal.
- In the order defined on the values of type boolean, false is lower than true.
- The order defined on the values of type character is the order on the decimal values of their encoding.
- The order defined on the values of type string is the corresponding lexicographic order.
- The order defined on the values of an ENUMERATED-TYPE is the syntactic order of their declaration in the definition of the type (cf. section V-3, page 74).

With these precisions, the operators of relation have their usual semantics. The operators $E=$ and $=$ denote the relation of equality; the operators $\quad \ll=$ and $\langle=$ denote the relation inferior or equal.
The comparisons are made in the greatest type (of a same domain). Then if v_{1} is an element of the sequence of values represented by E_{1} and if v_{2} is the corresponding element in the sequence of values represented by E_{2},
the corresponding element is $v_{1} \mathbf{O p} E_{2}$ in the sequence represented by $E_{1} \mathbf{O p} E_{2}$.

4. Definition in SIGNAL

The expression $E_{1} /=E_{2}$ is equal to the following expression:
$\operatorname{not}\left(E_{1}=E_{2}\right)$

5. Definition in SIGNAL

The expression $E_{1}<E_{2}$ is equal to the following expression:
$\left(\operatorname{not}\left(E_{1}=E_{2}\right)\right)$ and $\left(E_{1}<=E_{2}\right)$

6. Definition in SIGNAL

The expression $E_{1}>=E_{2}$ is equal to the following expression:
$E_{2}<=E_{1}$

7. Definition in SIGNAL

The expression $E_{1}>E_{2}$ is equal to the following expression:
$E_{2}<E_{1}$

8. Clocks

(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$
(b) $\omega\left(E_{1} \mathbf{O p} E_{2}\right)=\omega\left(E_{1}\right)$

9. Graph

When the E_{i} are not of a domain Synchronization-type:
(a) $E_{1} \rightarrow E_{1}$ Op E_{2}
(b) $E_{2} \rightarrow E_{1}$ Op E_{2}

10. Properties

The relation $\ll=$ is an order relation on all the types of signals for which it is defined; it has all the properties of an order relation:
(a) reflexivity
(b) transitivity
(c) anti-symmetry: $\left(\left(E_{1} \ll=E_{2}\right) \wedge\left(E_{2} \ll=E_{1}\right)\right) \Rightarrow\left(E_{1}==E_{2}\right)$

11. Properties

The relation $<=$ is an order relation on the domains of values on which it is defined; it is:
(a) reflexive,
(b) transitive,
(c) anti-symmetric: $\left(\left(E_{1}<=E_{2}\right) \wedge\left(E_{2}<=E_{1}\right)\right) \Rightarrow\left(E_{1}=E_{2}\right)$

VI-8 Synchronous expressions on numeric signals

The synchronous expressions on numeric signals are defined by pointwise extension of the standard arithmetic operators on sequences of elements.

VI-8.1 Binary expressions on numeric signals

$E_{1} \mathbf{O p} E_{2}$

1. Context-free syntax

2. Semantics

If the result of an expression cannot be represented in the type μ of this expression, its value is a value of type μ depending on the implementation.

If v_{1} is an element of the sequence of values represented by E_{1} and if v_{2} is the corresponding element of the sequence of values represented by E_{2}, the corresponding element in the sequence represented by $E_{1} \quad O p \quad E_{2}$ is:
$v_{1} \mathbf{O p} v_{2}$
3. Clocks
(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$
(b) $\omega\left(E_{1} \mathbf{O p} E_{2}\right)=\omega\left(E_{1}\right)$

4. Graph

(a) $E_{1} \rightarrow E_{1}$ Op E_{2}
(b) $E_{2} \rightarrow E_{1}$ Op E_{2}

Operators $+-, *, / \quad E_{1}$ Op E_{2}

1. Types
(a) $\tau\left(E_{1}\right)$ and $\tau\left(E_{2}\right)$ are of any Numeric-type in a same domain,
(b) $\tau\left(E_{1} \mathbf{O p} \quad E_{2}\right)=\tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)$
2. Semantics

When an expression of division is of domain Integer-type, the division is the integer division.

Operator modulo E_{1} modulo E_{2}

1. Types
(a) $\tau\left(E_{1}\right)$ and $\tau\left(E_{2}\right)$ are of domain Integer-type.

In addition, E_{2} must be a constrained integer (strictly positive and with an upper bound).
(b) $\tau\left(E_{1}\right.$ modulo $\left.E_{2}\right)=\tau\left(E_{2}\right)$
2. Semantics

If r is defined by $r:=a$ modulo b, then at each instant, the following property is true:
$(\exists$ an integer $q) \quad((a=b * q+r) \bigwedge(0 \leq r<b))$
Operator $* * \quad E_{1} * * E_{2}$

1. Types
(a) $\tau\left(E_{1}\right)$ is a Numeric-type.
(b) $\tau\left(E_{2}\right)$ is an Integer-type.
(c) $\tau\left(E_{1} * * E_{2}\right)=\tau\left(E_{1}\right)$

Operator @ $E_{1} @ E_{2}$
A pair of synchronous elements of Real-type defines a signal of domain Complex-type.

1. Context-free syntax

DENOTATION-OF-COMPLEX ::=
S-EXPR@S-EXPR

2. Types

(a) $\tau\left(E_{1}\right)$ is a Real-type,
(b) $\tau\left(E_{2}\right)$ is a Real-type,
(c) if $\tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)=$ real, then $\tau\left(E_{1} @ E_{2}\right)=$ complex
if $\tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)=$ dreal, then $\tau\left(E_{1} @ E_{2}\right)=$ dcomplex

3. Examples

(a) $1.0 @(-1.0)$ defines a complex constant.

VI-8.2 Unary operators

Op E_{1}

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

+
-
S-EXPR
-
S-EXPR

2. Types

(a) $\tau\left(E_{1}\right)$ is a Numeric-type.
(b) $\tau\left(\mathbf{O p} E_{1}\right)=\tau\left(E_{1}\right)$
3. Semantics

If the result of an expression cannot be represented in the type μ of this expression, its value is a value of type μ depending on the implementation.

If v_{1} is an element of the sequence of values represented by E_{1}, the corresponding element in the sequence represented by $\mathbf{O p} E_{1}$ is:
Op v_{1}
4. Clocks
(a) $\omega\left(\mathbf{O p} E_{1}\right)=\omega\left(E_{1}\right)$

5. Graph

(a) $E_{1} \rightarrow \mathbf{O p} E_{1}$

VI-9 Synchronous condition

if B then E_{1} else E_{2}
The synchronous condition is an expression on signals of same clock.

1. Context-free syntax

S-EXPR-CONDITION ::=

if S-EXPR then S-EXPR else S-EXPR

2. Types

(a) $\tau(B) \sqsubseteq$ boolean
(b) E_{1} and E_{2} are signals of a same domain Scalar-type, External-type or ENUMERATEDTYPE
(c) $\tau\left(\right.$ if B then E_{1} else $\left.E_{2}\right)=\tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)$
3. Definition in SIGNAL
$X:=$ if B then E_{1} else E_{2}
whose right side of $:=$ represents an expression of synchronous condition, is equal to the process defined as follows:

```
(| \(X:=\left(E_{1}\right.\) when \(\left.B\right)\) default \(E_{2}\)
    \(B^{\wedge}=E_{1}{ }^{\wedge}=E_{2}\)
|)
```


4. Clocks

(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$
(b) $\omega(B)=\omega\left(E_{1}\right)$
(c) $\omega\left(\right.$ if B then E_{1} else $\left.E_{2}\right)=\omega\left(E_{1}\right)$

Chapter VII

Expressions on processes

The expressions on processes allow to compose systems of equations on signals with the following syntax:

1. Context-free syntax

P-EXPR ::=

ELEMENTARY-PROCESS
HIDING
LABELLED-PROCESS
| GENERAL-PROCESS
GENERAL-PROCESS ::=
COMPOSITION
CONFINED-PROCESS
| CHOICE-PROCESS

VII-1 Elementary processes

An elementary process is an instance of process (cf. section VI-1.2, page 97), a definition of signals (cf. section VI-1.1, page 91), a constraint on clocks (cf. section VI-5, page 117) or on values (cf. section VI-6, page 122), or an expression of dependence (cf. part E, section XI-6.2, page 182).

VII-2 Composition

The composition of two processes P_{1} and P_{2} produces a process for which each execution observed on the variables of P_{1} (respectively, P_{2}) is an execution of P_{1} (respectively, P_{2}). This composition is similar to the aggregation of two systems of equations in a single one.
$P_{1} \mid P_{2}$

1. Context-free syntax

COMPOSITION ::=
\qquad [P-EXPR \{ \square P-EXPR $\}^{*}$ \qquad

2. Profile

- ! $\left(P_{1} \mid P_{2}\right)=!\left(P_{1}\right) \cup!\left(P_{2}\right)$
- ? $\left(P_{1} \mid P_{2}\right)=\left(?\left(P_{1}\right)-!\left(P_{2}\right)\right) \cup\left(?\left(P_{2}\right)-!\left(P_{1}\right)\right)$

3. Types

(a) If their names are identical, an output x of P_{1} (respectively, P_{2}) and an input x of P_{2} (respectively, P_{1}) have also the same type.
(b) If their names are identical, an input x of P_{1} and an input x of P_{2} have also the same type.

4. Semantics

A signal, input of P_{1} (respectively, P_{2}), having as name the name of a signal, output of P_{2} (respectively, P_{1}) and totally defined in it, has as definition in P_{1} (respectively, in P_{2}) its definition in P_{2} (respectively, in P_{1}).
If the definitions of such a signal are partial definitions, in P_{1} and in $P 2$, its resulting definition is the combination of both partial definitions, as it is specified in section VI-1.1, paragraph 1-c, page 91.

5. Clocks

(a) If their names are identical, an output x of P_{1} (respectively, P_{2}) and an input x of P_{2} (respectively, P_{1}) have also the same clock.
(b) If their names are identical, an input x of P_{1} and an input x of P_{2} have also the same clock.

VII-3 Hiding

The hiding is an expression that modifies the profile of an expression of processes by hiding some of its outputs.
P / A_{1}, \ldots, A_{n}

1. Context-free syntax

HIDING ::=

2. Profile

- ? $\left(P / A_{1}, \ldots, A_{n}\right)=$? (P)
-! $\left(P / A_{1}, \ldots, A_{n}\right)=!(P)-\left\{A_{1}, \ldots, A_{n}\right\}$

3. Semantics

The hiding operation allows to hide outputs of the process P : the outputs of the resulting process are the outputs of P which do not appear in the list A_{1}, \ldots, A_{n}.
The A_{i} can be names of tuples: in that case, the hiding applies globally on the tuples.

4. Examples

Let P be a process with A, B and C as inputs and X and Y as outputs.
(a) P / Y has only X as output;
(b) P / Z is equal to P .

VII-4 Confining with local declarations

Local declarations can be associated with any expression of processes.

1. Context-free syntax

CONFINED-PROCESS ::=

GENERAL-PROCESS DECLARATION-BLOCK
DECLARATION-BLOCK ::=
where $\{\text { DECLARATION }\}^{+}$end

The DECLARATIONs are local to the CONFINED-PROCESS; they are described in part E, section XI-2, page 176 (chapter "Models of processes").

Local declarations of sequences

The signals (or tuples) that appear in a list of S-DECLARATIONs associated with an expression of processes are hidden in output of this CONFINED-PROCESS.

```
P where }\mp@subsup{\mu}{1}{}\mp@subsup{A}{1}{},\ldots.., \mp@subsup{A}{\mp@subsup{n}{1}{}}{}; ...; \mp@subsup{\mu}{m}{}\mp@subsup{A}{1}{},\ldots.., \mp@subsup{A}{\mp@subsup{n}{m}{}}{}... en
```

The names $A_{1}, \ldots, A_{n_{1}}, \ldots, A_{1}, \ldots, A_{n_{m}}$ must be mutually distinct.

1. Profile

- ? $\left(P\right.$ where $\mu_{1} A_{1}, \ldots, A_{n_{1}} ; \ldots ; \mu_{m} A_{1}, \ldots, A_{n_{m}} \ldots$ end $)=$? (P)
-! $\left(P\right.$ where $\mu_{1} A_{1}, \ldots, A_{n_{1}} ; \ldots ; \mu_{m} A_{1}, \ldots, A_{n_{m}} \ldots$ end $)=$ $!(P)-\left\{A_{1}, \ldots, A_{n_{1}}, \ldots, A_{1}, \ldots, A_{n_{m}}\right\}$

2. Types The expression
P where $\mu_{1} A_{1}, \ldots, A_{n_{1}} ; \ldots ; \mu_{m} A_{1}, \ldots, A_{n_{m}}$ end establishes a new syntactic context of P.
The declarations
where $\mu_{1} A_{1}, \ldots, A_{n_{1}} ; \ldots ; \mu_{m} A_{1}, \ldots, A_{n_{m}}$ end
are called "local declarations" for P.
(a) In this context, the type $\tau\left(\mu_{i}\right)$ is that associated with the signals $A_{1}, \ldots, A_{n_{i}}$, in accordance with the rules defined in part C , chapter V , "Domains of values of the signals".

3. Definition in SIGNAL

$P / A_{1}, \ldots, A_{n_{1}}, \ldots, A_{1}, \ldots, A_{n_{m}}$ with, in the context of P, the associations of types defined above.

The following rules help to specify the context of visibility established by the local declarations of a confined process (see also in part E, section XI-2, page 176).

- An identifier of sequence X (or an identifier of constant, or an identifier of type) used in an expression on processes that does not contain a declaration of X is said external to this expression of processes.
- An identifier of sequence (or of constant, or of type) X local to an expression of processes P, or external to P and declared in a list of DECLARATIONs D, is local to the CONFINEDPROCESS P where D end.
- An identifier of sequence (or of constant, or of type) X external to an expression of processes P, and not declared in a list of DECLARATIONs D, is external to the CONFINED-PROCESS P where D end.
- Let A be an identifier of input signal of an expression of processes P (used but not defined in P), then A must be external to P.
- Let B be an identifier of output signal of a model M, then B must be an output signal defined (at least partially) in the expression of processes associated with M, external to this expression of processes.
- Any sequence used in a MODEL but not declared in the interface of this MODEL must be either local to the associated expression of processes, or external to the MODEL (visible in a syntactic context that includes it). In the same way, any constant or type identifier used in a MODEL must be either local to the associated expression of processes, or external to that MODEL.

VII-5 Labelled processes

It is possible to label an expression of processes:
$X X: ~: ~ P$

1. Context-free syntax

LABELLED-PROCESS ::=

Label ::=
Name

The labelled process $X X:: P$ has the same semantics as the process P, but the label $X X$ defines a context clock for the process P, and implicit signals are added to the graph.

The label $X X$ associated with P can be used to designate the process P in some expressions (dependences, for example).

In particular, the label $X X$ can be used to define or to reference a characteristic clock of P : the tick of P. For that purpose, the label is considered as a signal of special type label, for which it is always possible to reference its clock (in the usual ways: ${ }^{\wedge} X X$ for example).
This clock of the label $X X$ (the tick of P) is defined as being greater than the upper bound of the clocks of all the signals designated in P (including the clocks of the labels contained in P, including also the clocks of the signals designated in the macro-expansion of the models referenced in P, limited to the models which are not externally defined or separately compiled).

For the actions called in P, which are directly under the "scope" of the label $X X$ (i.e., for which there is no embedded labelled process containing these invocations of actions), the clock of the label $X X$ defines the activation clock of these actions. This clock can be fixed outside the process P (in conformity with the constraint stated above: it is always greater than the upper bound of the clocks of the signals of $P)$.

The clock of the label $X X$ represents the context clock of P.
The other effect of labelling a process is to add the two following signals to the graph: let us denote them respectively ? $X X$ and ! $X X$, although these notations are not available in the syntax of the language.

Both ? $X X$ and ! $X X$ have the clock ${ }^{\wedge} X X$ as their common clock. The implicit signal ? $X X$ is a signal that precedes all the nodes of the graph of the process P : there is a dependence from ? $X X$ to each one of the signals designated in P. Symmetrically, the implicit signal ! $X X$ is a signal which is preceded by all the nodes of the graph of P : there is a dependence from each one of the signals designated in P to the signal! $X X$.

This feature is used to specify explicit dependences between processes (cf. part E, section XI-6.2, page 182).

The labels declared in a model of process (cf. part E, chapter XI, page 173) are visible (i.e., can be referenced) everywhere in this model, but not in its included models of processes: a label is in some way local to a model.

In one model, a label cannot have the same name as another visible object (signal, parameter, constant, type, model).

VII-6 Choice processes

A choice process is an expression of processes that allows to compose definitions according to the different values of a signal ${ }^{1}$.
case X in
$\left\{E_{1,1}, \ldots, E_{1, n_{1}}\right\}: P_{1}$
!
$\left\{E_{m, 1}, \ldots, E_{m, n_{m}}\right\}: P_{m}$
else P_{m+1}
end

[^4]The "else" part is optional.
Other forms of enumeration of values can also be used in the different branches of the choice process. They are described below.

1. Context-free syntax

CHOICE-PROCESS ::=

case Name-signal in \{ CASE $\}^{+}$[ELSE-CASE] end
CASE ::=
ENUMERATION-OF-VALUES $:$ GENERAL-PROCESS
ELSE-CASE ::=
else GENERAL-PROCESS
ENUMERATION-OF-VALUES ::=

2. Profile

- ? $\left(P_{i}\right)=\left\{e_{i, 1}, \ldots, e_{i, p_{i}}\right\}$
- ? $($ case X in... end $)=\{X\} \cup \bigcup_{i} ?\left(P_{i}\right)-\bigcup_{i}!\left(P_{i}\right)$
- ! $($ case X in... end $)=\bigcup_{i}!\left(P_{i}\right)$

3. Types

(a) X has a Scalar-type or ENUMERATED-TYPE and $\forall i, j \tau\left(E_{i, j}\right) \sqsubseteq \tau(X)$

4. Semantics

Each ENUMERATION-OF-VALUES enumerates some subset of constant values which are in the same domain as the signal X, signal on which the choice is based, and which are possible values of X.
All the enumerations of values (the "guards" of the choice) must be mutually exclusive. When there is an "else" part, the different sub-types corresponding to the different guards form a partition of the type of X.
The enumerations of values can take the form of explicit enumerations (used for the description below), or of intervals. The four possible forms of intervals are usable only if the values of the type of X are totally ordered: they define intervals of values that can be, for both sides of the interval, opened or closed. The bounds of an interval are optional (one of the two must be present): if the lower bound is absent, the interval represents all the values smaller than the upper bound (included
or not); if the upper bound is absent, the interval represents all the values greater than the lower bound (included or not).

5. Definition in SIGNAL

When the processes P_{i} have inputs (as specified above), these inputs are filtered by the instants at which the signal X on which the choice is based takes as value one of the values enumerated in the corresponding branch. Then the above choice process is equivalent to:

```
(| e e
    \vdots
| e
```



```
| e
    \vdots
| \mp@subsup{e}{m,\mp@subsup{p}{m}{}}{\prime}:=\mp@subsup{e}{m,\mp@subsup{p}{m}{}}{}\mathrm{ when ((X = Em,1 ) or . . or ( }X=\mp@subsup{E}{m,\mp@subsup{n}{m}{}}{}))
| P Pm [e em,1
| e m+1,1 := e em+1,1 when ((X /= E E1,1 ) and ... and (X /= E Em,\mp@subsup{n}{m}{}})
    \vdots
| e
```



```
|) / e el,1, ..., e el,\mp@subsup{p}{1}{\prime}
```

where $P_{i}\left[e_{i, 1}^{\prime} / e_{i, 1}, \ldots, e_{i, p_{i}}^{\prime} / e_{i, p_{i}}\right]$ represents the process P_{i} in which new identifiers $e_{i, j}^{\prime}$ are substituted to the identifiers $e_{i, j}$ which are inputs of P_{i}.
For all the processes P_{i}, the new identifiers $e_{i, j}^{\prime}$ are mutually distinct and do not appear elsewhere. If some process P_{i} does not have inputs, there is of course no sampling of inputs for it but the "call" of this process is made at the clock at which the signal X on which the choice is based takes as value one of the values enumerated in the corresponding branch of the choice. In the definition, this can be expressed by:

```
(|
    \(\mid\) label \(_{i}{ }^{\wedge}=\) when \(\left(\left(X=E_{i, 1}\right)\right.\) or \(\ldots\) or \(\left.\left(X=E_{i, n_{i}}\right)\right)\)
    label \(_{i}:: P_{i}\)
        \(\vdots\)
|)
```

for $i=1$.. m
and by:

```
(|
    label \(_{m+1}{ }^{\wedge}=\) when \(\left(\left(X /=E_{1,1}\right)\right.\) and \(\ldots\) and \(\left.\left(X /=E_{m, n_{m}}\right)\right)\)
    label \(_{m+1}:: P_{m+1}\)
    |)
```

for the "else" part
(in place of the corresponding subsamplings and references to P_{i} in the previous definition).
6. Clocks The values $E_{i, j}$ are constant expressions:
(a) $\omega\left(E_{i, j}\right)=\hbar$

Example

The statechart:

may be described by the following program (process models and modules are described respectively in chapter XI, page 173 and chapter XII, page 191):

```
module P_statechart =
type P_states = enum (Q, R, S);
type Q1_states = enum (U, V);
type Q2_states = enum (X, Y, Z);
process P_chart =
    ( ? event Tick;
        event a, b, i, j, m, n;
        ! P_states P_currentState;
            Q1_states Q1_currentState;
            Q2_states Q2_currentState;
    )
    (| (| case P_currentState in
                        {#Q}: (| P_nextState ::= (#R when a) default (#S when b) |)
                        {#R}: (| P_nextState ::= #S when b |)
                        {#S}: (| P_nextState ::= #Q when a |)
            end
            P_nextState ::= defaultvalue P_currentState
            P_currentState := P_nextState $ init #Q
            P_currentState ^= Tick
                |)
        clk_Q_chart := when (P_currentState = #Q)
        start_Q_chart := when (P_nextState = #Q) when (P_currentState /= #Q)
        Q1_State ^= Q2_State ^= clk_Q_chart ^+ start_Q_chart
        (| case Q1_State in
                        {#U}: (| Q1_newState ::= #V when i |)
                        {#V}: (| Q1_newState ::= #U when j |)
            end
            Q1_newState ::= defaultvalue Q1_State
            Q1_newState ^= Q1_State
            Q1_nextState := (#U when start_Q_chart) default Q1_newState
```

```
                Q1_State := Q1_nextState $ init #U
                Q1_currentState := Q1_State when clk_Q_chart
                |)
    | (| case Q2_State in
                {#X}: (| Q2_newState ::= #Y when m |)
                {#Y}: (| Q2_newState ::= #Z when n |)
                {#Z}: (| Q2_newState ::= #X when j |)
            end
                Q2_newState ::= defaultvalue Q2_State
                Q2_newState ^= Q2_State
                Q2_nextState := (#X when start_Q_chart) default Q2_newState
                Q2_State := Q2_nextState $ init #X
                Q2_currentState := Q2_State when clk_Q_chart
                |)
        |)
    where
        P_states P_nextState;
        event clk_Q_chart, start_Q_chart;
        Q1_states Q1_State, Q1_newState, Q1_nextState;
        Q2_states Q2_State, Q2_newState, Q2_nextState;
    end;
end;
```

(note that the program could be better structured using several process models).

Part D

THE COMPOSITE SIGNALS

Chapter VIII

Tuples of signals

An expression of tuple is an enumeration of elements of tuple, or a designation of field.

1. Context-free syntax

S-EXPR-TUPLE ::=
TUPLE-ENUMERATION
TUPLE-FIELD

VIII-1 Constant expressions

A constant expression of tuple is an S-EXPR-TUPLE which has recursively as arguments constant expressions, or any expression defining a tuple the elements of which are constants.

VIII-2 Enumeration of tuple elements

A tuple represents a list (finite sequence) of signals or tuples.
$\left(E_{1}, \ldots, E_{n}\right)$

1. Context-free syntax

TUPLE-ENUMERATION ::=

2. Types

$$
\text { (a) } \tau\left(\left(E_{1}, \ldots, E_{n}\right)\right)=\left(\tau\left(E_{1}\right) \times \ldots \times \tau\left(E_{n}\right)\right)
$$

3. Semantics

The tuple (E_{1}, \ldots, E_{n}) is equal to $\left\langle v_{1}, \ldots, v_{n}\right\rangle$ where $\left.<v_{1}, \ldots, v_{n}\right\rangle$ is the sequence of signals or tuples resulting from the evaluation of the expressions E_{1}, \ldots, E_{n}.
The semantics is described formally in part B , section III-7.1, page 42 .

VIII-3 Denotation of field

$X . X_{i}$

1. Context-free syntax

> TUPLE-FIELD ::=
> S-EXPR $\quad \cdot \quad$ Name-field

2. Types

(a) $\tau(X)=$ bundle $\left(\left\{X_{1}\right\} \rightarrow \mu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \mu_{m}\right)$
(b) $\tau\left(X, X_{i}\right)=\mu_{i}$

3. Semantics

If X is a tuple with named fields $X_{1}, \ldots, X_{m}, X . X_{i}$ designates the signal or the tuple corresponding to the field with name X_{i}.
In particular, the denotation of field may apply on an INSTANCE-OFPROCESS when the output of the corresponding model is a tuple with named fields. It may also apply on an array element if the elements of the array are monochronous tuples with named fields.
The semantics is described formally in part B, section III-7.1, page 42 .

VIII-4 Destructuration of tuple

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of predefined functions of destructuration of tuples:

- tuple(X)
- If X is a tuple with named fields of type bundle $\left(\left\{X_{1}\right\} \rightarrow \mu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \mu_{m}\right)$, tuple (X) is the corresponding tuple with unnamed fields, $\left(X_{1}, \ldots, X_{m}\right)$, of type $\left(\mu_{1} \times \ldots \times \mu_{m}\right)$
- If X is a tuple with unnamed fields, the components of which are, in this order, X_{1}, \ldots, X_{m}, tuple (X) is the tuple with unnamed fields (tuple $\left(X_{1}\right), \ldots$, tuple $\left(X_{m}\right)$)
- If X is not of tuple type, then tuple (X) is equal to X.
- rtuple (X)
- If X is a tuple with named fields of type bundle $\left(\left\{X_{1}\right\} \rightarrow \mu_{1} \times \ldots \times\left\{X_{m}\right\} \rightarrow \mu_{m}\right)$, rtuple (X) is the tuple with unnamed fields (rtuple (X_{1}), ..., rtuple (X_{m}))
- If X is a tuple with unnamed fields, the components of which are, in this order, X_{1}, \ldots, X_{m}, rtuple (X) is the tuple with unnamed fields (rtuple (X_{1}), ..., rtuple (X_{m}))
- If X is not of tuple type, then rtuple (X) is equal to X.

VIII-5 Equation of definition of tuple component

A tuple can be defined component by component. An equation of definition of component of tuple is an expression of processes the syntax of which extends the DEFINITION-OF-SIGNALS given in part C, section VI-1.1, page 91. The general form can contain both definitions of components of tuples and global definitions of tuples and signals.

$$
\left(X_{1}, A_{1}, \ldots, X_{n} \cdot A_{n}\right):=E
$$

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

COMPONENT :=	S-EXPR	
COMPONENT $:$:=	S-EXPR	
COMPONENT $:$: $=$	defaultvalue	S-EXP

COMPONENT ::=
Name-signal
Name-signal . COMPONENT
2. Types
(a) $\tau\left(\left(X_{1} \cdot A_{1}, \ldots, X_{n} \cdot A_{n}\right)\right)=\left(\tau\left(X_{1} \cdot A_{1}\right) \times \ldots \times \tau\left(X_{n} \cdot A_{n}\right)\right)$
(b) $\tau(E) \sqsubseteq\left(\tau\left(X_{1}, A_{1}\right) \times \ldots \times \tau\left(X_{n}, A_{n}\right)\right)$

3. Semantics

- $X_{1} \cdot A_{1}, \ldots, X_{n} . A_{n}$ designate signals or tuples of signals, respectively components of the tuples X_{1}, \ldots, X_{n}.
- Each signal or tuple $X_{i} . A_{i}$ is respectively equal to the signal or tuple v_{i} that corresponds positionally to it in output of E.

4. Clocks A signal and the signal v_{i} that defines it are synchronous. In that case:
(a) $\omega\left(X_{i}, A_{i}\right)=\omega\left(v_{i}\right)$

Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.
The following operators are provided:

- operators of definition by enumeration
(ARRAY-ENUMERATION, CONCATENATION, ITERATIVE-ENUMERATION);
- an operator of definition of indices (INDEX);
- operators of access to elements of arrays (ARRAY-ELEMENT, SUB-ARRAY);
- an operator of array restructuration (ARRAY-RESTRUCTURATION);
- operators of sequential definition
(SEQUENTIAL-DEFINITION, ITERATIVE-ENUMERATION);
- global operators on matrices such as transposition (TRANSPOSITION) and products (ARRAYPRODUCT).

Moreover, structures of iteration are also defined on processes (ITERATION-OF-PROCESSES), with an associated operator of definition of multiple indices (MULTI-INDEX).

1. Context-free syntax

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION
CONCATENATION
ITERATIVE-ENUMERATION
| INDEX
ARRAY-ELEMENT
SUB-ARRAY
| ARRAY-RESTRUCTURATION
MULTI-INDEX
SEQUENTIAL-DEFINITION
TRANSPOSITION
ARRAY-PRODUCT
REFERENCE-SEQUENCE

IX-1 Dimensions of arrays and bounded values

Dimensions of arrays

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of predefined functions with constant result giving the dimension of an array and the size of a dimension:

- $\quad \operatorname{dim}(T)$

If T has a type $\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$ where ν is a Scalar-type or External-type or ENUMERATED-TYPE,
then $\varphi(\operatorname{dim}(T))=m$.
If T has a type ν where ν is a Scalar-type or External-type or ENUMERATED-TYPE,
then $\varphi(\operatorname{dim}(T))=0$.

- $\quad \operatorname{size}(T, I)$

If T has a type $\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \nu$ where ν is a Scalar-type or External-type or ENUMERATED-TYPE,
and if $1 \leq \varphi(I) \leq m$,
then $\varphi(\operatorname{size}(T, I))=n_{I}$,
else $\varphi($ size $(T, I))$ is not defined: it is an error in the program.

- $\quad \operatorname{size}(T)$ is, by definition, equivalent to
size ($T, 1$)

Bounded values

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of a predefined function used to deliver bounded values.

```
bounds( }\mp@subsup{E}{1}{},\mp@subsup{E}{2}{},\mp@subsup{E}{3}{}
```

The values of E_{1} are compelled to evolve between that of E_{2} and E_{3}.

1. Types

(a) E_{1}, E_{2} and E_{3} are signals of a same domain Scalar-type (other than a Complex-type), or ENUMERATED-TYPE.
(b) $\tau\left(\right.$ bounds $\left.\left(E_{1}, E_{2}, E_{3}\right)\right)=\tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right) \sqcup \tau\left(E_{3}\right)$
(c) The pointwise extension is described in part D , chapter X , page 169.
2. Definition in SIGNAL
$X:=$ bounds $\left(E_{1}, E_{2}, E_{3}\right)$
whose right side of $:==$ represents an expression of bounded values, is equal to the process defined as follows:
(| $X:=$ if $E_{1}<E_{2}$ then E_{2} else if $E_{1}>E_{3}$ then E_{3} else E_{1}

3. Clocks

(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$
(b) $\omega\left(E_{1}\right)=\omega\left(E_{3}\right)$
(c) ω (bounds $\left.\left(E_{1}, E_{2}, E_{3}\right)\right)=\omega\left(E_{1}\right)$

IX-2 Constant expressions

A constant expression of array is an S-EXPR-ARRAY which has recursively as arguments constant expressions, or any expression defining an array the elements of which are constants.

IX-3 Enumeration

The enumeration of the elements of an array defines a vector by the ordered list of its elements.
$\left[E_{1}, \ldots, E_{n}\right]$

1. Context-free syntax

ARRAY-ENUMERATION ::=

$$
\left[\begin{array}{lll}
\hline & \text { S-EXPR }\{\square, & \text { S-EXPR } \left.\}^{*} \quad\right] \\
\hline
\end{array}\right.
$$

2. Profile
$?\left(\left[E_{1}, \ldots, E_{n}\right]\right)=\bigcup_{i=1}^{n} ?\left(E_{i}\right)$
3. Types
(a) $\tau\left(\left[E_{1}, \ldots, E_{n}\right]\right)=[0 . . n-1] \rightarrow \bigsqcup_{i=1}^{n} \tau\left(E_{i}\right)$

4. Semantics

[E_{1}, \ldots, E_{n}] designates the vector the n components of which are, in this order, E_{1}, \ldots, E_{n} (cf. part B, section III-7.2, page 44).

5. Clocks

(a) $\omega\left(\left[E_{1}, \ldots, E_{n}\right]\right)=\omega\left(E_{i}\right) \quad \forall i=1, \ldots, n$
6. Examples
(a) With M1 $:=[[$ M11,M12,M13 $],[M 21, M 22, M 23]]$, M1 [1] is equal to [M11,M12,M13].

IX-4 Concatenation

The concatenation allows to concatenate arrays along to their first dimension.
$E_{1} \mid+E_{2}$

1. Context-free syntax

CONCATENATION ::=
S-EXPR $\square+$ S-EXPR

2. Types

(a) $\tau\left(E_{1}\right)=\left[0 . . m_{1}-1\right] \rightarrow \mu_{1}$
(b) $\tau\left(E_{2}\right)=\left[0 . . m_{2}-1\right] \rightarrow \mu_{2}$
(c) $\tau\left(E_{1} \mid+E_{2}\right)=\left[0 . . m_{1}+m_{2}-1\right] \rightarrow \mu_{1} \sqcup \mu_{2}$
3. Definition in SIGNAL
$X:=E_{1} \mid+E_{2}$ is equal to the process defined as follows:
$X:=\left[E_{1}[0], \ldots, E_{1}\left[m_{1}-1\right], E_{2}[0], \ldots, E_{2}\left[m_{2}-1\right]\right]$

4. Clocks

(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)$
(b) $\omega\left(E_{1} \mid+E_{2}\right)=\omega\left(E_{1}\right)$

IX-5 Repetition

The repetition is a simple form of iterative enumeration which allows the finite repetition of a value.
$E \mid * N$

1. Context-free syntax

ITERATIVE-ENUMERATION ::=

2. Types

(a) $\tau(E)=\mu$
(b) N is a positive integer expression, with a strictly positive upper bound, $N_{\max }$.
(c) $\tau(E \mid * N)=\left[0 . . N_{\max }-1\right] \rightarrow \mu$

3. Semantics

At a given instant, all the elements of the vector defined by $E \mid * N$ have the same value, which is the value of E.
The semantics is described formally in part B, section III-7.2, page 44, using the "iterative enumeration of array". The maximum number of iterations is given by N, and the iteration function which is used here is the identity function with first value the value E itself.

4. Clocks

(a) $\omega(E)=\omega(N)$
(b) $\omega(E \mid * N)=\omega(E)$

IX-6 Definition of index

$E_{1} \ldots E_{2}$ step E_{3}

1. Context-free syntax

INDEX ::=

2. Types

(a) E_{1} and E_{2} are bounded integers such that the difference $E_{1}-E_{2}$ has always the same sign (at every instant): $\forall t, E_{1 t} \leq E_{2 t}$ or $\forall t, E_{1 t} \geq E_{2 t}$.
lower_bound $\left(E_{1}\right)$, upper_bound $\left(E_{1}\right)$, lower_bound $\left(E_{2}\right)$ and upper_bound $\left(E_{2}\right)$ will denote respectively the lower bounds and upper bounds of E_{1} and E_{2}.
(b) E_{3} is an integer constant different from 0 , such that
if $\forall t, E_{1 t} \leq E_{2 t}$ then $\varphi\left(E_{3}\right)>0$
and if $\forall t, E_{1 t} \geq E_{2 t}$ then $\varphi\left(E_{3}\right)<0$.
When the step expression, E_{3}, is omitted, its value is implicitly equal to 1 .
(c) If $\varphi\left(E_{3}\right)>0$,
$\tau\left(E_{1} \ldots E_{2}\right.$ step $\left.E_{3}\right)=$
$\left[0 . .\left(\left(\right.\right.\right.$ upper_bound $\left(E_{2}\right)-$ lower_bound $\left.\left.\left.\left(E_{1}\right)\right) / \varphi\left(E_{3}\right)+1\right)-1\right] \rightarrow \tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)$
If $\varphi\left(E_{3}\right)<0$,
$\tau\left(E_{1} \ldots E_{2}\right.$ step $\left.E_{3}\right)=$
$\left[0 . .\left(\left(\right.\right.\right.$ upper_bound $\left(E_{1}\right)-$ lower_bound $\left.\left.\left.\left(E_{2}\right)\right) /\left(-\varphi\left(E_{3}\right)\right)+1\right)-1\right] \rightarrow \tau\left(E_{1}\right) \sqcup \tau\left(E_{2}\right)$
In any case, the size of the vector must be strictly positive.

3. Semantics

The vector of integers defined by $E_{1} \ldots E_{2}$ step E_{3} has as successive elements the values $E_{1 t}$, $E_{1 t}+\varphi\left(E_{3}\right), E_{1 t}+\left(2 * \varphi\left(E_{3}\right)\right)$, etc., up to the last value between $E_{1 t}$ and $E_{2 t}$ (included).
The semantics is described formally in part B, section III-7.2, page 44, using the "iterative enumeration of array".
The iteration function is the function f such that $f(x)=x+\varphi\left(E_{3}\right)$. The first value is E_{1}. If $\varphi\left(E_{3}\right)>0$, the maximum number of iterations is given by $N=\left(E_{2}-E_{1}\right) / \varphi\left(E_{3}\right)+1$.
If $\varphi\left(E_{3}\right)<0$, the maximum number of iterations is given by
$N=\left(E_{1}-E_{2}\right) /\left(-\varphi\left(E_{3}\right)\right)+1$.

4. Clocks

(a) $\omega\left(E_{1}\right)=\omega\left(E_{2}\right)=\omega\left(E_{1} \ldots E_{2}\right.$ step $\left.E_{3}\right)$
(b) $\omega\left(E_{3}\right)=\hbar$

IX-7 Array element

An array element is obtained by indexing following the syntax of the first rule below. Every index of array must be a positive bounded integer, whose upper bound is strictly inferior to the size n of the
considered dimension; the second rule provides a syntax of "local recovery" which defines the value of the expression for the values of index outside the segment $[0 . . n-1]$.

1. Context-free syntax

ARRAY-ELEMENT ::=

ARRAY-RECOVERY ::=

\square S-EXPR

IX-7.1 Access without recovery

$T\left[E_{1}, \ldots, E_{m}\right]$

1. Profile

$$
?\left(T\left[E_{1}, \ldots, E_{m}\right]\right)=?(T) \cup \bigcup_{i=1}^{m} ?\left(E_{i}\right)
$$

2. Types

(a) For all i, E_{i} is a positive (or zero) integer, with an upper bound. Let n_{i} the value of its upper bound.
(b) $\tau(T)=\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \mu$
(remark: μ can be an array type.)
(c) $\tau\left(T\left[E_{1}, \ldots, E_{m}\right]\right)=\mu$

3. Semantics

If v_{1}, \ldots, v_{m} represent respectively the self-corresponding elements in the sequences of values represented by E_{1}, \ldots, E_{m}, the corresponding element in the sequence represented by T [E_{1}, $\left.\ldots, E_{m}\right]$ is $T\left(<v_{1}, \ldots, v_{m}>\right)$.
The semantics is described formally in part B, section III-7.2, page 44.

4. Clocks

(a) $\omega\left(E_{1}\right)=\omega(T), \ldots, \omega\left(E_{m}\right)=\omega(T)$
(b) $\omega\left(T\left[E_{1}, \ldots, E_{m}\right]\right)=\omega(T)$

5. Properties

(a) $\left(E_{1}, \ldots, E_{m}\right.$ of type integer $) \Rightarrow\left(T\left[E_{1}, \ldots, E_{m}\right]=T\left[E_{1}\right] \ldots\left[E_{m}\right]\right)$

IX-7.2 Access with recovery

$T\left[E_{1}, \ldots, E_{m}\right] \backslash \backslash V$

1. Types

(a) $\tau(T)=\left(\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{m}-1\right]\right) \rightarrow \mu_{1}$
(b) For all $i=1, \ldots, m, \quad \tau\left(E_{i}\right)$ is an Integer-type.
(c) $\tau(V)=\mu_{2}$
(d) $\tau\left(T\left[E_{1}, \ldots, E_{m}\right] \backslash \backslash V\right)=\mu_{1} \sqcup \mu_{2}$

2. Definition in SIGNAL

$X:=T\left[E_{1}, \ldots, E_{m}\right] \backslash \backslash V$
whose right side of $:=$ represents an expression of access to an array element with recovery, is equal to the process defined as follows:

```
(| \(\quad X_{1}:=T\left[E_{1}\right.\) modulo \(n_{1}, \ldots, E_{m}\) modulo \(n_{m}\) ]
    | \(B_{1}:=\left(0<=E_{1}\right)\) and \(\left(E_{1}<=\left(n_{1}-1\right)\right)\)
        \(\vdots\)
    | \(B_{m}:=\left(0<=E_{m}\right)\) and \(\left(E_{m}<=\left(n_{m}-1\right)\right)\)
    | \(B:=\left(B_{1}\right.\) and \(\ldots\) and \(\left.B_{m}\right)\) when \({ }^{\wedge} T\)
    | \(X_{2}:=V\) when \({ }^{\wedge} T\)
    | \(X:=\left(X_{1}\right.\) when \(\left.B\right)\) default \(X_{2}\)
    |) / \(X_{1}, X_{2}, B, B_{1}, \ldots, B_{m}\)
```


3. Clocks

(a) $\omega\left(E_{1}\right)=\omega(T), \ldots, \omega\left(E_{m}\right)=\omega(T)$
(b) $\omega(V)=\omega(T)$
(c) $\omega\left(T\left[E_{1}, \ldots, E_{m}\right] \backslash \backslash V\right)=\omega(T)$

IX-8 Extraction of sub-array

The expression of extraction of sub-array is a generalization, with the same syntax, of the expression of access to an array element (cf. section IX-7, page 151). Only the form where the accesses are obtained via "generalized indices" (represented as arrays of integers) is given here; when they are integers, the description of the corresponding expression is given in IX-7.
$T\left[I_{1}, \ldots, I_{n}\right]$

1. Context-free syntax

SUB-ARRAY ::=

S-EXPR \square S-EXPR $\left\{\begin{array}{l}\square \\ \hline\end{array}\right.$ S-EXPR $\left.^{*} \square\right]$

2. Types

(a) $\tau\left(I_{1}\right)=\ldots=\tau\left(I_{n}\right)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \nu$ with ν an integer type, and the basic integer values of the I_{i} are positive or zero.
(b) More generally, the list of indices I_{1}, \ldots, I_{n} can be specified by any expression denoting a function $\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \nu^{n}$ (with ν an integer type).
(c) $\tau(T)=\left(\left[0 . . a_{1}\right] \times \ldots \times\left[0 . . a_{n}\right]\right) \rightarrow \mu$ (μ can be an array type).
(d) $\tau\left(T\left[I_{1}, \ldots, I_{n}\right]\right)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \mu$

3. Semantics

$T\left[I_{1}, \ldots, I_{n}\right]$ extracts some sub-array from T.
The semantics is described formally in part B, section III-7.2, page 44 (non defined values, represented by nil in the semantics, are any values of correct type).

If T has at least n dimensions (and has the basic type μ for the elements corresponding to these n first dimensions), it can be traversed using jointly n indices I_{1}, \ldots, I_{n} (one per dimension), that allow to extract elements of type μ.
Each one of the indices is an array with the same number of dimensions, let p.
The result, let X, has the same number of dimensions as the indices, which is p. Its basic elements have the type μ (type of the extracted elements).
With each "position" $\left(j_{1}, \ldots, j_{p}\right)$ in X, it is associated the element of T the position of which is given by the value of the n indices in $\left(j_{1}, \ldots, j_{p}\right)$, i.e., in the position
$\left(I_{1}\left[j_{1}, \ldots, j_{p}\right], \ldots, I_{n}\left[j_{1}, \ldots, j_{p}\right]\right)$ in T.

4. Clocks

(a) $\omega\left(I_{1}\right)=\omega(T), \ldots, \omega\left(I_{n}\right)=\omega(T)$
(b) $\omega\left(T\left[I_{1}, \ldots, I_{n}\right]\right)=\omega(T)$

5. Properties

(a) If V is a vector of type $[0 . . n-1] \rightarrow \mu$ and if I is an index defined by $I:=0 \ldots n-1$, then the expressions V and $V[I]$ are equivalent.

6. Examples

(a) $([[10,20],[30,40]])[1,0]$ value is 30 .
(b) $(0, .10)[2,4]$ value is $[2,3,4]$.
(c) if M is a $n \times n$ matrix, then $\mathrm{M}[0 \ldots \mathrm{n}-1,0 \ldots \mathrm{n}-1]$ is the vector containing its diagonal.

IX-9 Array restructuration

The array restructuration allows to define partially (in the general case) an array, by defining some indices-defined coordinate points of this array. Non defined values are any values of correct type. This operator is the "reverse" of the operator of extraction of sub-array (cf. section IX-8, page 153) in the following informal way: let T be the result of $\left(I_{1}, \ldots, I_{n}\right): S$; if the indices are such that each element of S is used only once by the definition, then $T\left[I_{1}, \ldots, I_{n}\right]$ value is S.

$$
\left(I_{1}, \ldots, I_{n}\right): S
$$

1. Context-free syntax

ARRAY-RESTRUCTURATION ::=

S-EXPR \because : S-EXPR

2. Types

Depending on I_{1}, \ldots, I_{n} being integers or arrays of integers, one of the following sets of relations on types applies:
(a) - For any $k, \tau\left(I_{k}\right)$ is a positive or null integer, with an upper bound. Let a_{k} this upper bound.

- $\tau(S)=\mu$
- $\tau\left(\left(I_{1}, \ldots, I_{n}\right): S\right)=\left(\left[0 . . a_{1}\right] \times \ldots \times\left[0 . . a_{n}\right]\right) \rightarrow \mu$
(b) - $\tau\left(I_{1}\right)=\ldots=\tau\left(I_{n}\right)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \nu$
with ν an integer type, and for $1 \leq i \leq n, \min _{K \in \operatorname{Dom}\left(I_{i}\right)} I_{i}(K) \geq 0$
- More generally, the tuple of indices $\left(I_{1}, \ldots, I_{n}\right)$ can be specified by any expression denoting a function $\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \nu^{n}$ (with ν an integer type).
- $\tau(S)=\left(\left[0 . . c_{1}\right] \times \ldots \times\left[0 . . c_{p}\right]\right) \rightarrow \mu$
with $c_{1} \geq b_{1}, \ldots, c_{p} \geq b_{p}$
- $\tau\left(\left(I_{1}, \ldots, I_{m}\right): S\right)=\left(\left[0 . . a_{1}\right] \times \ldots \times\left[0 . . a_{n}\right]\right) \rightarrow \mu$
with for $1 \leq i \leq n, a_{i}=\max _{K \in \operatorname{Dom}\left(I_{i}\right)} I_{i}(K)$

3. Semantics

$\left(I_{1}, \ldots, I_{n}\right): S$ specifies a partial definition of array, using the coordinate points defined by the tuple of "generalized indices" (I_{1}, \ldots, I_{n}) and the values of S obtained by skimming through these coordinates.
The semantics is described formally in part B, section III-7.2, page 44 (non defined values, represented by nil in the semantics, are any values of correct type).

Let T be the array defined by the expression $\left(I_{1}, \ldots, I_{n}\right): S$. If the indices I_{1}, \ldots, I_{n} are such that they allow to scan exactly the array T (each position is visited only once using these indices), then the restructuration $T:=\left(I_{1}, \ldots, I_{n}\right): S$ defines the array T such that the extraction of sub-array $T\left[I_{1}, \ldots, I_{n}\right]$ (cf. section IX-8, page 153) is equal to S.
In other words, $T\left[I_{1}\left[k_{1}, \ldots, k_{p}\right], \ldots, I_{n}\left[k_{1}, \ldots, k_{p}\right]\right]=S\left[k_{1}, \ldots, k_{p}\right]$.
If $\left(I_{1}\left[k_{1}, \ldots, k_{p}\right], \ldots, I_{n}\left[k_{1}, \ldots, k_{p}\right]\right)$ defines the same position for several distinct values of $\left(k_{1}, \ldots, k_{p}\right)$, it is the element corresponding to the max of the (k_{1}, \ldots, k_{p}) (in lexicographic order) which is used.

4. Clocks

(a) $\omega\left(I_{1}\right)=\omega(S), \ldots, \omega\left(I_{n}\right)=\omega(S)$
(b) $\omega\left(\left(I_{1}, \ldots, I_{n}\right): S\right)=\omega(S)$

5. Examples

(a) $2: 1$ is a vector [any, any, 1].
where any represents any well-typed value (nil in the semantics).
Its type is [0..2] \rightarrow integer since the maximal value of 2 is 2 .
(b) $(1,2): 3$ is a matrix [[any, any, any $]$, [any, any, 3]].

Its type is $([0 . .1] \times[0 . .2]) \rightarrow$ integer.
(c) $1:[[1,2],[3,4]] \quad$ is a 3-dimensions array
$[[[a n y, a n y],[a n y, a n y]],[[1,2],[3,4]]]$.
Its type is $([0 . .1] \times[0 . .1] \times[0 . .1]) \rightarrow$ integer .
(d) $([0,1],[2,1]):[4,5]$ is a matrix $[[a n y, a n y, 4],[a n y, 5, a n y]]$.

IX-10 Generalized indices

The syntax of an INSTANCE-OF-PROCESS is used to denote the call of a predefined function that delivers generalized "unit" indices. Such indices can be used for standard array traversal in extraction of sub-array (cf. section IX-8, page 153) or array restructuration (cf. section IX-9, page 154).

```
indices( }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}
```

Let the expression indices $\left(a_{1}, \ldots, a_{n}\right)$ define jointly n indices I_{1}, \ldots, I_{n} : $\left(I_{1}, \ldots, I_{n}\right):=$ indices $\left(a_{1}, \ldots, a_{n}\right)$

1. Types

(a) The elaborated values of $a_{1}\left(\varphi\left(a_{1}\right)\right), \ldots, a_{n}\left(\varphi\left(a_{n}\right)\right)$ are strictly positive integers.
(b) For all $j=1, \ldots, n$,

$$
\tau\left(I_{j}\right)=\left(\left[0 . . \varphi\left(a_{1}\right)-1\right] \times \ldots \times\left[0 . . \varphi\left(a_{n}\right)-1\right]\right) \rightarrow \nu
$$

where ν is an Integer-type.
2. Semantics

For all $j=1, \ldots, n$,
for all k_{l} such that $0 \leq k_{l} \leq \varphi\left(a_{l}\right)-1$,

$$
(\forall t) \quad\left(I_{j_{t}}\left(k_{1}, \ldots, k_{n}\right)=k_{j}\right)
$$

3. Definition in SIGNAL

$\left(I_{1}, \ldots, I_{n}\right):=$ indices $\left(a_{1}, \ldots, a_{n}\right)$
may be obtained by the process defined as follows:

```
(| \(\left(I I_{1}, \ldots, I I_{n}\right):=\ll 0 \ldots a_{1}-1, \ldots, 0 \ldots a_{n}-1 \gg\)
| iterate \(\left(I I_{1}, \ldots, I I_{n}\right)\) of
        \(\left(I_{1}\left[I I_{1}, \ldots, I I_{n}\right], \ldots, I_{n}\left[I I_{1}, \ldots, I I_{n}\right]\right):=\left(I I_{1}, \ldots, I I_{n}\right)\)
        end
    |) \(/ I I_{1}, \ldots, I I_{n}\)
```

(cf. section IX-12, page 157 and section IX-13, page 158).

4. Clocks

(a) $\omega\left(a_{1}\right)=\hbar, \ldots, \omega\left(a_{n}\right)=\hbar$
(b) $\omega\left(\right.$ indices $\left.\left(a_{1}, \ldots, a_{n}\right)\right)=\hbar$

IX-11 Extended syntax of equations of definition

The following syntax ${ }^{1}$ extends the syntax of DEFINITION-OF-SIGNALS given in VIII-5, page 145:

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

DEFINED-ELEMENT
\mid DEFINED-ELEMENT
$:==$
S-EXPR
D-EXPR
DEFINED-ELEMENT $::=$ defaultvalue S-EXPR

(DEFINED-ELEMENT $\left\{\square^{\text {, }} \text { DEFINED-ELEMENT }\right\}^{*}$S-EXPR		
:=			
(DEFINED-ELEMENT \{ ${ }^{\text {, }}$		
::	S-EXPR		
(DEFINED-ELEMENT \{	DEFINED-ELEMENT \}*	

DEFINED-ELEMENT ::=

COMPONENT
\mid COMPONENT $\left[\right.$ S-EXPR $\left.\{\square, \text { S-EXPR }\}^{*} \square\right]$

An equation
$X\left[I_{1}, \ldots, I_{m}\right]:=E$
is another way to write:
$X:=\left(I_{1}, \ldots, I_{m}\right): E$
The definition is similar when the symbol $::=$ is used.
If one equation defines only partially an array, this array can be defined using several equations, defining different parts or elements of this array.

Independently of non defined elements (represented by nil in the semantics), like any signal, a given element cannot be defined by distinct values at a same instant.

All the elements of an array have the same clock, which is the clock of the array. In particular, if some element is undefined at a given instant at which other elements are defined, this element is considered to have any well-typed value.

IX-12 Cartesian product

The cartesian product is used mainly to define jointly indices, to be used in the provided structure of iteration of processes (cf. section IX-13, page 158). Intuitively, the sequence of iteration is represented by the first dimension of the indices (which are vectors). Thus, it is different from the generalized indices used in extraction of sub-array (cf. section IX-8, page 153) or array restructuration (cf. section IX-9, page 154), which are, in the more general case, multi-dimensional indices.

[^5]$\ll I_{1}, \ldots, I_{n} \gg$

1. Context-free syntax

MULTI-INDEX ::=

2. Types

(a) $\forall k, \tau\left(I_{k}\right)=\left[0 . . m_{k}-1\right] \rightarrow \mu_{k}$
(b) $\tau\left(\ll I_{1}, \ldots, I_{n} \gg\right)=\left[0 . . \prod_{k=1}^{n} m_{k}-1\right] \rightarrow \mu_{1} \times \ldots \times\left[0 . . \prod_{k=1}^{n} m_{k}-1\right] \rightarrow \mu_{n}$
3. Semantics

The cartesian product $<I_{1}, \ldots, I_{n} \gg$ defines a tuple of n vectors $I I_{1}, \ldots, I I_{n}$, the size of which is equal to the product of the sizes of the vectors I_{1}, \ldots, I_{n}. These vectors $I I_{1}, \ldots, I I_{n}$ are such that the tuples obtained by their elements of same index describe successively the respective values of the elements of I_{1}, \ldots, I_{n} in embedded loops such that the most external one enumerates the elements of I_{1} and the most internal one enumerates the elements of I_{n}.
The semantics is described formally in part B, section III-7.2, page 44.

4. Clocks

(a) $\omega\left(I_{1}\right)=\ldots=\omega\left(I_{n}\right)$
(b) Each one of the defined $I I_{k}$ has the same clock as I_{k}.

IX-13 Iterations of processes

Structures of iteration are provided as process expressions ${ }^{2}$.

1. Context-free syntax

GENERAL-PROCESS ::=

ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

ARRAY-INDEX ::=

Name to S-EXPR
ITERATION-INDEX ::=
DEFINED-ELEMENT
$\square_{\text {(}}$ DEFINED-ELEMENT $\{\square \text { DEFINED-ELEMENT }\}^{*}, \square$
S-EXPR

[^6]
ITERATION-INIT ::=

with P-EXPR

REFERENCE-SEQUENCE ::=

$$
\text { S-EXPR }\left[\begin{array}{llll}
{[} & ? &] \\
\hline
\end{array}\right.
$$

The structure of array is used in the SigNAL language to represent a notion of iteration.
The signals which are defined iteratively have a virtual additional first dimension (with respect to their declaration), the size of which is the number of iterations. Moreover, a virtual index -1 in this first dimension is used to represent the initial value of the considered signal, at the beginning of the iterations. The current value of the signal at a given iteration step may be a function of its value at the previous iteration step.

Note that this representation of bounded iterations using an additional spatial dimension is only a means to represent simply such iterations within the existing semantic context. In practice, this added dimension has not necessarily to be created.

Let us first consider the following form:
iterate (I_{1}, \ldots, I_{p}) of P with $P_{\text {init }}$ end
where P is a process expression with equations that may contain the following occurrences of signal expressions:

- in the left hand side:

$$
X\left[f\left(I_{1}, \ldots, I_{p}\right)\right] \text { (or just } X \text {) }
$$

- in the right hand side:
$X\left[g\left(I_{1}, \ldots, I_{p}\right)\right]$ (or just X)
and:
$X\left[\right.$?] $\left[h\left(I_{1}, \ldots, I_{p}\right)\right]$ (or just X [?])
$P_{\text {init }}$ is also a process expression with equations that may contain signal expressions of the form $X\left[u\left(I_{1}, \ldots, I_{p}\right)\right]$ (or just X) in the left hand side.

The equations which are under the scope of a structure of iteration ("iteration of processes") in a given unit of compilation are rewritten as a new system of equations according to the context of rewritting established by the embedding of iteration structures. An indexing function (which can be represented as some list of indexes) corresponds to such a context. The indexing function is a function:
$\left[0 . .\left(n_{1} * \ldots * n_{p}\right)-1\right] \rightarrow\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{p}-1\right]$
For simplicity, let this function be represented here by the tuple of indexes I_{1}, \ldots, I_{p} (in this order): each index has a size equal to $n_{1} * \ldots * n_{p}$. We note $m=n_{1} * \ldots * n_{p}$.

Let us consider also the following "generic" forms of equations in $P_{\text {init }}$:
$X\left[u\left(I_{1}, \ldots, I_{p}\right)\right]::=E$
and in P :
$X\left[f\left(I_{1}, \ldots, I_{p}\right)\right]::=k\left(X[\right.$? $\left.]\left[\mathrm{h}\left(I_{1}, \ldots, I_{p}\right)\right], Y\left[\mathrm{~g}\left(I_{1}, \ldots, I_{p}\right)\right], \ldots\right)$
(X, Y represent any variable- Y may be X - defined in the iteration, the functions $f, g, h, u \ldots$ on indexes can represent tuples...; although it is not mandatory, the symbol $::==$ is used here-improperly, in some way - to make visible the fact that, besides the representation of the iteration in an added dimension for the signals, each defined element has several definitions along the iteration.)

Considering this iteration context, the equations affected by this context are rewritten in the following way ("expanded", in some way), as a composition of equations ($X X, Y Y \ldots$ are new variables,
corresponding to the variables defined in the iteration, with the same type as the corresponding variable, but with an additional first dimension of size $m+1$):

- initialization equations:
$X\left[u\left(I_{1}, \ldots, I_{p}\right)\right]::=E$
is rewritten as the composition of equations:
$\forall i_{1}, \ldots, i_{p}, \forall \varphi\left(I_{1}\left[i_{1}\right]\right), \ldots, \varphi\left(I_{p}\left[i_{p}\right]\right)$,
$X X[-1]\left[u\left(\varphi\left(I_{1}\left[i_{1}\right]\right), \ldots, \varphi\left(I_{p}\left[i_{p}\right]\right)\right)\right]:=E$
where -1 refers to the virtual first index of the added dimension.
- equations of the body:
$X\left[f\left(I_{1}, \ldots, I_{p}\right)\right]::=k\left(X[?]\left[\mathrm{h}\left(I_{1}, \ldots, I_{p}\right)\right], Y\left[\mathrm{~g}\left(I_{1}, \ldots, I_{p}\right)\right], \ldots\right)$
is rewritten as the composition of equations:
$\forall l=0, \ldots, m-1$,

$$
\begin{aligned}
- & X X[l]\left[f\left(I_{1}[l], \ldots, I_{p}[l]\right)\right]:= \\
& k\left(X X[l-1]\left[h\left(I_{1}[l], \ldots, I_{p}[l]\right)\right], Y Y[l]\left[g\left(I_{1}[l], \ldots, I_{p}[l]\right)\right], \ldots\right) \\
- & \forall j \neq f\left(I_{1}[l], \ldots, I_{p}[l]\right), \\
& X X[l][j]:=X X[l-1][j]
\end{aligned}
$$

- final results:
$X:=X X[m-1]$
This rewritting is some sort of preprocessing. In particular, the typing of a program has to be considered on the rewritten program.

As mentioned above, the iteration indexes can be represented as some list of indexes. A particular case is to have such a list defined as a tuple resulting from the cartesian product of indexes. More generally, the iteration indexes can be specified by any expression denoting a function $\left[0 . .\left(n_{1} * \ldots * n_{p}\right)-1\right] \rightarrow\left[0 . . n_{1}-1\right] \times \ldots \times\left[0 . . n_{p}-1\right]$ (where the n_{i} are integer constants).

For a given set of equations, the context of iteration is established, in some unit of compilation, by the whole embedding structure of the iterations containing these equations. As it will be easier to understand it in a regular context, let us consider as typical example the embedding of two structures of iteration, the indexing functions of them, taken separately, are given by cartesian products of indexes: let $<I_{1}, \ldots, I_{p} \gg$ for the most external one, and $\ll I_{p+1}, \ldots, I_{p+q} \gg$ for the inner one. Then, for the equations which are under the scope of both structures of iteration, the indexing function (which determines the rewritting) is given by the following cartesian product: $<I_{1}, \ldots, I_{p+q} \gg$. This rule is generalized following the same principle for any indexing function and for any embedding of structures of iteration.

The "array" notation is a special case of the "iterate" one, inherited from the previous version of the SIGNAL language.
array I to N of P with $P_{\text {init }}$ end
where N is an expression defining a constant integer
is equal to the process defined as follows:

```
(| \(I:=0 . . N\)
    | iterate \(I\) of \(P\) with \(P_{\text {init }}\) end
    |) / I
```


Examples

- array I to $\mathrm{N}-1$ of
array J to $N-1$ of
$\mathrm{U}[\mathrm{I}, \mathrm{J}]:=$ if $\mathrm{I}=\mathrm{J}$ then 1 else 0 end
end defines U as a unit matrix.
- array I to $\mathrm{N}-1$ of
array J to $N-1$ of $T[I, J]:=$ if $J>=I$ then $I+J$ else 0 end
end
defines T as a triangular matrix.
- array I to $\mathrm{N}-1$ of
$D[I]:=M[I, I]$
end
defines D as a vector equal to the diagonal of matrix M.
- array I to $N-1$ of
$\mathrm{T}[\mathrm{I}]:=$ if $\mathrm{I}=\mathrm{K}$ then A else (T\$)[I]
end
defines the vector T which at each instant keeps the values it had at the previous instant, except in K where it takes the values of A (K and A can be signals).
- array I to $N-1$ of
$\mathrm{V}[\mathrm{I}]:=\mathrm{T}[\mathrm{I}]+\mathrm{V}[?][\mathrm{I}-1] \backslash \backslash 0$
end
defines the vector V in which each element, of index i, contains the sum of the first i elements of a vector T .
- array I to $N-1$ of
$\mathrm{R}:=\mathrm{op}(\mathrm{T}[\mathrm{I}], \mathrm{R}[?])$
with $\mathrm{R}:=\mathrm{v} 0$
end
defines in R the scalar obtained by the reduction of the vector T by the operator $o p$ ($v 0$ is the initial value).
- array I to $N-1$ of
$\mathrm{Y}[\mathrm{I}]:=\operatorname{FILTER}(\mathrm{Y}[?][\mathrm{I}-1] \backslash \mathrm{X})$
end
defines a cascade of N processes FILTER connected in series. The process model FILTER is declared with one input and one output of some basic type. Each input of an instance of the process FILTER is supplied by the output of the previous process FILTER (the signal X provides the input of the first process FILTER). The vector Y is delivered as output.
- array I to N of
$\mathrm{F}:=$ if $\mathrm{I}=0$ then 1 else $\mathrm{I} * \mathrm{~F}$ [?]
end
defines in F the factorial of N .
- array I to $\mathrm{N}-1$ of

FOUND := if FOUND[?] $/=-1$
then FOUND [?]
else if ELEM = TABLE[I]
then I
else FOUND[?]
with FOUND := -1
end
specifies the research of the element ELEM in an unsorted TABLE.

- With fulladd a model of function defined as follows (cf. chapter XI, page 173):
function fulladd =
(? boolean cin, $x, y ;$! boolean cout, s;)
(| $s:=x$ xor y xor cin
cout $:=(x$ and $y)$ or $(y$ and cin) or (cin and $x)$
|)
;
then the following model of function defines an unsigned byte adder:

```
function byte_adder =
    ( ? [8] boolean X, Y; ! [8] boolean S; boolean overflow; )
    (| array i to 7 of
                (overflow, S[i]) := fulladd (overflow[?], X[i], Y[i])
        with overflow := false
        end
        |)
;
```

- Using the model of function exchg:

```
function exchg =
    ( ? integer a, v; ! integer aa, w; )
    (| aa }:=v|w:= 
        |)
;
```

then the following model of function (cf. chapter XI, page 173) defines in W a circular permutation
of V :
function Rotate $=$
\{ integer n; \} (? [n] integer V; ! [n] integer W;)
(| array i to $n-1$ of
(aa, W[i]) := exchg (aa[?], V[i])
with aa $:=\mathrm{V}[\mathrm{n}-1]$
end
\|)
where integer aa; ... end
;

- The following model of function sorts the vector A in increasing order in T :
function Sort =
\{ integer n; \} (? [n] integer $A ;$! [n] integer T;)
(| array i to $n-1$ of

```
            array i to (n-2)-j of
            (| T := T[?]
                            next (i : if T[?][i] > T[?][i+1]
                            then T[?][i+1] else T[?][i])
                            next (i+1 : if T[?][i] > T[?][i+1]
                                    then T[?][i] else T[?][i+1])
                |)
            end
        with T := A
        end
    |)
;
```

(the sequential expression is defined in section IX-14, page 163).
Some other examples are given in the definition of operators on matrices (cf. section IX-16, page 165).

IX-14 Sequential definition

The sequential definition is used mainly for the redefinition of elements of arrays.
T_{1} next T_{2}

1. Context-free syntax

SEQUENTIAL-DEFINITION ::= S-EXPR next S-EXPR

2. Types

(a) $\tau\left(T_{1}\right)=\left(\left[0 . . c_{1}\right] \times \ldots \times\left[0 . . c_{p}\right]\right) \rightarrow \mu_{1}$
(b) $\tau\left(T_{2}\right)=\left(\left[0 . . b_{1}\right] \times \ldots \times\left[0 . . b_{p}\right]\right) \rightarrow \mu_{2}$
with $c_{1} \geq b_{1}, \ldots, c_{p} \geq b_{p}$ and μ_{1} and μ_{2} are comparable types
(T_{1} and T_{2} are, in the general case, arrays with the same number of dimensions, but on each of them, T_{2} may be smaller than T_{1})
(c) $\tau\left(T_{1}\right.$ next $\left.T_{2}\right)=\left(\left[0 . . c_{1}\right] \times \ldots \times\left[0 . . c_{p}\right]\right) \rightarrow \mu_{1} \sqcup \mu_{2}$

3. Semantics

T_{1} next T_{2} defines, in the general case, the array which takes the value of T_{2} at each point at which T_{2} is defined (i.e., is semantically different from $n i l$), and the value of T_{1} elsewhere.
The semantics is described formally in part B, section III-7.2, page 44.

4. Clocks

(a) $\omega\left(T_{1}\right)=\omega\left(T_{2}\right)$
(b) $\omega\left(T_{1}\right.$ next $\left.T_{2}\right)=\omega\left(T_{1}\right)$

5. Examples

(a) $\mathrm{T}:=\mathrm{T}$ \$ next K : A defines the vector T which at each instant keeps the values it had at the previous instant, except in K where it takes the values of A (K and A can be signals).

IX-15 Sequential enumeration

The sequential enumeration is a form of iterative enumeration that allows to define arrays using sequential multi-dimensional iterations.

1. Context-free syntax

ITERATIVE-ENUMERATION ::=

PARTIAL-DEFINITION ::=
DEFINITION-OF-ELEMENT
ITERATION
DEFINITION-OF-ELEMENT ::=

ITERATION ::=

PARTIAL-ITERATION ::=
[Name] [in S-EXPR] [to S-EXPR] [step S-EXPR]
Let us consider the following definition of an array T by sequential enumeration:
$T:=\left[D_{1}, \ldots, D_{m}\right]$
This definition is equivalent to:
$T:=D_{1}$ next \ldots next D_{m}
where D_{1} should be a complete definition of the array.
Let us now consider the following general form of a given D_{k} :
$\left\{i_{1}\right.$ in b_{1} to c_{1} step d_{1}, \ldots, i_{p} in b_{p} to c_{p} step $\left.d_{p}\right\}:\left[f\left(i_{1}, \ldots, i_{p}\right)\right]: E$
It can be considered that the definition of D_{k} is obtained by the following composition:

```
(| \(\left(i_{1}, \ldots, i_{p}\right):=\ll b_{1} \ldots c_{1}\) step \(d_{1}, \ldots, b_{p} \ldots c_{p}\) step \(d_{p} \gg\)
    | iterate \(\left(i_{1}, \ldots, i_{p}\right)\) of \(D_{k}\left[f\left(i_{1}, \ldots, i_{p}\right)\right]:=E\) end
    |) \(/ i_{1}, \ldots, i_{p}\)
```

If the denotation of the indices, $\left[f\left(i_{1}, \ldots, i_{p}\right)\right]$, is omitted, it is equivalent to $\left[\left(i_{1}, \ldots, i_{p}\right)\right]$.
If the lower bound of an index is omitted, it is by default equal to 0 . An upper bound can be omitted if it corresponds without ambiguity to the upper bound of the corresponding dimension of the array. If a step is omitted, it is by default equal to 1 . The name of an index can be omitted if it has not to be used explicitly.

A D_{k} with the simple form:
[$I]: E$
can be considered as being defined by the equation:
$D_{k}[I]:=E$

IX-16 Operators on matrices

IX-16.1 Transposition

1. Context-free syntax

TRANSPOSITION ::=
tr S-EXPR

Transposition on matrix $\operatorname{tr} E$

1. Types
(a) $\tau(E)=([0 . . l-1] \times[0 . . m-1]) \rightarrow \mu$
(b) $\tau(\operatorname{tr} E)=([0 . . m-1] \times[0 . . l-1]) \rightarrow \mu$
2. Definition in SIGNAL
$X:=\operatorname{tr} E$
whose right side of $:=$ represents an expression of transposition of matrix, is equal to the process defined as follows:
```
array itom-1 of
    array j tol-1 of
        X[i,j] := E[j,i]
    end
end
```

3. Clocks
(a) $\omega(\operatorname{tr} E)=\omega(E)$

Transposition on vector To create a matrix-column, it is possible to create a matrix-line and then to transpose it as follows:
$\operatorname{tr}[V]$

IX-16.2 Matrix products

1. Context-free syntax

ARRAY-PRODUCT $::=$

S-EXPR \because *. S-EXPR
2. Types
(a) The elements of the operands of an expression of matrix product have a basic type which is a Numeric-type.
3. Clocks
(a) The operators of matrix product are synchronous.

2-a Product of matrices

$E_{1} * E_{2}$

1. Types

(a) $\tau\left(E_{1}\right)=([0 . . l-1] \times[0 . . m-1]) \rightarrow \mu_{1}$
(b) $\tau\left(E_{2}\right)=([0 . . m-1] \times[0 . . n-1]) \rightarrow \mu_{2}$
(c) $\tau\left(E_{1} * . E_{2}\right)=([0 . . l-1] \times[0 . . n-1]) \rightarrow \mu_{1} \sqcup \mu_{2}$
2. Definition in SIGNAL
$X:=E_{1} * . E_{2}$
whose right side of $:=$ represents an expression of product of matrices, is equal to the process defined as follows:

```
array \(i\) tol-1 of
    array \(j\) to \(n-1\) of
        array \(k\) to \(m-1\) of
            \(X[i, j]:=X[?][i, j]+E_{1}[i, k] * E_{2}[k, j]\)
        with \(X[i, j]:=0\)
        end
    end
end
```


2-b Matrix-vector product

$E_{1} * E_{2}$

1. Types

(a) $\tau\left(E_{1}\right)=([0 . . l-1] \times[0 . . m-1]) \rightarrow \mu_{1}$
(b) $\tau\left(E_{2}\right)=[0 . . m-1] \rightarrow \mu_{2}$
(c) $\tau\left(E_{1} * . E_{2}\right)=[0 . . l-1] \rightarrow \mu_{1} \sqcup \mu_{2}$
2. Definition in SIGNAL
$X:=E_{1} * . E_{2}$
whose right side of $:=$ represents an expression of matrix-vector product, is equal to the process defined as follows:

```
array \(i\) tol \(l\) of
    array \(k\) to \(m-1\) of
        \(X[i]:=X[?][i]+E_{1}[i, k] * E_{2}[k]\)
    with \(X[i]:=0\)
    end
end
```


2-c Vector-matrix product

$E_{1} * E_{2}$

1. Types

(a) $\tau\left(E_{1}\right)=[0 . . l-1] \rightarrow \mu_{1}$
(b) $\tau\left(E_{2}\right)=([0 . . l-1] \times[0 . . m-1]) \rightarrow \mu_{2}$
(c) $\tau\left(E_{1} * . E_{2}\right)=[0 . . m-1] \rightarrow \mu_{1} \sqcup \mu_{2}$
2. Definition in SIGNAL
$X:=E_{1} * . E_{2}$
whose right side of $:=$ represents an expression of vector-matrix product, is equal to the process defined as follows:

```
array j to m-1 of
    arrayktol-1 of
        X[j] := X [?][j] + E [ [k]* E [ [k,j]
    with X[j]:=0
    end
end
```


2-d Scalar product

E_{1} *. E_{2}

1. Types

(a) $\tau\left(E_{1}\right)=[0 . . l-1] \rightarrow \mu_{1}$
(b) $\tau\left(E_{2}\right)=[0 . . l-1] \rightarrow \mu_{2}$
(c) $\tau\left(E_{1} * . E_{2}\right)=\mu_{1} \sqcup \mu_{2}$
2. Definition in SIGNAL
$X:=E_{1} * . E_{2}$
whose right side of $:=$ represents an expression of scalar product, is equal to the process defined as follows:

```
array itol-1 of
    X:= X[?] + E [ [i]* E [ [i]
with X:=0
end
```


Chapter X

Extensions of the operators

X-1 Rules of extension

The operators defined in the Signal language are termwise extended to arrays and tuples, provided that there is no possible ambiguity between the new operator resulting from the extension and some other operation ${ }^{1}$.

The extension of a given operator defines a new operator, so that termwise extension may be applied recursively.

The semantics of the extension on tuples is described formally in part B, section III-7.1, page 42. The semantics of the extension on arrays is described formally in part B, section III-7.2, page 44.

Instances of processes and conversions follow the same rules of extension than operators.
A given extension is either an extension on tuples, or an extension on arrays. Mixed extensions are not defined. If the types of the arguments of an operator are such that both extension on tuples and extension on arrays can be applied, the extension on tuples applies first.

When an extension is applied, the rules associated with the operator (type relations, clock relations...) apply element by element. Moreover, for the arrays, the constraint that all the elements have the same clock has to be respected.

For tuples, there are different categories of tuples: monochronous tuples, which are signals, and polychronous tuples, which are gatherings of signals (they have not, in general, one proper clock). Monochronous tuples are tuples with named fields and polychronous tuples may be tuples with named or unnamed fields. Whatever is the type of the arguments, the results of an extension on tuples are always tuples with unnamed fields (remind that a tuple with unnamed fields can always be assigned to a tuple with named fields with a compatible type). Moreover, if the extension applies on tuples with named fields, the operator applies on the elements of these tuples, independently of their names in the considered tuples. In other words, if X is such a tuple with named fields on which the extension applies, this extension applies effectively on tuple (X).

The possibly existing extensions for the operators of the Signal language are easily deduced from the examination of authorized types for the arguments of there operators.

For example, the operator $==$ is defined on signals of any types (in particular, on arrays and on monochronous tuples with named fields). Thus the extension of $==$ on arrays or on monochronous tuples with named fields has no purpose. On the other hand, this extension is defined on polychronous tuples (in that case, the result is a polychronous tuple with unnamed fields of Booleans).

The same rules apply, for instance, on the polychronous operator default.

[^7]Concerning the other equality operator, $=$, it is defined only on signals of scalar types. Thus the extension on arrays (for example) can apply and in this case, the result is an array of Booleans. The extension on tuples (monochronous or polychronous) applies too.

The extension of the operator when on polychronous tuples applies, on the first argument as well as on the second one. But the extension on arrays is not defined in the general case on the second argument since the resulting array would have elements with different clocks.

X-2 Examples

- If V1 and V 2 are two vectors, the expression $\mathrm{V} 1 * \mathrm{~V} 2$ defines the termwise product of the vectors V1 and V2.
- If K is a scalar and V a vector, the expression $\mathrm{K} * \mathrm{~V}$ defines the vector each element of which is equal to the product of K with the corresponding element of V .
- If M1 and M2 are two matrices, the expression M1 $*$ M2 defines the termwise product of the matrices M1 and M2.
- If P designates a process model which defines two outputs X and Y , the expression $P()$ when C defines the signals X when C and Y when C.
- If P designates a process model with two inputs, the expression $P((A, B)$ when $C)$ specifies a subsampling by the condition C on each one of the inputs of P.

Part E

THE MODULARITY

Chapter XI

Models of processes

The language allows to describe signals (synchronized sequences of typed values) and relations between signals by equations; these equations can be grouped together in parameterized models of systems of equations: the models of processes. The call of a model in a system is, in principle (when the corresponding model is not compiled separately), equivalent to the direct writing of the equations of this model.

XI-1 Classes of process models

A process model establishes a designation between a name and a set of parameterized equations; any reference to this name is formally replaced by the designated equations.

The set of equations may be empty, or equivalently, simply defined by the keyword external (cf. section XII-1, page 191). In that case, it is an external process model (or model of external process). Its definition is provided either in a module, or in the environment of the program.

If the process model is external, or if the considered model is compiled separately, the replacement of a reference to this model by its equations remains partial. Such a partial replacement is limited to the EXTERNAL-GRAPH of the called process (cf. section XI-6, page 180). The result of the invocation of a model of external process or of a separately compiled process model (which could be not in accordance with its description) can be only theoretically described.

For a model of external process, its graph properties are established by the EXTERNAL-GRAPH. For a described process model, the graph properties are established by the composition of the EXTERNALGRAPH and the body of the model. A good situation is that the EXTERNAL-GRAPH verifies the properties deduced from the body of the model.

The following classes of processes are distinguished:

- A process is said safe if it does not make any side effect:

$$
\left(\left|Y_{1}:=f(X)\right| Y_{2}:=f(X) \mid\right) \equiv\left(\left|Y_{1}:=f(X)\right| Y_{2}:=Y_{1} \mid\right)
$$

Two different instantiations of a safe process with the same input values will provide the same results.

This corresponds to the notion of iteration of function (on the inputs), highlighted in part B, section III-8.1, page 50 .

- A process is said deterministic automaton-or more shortly, deterministic-(or memory safe), if its only possible "side effects" are changes to its private memory. A deterministic automaton is a function of sequences, from initial states, trajectories of the inputs and trajectories of the clocks of the outputs (considered, in some sense, as inputs), into trajectories of the outputs.

Two different instantiations of a deterministic automaton process with the same sequences of input values (and output clocks), and in the same initial conditions, will provide the same sequences of outputs.

This corresponds to the notion of deterministic process (on the inputs), highlighted in part B, section III-8.3, page 50 .

Any safe process is deterministic automaton.

- A process is unsafe in all other cases.

Two different calls of an unsafe process are never supposed to return the same results.
The following Signal processes are examples of unsafe processes:

```
- x := a or x
- (| x := a default ((x$1 init 0)+1) | b:= x when `b |)/x
```

The class of the process described by a process model may be precised by a specific keyword in the EXTERNAL-GRAPH of the model.

In addition, it is possible to specify non normalized complementary informations (cf. section XI-7, page 184) in the DIRECTIVES.

Besides the above characterization of processes, different classes of process models are syntactically distinguished. These are models of:

- functions,
- nodes,
- actions,
- processes

Any process model called in the program must have a declaration visible in the syntactic context of the call.

A process MODEL is defined according to the following syntax:

1. Context-free syntax

MODEL ::=

```
    PROCESS
ACTION
NODE
FUNCTION
```

PROCESS ::=

process Name-model $=$

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]

ACTION ::=

action Name-model $=$
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] ;
NODE ::=
node Name-model $=$
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] \square
FUNCTION ::=
function Name-model $=$ DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] ;

BODY ::=

DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
EXTERNAL-NOTATION

XI-1.1 Processes

A process (described by a model of process) belongs to the most general class of processes.
There are no required particular relations regarding clocks as well as dependences. It is the job of the compilation (clock calculus, dependence calculus) to synthesize these relations.

A process may be safe, deterministic automaton, or unsafe. This may be specified in the EXTERNALGRAPH. By default, unless it can be proved different, it is considered as unsafe.

XI-1.2 Actions

Actions are processes that are called (activated) at a specific clock, which is designated via a label (cf. part C, section VII-5, page 134). Syntactically, the activation of an action has to be under the scope of such a label, in a labelled process.

An action (described by a model of action) has to respect some relations regarding its clocks and dependences:

- Its tick (which is a clock greater than the upper bound of the clocks of all the signals designated in the action) is necessarily accessible from the outside of the action. This tick is the clock designated by the label under the scope of which the action call is.
- For the dependence relation, each input of an action precedes each output of that action at the product (intersection) of their clocks.

An action may be safe, deterministic automaton, or unsafe. This may be specified in the EXTERNALGRAPH. By default, unless it can be proved different, it is considered as unsafe.

XI-1.3 Nodes

Nodes are essentially endochronous processes (cf. part B, section III-8.2, page 50).

Roughly speaking, an endochronous process knows when it has to read its inputs, thus it is autonomous when run in a given environment.

It may be shown that if the clock relations associated with a process can be organized as a tree of clocks, the root of the tree representing the most frequent clock (which is the single greatest clock) of the system, then this process is endochronous.

Besides the property that it is endochronous, a node (described by a model of node) has to respect some relations regarding its clocks and dependences:

- Its tick (which is in that case a clock equal to the upper bound of the clocks of all the signals designated in the node) is necessarily the clock of an input or output of the node.
In addition, the clock of any input or output signal of the node should be considered as explicitly defined (without clock calculus synthesis). For those input or output signals the clock of which is not explicitly defined, their clock is fixed to the tick.
Thus, there is no synthesis from the clock calculus for the clocks of inputs and outputs, but only verification. However, there is possibly such a synthesis for the clocks of internal signals.
- For the dependence relation, each input of a node precedes each output of that node at the product (intersection) of their clocks.

A node may be safe or deterministic automaton. This may be specified in the EXTERNAL-GRAPH. By default, unless it can be proved safe, it is considered as deterministic automaton.

XI-1.4 Functions

A function is a process that specifies an iteration of function such as defined in part B, section III-8.1, page 50.

A function (described by a model of function) is a particular case of node and has to respect all the relations respected by a node regarding its clocks and dependences (cf. section XI-1.3, page 175). In addition, all the inputs and outputs of a function must have the same clock.

A function is constant on time and does not produce any side effect. In particular, it cannot contain delay operators (or other operators derived from delay), that define some memory.

Note that it is nevertheless possible to specify some assertions on the input signals (for instance) of a function. For example, the equation $x^{\wedge}=$ when $(x>0)$ specifies that when it is present, x must be positive.

A function is necessarily safe (this has not to be specified in the EXTERNAL-GRAPH).

XI-2 Local declarations of a process model

The local declarations of a process model may be declarations of signals (or tuples), declarations of state variables, declarations of constants, declarations of types, declarations of labels, declarations of references to signals with extended visibility, or declarations of local models.

1. Context-free syntax

DECLARATION ::=

S-DECLARATION

DECLARATION-OF-STATE-VARIABLES
DECLARATION-OF-CONSTANTS
DECLARATION-OF-TYPES
DECLARATION-OF-LABELS
REFERENCES
MODEL

A given zone of local declarations constitutes a given level of declarations; this level is that of the process expression that defines this zone. When this expression is the expression that defines the process model, this zone is said the zone of the local declarations of the model. When this expression is the expression that defines the external graph of the model, this zone is said the zone of the local declarations of the external graph.

The zones of declaration of the formal parameters and of the inputs and outputs of a process model constitute a same level of declarations, the one of the model.

The levels of declarations are ordered in the following way:

- the level of a model is greater than the level of any sub-expression of this model;
- the level of an expression is greater than the level of any sub-expression of this expression;
- the level of a model is greater than the level of any local model declared in this model.

A local declaration of a model in a given level is visible (and thus, this model can be called as INSTANCE-OF-PROCESS) in this whole level and in all lower levels, everywhere it is not hidden by a declaration with the same name in a lower level. In particular, a model Q declared in the zone of the local declarations of a model P can be called in the expression associated with P and in the expressions associated with the other sub-models of P. For these expressions, it possibly hides a model with the same name that, without it, would be visible.

The set of sub-models declared in a model P cannot contain two models with the same name. More generally, any two objects (models, types, signals, etc.) declared in a same level of declaration cannot have the same name (see below).

The parameters declared in a process model are visible (and thus, may be referenced) in this whole process model (in particular, the other parameters, the inputs and outputs, etc.) and in all the embedded process models, everywhere they are not hidden by a declaration with the same name in a lower level.

The constants declared in a given level are visible in this whole level and in all lower levels, everywhere they are not hidden by a declaration with the same name in a lower level.

The types declared in a given level are visible in this whole level and in all lower levels, everywhere they are not hidden by a declaration with the same name in a lower level.

The declaration of labels and their visibility obey to specific rules, which are more detailed in section XI-3, page 178.

As a general rule, the local declarations of signals (or tuples) and state variables correspond to the confining of these objects (cf. part C, section VII-4, page 133) to the corresponding level and the lower ones. However, the visibility of signals, tuples and state variables obey to specific rules, which are more detailed in section XI-4, page 178.

The names of declared objects (models, signals or tuples, state variables, parameters, constants, types, labels) can mutually mask themselves. In a given level, there cannot have two such identical names.

A given compiler may adapt the visibility rules for some classes of objects in the following way: in the level where it is declared, a given object can be used only in a syntactic position that follows its declaration (in this case, the order of declarations is significant). The rules for names redefinitions may be adapted accordingly.

XI-3 Declarations of labels

1. Context-free syntax

DECLARATION-OF-LABELS ::=

The labels declared in a process model, at any declaration level of this model, are visible (and can be referenced) anywhere in this model, except in its interface (parameters, inputs and outputs, external graph). The labels declared in the external graph of a process model are visible (and can be referenced) anywhere in this model.

However, the labels declared in a process model are not visible in the sub-models of that model.
A label declared in a model cannot have the same name as any other object declared in that model (it cannot be masked).

XI-4 References to signals with extended visibility

1. Context-free syntax

REFERENCES ::=

The rules for the visibility of signals in the previous versions of Signal were that this visibility was always limited to the process model in which the signal was declared, excluding the sub-models of that model.

This version offers the possibility to extend the visibility of signals (or tuples), and state variables, with the same rules as for most of the other objects of the language. In that case, a signal (or tuple, or state variable) declared in a given level is visible in this whole level and in all lower levels, everywhere it is not hidden by a declaration with the same name in a lower level.

However, some freedom is left to the compilers to accept or not (possibly according to specific options) signals with extended visibility. The three following cases may be distinguished:

1. Signals with extended visibility are not allowed.
2. Signals with extended visibility are allowed, but the use of such a signal must be explicitly referenced as such when it crosses a frontier of process model with respect to its declaration.
Such a use is pointed by a "ref" declaration, under the scope of which is the considered use (with the general scoping rules, restricted here to the considered process model).
A signal with extended visibility cannot be used if it has been hidden by the declaration of another object with the same name.

A "ref" declaration cannot mask some object with the same name.
3. Signals with extended visibility are allowed, and their use may be explicitly referenced (previous case), though it is not mandatory.

XI-5 Interface of a model

The interface of a model contains an optional description of its formal static parameters, followed by a description of its visible part. This one is composed of the lists (possibly empty) of its input and output signals, and an optional description of the external behavior of the model.

1. Context-free syntax

DEFINITION-OF-INTERFACE ::=

INTERFACE
INTERFACE : :=
[PARAMETERS] (INPUTS OUTPUTS \square) EXTERNAL-GRAPH

PARAMETERS ::=

$\left\{\left[\{\text { FORMAL-PARAMETER }\}^{+}\right]\right\}$

FORMAL-PARAMETER ::=

S-DECLARATION

| DECLARATION-OF-TYPES
INPUTS ::=
? $\left[\{\text { S-DECLARATION }\}^{+}\right]$
OUTPUTS ::=
! $\left[\{\text { S-DECLARATION }\}^{+}\right]$
The formal parameters of the interface of a model can contain type parameters. These type parameters necessarily appear under the form of names of types, without a DESCRIPTION-OF-TYPE definition (cf. part C, section V-7, page 84).

2. Types

The list of inputs (respectively, outputs) declared in the interface of a process model named P constitutes a tuple the type of which is denoted $\tau(? P)$ (respectively, $\tau(!P)$).
The type of the tuple of inputs and the type of the tuple of outputs are tuples with unnamed fields. Thus:
(a) if the inputs and outputs of a process model P appear as
(? $\mu_{1} E_{1} ; \ldots \mu_{m} E_{m} ;!\nu_{1} S_{1} ; \ldots \nu_{n} S_{n}$;)
(to simplify the presentation, we consider that each designation of type qualifies one single name of signal or tuple; the generalization to the case with lists of names is trivial)
then
$\tau(? P)=\left(\tau\left(\mu_{1}\right) \times \ldots \times \tau\left(\mu_{m}\right)\right)$
$\tau(!P)=\left(\tau\left(\nu_{1}\right) \times \ldots \times \tau\left(\nu_{n}\right)\right)$

3. Semantics

A model must have at least one input, or one output, or one communication with non null clock with some external process.
The names of parameters, input signals and output signals must be mutually distinct.
The declarations of the input signals (INPUTS) and the output signals (OUTPUTS) of a model are declarations of sequences. The declarations of formal parameters (PARAMETERS) can contain declarations of parameter types (DECLARATION-OF-TYPES) and declarations of constant sequences (S-DECLARATION). In particular, the declarations of sequences can contain tuples of parameters or signals. The declaration of a model sets up a context in which:

- the parameter types define formal types, in a way similar to the declarations of types described in part C, chapter V, "Domains of values of the signals";
- a type is associated with the declared parameters, input signals, and output signals, in a similar way to the association of a type to local signals of a process (cf. part C, chapter VII, "Expressions on processes"), according to the rules defined in the chapter "Domains of values of the signals".

The invocation of a model sets up an expansion context in which:

- an effective type is associated with the parameter types, in a similar way to the definition of type obtained by a DESCRIPTION-OF-TYPE (cf. part C, section V-7, page 84): if μ is the effective parameter corresponding, positionally, to the formal parameter type type A; then the type A is defined as being equal to the type μ in the context of this invocation of model;
- a value (or a tuple of values) is associated with each identifier of formal parameter, and a signal (or a tuple of signals) is associated with each name of input or output signal (or tuple).

The declaration of a process model induces the existence of a given order on the parameters (whatever they are parameter types or not), an order on the input signals of the model, and an order on its output signals. Each one of these orders is the order of specification of the objects of the considered class (parameter, input or output) in the interface. Any positional invocation of the model is made respectively to these orders.

Example: a process model P the interface of which is specified as
$\left\{Y_{1} ; \ldots Y_{l} ;\right\}\left(? A_{1} ; \ldots A_{n} ;!B_{1} ; \ldots B_{m}\right.$;
can be called such as
$\left(B B_{1}, \ldots, B B_{m}\right):=P\left\{Y Y_{1}, \ldots, Y Y_{l}\right\}\left(A A_{1}, \ldots, A A_{n}\right)$
where each signal or parameter $X X_{i}$ corresponds to the signal or parameter X_{i}.

XI-6 Graph of a model

The EXTERNAL-GRAPH of a model allows to specify clock and graph properties of the model, such as the properties necessary and sufficient to be able to use this model after a separate compilation. These properties may be provided by the designer or calculated by the compiler. They refer to input and output signals of the model.

1. Context-free syntax

EXTERNAL-GRAPH ::=

[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

PROCESS-ATTRIBUTE ::=
safe
deterministic
unsafe

SPECIFICATION-OF-PROPERTIES ::= spec GENERAL-PROCESS

The PROCESS-ATTRIBUTE allows to qualify the corresponding model as safe (keyword safe), deterministic automaton (keyword deterministic), or unsafe (keyword unsafe)-cf. section XI-1, page 173. It must be in accordance with the syntactic class of the model.

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expression that can make reference to the formal parameters and input and output signals of the MODEL. Any other identifier used in this expression is that of a local object (signal, process model, etc.), that must have a declaration in this expression.

When the EXTERNAL-GRAPH is that of a described process model, the process defined by the model is obtained by the composition of this EXTERNAL-GRAPH and of the body of this model. A recommended situation is that the properties established by the EXTERNAL-GRAPH may be deduced from the properties verified by the body of the model.

When the EXTERNAL-GRAPH is that of an external process model, the properties it describes establish the properties of the model for any invocation of this model.
In that case, the invocation $X\left\{V_{1}, \ldots, V_{l}\right\}$ of an external process model

```
process X = {F ; ; ... F Fl;}
```

(? $E_{1} ; \ldots E_{m}$;
! $\left.S_{1} ; \ldots S_{n} ;\right)$
spec C;
is equal to the process defined as follows:

```
(| \(X\left\{V_{1}, \ldots, V_{l}\right\}\)
    C
|)
```

If \mathcal{C}_{1} is the syntactic context of expansion established by the invocation of the model of external process by the association of a value with each identifier of formal parameter, and by the association of a signal with each input or output signal name, then, the invocation of this model results in the context of expansion \mathcal{C}_{2} equal to \mathcal{C}_{1} enriched by the equations (in particular, clock equations and dependences) resulting from the construction of the EXTERNAL-GRAPH.

XI-6.1 Specification of properties

The SPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary expressions of which are typically an instance of process (whixh may be, in that case, an instance of a model of synchronization), a definition of signals, a clock equation, or an expression of dependence.

XI-6.2 Dependences

An expression of explicit DEPENDENCES may appear in the EXTERNAL-GRAPH of a MODEL, but also in its body. The purpose of a specification of dependences in the external graph is to make explicit dependences between input and output signals of the model, or to establish these dependences in the case of a model of external process. The explicit dependences between signals are defined with the following syntax:

1. Context-free syntax

ELEMENTARY-PROCESS ::= DEPENDENCES
 DEPENDENCES ::=
 SIGNALS $\{-->\text { SIGNALS }\}^{*}$
 $\{$ SIGNALS $-->$ SIGNALS $\}$ when S-EXPR

SIGNALS ::=

ELEMENTARY-SIGNAL
\{ ELEMENTARY-SIGNAL $\left.\{\square, \text { ELEMENTARY-SIGNAL }\}^{*}\right\}$

ELEMENTARY-SIGNAL ::=
 DEFINED-ELEMENT
 Label

We distinguish first the case where some of the "signals" for which dependences are specified are labels (cf. part C, section VII-5, page 134). In that case, for a label $X X$, the designated signal is either $!X X$ (that is preceded by all the signals of the process labelled by $X X$), or ? $X X$ (that precedes all the signals of the process labelled by $X X$), depending that $X X$ appears at the left side or at the right side of the dependence arrow.

If $X X$ is a label:

- $X X$--> E

1. Definition in SIGNAL

! $X X \rightarrow->E$

- $E-->X X$

1. Definition in SIGNAL

$$
E-->\text { ? } X X
$$

Then, with the designated signals:

- $E_{1}-->E_{2}-->E_{3}$

1. Definition in SIGNAL
```
(| \(E_{1}-->E_{2}\)
    | \(E_{2}-->E_{3}\)
    |)
```

Note that for the particular case where a label $X X$ appears as
$E_{1}-->X X \rightarrow E_{3}$
this expression is equivalent to:
(| $E_{1}-->$? XX
| ! $X X-->E_{3}$
|)

- $\left\{X_{1}, \ldots, X_{n}\right\}-->E$

1. Definition in SIGNAL

$$
\begin{gathered}
\left(\left\lvert\, \begin{array}{lll}
& X_{1} & -\gg \\
\vdots \\
\vdots & & \\
\text { | } & X_{n} & -\gg
\end{array}\right.\right. \\
\end{gathered}
$$

- $E-->\left\{Y_{1}, \ldots, Y_{m}\right\}$

1. Definition in SIGNAL

$$
\begin{array}{ccc}
\left\lvert\, \begin{array}{ccc}
\mid & E & ->
\end{array} Y_{1}\right. \\
\vdots & & \\
\left\lvert\, \begin{array}{llll}
& E & -\gg & Y_{m} \\
\mid
\end{array}\right.
\end{array}
$$

- $\left\{E-->\left\{Y_{1}, \ldots, Y_{m}\right\}\right\}$ when B

1. Definition in SIGNAL

- $\{X-->Y\}$ when B

1. Types
(a) $\tau(B) \sqsubseteq$ boolean
2. Semantics

The result of the expression $\{X-->Y\}$ when B
is to add to the dependence graph a dependence from X to Y labelled by the condition B, representing the clock at which B has the value true. The semantics of such a dependence is described formally in part B, section IV-3.1, page 60.

3. Graph

(a) $X \xrightarrow{B} Y$

4. Examples

(a) (| S1 :: ERASE (X)
| S2 :: DISPLAY (X)
S1 --> S2 |)
allows to sequentialize the actions ERASE and DISPLAY.

XI-7 Directives

The DIRECTIVES allow to associate specific informations, or pragmas, with the objects of a program ${ }^{1}$. These informations may be used by a compiler or another tool.

A PRAGMA contains a Name, the list of the designations of objects with which it is associated, and a Pragma-statement.

$P R\left\{X_{1}, \ldots, X_{n}\right\}$ " $Y Y Y$ "

1. Context-free syntax

DIRECTIVES ::=
pragmas \{ PRAGMA \} ${ }^{+}$end pragmas
PRAGMA ::=
Name-pragma

PRAGMA-OBJECT ::=

Label

Name
Pragma-statement ::=

String-cst

2. Semantics

The pragma with name $P R$ and with (optional) statement " $Y Y Y$ " is associated with each one of the objects designated by X_{1}, \ldots, X_{n}.
The designations (that should reference objects which are visible at the level of the model) can be:

- labels (in that case, the designated object is a process expression),
- names of signals, parameters, constants, types, etc. (the designated object is the corresponding signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragma is associated with the current process model.

[^8]A pragma has no semantic effect. It can be ignored by a compiler, or it can trigger a specific processing.

3. Examples

The following pragmas are recognized in the INRIA Polychrony environment:
(a) General information

- Comment:
- Associated with the current model.
- Comment on this model.
- Note:
- Associated with the current model.
- Comment on this model.
(b) Compilation directives
- main:
- Associated with the current model.
- In a module, means that the corresponding model is an "entry point" of this module: it constitutes a compilation unit (cf. section XII-1, page 191).
- unexpanded:
- Associated with the current model.
- Means that the model is not expanded when it is called. Each one of its instances is compiled in its calling context and has an associated object (graph) in the internal representation.
- separate:
- Associated with the current model.
- Means that the model is not expanded when it is called. It is compiled separately and has an associated object (graph) in the internal representation.
(c) Partitioning information
- RunOn:
- Associated with the current model, P.
- The statement of this pragma is a string representing a constant integer value i.
- Each "node" (or vertex) of the internal representation of P (this internal representation is a graph) is attributed by the value i.
When a partitioning based on the use of the pragma RunOn is applied on an application, the global graph of the application is partitioned according to the n different values of the pragma so as to obtain n sub-graphs, corresponding to n sub-models. The tree of clocks and the interface of these sub-models may be completed in such a way that they represent endochronous processes.
(d) Separate compilation
- Black_Box:
- Associated with the current model.
- Represents the "black box" abstraction of a model (may be the result of a compilation). Only the interface of the model, including its external graph, is represented: its body is empty.
- Grey_Box:
- Associated with the current model.
- Represents a "grey box" abstraction of a model. It contains an external graph that represents clock and dependence relations of the interface, but also a restructuring of the model into clusters together with a representation of the scheduling of these clusters (clock and dependence relations between these clusters). Each cluster is represented as a "black box" abstraction which is such that any input of the cluster precedes any of its outputs.
- DelayCluster:
- Associated with the current model.
- May qualify one of the clusters of a "grey box" abstraction when code generation is expected from this abstraction: in that case, one of the clusters, the "delay cluster" (represented, like the other ones, by its "black box" abstraction), groups together the delay operations of the model and is preceded by each one of the other clusters (in the generated code, memories will be updated at the end of one instant).
(e) Code generation directives

The pragmas C_CODE, CPP_CODE, Java_CODE are specific to code generation.
They are associated with the current model.
Their statement is a "parameterized" string representing a piece of code in the considered implementation language. Each call of the model is translated by this string in the generated code, after substitution of the encoded parameters by the corresponding signals in the considered call.
The following encoded parameters may be used in the string:

- \& $\mathrm{p} j$ (where j is a constant integer value) represents the $j^{\text {th }}$ parameter of the call;
- \&ij (where j is a constant integer value) represents the $j^{\text {th }}$ input signal of the call;
- $\& \circ j$ (where j is a constant integer value) represents the $j^{\text {th }}$ output signal of the call;
$-\& n$ represents the name of the model.
- C_CODE: is used for C code generation.
- CPP_CODE: is used for $\mathrm{C}++$ code generation.
- Java_CODE: is used for Java code generation.
(f) Profiling directives
- PROCESSOR_TYPE:
- Associated with the current model.
- The statement of this pragma is a string representing a name, for example, "DSP", that should be the name of a file DSP. LIB containing a module that defines the cost of each operator by particular models.
- When profiling (performance evaluation) is required on a given program implemented on some processor represented as a model with the PROCESSOR_TYPE pragma, a morphism of this program is applied, that defines a new program representing cost evaluation of the original program. The image of the original program by this morphism uses the library designated by the pragma to interpret the cost evaluation operators.
(g) Link with the SIGALI prover
- SIGALI:
- Associated with the current model.
- Used for models contained in a specific library dedicated to the SIGALI prover. The calls of these models are external calls that are interpreted when translated into the SIGALI representation.

XI-8 Models as types and parameters

The notion of type presented so far is enriched with the notion of model type, that represents the interface of a process model. Then model types can be used to specify formal process models as formal parameters of process models: a process model with the corresponding model type as interface must then be provided as effective parameter.

Model types

A model type is an interface of process model.
The following rules for a DEFINITION-OF-TYPE extend those given in part C, section V-7, page 84 .

The rule for a DEFINITION-OF-INTERFACE extends those given in section XI-5, page 179.
process $T=I$
(the corresponding DECLARATION-OF-TYPE is: type process $T=I$;), or action $T=I$, etc.

1. Context-free syntax

DEFINITION-OF-TYPE ::=

process Name-model-type \square DEFINITION-OF-INTERFACE action Name-model-type $=$ DEFINITION-OF-INTERFACE
node Name-model-type $=$ DEFINITION-OF-INTERFACE
function Name-model-type \quad DEFINITION-OF-INTERFACE

DEFINITION-OF-INTERFACE ::=

Name-model-type

2. Types

(a) The declaration type process $T=I$; defines the model type with name T as being equal to the interface of process model I.
Let us denote this equality:
$\tau(T)=$ interface $_{\text {process }}(I)$
3. Semantics

- The same scoping rules as for other types apply to model types.

4. Properties

(a) With the declarations
type process $A=I$;
and type process $B=I$;
then $\tau(A)=\tau(B)=$ interface $_{\text {process }}(I)$.
Some implementations may not ensure this property.
On the opposite, the declarations
type process $A=I$;
and type function $B=I$; (for instance)
define distinct model types.

5. Examples

(a) type process $\mathrm{T}=($? integer a ; ! integer b ;) ; declares the model type T.
(b) type process $T T=T$; declares the model type $T T$ which is equal to T.
(c) process $\mathrm{PP}=$

T
(| ...|);
declares the process model PP with its interface specified by T.

Models as parameters

The following rules for a FORMAL-PARAMETER extend those given in section XI-5, page 179. The rule for S-EXPR-PARAMETER extends those given in part C, section 2-a, page 97.

1. Context-free syntax

FORMAL-PARAMETER ::=

FORMAL-MODEL
FORMAL-MODEL ::=
process Name-model-type Name-model
action Name-model-type Name-model
node Name-model-type Name-model
function Name-model-type Name-model
S-EXPR-PARAMETER ::=
Name-model
The formal parameters of the interface of a model P can contain model parameters, that appear as a formal name of model, say Q, typed with a model type, say T, which is visible in the current syntactic context: typically, process $T Q$.

2. Semantics

To complete the description that was given in section XI-5, page 179, the declaration of a model sets up a context in which the model parameters define formal models, that is to say, models for which only the interface (described by a model type) is known (analogous to model of external processes).
The same scoping rules as for other parameters apply to model parameters.

In the body of the process model P, the formal model Q is invoked using the usual syntax for the invocation of models.

The invocation of a model sets up an expansion context in which an effective model, designated by its name (which must be the name of a process model visible in the context of this invocation), is associated with each model (positional association, just like other parameters).

3. Examples

(a) process $\mathrm{P}=$
\{ process T Q; \}
(? ... ! ...)
(| ... x := Q(y) ... |);
declares the process model P wich has a model parameter Q, the interface of which is described by the model type T (in that case, it has, for instance one input and one output).
The model P must be called with a visible process model as effective parameter; the interface of this process model must be equal to T .
For example: . . . P $\{$ PP $\}$ (. . .) . . .

Chapter XII

Modules

XII-1 Declaration and use of modules

A module is a named set of declarations of constants, types and models.
The syntax of DECLARATION-OF-CONSTANTS, DECLARATION-OF-TYPES, PROCESS, ACTION, NODE and FUNCTION given below extends the syntax of these declarations such as defined in part C, section V-8, page 85, part C, section V-7, page 84 and part E, section XI-1, page 173. The presence of the private attribute is reserved to declarations which are in a module. The syntax of EXTERNAL-NOTATION may be used as well for a DESCRIPTION-OF-CONSTANT, a DESCRIPTION-OF-TYPE or a DESCRIPTION-OF-MODEL, either they appear in a model or in a module. It is provided in this section.

The importation of objects of a module in another module or in a model is done via a use importation command that may be found in a list of DECLARATIONs. Then, the syntax of DECLARATION given below extends that defined in part E, section XI-2, page 176.

1. Context-free syntax

MODULE ::=
module Name-module $=$
[DIRECTIVES] \{ DECLARATION \}+ end

DECLARATION-OF-CONSTANTS ::=
private constant SIGNAL-TYPE
DEFINITION-OF-CONSTANT $\{\square, \text { DEFINITION-OF-CONSTANT }\}^{*} \square$

DECLARATION-OF-TYPES ::=

private	type

DEFINITION-OF-TYPE $\{\square \text {, DEFINITION-OF-TYPE }\}^{*} \quad ;$

PROCESS ::=

private	process
Name-model	$=$

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]

ACTION ::=

| private action Name-model $=$ |
| :--- | :--- |
| $=$ |

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] \square
NODE ::=
private node Name-model $=$
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] \square
FUNCTION ::=

private	function	Name-model
$=$		

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]

EXTERNAL-NOTATION ::=

```
external [ String-cst]
```


DECLARATION : :

IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=
use IMPORTED-OBJECTS \{

IMPORTED-OBJECTS ::=
Name-module
Pragmas may be associated with the objects of a module in the same way they can be associated with the objects of a model (cf. section XI-7, page 184). When there is no designated object for a pragma specified in a module, it is by default associated with the current module.

The set of declarations of a module constitutes a same level of declarations: the level of a module. The level of a module is greater than the level of any model declared in this module. With the usual rule, there cannot have two objects with the same name declared in a module.

The visibility of the objects declared in a module may be restricted to this module using the attribute private: when a declaration of constants, types or model is preceded by the keyword private (private constant ..., private type ..., private process ..., etc.), then the visibility of the corresponding objects is confined to the module that contains that private declaration, even if this module is referenced by a use command.

In a module M, but also in a model, the description of a constant, a type or a model can be given by an expression of the Signal language, or it can be described as external (relatively to the current
module) by using the external attribute (or equivalently, by the absence of description).
The objects declared in a module can be totally or partially imported from a model or another module thanks to the use command. Such a module provides a context of definition for some of the objects described as external in the model or the module containing the use command (and visible at this level). These external objects are redefined in this way if they are imported (as corresponding objects with the same name) from a used module, or transitively, from a module imported in an imported module. The redefined constants must have the same type as that appearing in their declaration as external (or a redefinition of this type if it is an external type). In the same way, the redefined models must have compatible interfaces.

More generally, any object described as external in some zone of declarations L may inherit a (re-)definition from any context, visible in L, that provides such a definition.

Though it is not mandatory, it may be a good policy to systematically declare as external in a module M the objects referenced in M, but imported by a use command from another module. However, in this case, they should be used only as external objects: for example, if some signal is declared with an external type, only polymorphic operators could be applied to it.

A model or a module are a compilation unit when all the objects they use (except predefined or intrinsic ones) have a declaration (which may be that of an external object) in this entity, taking into account the use commands contained in it. In any case, a module necessarily constitutes a compilation unit.

The objects whose definitions or redefinitions are imported in a model or module P by a use command situated in a zone of local declarations of P are made visible at the level of the expression containing these local declarations and at all lower levels (with the usual scoping rules, everywhere another object with the same name is not declared at such a level). More precisely, a use command inside the local declarations of an expression establishes a new level of declaration which is just greater than that of the expression. For example, an expression
E where L; use M; end
may be considered, from the point of view of the scoping rules, as equivalent to the following one:
(E where L; end) where $\operatorname{Decl}(M)$ end
where $\operatorname{Decl}(M)$ represents the declarations of M. This equivalence holds wherever the use command is located in the local declarations.

A similar rule also applies for a use command located in the declarations of a module.
The importable objects of a module are the objects of this module that are not declared as private. The objects imported by a use command are all the importable objects of the module.

When several use commands appear at a same level of declaration, their syntactic order determines a corresponding nesting of the importations, thus avoiding multiple definitions of a same object at a given level. For example, to:
E where L; use M_{1}; ...; use M_{n}; end corresponds the following nesting:
(($\left(E\right.$ where L; end) where $\operatorname{Decl}\left(M_{n}\right)$ end) ...) where $\operatorname{Decl}\left(M_{1}\right)$ end (the declarations of M_{1} are visible in M_{n}, but the converse is not true).

In this way, if several objects with the same name are imported in a given context from different modules, the single one which is effectively visible is the one from the last module containing it in the ordered list of the use commands. Note that the rule applies differently for external objects since external definitions are overloaded by corresponding non external ones.

The nesting of declarations also allows to overload, in some way, declarations of imported modules (libraries) by local declarations, since the local ones have priority.

When several modules are specified in a same use command, the corresponding declarations are imported at the same level. For example,
E where L; use M_{1}, \ldots, M_{p}; end
would correspond to:
(E where L; end) where $\operatorname{Decl}\left(M_{1}\right) \ldots \operatorname{Decl}\left(M_{p}\right)$ end
In this case, there is a potential risk of conflicts of the declarations imported from different modules.
In a given compilation unit, when an object is described as external (for example, using the external notation), then:

- either it is defined in an imported module,
- either is is defined in the context in which this compilation unit is used,
- or it is externally defined, in another language for instance, in the implementation environment of the compilation unit.

The description of an object as external may be followed by a string, such as external " X ", which is an attribute allowing to describe specific characteristics of the implementation of this object: implementation language, for instance (this is indeed a short notation for a specific pragma).

The name M used in a command "use M;" is the name of a module visible in the design environment. The way this module is made available is not normalized.

As an example, in the INRIA Polychrony environment, there is an environment variable, SIGNAL_LIBRARY_PATH,
which defines the paths at which library files may be found in the design environment. Such a file has a name with the suffixe ".LIB" or ".SIG", for example, "M.LIB" or "M.SIG" (in principle, the first part of the name could be different from "M"), and contains the definition of a module named M, in SIGNAL.

Examples

```
- module Stack =
    use my_elem;
        type elem;
        type stack;
        process initst = ( ! stack p;);
        process push = ( ? stack p; elem x; ! event except; )
            spec (| x ^> except | x --> except |);
        process pop = ( ? stack p; ! elem x; ! event except; )
            spec (| x ^# except |);
    end;
```


Chapter XIII

Intrinsic processes

Intrinsic process models constitute libraries of processes that may be used in Signal programs. These models have not to be declared. The names of the intrinsic process models are not reserved words of the Signal language.

XIII-1 Assertions

An assertion is a process with no output which specifies that a Boolean signal must have the value true each time it is present. It has the syntax of a process call with no output.

Assertions are used in particular to specify hypotheses on some inputs of a model.

```
assert( B )
```


1. Types

(a) $\tau(B)=$ boolean

2. Semantics

An assertion is obtained by a call to the intrinsic process model:

```
process assert = ( ? boolean x; ! );
```

A property specified by an assertion can be assumed by the clock calculus.

3. Definition in SIGNAL

assert (B)

is equal to the process defined as follows:

```
(| B^= when B
    |)
```


4. Examples

(a) The process
assert ($\mathrm{A}<5$)
expresses that the values of A must be always lower than 5 (when A is present).

XIII-2 "Left true" process

The following left_tt process is defined as intrinsic process model:

```
process left_tt = ( ? boolean y, z; ! boolean x; )
    (| x := y default false when `z |)
;
```


XIII-3 Mathematical functions

The following mathematical functions are defined as intrinsic process models. They correspond to functions of the "math.h" library of the language C. A full description of them may be found in the documentation of this library.

- arc cosine function:

```
function acos = ( ? dreal x; ! dreal y; );
```

- arc sine function:
function asin $=($? dreal $x ;$! dreal $y ;$);
- arc tangent function:
function atan $=($? dreal x; ! dreal y;);
- arc tangent function of two variables:
function atan2 $=($? dreal x1; dreal x2 ! dreal y;);
- cosine function:
function $\cos =(\quad$? dreal x; ! dreal y;);
- sine function:
function $\sin =($? dreal $x ;$! dreal $y ;$);
- tangent function:
function tan $=($? dreal $x ;$! dreal $y ; ~) ;$
- hyperbolic cosine function:
function cosh $=($? dreal $x ;$! dreal y;);
- hyperbolic sine function:
function sinh $=($? dreal x; ! dreal y;);
- hyperbolic tangent function:

```
function tanh = ( ? dreal x; ! dreal y; );
```

- exponential function:
function exp $=($? dreal $x ;$! dreal $y ; ~) ;$
- multiply floating-point number by integral power of 2 :
function ldexp $=($? dreal x; integer i ! dreal y;);
- logarithmic function:
function log $=($? dreal x; ! dreal y;);
- base-10 logarithmic function:
function log10 = (? dreal x; ! dreal y;);
- power function:
function pow = (? dreal x1; dreal x2; ! dreal y;);
- square root function:
function sqrt $=($? dreal $x ;$! dreal $y ; ~) ;$
- smallest integral value not less than x :
function ceil = (? dreal x; ! dreal y;);
- absolute value of an integer:
function abs = (? integer x; ! integer y;);
- absolute value of floating-point number:
function fabs = (? dreal x; ! dreal y;);
- largest integral value not greater than x :
function floor = (? dreal x; ! dreal y;);
- floating-point remainder function:

```
function fmod = ( ? dreal x1; dreal x2; ! dreal y; );
```

- convert floating-point number to fractional and integral components:
function frexp $=($? dreal x; ! dreal y1; integer y2;);
- extract signed integral and fractional values from floating-point number:
function modf = (? dreal x; ! dreal y1; dreal y2;);

XIII-4 Complex functions

The following complex functions are defined as intrinsic process models.

- conjugate of a complex:
function conj = (? complex x; ! complex y;);
and
function conjd = (? dcomplex x; ! dcomplex y;);
- module of a complex:
function modu = (? complex x; ! real y;);
and
function modud = (? dcomplex x; ! dreal y;);
- argument of a complex:
function arg $=($? complex x; ! real y;);
and
function argd = (? dcomplex x; ! dreal y;);
- real part of a complex:
function rpart $=($? complex x; ! real y;);
and
function rpartd = (? dcomplex x; ! dreal y;);
- imaginary part of a complex:
function ipart = (? complex x; ! real y;);
and
function ipartd = (? dcomplex x; ! dreal y;);

XIII-5 Input-output functions

The following input-output functions are defined as intrinsic process models of the INRIA POLYCHRONY environment. They allow to read and write signals of basic types on standard input and output.

The read and write functions below are described with no explicit type for the input or output signal x: it means that they are polymorphic functions for which the effective type of the considered argument is provided by the type of the corresponding signal in the call of the function.

- function read = (? string message; ! x);

A message is displayed and a value is read for x .
A standard read function is used in the generated code for the following possible types of x : boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

- function write = (? string message; x; !);

A message is displayed and the value of x is written.
A standard write function is used in the generated code for the following possible types of x : boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

- function writeString = (? string message; !);

A message is displayed on the standard output.

Part F

ANNEX

Chapter XIV

Grammar of the SIGNAL language

XIV-1 Lexical units
 XIV-1.1 Characters

Character ::= character | CharacterCode

Sets of characters

character ::= name-char | mark | delimitor | separator | other-character

name-char $::=$ letter-char \mid numeral-char $|$\begin{tabular}{|}

-

\hline
\end{tabular}

letter-char ::=
upper-case-letter-char | lower-case-letter-char | other-letter-char
upper-case-letter-char ::=

lower-case-letter-char ::=

other-letter-char ::=

numeral-char ::=

Encodings of characters

CharacterCode ::= $\underset{\mid \text { escape-code }}{\text { OctalCode }} \mid$ HexadecimalCode
OctalCode $::=\backslash$ octal-char [octal-char [octal-char]]

HexadecimalCode $::=\backslash \mathbf{x}$ hexadecimal-char [hexadecimal-char]
hexadecimal-char $::=$ numeral-char

XIV-1.2 Vocabulary

$$
\text { prefix-mark }::=\backslash
$$

Names

```
Name ::= begin-name-char [{ name-char }+ ]
begin-name-char ::= { name-char \numeral-char }
```


Boolean constants

$$
\text { Boolean-cst }::=\text { true } \mid \text { false }
$$

Integer constants

```
Integer-cst ::= { numeral-char }
```


Real constants

$$
\begin{aligned}
\text { Real-cst }::= & \text { Simple-precision-real-cst } \\
& \mid \text { Double-precision-real-cst }
\end{aligned}
$$

Simple-precision-real-cst ::=
Integer-cst Simple-precision-exponent
Integer-cst \square. Integer-cst [Simple-precision-exponent]
Double-precision-real-cst ::=
Integer-cst Double-precision-exponent
Integer-cst $\quad \cdot$ Integer-cst Double-precision-exponent
Simple-precision-exponent $::=\mathrm{e}$ Relative-cst $\mid \mathrm{E}$ Relative-cst
Double-precision-exponent $::=\mathrm{d}$ Relative-cst $\mid \mathrm{D}$ Relative-cst

Relative-cst ::= Integer-cst

$\mid+$	Integer-cst	
	--	Integer-cst

Character constants

Character-cst $::=\square$ Character-cstCharacter \quad,
Character-cstCharacter $::=\quad$ \{ Character \backslash character-spec-char \}

$$
\text { character-spec-char }::=\frac{\square}{\mid}
$$

String constants

String-cst ::= " $\left[\{\text { String-cstCharacter }\}^{+}\right] \square$
String-cstCharacter $::=\quad$ \{ Character \backslash string-spec-char \}
string-spec-char $::=\frac{\square}{\mid} \begin{aligned} & \text { long-separator }\end{aligned}$

Comments

Comment $::=\%\left[\{\text { CommentCharacter }\}^{+}\right] \%$
CommentCharacter ::= $\{$ Character \backslash comment-spec-char \}
comment-spec-char $::=\%$

XIV-2 Domains of values of the signals

SIGNAL-TYPE ::= Scalar-type
External-type
ENUMERATED-TYPE
ARRAY-TYPE
TUPLE-TYPE

XIV-2.1 Scalar types

Synchronization types

Integer types

Integer-type $::=$	short
	integer
	long

Real types

$$
\begin{aligned}
& \text { Real-type }::= \begin{array}{|c|}
\text { real } \\
\\
\\
\hline \text { dreal } \\
\hline
\end{array} . \begin{array}{l}
\text { dre }
\end{array} \\
& \hline
\end{aligned}
$$

Complex types

Complex-type $::=$| complex |
| :---: |
| dcomplex |

XIV-2.2 External types

External-type ::= Name-type

XIV-2.3 Enumerated types

ENUMERATED-TYPE ::=

enum	$(\square$
Name-enum-value $\{\square$,	Name-enum-value $\left.\}^{*} \square\right)$

ENUM-CST ::=
\# Name-enum-value
Name-type \# Name-enum-value

XIV-2.4 Array types

ARRAY-TYPE ::=

XIV-2.5 Tuple types

TUPLE-TYPE ::=

struct	(NAMED-FIELDS	$\square)$
bundle	(NAMED-FIELDS	\square

[SPECIFICATION-OF-PROPERTIES]
NAMED-FIELDS ::=
\{ S-DECLARATION ${ }^{+}$

XIV-2.6 Denotation of types

SIGNAL-TYPE ::=
Name-type

DECLARATION-OF-TYPES ::=
type DEFINITION-OF-TYPE $\{\square \text { DEFINITION-OF-TYPE }\}^{*} \quad$;
DEFINITION-OF-TYPE ::=
Name-type
| Name-type $=$ DESCRIPTION-OF-TYPE
DESCRIPTION-OF-TYPE ::=
SIGNAL-TYPE
EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

XIV-2.7 Declarations of constant identifiers

DECLARATION-OF-CONSTANTS ::=
constant SIGNAL-TYPE
DEFINITION-OF-CONSTANT $\{\square \text { DEFINITION-OF-CONSTANT }\}^{*} \quad ;$
DEFINITION-OF-CONSTANT ::=
Name-constant
\mid Name-constant $\mid=$ DESCRIPTION-OF-CONSTANT
DESCRIPTION-OF-CONSTANT ::=
S-EXPR
EXTERNAL-NOTATION

XIV-2.8 Declarations of sequence identifiers

S-DECLARATION ::=
SIGNAL-TYPE
DEFINITION-OF-SEQUENCE $\{\boxed{,} \text { DEFINITION-OF-SEQUENCE }\}^{*} ;$
DEFINITION-OF-SEQUENCE ::=
Name-signal
| Name-signal init S-EXPR

XIV-2.9 Declarations of state variables

DECLARATION-OF-STATE-VARIABLES ::=
statevar SIGNAL-TYPE
DEFINITION-OF-SEQUENCE $\{\square \text { DEFINITION-OF-SEQUENCE }\}^{*} ;$

XIV-3 Expressions on signals
 XIV-3.1 Systems of equations on signals

Elementary equations

ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS
DEFINITION-OF-SIGNALS ::=
Name-signal $:=$ S-EXPR

DEFINITION-OF-SIGNALS ::=
\square Name-signal $\{\square \text { Name-signal }\}^{*} \square$) $:=$ S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal $::=$ S-EXPR
| Name-signal $::=$ defaultvalue S-EXPR

DEFINITION-OF-SIGNALS ::=

Call of model

ELEMENTARY-PROCESS ::=

INSTANCE-OF-PROCESS

INSTANCE-OF-PROCESS ::=
EXPANSION
Name-model ($)$

EXPANSION ::=

Name-model
\{ S-EXPR-PARAMETER $\{\square \text { S-EXPR-PARAMETER }\}^{*} \square$

S-EXPR-PARAMETER ::=

S-EXPR
SIGNAL-TYPE

INSTANCE-OF-PROCESS ::=

PRODUCTION
PRODUCTION ::=
MODEL-REFERENCE \square S-EXPR \{ \square S-EXPR $\}^{*}$ \square

MODEL-REFERENCE ::=
EXPANSION
Name-model

S-EXPR ::=

INSTANCE-OF-PROCESS

S-EXPR ::= CONVERSION

CONVERSION ::=
Type-conversion (S-EXPR
Type-conversion ::=
Scalar-type
| Name-type

Nesting of expressions on signals

$$
\begin{aligned}
& \text { S-EXPR }::= \\
& \quad((\mathrm{S} \text {-EXPR }) \\
& \hline
\end{aligned}
$$

XIV-3.2 Elementary expressions

S-EXPR-ELEMENTARY $::=$
CONSTANT
| Name-signal

\mid Label

Constant expressions

CONSTANT ::=

Boolean-cst
Integer-cst
Real-cst
Character-cst
String-cst
ENUM-CST

XIV-3.3 Dynamic expressions

S-EXPR-DYNAMIC ::=
SIMPLE-DELAY
WINDOW
GENERALIZED-DELAY

Simple delay

SIMPLE-DELAY ::=
S-EXPR $\$$ [init S-EXPR]

Sliding window

WINDOW ::=
S-EXPR window S-EXPR [init S-EXPR]

Generalized delay

GENERALIZED-DELAY ::=

$$
\text { S-EXPR } \$ \text { S-EXPR [init S-EXPR] }
$$

XIV-3.4 Polychronous expressions

S-EXPR-TEMPORAL ::=
MERGING
EXTRACTION
MEMORIZATION
VARIABLE
COUNTER

Merging

MERGING ::=
S-EXPR default S-EXPR

Extraction

EXTRACTION ::=
S-EXPR when S-EXPR

Memorization

MEMORIZATION ::=
S-EXPR cell S-EXPR [init S-EXPR]

Variable clock signal

VARIABLE ::=
var S-EXPR [init S-EXPR]

Counters

```
COUNTER ::=
    S-EXPR after S-EXPR
    | S-EXPR from S-EXPR
    | S-EXPR count S-EXPR
```


XIV-3.5 Constraints and expressions on clocks

ELEMENTARY-PROCESS ::= CONSTRAINT

Expressions on clock signals

S-EXPR-CLOCK ::= SIGNAL-CLOCK

SIGNAL-CLOCK ::=
\square S-EXPR

S-EXPR-CLOCK ::= CLOCK-EXTRACTION

CLOCK-EXTRACTION ::=
when S-EXPR

S-EXPR-CLOCK ::= 0

Operators of clock lattice

```
S-EXPR-CLOCK ::=
\begin{tabular}{l|l|l} 
S-EXPR & \(\gamma^{+}\) & S-EXPR \\
| S-EXPR & \({ }^{-}\) & S-EXPR \\
I S-EXPR & \({ }^{*}\) & S-EXPR
\end{tabular}
```


Relations on clocks

CONSTRAINT ::=

S-EXPR $\{=$	S-EXPR ${ }^{*}$
S-EXPR \{	S-EXPR $\}^{*}$
S-EXPR $\{$	S-EXPR $\}^{*}$
S-EXPR \{ \#	S-EXPR \}*

XIV-3.6 Constraints on signals

> CONSTRAINT $::=$
> S-EXPR $::=:$ S-EXPR

XIV-3.7 Boolean synchronous expressions

Expressions on Booleans

S-EXPR-BOOLEAN::= | not | S-EXPR |
| :--- | :--- |

S-EXPR-BOOLEAN::=

| S-EXPR | or | S-EXPR |
| :--- | :--- | :--- | :--- |
| \| S-EXPR | and | S-EXPR |
| \| S-EXPR | xor | S-EXPR |

Boolean relations

XIV-3.8 Synchronous expressions on numeric signals

Binary expressions on numeric signals

S-EXPR-ARITHMETIC ::=

S-EXPR	++	S-EXPR
\| S-EXPR	$=-$	S-EXPR
I S-EXPR	$*$	S-EXPR
I S-EXPR	\square	S-EXPR

| S-EXPR modulo S-EXPR
| S-EXPR ${ }^{* *}$ S-EXPR
| DENOTATION-OF-COMPLEX

DENOTATION-OF-COMPLEX ::=
S-EXPR @ S-EXPR

Unary operators

S-EXPR-ARITHMETIC ::=

+	S-EXPR
-	S-EXPR

XIV-3.9 Synchronous condition

S-EXPR-CONDITION ::=
if S-EXPR then S-EXPR else S-EXPR

XIV-4 Expressions on processes

P-EXPR ::=
ELEMENTARY-PROCESS
HIDING
LABELLED-PROCESS
GENERAL-PROCESS
GENERAL-PROCESS ::=
COMPOSITION
CONFINED-PROCESS
CHOICE-PROCESS

XIV-4.1 Composition

COMPOSITION ::=

XIV-4.2 Hiding

HIDING ::=

GENERAL-PROCESS \square Name-signal \{ \square Name-signal \} ${ }^{*}$
| HIDING I Name-signal $\{\square \text {, Name-signal }\}^{*}$

XIV-4.3 Confining with local declarations

CONFINED-PROCESS ::=
GENERAL-PROCESS DECLARATION-BLOCK
DECLARATION-BLOCK ::=
where $\{\text { DECLARATION }\}^{+}$end

XIV-4.4 Labelled processes

LABELLED-PROCESS ::=

Label :: P-EXPR
Label ::=
Name

XIV-4.5 Choice processes

CHOICE-PROCESS ::=
case Name-signal in \{ CASE $\}^{+}$[ELSE-CASE] end

CASE ::=

ENUMERATION-OF-VALUES : GENERAL-PROCESS
ELSE-CASE ::=
else GENERAL-PROCESS
ENUMERATION-OF-VALUES ::=

\{	S-EXPR	S-EXPR $\}^{*}$	\}
[.	[S-EXPR]	[S-EXPR	.
[.	[S-EXPR]	[S-EXPR]	[.
.]	-EXPR]	[S-EXPR]	.]
.]	[S-EXPR]	[S-EXPR]	[.

XIV-5 Tuples of signals

S-EXPR-TUPLE ::=
TUPLE-ENUMERATION
| TUPLE-FIELD

XIV-5.1 Enumeration of tuple elements

TUPLE-ENUMERATION ::=
(S-EXPR $\left.\{\square \text {, S-EXPR }\}^{*},\right)$

XIV-5.2 Denotation of field

TUPLE-FIELD ::=
S-EXPR \square Name-field

XIV-5.3 Equation of definition of tuple component

DEFINITION-OF-SIGNALS ::=

COMPONENT := S-EXPR
COMPONENT ::= S-EXPR
COMPONENT ::= defaultvalue S-EXPR

S-EXPR
COMPONENT ::=
Name-signal
| Name-signal \quad. COMPONENT

XIV-6 Spatial processing

S-EXPR-ARRAY ::=

```
ARRAY-ENUMERATION
CONCATENATION
ITERATIVE-ENUMERATION
INDEX
ARRAY-ELEMENT
SUB-ARRAY
ARRAY-RESTRUCTURATION
MULTI-INDEX
SEQUENTIAL-DEFINITION
TRANSPOSITION
ARRAY-PRODUCT
REFERENCE-SEQUENCE
```


XIV-6.1 Enumeration

ARRAY-ENUMERATION ::=

$\left[\right.$ S S-EXPR $\{\square \text {, S-EXPR }\}^{*} \square$

XIV-6.2 Concatenation

CONCATENATION ::=

S-EXPR $\square+$ S-EXPR

XIV-6.3 Repetition

ITERATIVE-ENUMERATION ::=

 S-EXPR $\mid *$ S-EXPR
XIV-6.4 Definition of index

```
INDEX ::=
    S-EXPR .. S-EXPR [ step S-EXPR ]
```


XIV-6.5 Array element

ARRAY-ELEMENT ::=

ARRAY-RECOVERY ::=
\backslash S-EXPR

XIV-6.6 Extraction of sub-array

SUB-ARRAY ::=
S-EXPR $\left[\right.$ S S-EXPR $\left\{\begin{array}{l}\square \\ \hline\end{array}\right.$

XIV-6.7 Array restructuration

ARRAY-RESTRUCTURATION ::=
S-EXPR $\boxed{:}$ S-EXPR

XIV-6.8 Extended syntax of equations of definition

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT $:=$ S-EXPR
DEFINED-ELEMENT ::= S-EXPR
| DEFINED-ELEMENT $::=$ defaultvalue S-EXPR
(DEFINED-ELEMENT $\{\square \text {, DEFINED-ELEMENT }\}^{*} \square$
S-EXPR
DEFINED-ELEMENT $\{\square \text {, DEFINED-ELEMENT }\}^{*} \square$
S-EXPR
(DEFINED-ELEMENT $\{\square \text {, DEFINED-ELEMENT }\}^{*} \square$
::= defaultvalue S-EXPR
DEFINED-ELEMENT ::=
COMPONENT
| COMPONENT $\left[\right.$ [S-EXPR $\{\square, \text { S-EXPR }\}^{*} \boxed{\square}$

XIV-6.9 Cartesian product

MULTI-INDEX ::=

XIV-6.10 Iterations of processes

GENERAL-PROCESS ::=
ITERATION-OF-PROCESSES
ITERATION-OF-PROCESSES ::=
array ARRAY-INDEX of P-EXPR [ITERATION-INIT] end
iterate ITERATION-INDEX of P-EXPR [ITERATION-INIT] end
ARRAY-INDEX ::=
| Name to S-EXPR

ITERATION-INDEX ::= DEFINED-ELEMENT
(DEFINED-ELEMENT $\{\square \text {, DEFINED-ELEMENT }\}^{*}$,) S-EXPR

ITERATION-INIT ::= with P-EXPR

REFERENCE-SEQUENCE ::= | S-EXPR | $[$ | $?$ | $]$ |
| :--- | :--- | :--- | :--- |

XIV-6.11 Sequential definition

SEQUENTIAL-DEFINITION ::=
S-EXPR next S-EXPR

XIV-6.12 Sequential enumeration

ITERATIVE-ENUMERATION ::=
$\left[\right.$ [ITERATION $\left\{\begin{array}{l}\left.\text {, PARTIAL-DEFINITION }\}^{*} \square\right] \\ \hline\end{array}\right.$
PARTIAL-DEFINITION ::=
DEFINITION-OF-ELEMENT
| ITERATION
DEFINITION-OF-ELEMENT ::=

ITERATION ::=
$\left\{\right.$ PARTIAL-ITERATION $\{\square \text { PARTIAL-ITERATION }\}^{*}$
: DEFINITION-OF-ELEMENT
\square PARTIAL-ITERATION $\{\square \text {, PARTIAL-ITERATION }\}^{*}$
\because S-EXPR

PARTIAL-ITERATION ::=

[Name] [in S-EXPR] [to S-EXPR] [step S-EXPR]

XIV-6.13 Operators on matrices

Transposition

TRANSPOSITION ::=

$$
\operatorname{tr} \mathrm{S}-\mathrm{EXPR}
$$

Matrix products

ARRAY-PRODUCT ::=

S-EXPR \because *. S-EXPR

XIV-7 Models of processes

XIV-7.1 Classes of process models

MODEL ::=
PROCESS
ACTION
NODE
FUNCTION
PROCESS ::=
process Name-model \square DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]

ACTION ::=
action Name-model $=$
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]

NODE ::=
node Name-model $=$
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] ;
FUNCTION ::=
function Name-model $=$
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] ;

BODY ::=
DESCRIPTION-OF-MODEL
DESCRIPTION-OF-MODEL : :=
GENERAL-PROCESS
EXTERNAL-NOTATION

XIV-7.2 Local declarations of a process model

DECLARATION ::=
S-DECLARATION
DECLARATION-OF-STATE-VARIABLES
DECLARATION-OF-CONSTANTS
DECLARATION-OF-TYPES
DECLARATION-OF-LABELS
REFERENCES
MODEL

XIV-7.3 Declarations of labels

DECLARATION-OF-LABELS ::=

$$
\text { label Name-label }\{\square \text { Name-label }\}^{*} ;
$$

XIV-7.4 References to signals with extended visibility

REFERENCES ::=

ref Name-signal $\{\square \text {, Name-signal }\}^{*} \quad ;$

XIV-7.5 Interface of a model

DEFINITION-OF-INTERFACE ::=
INTERFACE
INTERFACE ::=
[PARAMETERS] (INPUTS OUTPUTS) EXTERNAL-GRAPH
PARAMETERS ::=
$\left\{\left[\{\text { FORMAL-PARAMETER }\}^{+}\right]\right\}$
FORMAL-PARAMETER ::=
S-DECLARATION
DECLARATION-OF-TYPES
INPUTS ::=
? $\left[\{\text { S-DECLARATION }\}^{+}\right]$
OUTPUTS ::=
! $\left.[\text { \{ S-DECLARATION }\}^{+}\right]$

XIV-7.6 Graph of a model

EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

PROCESS-ATTRIBUTE ::=

safe
deterministic
unsafe

SPECIFICATION-OF-PROPERTIES $::=$

spec GENERAL-PROCESS

Dependences

ELEMENTARY-PROCESS ::=

DEPENDENCES
DEPENDENCES ::=
SIGNALS $\{-->\text { SIGNALS }\}^{*}$
$\{$ SIGNALS $-->$ SIGNALS $\}$ when S-EXPR
SIGNALS ::=
ELEMENTARY-SIGNAL
\{ ELEMENTARY-SIGNAL $\left.\{\text {, }, \text { ELEMENTARY-SIGNAL }\}^{*}\right\}$

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
Label

XIV-7.7 Directives

DIRECTIVES ::=

pragmas \{ PRAGMA \} ${ }^{+}$end pragmas
PRAGMA ::=
Name-pragma [$\left\lfloor\right.$ PRAGMA-OBJECT $\{\square \text { PRAGMA-OBJECT }\}^{*} \square$]
[Pragma-statement]
PRAGMA-OBJECT ::=
Label
| Name

Pragma-statement ::=

String-cst

XIV-7.8 Models as types and parameters

DEFINITION-OF-TYPE ::=

process Name-model-type \square DEFINITION-OF-INTERFACE
action Name-model-type \rightarrow DEFINITION-OF-INTERFACE
node Name-model-type $=$ DEFINITION-OF-INTERFACE
function Name-model-type $=$ DEFINITION-OF-INTERFACE
DEFINITION-OF-INTERFACE ::=
Name-model-type

FORMAL-PARAMETER ::=
FORMAL-MODEL
FORMAL-MODEL ::=
process Name-model-type Name-model
action Name-model-type Name-model
node Name-model-type Name-model
function Name-model-type Name-model

S-EXPR-PARAMETER ::=
Name-model

XIV-8 Modules

XIV-8.1 Declaration and use of modules

MODULE ::=
module Name-module $=$
[DIRECTIVES] \{ DECLARATION \} ${ }^{+}$end \square

DECLARATION-OF-CONSTANTS ::=

| private constant SIGNAL-TYPE |
| :---: | :---: | :---: | DEFINITION-OF-CONSTANT $\{\square \text {, DEFINITION-OF-CONSTANT }\}^{*} ;$

DECLARATION-OF-TYPES ::=
private type
DEFINITION-OF-TYPE $\{\square, \text { DEFINITION-OF-TYPE }\}^{*} \quad ;$

PROCESS ::=

private	process	Name-model
$=$		

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] \square

ACTION ::=

private	action	Name-model
$=$		

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]
NODE ::=

private	node
Name-model	$=$

FUNCTION ::=

| private function Name-model $=$ |
| :--- | :--- | :--- |

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY]

EXTERNAL-NOTATION ::=
external [String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=

use IMPORTED-OBJECTS $\{\square \text {, IMPORTED-OBJECTS }\}^{*}$; IMPORTED-OBJECTS ::=

Name-module

List of figures

B-III. $1 \quad f 1 \uparrow T$ with $f 1(0)=0, f 1(1)=3, f 1(2)=4, f 1(3)=5 \ldots \ldots \ldots$
B-III. 2 Two flows of the composition of P1 and P2 . 42
B-IV. 1 Formal meaning of the dependence statement. 60
B-IV. 2 Micro automaton of $x:=: y$ \$ init v. 65
C-V. 1 Order and conversions on scalar and external types 80

List of tables

C-VI. 1 Syntactic forms of an invocation of model 97
C-VI. 2 INSTANCE-OF-PROCESS E^{25} 101
C-VI. 3 Expressions on signals 103
C-VI. 4 Expressions on signals 104
C-VI. 5 Types of the constants E^{27} 106
C-VI. 6 S-EXPR-DYNAMIC E ${ }^{21}$ 107

Index

Lexis
Alphabetic-type, 69, 205
def, 69, 205
begin-name-char, 23, 203
def, 23, 203
Boolean-cst, 105, 212
def, 23, 203
Character, 25, 204, 205
def, 19, 201
character, 19, 201
def, 19, 201
Character-cst, 105, 212
def, 25, 204
Character-cstCharacter, 25, 204
def, 25, 204
character-spec-char, 25, 204
def, 25, 204
CharacterCode, 19, 201
def, 22, 202
Comment
def, 25, 205
comment-spec-char, 25, 205
def, 25, 205
CommentCharacter, 25, 205
def, 25, 205
Complex-type, 69, 205
def, 72, 206
delimitor, 19, 201
def, 21, 202
Double-precision-exponent, 24, 204
def, 24, 204
Double-precision-real-cst, 24
def, 24, 204
ENUM-CST, 105
escape-code, 22, 202
def, 22, 203
External-type, 69, 205
def, 73, 206
hexadecimal-char, 22, 203
def, 22, 203

HexadecimalCode, 22, 202
def, 22, 203
Integer-cst, 24, 105, 204, 212
def, 24, 203
Integer-type, 69, 205
def, 70, 206
Label, 105, 134, 182, 184, 211, 218, 228
def, 134, 218
letter-char, 19, 201
def, 19, 201
long-separator, 21, 25, 202, 204
def, 21, 202
lower-case-letter-char, 19, 201
def, 20, 201
mark, 19, 201
def, 21, 202
Name, 23, 73-75, 79, 84-87, 92-94, 96, $98,99,101,105,132,134,136,144$, $145,158,164,174,175,178,184,187$, 188, 191, 192, 206-211, 218-220, 223, 225-231
def, 23, 203
name-char, 19, 23, 201, 203
def, 19, 201
numeral-char, 19, 22-24, 201, 203
def, 20, 202
Numeric-type, 69, 205
def, 69, 205
octal-char, 22, 202
def, 22, 203
OctalCode, 22, 202
def, 22, 202
other-character, 19, 201
other-letter-char, 19, 201
def, 20, 202
Pragma-statement, 184, 228
def, 184, 229
prefix-mark
def, 23, 203
Real-cst, 105, 212
def, 24, 204
Real-type, 69, 205
def, 71, 206
Relative-cst, 24, 204
def, 24, 204
Scalar-type, 69, 101, 205, 211
def, 69, 205
separator, 19, 201
def, 21, 202
signalkw
def, 26
Simple-precision-exponent, 24, 204
def, 24, 204
Simple-precision-real-cst, 24
def, 24, 204
String-cst, 105, 184, 192, 212, 229, 230
def, 25, 204
String-cstCharacter, 25, 204
def, 25, 204
string-spec-char, 25, 204
def, 25, 204
Synchronization-type, 69, 205
def, 70, 206
Type-conversion, 101, 211
def, 101, 211
upper-case-letter-char, 19, 201
def, 19, 201
Symbol
*, 21, 127, 202, 216
**, 127, 216
*., 165, 225
$+, 21,24,127,128,202,204,216,217$
$-, 21,24,71,127,128,202,204,216,217$
$-->, 182,228$
/, 21, 127, 202, 216
$/=, 125,216$
$<, 21,125,202,216$
$\ll=, 125,216$
$<=, 125,216$
$=, 21,125,202,216$
$==, 125,216$
$>, 21,125,202,216$
$>=, 125,216$
(, 21, 74, 77, 93, 96, 98, 99, 101, 102, 143, $145,157,158,179,202,207,209-211$, 219, 220, 223, 224, 227
), $21,74,77,93,96,98,99,101,102,143$,
$145,157,158,179,202,207,209-211$,
219, 220, 223, 224, 227
., 21, 24, 144, 145, 202, 204, 219, 220
.., 151, 221
.], 136, 219
/, 132, 218
:, 21, 136, 154, 164, 202, 219, 222, 224
::, 134, 218
$::=, 94,96,145,157,210,220,223$
$:=, 92,93,145,157,209,220,223$
$:=:, 122,215$
;, 21, $84,86-88,174,175,178,191,192$, 202, 208, 209, 225-227, 230, 231
$=, 85,86,174,175,187,191,192,208$, 225, 226, 229, 230
?, 21, 105, 159, 179, 202, 211, 224, 227
[, 21, 76, 149, 152, 153, 157, 159, 164, 202, 207, 221-224
[., 136, 219
\#, 21, 75, 202, 207
\$, 21, 108, 110, 202, 212
\%, 21, 25, 202, 205

, 22, 23, 202, 203
\x, 22, 203
$\{, 21,98,136,164,179,182,184,202,210$, 219, 224, 227, 228
\}, 21, 98, 136, 179, 182, 184, 202, 210, 219, 227, 228
], 21, 76, 149, 152, 153, 157, 159, 164, 202, 207, 221-224
$\backslash \backslash, 152,222$
*, 119, 215

- $+, 119,215$
- $, 119,215$
-0,119, 214
${ }^{\circ}<, 121,215$
${ }^{\wedge}=, 121,215$
${ }^{>}>, 121,215$
, 21, 118, 202, 214
- \#, 121, 215
, $21,74,76,79,84,86-88,93,96,98,99$, $132,136,143,145,149,152,153,157$, $158,164,178,182,184,191,192,202$, 207-210, 218-224, 226-228, 230, 231
@, 21, 128, 202, 216
|+, 149, 221
D, 24, 204
d, 24, 204
', 21, 25, 202, 204
E, 24, 204
e, 24, 204
!, 21, 179, 202, 227
$\gg, 158,223$
$\ll, 158,223$
(|, 131, 217
|, 21, 131, 202, 217
|*, 150, 221
|), 131, 217
', 21, 25, 202, 204
_, 19, 201
Syntax
ACTION, 174, 225
def, 175, 192, 225, 230
ARRAY-ELEMENT, 147, 220
def, 152, 222
ARRAY-ENUMERATION, 147, 220
def, 149, 221
ARRAY-INDEX, 158, 223
def, 158, 223
ARRAY-PRODUCT, 147, 220
def, 165, 225
ARRAY-RECOVERY, 152, 222
def, 152, 222
ARRAY-RESTRUCTURATION, 147, 220
def, 154, 222
ARRAY-TYPE, 69, 205
def, 76, 207
BODY, 174, 175, 192, 225, 226, 230
def, 175, 226
CASE, 136, 218
def, 136, 219
CHOICE-PROCESS, 131, 217
def, 136, 218
CLOCK-EXTRACTION, 118, 214
def, 118, 214
COMPONENT, 145, 157, 220, 223
def, 145, 220
COMPOSITION, 131, 217
def, 131, 217
CONCATENATION, 147, 220
def, 149, 221
CONFINED-PROCESS, 131, 217
def, 133, 218
CONSTANT, 105, 211
def, 105, 212
CONSTRAINT, 117, 214
def, 121, 122, 215
CONVERSION, 101, 211
def, 101, 211
COUNTER, 112, 213
def, 116, 214
DECLARATION, 133, 191, 218, 230
def, 177, 192, 226, 230
DECLARATION-BLOCK, 133, 218
def, 133, 218
DECLARATION-OF-CONSTANTS, 177, 226
def, 86, 191, 208, 230
DECLARATION-OF-LABELS, 177, 226
def, 178, 226
DECLARATION-OF-STATE-VARIABLES, 177, 226
def, 88, 209
DECLARATION-OF-TYPES, 177, 179, 226, 227
def, 84, 191, 208, 230
DEFINED-ELEMENT, 157, 158, 182, 223, 224, 228
def, 157, 223
DEFINITION-OF-CONSTANT, 86, 191, 208, 230
def, 86, 208
DEFINITION-OF-ELEMENT, 164, 224
def, 164, 224
DEFINITION-OF-INTERFACE, 174, 175, 187, 192, 225, 226, 229, 230 def, 179, 187, 227, 229
DEFINITION-OF-SEQUENCE, 87, 88, 209 def, 87, 209
DEFINITION-OF-SIGNALS, 92, 209
def, 92-94, 96, 145, 157, 209, 210, 220, 223
DEFINITION-OF-TYPE, 84, 191, 208, 230
def, 85, 187, 208, 229
DENOTATION-OF-COMPLEX, 127, 216
def, 128, 216
DEPENDENCES
def, 182, 228
DESCRIPTION-OF-CONSTANT, 86, 208
def, 86, 208
DESCRIPTION-OF-MODEL, 175, 226
def, 175, 226
DESCRIPTION-OF-TYPE, 85, 208
def, 85, 208
DIRECTIVES, 174, 175, 191, 192, 225, 226,

230
def, 184, 228
ELEMENTARY-PROCESS, 131, 217
def, 92, 97, 117, 182, 209, 210, 214, 228
ELEMENTARY-SIGNAL, 182, 228
def, 182, 228
ELSE-CASE, 136, 218
def, 136, 219
ENUM-CST, 212
def, 75, 207
ENUMERATED-TYPE, 69, 205
def, 74, 207
ENUMERATION-OF-VALUES, 136, 219
def, 136, 219
EXPANSION, 98, 99, 210
def, 98, 210
EXTERNAL-GRAPH, 179, 227
def, 181, 227
EXTERNAL-NOTATION, 85, 86, 175, 208, 226
def, 192, 230
EXTRACTION, 112, 213
def, 113, 213
FORMAL-MODEL
def, 188, 229
FORMAL-PARAMETER, 179, 227
def, 179, 188, 227, 229
FUNCTION, 174, 225
def, 175, 192, 226, 230
GENERAL-PROCESS, 131-133, 136, 175, 181, 217-219, 226, 228
def, 131, 158, 217, 223
GENERALIZED-DELAY, 107, 212
def, 110, 212
HIDING, 131, 132, 217, 218
def, 132, 218
IMPORT-OF-MODULES, 192, 230
def, 192, 231
IMPORTED-OBJECTS, 192, 231
def, 192, 231
INDEX, 147, 220
def, 151, 221
INPUTS, 179, 227
def, 179, 227
INSTANCE-OF-PROCESS, 97, 100, 210, 211
def, 98, 99, 210
INTERFACE, 179, 227
def, 179, 227
ITERATION, 164, 224
def, 164, 224
ITERATION-INDEX, 158, 223
def, 158, 224
ITERATION-INIT, 158, 223
def, 159, 224
ITERATION-OF-PROCESSES, 158, 223
def, 158, 223
ITERATIVE-ENUMERATION, 147, 220
def, 150, 164, 221, 224
LABELLED-PROCESS, 131, 217
def, 134, 218
MEMORIZATION, 112, 213
def, 114, 213
MERGING, 112, 213
def, 112, 213
MODEL, 177, 226
def, 174, 225
MODEL-REFERENCE, 99, 210
def, 99, 210
MODULE
def, 191, 230
MULTI-INDEX, 147, 220
def, 158, 223
NAMED-FIELDS, 77, 207
def, 77, 207
NODE, 174, 225
def, 175, 192, 226, 230
OUTPUTS, 179, 227
def, 179, 227
P-EXPR, 131, 134, 158, 159, 217, 218, 223, 224
def, 131, 217
PARAMETERS, 179, 227
def, 179, 227
PARTIAL-DEFINITION, 164, 224
def, 164, 224
PARTIAL-ITERATION, 164, 224
def, 164, 225
PRAGMA, 184, 228
def, 184, 228
PRAGMA-OBJECT, 184, 228
def, 184, 228
PROCESS, 174, 225
def, 174, 192, 225, 230
PROCESS-ATTRIBUTE, 181, 227
def, 181, 228

PRODUCTION, 99, 210
def, 99, 210
REFERENCE-SEQUENCE, 147, 220
def, 159, 224
REFERENCES, 177, 226
def, 178, 227
RELATION, 125, 216
def, 125, 216
S-DECLARATION, 77, 177, 179, 207, 226, 227
def, 87, 209
S-EXPR
def, 100-102, 211
S-EXPR-PARAMETER, 98, 210
def, 98, 188, 210, 229
S-EXPR-ARITHMETIC
def, 127, 128, 216, 217
S-EXPR-ARRAY
def, 147, 220
S-EXPR-BOOLEAN
def, 123, 125, 215, 216
S-EXPR-CLOCK
def, 118, 119, 214, 215
S-EXPR-CONDITION
def, 129, 217
S-EXPR-DYNAMIC
def, 107, 212
S-EXPR-ELEMENTARY
def, 105, 211
S-EXPR-TEMPORAL
def, 112, 213
S-EXPR-TUPLE
def, 143, 219
S-EXPR, 76, 86, 87, 92-94, 96, 98, 99, 101, 102, 108-110, 112-116, 118, 119, 121123, 125, 127-129, 136, 143-145, 149154, 157-159, 163-165, 182, 207-217, 219-225, 228
SEQUENTIAL-DEFINITION, 147, 220
def, 163, 224
SIGNAL-CLOCK, 118, 214
def, 118, 214
SIGNAL-TYPE, 76, 85-88, 98, 191, 207210, 230
def, 69, 84, 205, 208
SIGNALS, 182, 228
def, 182, 228
SIMPLE-DELAY, 107, 212
def, 108, 212
SPECIFICATION-OF-PROPERTIES, 77, 181, 207, 227
def, 181, 228
SUB-ARRAY, 147, 220
def, 153, 222
TRANSPOSITION, 147, 220
def, 165, 225
TUPLE-ENUMERATION, 143, 219
def, 143, 219
TUPLE-FIELD, 143, 219
def, 144, 219
TUPLE-TYPE, 69, 205
def, 77, 207
TYPE-INITIAL-VALUE, 85, 208
def, 85
VARIABLE, 112, 213
def, 115, 213
WINDOW, 107, 212
def, 109, 212
Terminal
action, 26, 175, 187, 188, 192, 225, 229, 230
after, 26, 116, 214
and, 26, 123, 215
array, 26, 158, 223
boolean, 26, 70, 206
bundle, 26, 77, 207
case, 26, 136, 218
cell, 26, 114, 213
char, 26, 69, 205
@, 26, 72, 206
constant, 26, 86, 191, 208, 230
count, 26, 116, 214
dcomplex, 26, 72, 206
default, 26, 112, 213
defaultvalue, 26, 94, 96, 145, 157, 210, 220, 223
deterministic, 26, 181, 228
dreal, 26, 71, 206
else, $26,129,136,217,219$
end, $26,133,136,158,184,191,218,223$, 228, 230
enum, 26, 74, 207
event, 26, 70, 206
external, 26, 192, 230
false, 23, 26, 203
from, 26, 116, 214
function, $26,175,187,188,192,226,229$, 230
if, 26, 129, 217
in, 26, 136, 164, 218, 225
init, $26,85,87,108-110,114,115,209$, 212, 213
integer, 26, 70, 206
iterate, 26, 158, 223
label, 26, 178, 226
long, 26, 70, 206
module, 26, 191, 230
modulo, 26, 127, 216
next, 26, 163, 224
node, $26,175,187,188,192,226,229,230$
not, 26, 123, 215
of, 26, 158, 223
operator, 26
or, $26,123,215$
pragmas, $26,184,228$
private, $26,191,192,230$
process, $26,174,187,188,192,225,229$, 230
real, 26, 71, 206
ref, 26, 178, 227
safe, 26, 181, 228
short, 26, 70, 206
spec, 26, 181, 228
statevar, 26, 88, 209
step, 26, 151, 164, 221, 225
string, 26, 69, 205
struct, 26, 77, 207
then, $26,129,217$
to, $26,158,164,223,225$
tr, 26, 165, 225
true, 23, 26, 203
type, 26, 84, 191, 208, 230
unsafe, 26, 181, 228
use, 26, 192, 231
var, 26, 115, 213
when, $26,113,118,182,213,214,228$
where, 26, 133, 218
window, 26, 109, 212
with, 26, 159, 224
xor, $26,123,215$

[^0]: ${ }^{1}$ IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex (France) - e-mail: Loic.Besnard@irisa.fr
 ${ }^{2}$ IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex (France) - e-mail: Thierry.Gautier@irisa.fr
 ${ }^{3}$ IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex (France) - e-mail: Paul.LeGuernic@irisa.fr

[^1]: ${ }^{1}$ TNI-Valiosys, Technopôle Brest Iroise, Z.I. Pointe du Diable, BP 70801, 29608 Brest Cedex (France) - e-mail: francois.dupont@tni-valiosys.com

[^2]: ${ }^{1} \emptyset$ is denoted ε in IV-3.1.

[^3]: ${ }^{1}$ not yet implemented in Polychrony: clock properties of bundles are not taken into account.

[^4]: ${ }^{1}$ not yet implemented in Polychrony: intervals of values.

[^5]: ${ }^{1}$ not yet implemented in Polychrony: multiple partial definitions for different elements of an array.

[^6]: ${ }^{2}$ not yet implemented in POLYCHRONY: creation of the implicit added dimension when necessary; multiple associated indices.

[^7]: ${ }^{1}$ not yet implemented in POLYCHRONY: extensions to tuples; some extensions to arrays.

[^8]: ${ }^{1}$ not yet implemented in POLYCHRONY: association of a pragma with named objects.

