SIGNAL V4 — INRIA version: Reference Manual
(working version)

Loic BESNARD ! Thierry GAUTIER? Paul LE GUERNIC?

March 16, 2004

L RISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex (France) — ekniaiBesnard@irisa.fr
2|RISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex (France) — e-himdlrry. Gautier @irisa.fr
3IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex (France) — e4Azail:LeGuernic@irisa.fr

Abstract

SIGNAL is a synchronized data flow language designed for programming real-time systems. A SIGNAL
program defines both data and control processing, from a system of equations, the variables of the system
are signals. These equations can be organized as sub-systems (or processes). A signal is a sequence
of values which has a clock associated with; this clock specifies the instants at which the values are
available.

This reference manual defines the syntax and the semantics of the INRIA version of the SIGNAL V4
language. The original official definition of the SIGNAL V4 language was published in french in june
1994. Itis available at the following address:
ftp://ftp.irisa.fr/local/signal/publis/research_reports/P1832-94:v4 _manual.ps.gz
It was defined together with FrangoisuBoNT, from TNI. Some of the evolutions described in this
document have been defined too in cooperation with FrancosddT. However, the SIGNAL version
implemented by TNI in the SILDEX environment is slightly different in some aspects from the version
described here. A description of SILDEX may be found at the following address:
http://www.tni-valiosys.com/

The definition of the SIGNAL version described in this manual is subject to evolutions. It is (partly)
implemented in the INRIA BLYCHRONY environment. Consult the following site:
http://lwww.irisa.fr/espresso/Polychrony

1TNI-VaIiosys, Technopoéle Brest Iroise, Z.I. Pointe du Diable, BP 70801, 29608 Brest Cedex (France) — e-mail:
francois.dupont@tni-valiosys.com

ftp://ftp.irisa.fr/local/signal/publis/research_reports/PI832-94:v4_manual.ps.gz
http://www.tni-valiosys.com/
http://www.irisa.fr/espresso/Polychrony

Main evolutions of this document

From version dated December 18, 2002 to the present one:

e correction of errors and update of implementation notes;

e addition of the predefined functiandices (cf. sectionlX-10, pagel56) and other preci-
sions related to spatial processing (cf. chapterpagel4?).

Table of contents

A INTRODUCTION
[Introduction
-1 Main features of the language
-1.1 Signals
-1.2 Events
-1.3 Models
-1.4 Modules
[-2 Model of sequences
-3
-3.1 Causality
-3.2 Explicit definitions
-4 Subject of the reference
-5 Form of the presentation
Il Lexical units
-1 Characters
I-1.1 Sets of characters
I-1.2 Encodings of characters
-2 Vocabulary
-2.1
[I-2.2 Boolean constants
[I-2.3 Integer Constants
I-2.4 Real constants
[I-2.5 Character constants
[I-2.6 String constants
[I-2.7 Comments
-3 Reserved words

B THE KERNEL LANGUAGE

1] Model of sequences
-1 Syntax
-2 Events
-3 Traces

11-3.1 Definition

[1I-3.2 Partial observation of a trace

11-3.3 Prefix order on traces .

Static semantiCs.

11

13
13
13
14
14
14
14
14
15
15
15
16

19
19
19
22
23
23
23
24
24
24
25
25
25

4 TABLE OF CONTENTS
I-3.4 Productoftraces. 33
I-3.5 Reducedtrace i 33
=4 FIOWS. 34
lI-4.1 Equivalence oftraces 35
-4.2 Partialflow 36
I-4.3 Flow-equivalence. 36
MI-5 Processes e e 36
I-5.1 Definition e 36
[11-5.2 Partial observation ofaprocess. 37
I-5.3 Composition of processes. 37
[I-5.4 OrderonproCeSSES v v v v i i it e e e 37
-6 Semantics of basiCIBNAL terms. 39
I-6.1 Declarations. e 39
[I-6.2 MONOChronous pProCcesses. v v v v v v v i et e e e e 39
2-a Static monochronous processes. 40
2-b Dynamic monochronous processes: thedelay. 40
I-6.3 Polychronous processes., 40
3-a Sub-signals. 40
3-b Mergingofsignals. 41
[11-6.4 Composition of processes. i 41
I-6.5 Restriction. 41
-7 Composite signals. 41
N=7.1 Tuples. 42
MN=7.2 Arrays 44
I-8 Classesof processes. i i i i i i e e e e 50
I-8.1 lterations of functions 50
[11-8.2 Endochronous processes. 50
[I-8.3 Deterministic processes. 50
[1-8.4 Reactive proCesses v v i i i i 51
-9 Composition properties. i e 52
[11-9.1 Asynchronous composition of processes 52
I-9.2 Isochrony e 52
-9.3 Endo-isochrony. 52
[I-10 Clock system and implementation relation. 52
[-11 Transformationof programs 53
v Calculus of synchronizations and dependences 55
IV=1 Clocks e 55
IV=1.1 Clock homomorphism 55
1l-a Monochronous definitions 56
1-b Polychronous definitions 56
1-c Hiding 56
1-d Composition. 56
IV=1.2 Verification 56
IV=1.3 Clockecalculus 57
3-a Monochronous definitions L. 57
3-b Polychronous definitions 57

3-c Hiding 57

TABLE OF CONTENTS 5
3-d Composition 57
3-e Static and dynamic clock calculus. 58
IV=2 Contextclock e 58
IV=3 Dependences 59
IV-3.1 Formal definition of dependences 60
IV=3.2 Implicitdependences. 61
2-a Monochronous definitions oL L. 61
2-b Polychronous definitions 61
IV=3.3 Microautomata. 62
3-a Definition of microautomata 62
3-b Construction of basic micro automata. 63
C THE SIGNALS 67
\% Domains of values of the signals 69
V-1 Scalartypes. 69
V=1.1 Synchronizationtypes. 70
V=1.2 Integertypes o o 70
V=1.3 Realtypes. e 71
V=1.4 Complextypes 72
V=15 Charactertype 73
V=16 Stringtype e 73
V-2 External types. 73
V-3 Enumerated types. 74
V-4 Array types. 75
V-5 Tupletypes. 76
V-6 Structure ofthe setoftypes 78
V-6.1 Setoftypes. e 78
V=6.2 Orderontypes o o i i it 79
V=6.3 CONVersions. i i 81
3-a Conversions between comparable types. 81
3-b Conversions toward the domain “Synchronization-type”. . . . 82
3-c Conversions toward the domain “Integer-type”. 82
3-d Conversions toward the domain “Real-type? 83
3-e Conversions toward the domain “Complex-type”. 83
3-f Conversions toward the typesaracter andstring 83
3-g Conversionsofarrays. 84
3-h Conversionsoftuples. 84
V-7 Denotation oftypes. 84
V-8 Declarations of constant identifiers 85
V-9 Declarations of sequence identifiers 87
V-10 Declarations of state variables., 88
VI Expressions on signals 91
VI-1 Systems of equationsonsignals 91
VI-1.1 Elementaryequations 91
l-a Equation of definition ofasignal. 92

TABLE OF CONTENTS

VI-2

VI-3

Vi-4

VI-5

VI-8

VI-9

1-b Equation of multiple definition of signals 93
1-c Equation of partial definition ofasignal. 94
1-d Equation of partial definition of a state variable. 95
1l-e Equation of partial multiple definition 96
VI-1.2 Invocationofamodel, . 97
2-a Macro-expansionofamodel. 97
2-b Positional macro-expansion ofamodel. 99
2-c Callofamodel. 100
2-d Expressions of type conversion 100
VI-1.3 Nesting of expressionsonsignals 102
Elementary expressions 104
VI-2.1 Constantexpressions e 105
VI-2.2 Occurrence of signal or tuple identifier. 106
VI-2.3 Occurrence of statevariahle 106
Dynamic eXpresSionS. oo i e e 107
VI-3.1 Initialization expression 107
VI-3.2 Simpledelay 108
VI-3.3 Slidingwindow 109
VI-3.4 Generalizeddelay 110
Polychronous expressions. 112
VI-4.1 Merging o e e e e e e e 112
VI-4.2 EXxtraction. 113
VI-4.3 Memorization. 114
VI-4.4 Variableclocksignal 115
VI-4.5 Counters. e e e 115
VI-4.6 Properties of polychronous expressions. 117
Constraints and expressionsonclocks. 117
VI-5.1 Expressionsonclocksignals. 117
l-a Clockofasignal. 117
1-b Clockextraction 118
1-c Emptyclock 119
VI-5.2 Operators of clock lattice 119
VI-5.3 Relationsonclocks. 121
Identity equations.. 122
Boolean synchronous expressions 123
VI-7.1 ExpressionsonBooleans. 123
l-a Negation. 123
1-b Operators of Boolean lattice 123
VI-7.2 Booleanrelations. 124
Synchronous expressions on numericsignals. 127
VI-8.1 Binary expressions onnumericsignals 127
VI-8.2 Unaryoperators 128

Synchronous condition. 129

TABLE OF CONTENTS 7

VIl Expressions on processes 131
VII-1 Elementary proCeSSes i i i i e 131
VII=2 Composition e e e e e e 131
VI3 HIiding 132
VIl-4 Confining with local declarations. 133
VII-5 Labelled processes. e e 134
VII-6 ChoiCe ProCeSSES. v v i e e e 135
D THE COMPOSITE SIGNALS 141
VIl Tuples of signals 143
VIII-1 Constant eXpressSionS. v v v v v 143
VIlI-2 Enumeration oftupleelements. 143
VIII-3 Denotation offield. 144
VIll-4 Destructuration oftuple. 144
VIII-5 Equation of definition of tuple component. 145
IX Spatial processing 147
IX-1 Dimensions of arrays and bounded values. 148
IX=2 Constant eXpressions. 149
IX=3 Enumeration. 149
IX—=4 Concatenation. e e 149
IX=5 Repetition 150
IX—6 Definitionofindex. 151
IX=7 Arrayelement. 151
IX—=7.1 Accesswithoutrecovery. 152
IX=7.2 Accesswithrecovery. 152
IX-8 Extractionofsub-array. 153
IX=9 Arrayrestructuration 154
IX-10 Generalizedindices. 156
IX-11 Extended syntax of equations of definition. 157
IX=12 Cartesianproduct. 157
IX—=13 Iterations of processes o e 158
IX-=14 Sequential definition 163
IX—=15 Sequential enumeration e 164
IX=16 OperatorsonmatriCes o v i 165
IX=16.1 Transposition. e 165
IX=16.2 Matrix products. 165
2-a Productofmatrices L 166
2-b Matrix—vector product. 166
2-c Vector—matrix product. L 167
2-d Scalarproduct. 167
X Extensions of the operators 169
X-1 Rulesof extension 169
X-2 Examples e 170

8 TABLE OF CONTENTS
E THE MODULARITY 171
XI Models of processes 173
Xl-1 Classesofprocessmodels. 173
XI=1.1 ProCesses. o e e e 175
XI=1.2 Actions 175
XI-1.3 Nodes. e 175
XI=1.4 Functions e 176
Xl-2 Local declarations ofaprocessmodel oL 176
XI-3 Declarationsoflabels. 178
Xl-4 References to signals with extended visibility 178
XI-5 Interface ofamodel. 179
XI-6 Graphofamodel 180
XI-6.1 Specification of properties. L. 181
XI-6.2 Dependences. 182
XI=7 Directives 184
XI-8 Models astypesand parameterso 187
Xl Modules 191
Xll-1 Declarationanduseofmodules. 191
Xl Intrinsic processes 195
XHI=1 ASSertions e 195
XI=2 “Lefttrue” proCess. o i i 196
XllI-3 Mathematical functions. 196
XllI-4 Complex functions. e 197
XI-5 Input-output functions. 198
F ANNEX 199
XIV Grammar of the SIGNAL language 201
XIV=1 Lexicalunits e 201
XIV=1.1 Characters e 201
XIV=1.2 Vocabulary 203
XIV=-2 Domains of values ofthesignals. 205
XIV=2.1 Scalartypes. 205
XIV=2.2 Externaltypes. e 206
XIV=2.3 Enumerated types 207
XIV=2.4 Array types o o e e e e e e e 207
XIV=2.5 Tupletypes 207
XIV=2.6 Denotationoftypes. 208
XIV=2.7 Declarations of constant identifiers. 208
XIV-2.8 Declarations of sequence identifiers. 208
XIV=2.9 Declarations of state variables 209
XIV=3 Expressionsonsignals. e 209
XIV=3.1 Systems of equationsonsignals. 209
XIV=3.2 Elementary expressions. 211
XIV=3.3 Dynamic expressions v i i i e 212

TABLE OF CONTENTS 9

XIV-4

XIV-5

XIV-6

XIV=7

XIV-8

List of figures
List of tables

Index

XIV=3.4 Polychronous expressions. v v v v v i i 213
XIV=3.5 Constraints and expressionsonclocks 214
XIV=3.6 Constraintsonsignals. 215
XIV=3.7 Boolean synchronous expressions. 215
XIV=3.8 Synchronous expressions on numeric signals. 216
XIV=3.9 Synchronous condition. 217
EXpressions on proCesses 217
XIV=4.1 Composition. e 217
XIV=4.2 Hiding e 218
XIV-4.3 Confining with local declarations 218
XIV-4.4 Labelled processes. 218
XIV=4.5 ChOoiCe pProCesSes v v v i i i e e e e 218
Tuplesofsignals. 219
XIV=5.1 Enumeration of tupleelements. 219
XIV=5.2 Denotation offield 219
XIV=5.3 Equation of definition of tuple component 220
Spatial processing. 220
XIV=6.1 Enumeration 221
XIV=6.2 Concatenation 221
XIV=6.3 Repetition. 221
XIV-6.4 Definitionofindex 221
XIV=6.5 Arrayelement. 222
XIV-6.6 Extraction ofsub-array. 222
XIV=6.7 Array restructuration. 222
XIV-6.8 Extended syntax of equations of definition. 222
XIV=6.9 Cartesianproduct 223
XIV-6.10lterations of processes. e 223
XIV-6.11Sequential definition. 224
XIV-6.12Sequential enumeration. oL 224
XIV-6.130peratorsonmatrices. i e 225
Models of processes e 225
XIV=7.1 Classesof processmodels 225
XIV=7.2 Local declarations of a processmodel. 226
XIV=7.3 Declarationsoflabels 226
XIV-7.4 References to signals with extended visibility. 227
XIV=7.5 Interface ofamodel 227
XIV=7.6 Graphofamodel. 227
XIV=7.7 Directives e 228
XIV-=7.8 Models as types and parameters. 229
Modules e 229
XIV-8.1 Declarationanduse of modules 229
233
235

Part A

INTRODUCTION

Chapter |

Introduction

The SGNAL language has been defined at INRIA/IRISA with the collaboration and support from the
CNET. This reference manual defines the syntax and semantics of the INRIA version of the language,
which is an evolution of the V4 version. The V4 version resulted from a synthesis of experiments made
by IRISA and by the TNI company. An environment of thesSAL language can be built in a style

and in a way it is not the objective of this manual to define. However, such an environment will have to
provide functions for reading and writing programs in the form specified in this manual; the translation
scheme will give the semantics of the texts built in this environment.

-1 Main features of the language

A program expressed in thea@vAL language defines some data and control processing from a system
of equations, the variables of which are identifiersighals. These equations can be organized in sub-
systems (oprocesses A model of process a sub-system which may have several using contexts; for
that purpose, a model is designated by an identifier. It can be provided with parameters specifying data
types, initialization values, array sizes, etc. In addition, sets of declarations can be organized in modules.

-1.1 Signals

A signal is a sequence of values, with which a clock is associated.

1. All the values of a signalbelong to a samsub-domairof adomain of valuesjesignated by their
commontype. This type can be:

e predefined (the Booleans, sub-domains of the Integers, sub-domains of the Reals, sub-domains
of the Complex...),

e defined in the program (Arrays, Tuples),
e or referenced in the program but known only by the functions that handle it (Externals).

2. The clock of a signalallows to define, relatively to a totally ordered set containing at least as much
elements as the sequence of values of this signal, the subset of instants at which the signal has a
value. A pure signal, the value of which belongs to the singletamt, can be associated with
each signal. This pure signal is present exactly at the presence instants of the sigaadyithe
type is a sub-domain of the Booleans. By extension, this pure signal will be cidield A pure
signal is its own clock. In a process, the clock of a signal is the representative of the equivalence

14 INTRODUCTION

class of the signals with which this signakignchronougsynchronous signals have their values at
the same instants).

3. These values are expressed in equations of definition and in constraints.

I-1.2 Events

A valuation associates, at a logical instant of the program (transition of the automaton), a value with a
variable.

An event is a set of simultaneous valuations defining a transition of the automaton. In an event, a
variable may have no associated value: it will be said that the corresponding signal is absent and its
“value” will be written .. An event contains at least one valuation.

Determining the presence of a signal (i.e., a valuation) in an event results from the solving of a system
of equations inFs, the field of integers modulo 3.

The value associated with a variable in an event results from the evaluation of its expression of
definition (thus it should not be implicit: circular definitions of non Boolean signals are not allowed).

I-1.3 Models

A model associates with an identifier a system of equations with local variables, sub-models and external
variables (free variables). The parameters of a model are constants (size of arrays, initial values of
signals, etc.).

A model may be defined outside the program; in that case, it is visible only through its interface.
Calling a model defined in a program is equivalent to replacing this call by the associated system of
equations (macro-substitution).

Invoking a model defined outside the program can produce side-effects on the context in which the
program is executed; these effects can be directly or indirectly perceived by the program and they can
affect the set of instants or the set of values of one or more interface signals. Such a model will be said
non functional (for example ndom*“fonction” is such a non functional model).

I-1.4 Modules

The notion of module allows to describe an application in a modular way. In particular, it allows the
definition and use of libraries written in@GNAL or external ones, and constitutes an access interface to
external objects.

-2 Model of sequences

A program expressed in the@VAL language establishes a relation between the sequences that constitute
its external signals. The set of programs of theM8\L language is a subset of the space of subsets of
sequences (paB, chapteill).

-3 Static semantics

The relations on sequences presented in the formal model describe a set of programs among them are
only considered as legal programs those for which the ordering of each set of instants is in accordance

I-4. SUBJECT OF THE REFERENCE 15

with the ordering induced by the dependencies (causality principle), and which do not contain implicit
definitions of values of non Boolean signals.

[-3.1 Causality

A real-time program has to respect the causality principle: according to this principle, the value of an
event at some instaritcannot depend on the value of a future event. The respect of this principle is
obtained in $GNAL language by the implicit handling of time: the user has a set of terms that allow
him/her to make reference to passed or current values of a signal, not to future ones.

[-3.2 Explicit definitions

The synchronous hypothesis on which is based the definition ofittreas language allows to develop
a calculus on the time considered as a pre-order in a discrete set.

|I-4 Subject of the reference

This manual defines the syntax, the semantics, and formal resolutions applied by a compiler to a program
expressed in thelENAL language. The ENAL language has four classes of syntactic structures:

1. The structures of the kernel languagefor which a formal definition is given in the model of
sequences. The kernel language contains a minimal set of operators on sequences of signals of type
event andboolean on which the temporal structure of the program is calculated; it contains also
a mechanism allowing to designate signals of external types and non interpreted functions aplying
to these signals. Removing anyone of these structures would strictly reduce the expressiveness of
the language.

2. The structures of the minimal languagethat can be subdivided in three sub-classes:

(a) the non Boolean types and the associated operators, which allow to write a program com-
pletely in the $GNAL languagethe open vocation of theSIGNAL language is neverthe-
less clearly asserted:it is possible to use external functions/processes, defined in another
language, or even realized by some hardware component; this is even advised when specif-
ic properties exist, that are not handled by the formal calculi made possible inghelS
language;

(b) the syntactic structures providing to the language an extensability necessary for its special-
ization for a particular application domain, and for its opening toward other environments or
languages;

(c) the operators and constructors of general use providing a programming style that favours the
development of associated methodologies and tools.

3. The standard (or intrinsic) process modelsvhich form a library common to all the compilers of
the SGNAL language;

4. The specific process model@hich constitute specific extensions to the standard library.

This manual describes the structures of the kernel language and of the minimal language.

16 INTRODUCTION

-5 Form of the presentation

Three classes of terms are distinguished for the description of the syntax of the language:

e the vocabulary of the lexical level: each one of teeminals designates an enumerated set of
indivisible sequences of characters;

e the lexical structures: th&erminals of the syntactic level are defined, at a lexical level, by rules
in a grammar the vocabulary of which is the union of teeminals sets; no implicit character
(separators, for instance) is authorized in the terms constructed following these rules;

e the syntactic structures: tHdON-TERMINALS are defined, at a syntactic level, by rules in a
grammar the vocabulary of which is composed ofTeeminals; any number of separators can be
inserted between twderminals.

Every unit of the language is introduced and then described, individually or by category, with the
help of all or part of the following items. Generally, a generic term representing the unit is given:
EXPRESSIONE?, Fo, ...)
whereE, Es, ... are formal arguments of the generic term. This representative is used to define the
general properties of the unit in the rubrics that describe them.

The grammar gives the context-free syntax of the considered structure in one of the following forms:

1. Context-free syntax

STRUCTURE ::=

DERIVATION1
| DERIVATION2

| ...
Terminal ::=

DERIVATION1
| DERIVATION2

| ...
terminal ;=

SET1
| SET2

DERIVATION1, DERIVATIONZ2 are rewritings of the variablBTRUCTURE (respectively, of the
variable Terminal). SET1, SET2 are rewritings of the variableerminal; they areDerivations
reduced to one single element (cf. below).

Each DERIVATION is a sequence alemens, each of them can be:

e asetof characters, written in this typography (lexical level only),

° a symbol (of the syntactic grammar) composed of letters, in this typography, for
which only the lower case form is explicited in the grammar;

« aterminal symbol| (composed of other acceptable characters), in this typography,
e aTerminal, in this typography,

e asyntacticSTRUCTURE, in this typography (syntactic level only),

I-5.

FORM OF THE PRESENTATION 17

e a non empty sequence efemers in their respective typography, with or withatstmment
in this typography, respectively in the following forms:

— element{ element}*
— { element} ~
e an optionalelementdenoted felement],
¢ adifference of sets, denote@fementl\ elementZ, allowing to derive the texts oflementl
that are not texts oflement2

The syntactic structures may appear either in the plural, or in the singular, following the context.
They may be completed by @ntextual informationin this typography. Finally, several deriva-
tions may be placed on a same line.

. Profile

This item describes the sets of input and output signals of the expression. This description is done
with the notations? (E) that designates the list of input signals (or portsybfand ! (E) that
designates the list of output signals (or ports)Ebf The notation ? {al, e ,an} (respectively,

! { ai, ... ,an}) designates explicitly the set of input ports (respectively, output pefis). ., a,.

Finally, the set operationgd N B, AU B andA — B (the latter to designate the set of elements of

A that are not inB).

. Types

This item describes the properties of the types of the arguments using equations on the types of
value of the signals. The notatiom(E) is used to designate the type (domain of value) of the
expressionE. Given a process model with nanfe (cf. partE, sectionXl-1, pagel73), the
notations (?P) and7 (! P) are used to designate respectively the type of the tuple formed by the
list of the inputs declared in the interface of the model, and the type of the tuple formed by the list
of the outputs declared in this interface (cf. parsectionXl-5, pagel79).

(a) EQUATION

Semantics
When the term cannot be redefined in theAL language, its semantics is given in the space of
equations on sequences.

. Definition in SIGNAL

TERM(E, Es, ...)
is a generic term of theIBNAL language, to which is equal, by definition, the representative of
the current unit.

. Clocks

This unit describes the synchronization properties of the arguments (values of Booleans and clock-
s) with a list of equations in the space of synchronization. The notai(ﬁ) is used to designate

the clock of the expressioA and the notatiori to designate the clock of the constant expressions,

or more generally, the clock of the context. An equation has generally the following form:

(@ w(Er) =w(E)

18 INTRODUCTION

7. Graph
This item defines the conditional dependencies between the arguments with a list of triples:

@ B 2 B,

The signalE; precedes the signals, at the clock which is the product of the clock®f, the clock
of E5 and the clock representing the instants at which the Boolean signlaas the valuérue:
at this clock,F5 cannot be produced before .

8. Properties
This item gives a list of properties of the construction (for example, associativity, distributivity,
etc.).

(a) PROPERTY
9. Examples

(&) One or mor&examples in the SGNAL language illustrate the use of the unit.

Chapter Il

Lexical units

The text of a program of thel&NAL language is composed of words of the vocabulary built on a set of
characters.

-1 Characters

The characters used in theGBIAL language are described in this secti@héracter). They can be
designated by an encoding which is usable only in the comments, the character or string constants, and
the directives, as precised in the syntax.

1. Context-free syntax

Character ::= character | CharacterCode

[I-1.1 Sets of characters

The set of characters (denoteldaracter) used in the & NAL language contains the following subsets:
1. Context-free syntax

character::= name-char | mark | delimitor | separator | other-character

(i) The setname-charof characters used to build identifiers:

(a) Context-free syntax

name-char::= letter-char | numeral-char | I:|

letter-char ::

upper-case-letter-char | lower-case-letter-char| other-letter-char

upper-case-letter-char::=

Al[eli{clio]i[E]I[F]I[e]iH]i1]
i fifefimpi[ngifoifP]i[Q]i[R]
s vl Xy 2]

20 LEXICAL UNITS

lower-case-letter-char::=

2N
sl

B
BE

o]
]
BEE
=]
BBE

HEE

=17

3
t]

other-letter-char ::=

>
o]

ERERBEE

>

HE
pra

o|] =[=] e]lo]

EREE

=)o o]=lo] =1>]

=|=]~]=llo

[<[e]=]=]ls][=

EEIREIL
EEEE

numeral-char ::=
ofrali2ifsifali[slifs]i[7]ie]i[e]

Excepted for the reserved words of the language (keywords), the upper case and lower case forms
of a same letterétter-char) are distinguished. The reserved words should appear totally in lower
case or totally in upper case.

(i) The setmark composed of the distinctive characters of the lexical units, and the set of characters
used in operator symbols:

(a) Context-free syntax

II-1. CHARACTERS

21

mark ;=

separating character in real constants

and distinctive character of matrix products

o felol =l v A] -] 5]

start and end of character constants

[| start and end of strings

start and end of comments

character used in the definition symbol

equality sign

inferior sign

superior sign and end of the dependency arrow
positive and additive sign

negative and subtractive sign, and dash of the dependency arrow
product sign

division sign, mark of difference, and sign of confining
construction of complex

delay sign

clock sign

exclusion sign

composition symbol

(iii) The delimitors are terminals of the syntactic level built with other characters than letters and nu-

merals:

(a) Context-free syntax

delimitor ::=

| parenthesizing, tuple delimitors
| parameter delimitors, dependencies parenthesizing

| array delimitors
input delimitor

output delimitor
separation of units

=LA

end of units

(iv) The separators given here in their ASCIl hexadecimal code (the space character ahahtie
separators are distinguished) :

(a) Context-free syntax

separator::= space

| long-separator

long-separator::= | \x9|horizontal tabulation

| | \XA |new line

| | \XC | new page

| | \xD | carriage return

22 LEXICAL UNITS

(v) The othermprintable characters, usable in the comments, the directives and the denotations of con-
stants. This subsetther-character, is not defined by the manual.

[I-1.2 Encodings of characters

All the characters (printable or not) can be designated by an encoded @reracterCode) in the
comments, the character constants, the string constants and the directives. The authorized codes are
those of the norm ANSI of the language C (possibly extended with codes for other characters), plus
the escape charact@ used in the comments. An encoded character is either a special character
(escape-codg or a character encoded in octal for@dtalCode), or a character encoded in hexadecimal

form (HexadecimalCod¢. The numeric codegJctalCodeandHexadecimalCodé contain at most the

number of digits necessary for the encoding of 256 characters; the manual does not define the use of
unused codes.

1. Context-free syntax

CharacterCode::= OctalCode | HexadecimalCode
| escape-code

OctalCode::= octal-char [octal-char [octal-char]]

octal-char= [o] | [1][[2]I[3]I[4]I[5]I[6]l

HexadecimalCode:= hexadecimal-char [hexadecimal-char]

hexadecimal-char::= numeral-char

([A]r[eli[c]i[o]I[E]I[F]
] r[efife]rfafi[e]i]f]

escape-code= |\a|audible signal
backspace
form feed
newline
carriage return
horizontal tab
vertical tab
backslash

' | double quote
single quote

? | question mark

<

percent

/o///_///////
S EESE - ~ ==

II-2. VOCABULARY 23

-2 Vocabulary

A text of the SGNAL language is a sequence of elements of Teaninal vocabulary (cf. section

I-5, pagel6) of the SGNAL language. Between these elemestparators can appear in any number
(possibly zero). ATerminal of the SGNAL language is the longest sequence of contiguetminals

and aterminal is the longest sequence of contiguous characters that can be formed by a left to right
analysis respecting the rules described in this chapter. A terminal can contain a distinctive mark; the next
mark is not acharacter (it is used as escape mark):

1. Context-free syntax

prefix-mark ::= start of CharacterCode

[I-2.1 Names

A name allows to designate a directive, a signal (or a group of signals), a parameter, a constant, a type, a
model or a module, in a context composed of a set of declarations. Two occurrences of a same name in
distinct contexts can designate distinct objects.

A Nameis a lexical unit formed by characters among the set composéettef-chars plus the
characte plus numeral-chars; aName cannot start with aumeral-char. A Name cannot be a
reserved word. All the characters oNameare significant.

1. Context-free syntax

Name::= begin-name-char [{ name-char }"]

begin-name-char::= { name-char\ numeral-char }

2. Examples

(a) a andA are distinctNames.
(b) X _25,The_password_12Xs3 areNames.

In this document we will sometimes designatamefrom a particular categorX by Name-X.

[I-2.2 Boolean constants

A Boolean constant is represented |lrwie | or ‘ false| which are reserved words (hence they can also
appear under their upper case forfRUE | and| FALSE).

1. Context-free syntax

Boolean-cst:= | [false]

24 LEXICAL UNITS

[1-2.3 Integer Constants

An Integer-cstis a positive or zero integer in decimal representation composed of a sequence of numer-
als.

1. Context-free syntax

Integer-cst::= {numeral-char }*

[I-2.4 Real constants

A Real-cstdenotes the approximate value of a real number. There are two sets of reals: the simple
precision reals and the double precision ones that contain the formerR8diecss are words of the
lexical level so they cannot contain separators.

1. Context-free syntax
Real-cst::= Simple-precision-real-cst
| Double-precision-real-cst
Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
| Integer—cstm Integer-cst [Simple-precision-exponent |
(a Simple-precision-real-cstmay have an exponent)

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
| Integer—cst|:| Integer-cst Double-precision-exponent
(a Double-precision-real-cstmust have an exponent)

Simple-precision-exponent:= | e | Relative-cst | | E | Relative-cst
Double-precision-exponent:= ERelative-cst | @Relative-cst

Relative-cst::= Integer-cst

| Integer-cst
| E| Integer-cst

2. Examples

(&) The notations contained in the following tables are simple precision representations respec-
tively equivalent to the unit value and to the centesimal part of the unit.

1e0 le+0 10e-1 le-2
1.0 | 0.1e1 | O0.1e+1 | 10.0e-1 0.01 | 0.001e1 0.001le+1 1.0e-2

[I-2.5 Character constants

A Character-cstis formed of a character or a code of character surrounded by two occurrences of the
characteEl.

II-3. RESERVED WORDS 25

1. Context-free syntax

Character-cst::= D Character—cstCharacterEl
Character-cstCharacter::= { Character \ character-spec-char}

character-spec-char::=
| long-separator

[I-2.6 String constants

A String-cst value is composed of a list of sequences of characters surrounded by two occurrences of
the charact.

1. Context-free syntax

String-cst::= { El [{ String-cstCharacter } *] El jaa
String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char::=
| long-separator

[1-2.7 Comments

A comment may appear between any two lexical units and may replace a separator. It is composed of a
seugence of characters surrounded by two occurrences of the chter

1. Context-free syntax
Comment::= [{ CommentCharacter } ™]

CommentCharacter::= { Character \ comment-spec-char }

comment-spec-char:= %

-3 Reserved words

A reserved word must be either totally in lower case or totally in upper case. In this manual, only the
lower case form (in general) appears explicitly in the grammar rules. It can be replaced, for each reserved
word, by the corresponding upper case form.

The reserved words used by thes8AL language are the following ones:

1. Context-free syntax

26

LEXICAL UNITS

signalkw ::=

action‘ | ‘after‘ | LM | |array

boolean| | |bundle

case|

cell| | | char

complex| | | constant] | | count|

dcomplex |‘defau|t | |defaultvalue| | deterministic‘ | ‘dreal‘

else| | ‘end‘ | ‘enum‘ | event‘ | ‘external‘

false| | |from | | |function

if] | [in]

init‘ | ‘integer‘ | ‘iterate‘

Tabel ‘ | |long

module| | | modulo]|

next‘ | ‘node | ‘not‘

E |\E)erator | E‘

pragmas| | ‘private‘ | ‘process{

real| | |ref]

safe| | short‘ | ‘spec‘ | ‘statevar‘ | ‘step‘ | ‘string‘ | ‘struct‘
|

ten] | [o] | [| [| [oe]

unsafe‘ | ‘ use‘

var

when| | [where| | |window| | |with |

xor

is currently hidden in the syntax of the language.)

Part B

THE KERNEL LANGUAGE

Chapter Il

Model of sequences

lI-1 Syntax

We consider:

e A={a,a1,...,an,b,...}
a denumerable set of typed variablesorts);

) Fz{f,fl,...,g,...}

a finite set of symbols of typed functions;

e T={event ,boolean ,...,t, ...}
a finite set of basic types (sets of values);

o TT= |J [0.0) =TT

nelN
the set of array types,

. ss:U B—77T

BeA
the set of tuple types,

e 7T =TUTTUSS
the set of types.

e the symbolgdefault ,when,$.
We define the following sets of terms, defining the basic syntax of th@&. language:

e GD={ta}
the set ofdeclarations(association of a type with a variable);

e GSS={u,11:= flay,...,ap)}
the set ofstatic synchronougenerators (elementary processes), among them the set of generators
on arrays and tuples are distinguished;

e GDS = {(IQ =Loal $init ao}
whereaqg is a constant with same domain @s the set ofdynamic synchronougenerators (ele-
mentary processes);

30 MODEL OF SEQUENCES

e GE ={a3:=: a; when ay} the set ofextractiongenerators (elementary processes);

e GM= {(13 = a; default CLQ}
the set ofmergegenerators (elementary processes);

e recursively the sedPROC of syntactic processes as the least set containing:

— G=GDUGSSUGDSUGEUGM
the set of generators,

— PC={P1|P2 whereP1andP2 belong toPROC}
(composition process),

— PR={P1/ a (denoted also P1 where a) whereP1 belongs toPROC anda
belongs toA}
(restriction process).

[1I-2 Events

Let D be the set of values that can be taken by the variablegyvantis an occurrence of theimul-
taneousvaluation of distinct variablegsynchronous commmunication).he values respect the prop-
erties resulting from the interpretation of the terms which are usedD,Ithk set of Boolean values,
B={true, false}, is distinguished.

For a variabley; € A, and a subset; of variables inA, we consider:

ID,, the domain of values (Booleans, integers, reals...) that may be taken by

Da, = |J D
a; € Aj
Ds=D

The symbolL (L ¢ ID) is introduced to designate the absence of valuation of a variable. Then we
denote:

DL =DuU{Ll}
D} =D, U{L}
ConsideringA; a non empty subset of, we calleventon A; any application
e: Ay — Dy,
e ¢(a) = L indicates that has no value for the event.
e ¢(a) =v Iindicates, fow € ID,, thata takes the value for the event.
e(A1) ={z/a € Aj,e(a) = x}

The set ofeventon A; (47 — IDJA;I) is denoted‘,’zl.

By convention,1 . is the single event defined on the empty set of pbisis calledunit eveny.
Theabsent everdn A; (4; — {L})is denotedl .(A;).
The set

ca = U &,

A;CAy

I1I-3. TRACES 31

is the set of all events on the subsetsgf
It is defined a special event ohy, denoted:, which is calledblocking evenfor impossible event).
The following notations are used:

Eay =&Y Uit}

Partial observation of an event

Let A; C AandA; C A two subsets off ande € £ 4, some event ond;.
The restriction ok on A, or partial observation of on A, is denoteda‘AQ:

€14, € gAmAQ
It is defined as follows:
o (AiNA#NAN(e#1) = ((VacAinA) ((ea,)(a)=ce(a)))
o (AMNA 20 A(e=1) = (ea,=1)
o (A1NAy=0) = (eja, =¢€p=1¢)
Product of events

Lete; € £4, andes € E4, two events.
Their product is denoteé -e5:

e=er-es € EAUA
It is defined as follows:
e (e=1) & (1 =1V (e2=1))V (e1jan4; # €2141n4,))
o (e#f) = ((eja, =e1) Aleja, =e2))

Corollary 1 (5941 1) is a commutative monoid.
The product operatoris idempotent and is an absorbent (nilpotent) element.

[1I-3 Traces

A traceis a sequence of events (sequence of observations) without the blocking event.
For any subsefl; of A, we consider the following definition of the s’é@h of traces onA;.

[11-3.1 Definition

le is the set of non empty sequences of eventslpncomposed of:

e finite sequences: they are the set of applicatibhs, I— 5;‘11 where M, represents the set of
finite initial segments oI (set of natural integers),

32 MODEL OF SEQUENCES

e infinite sequences: they are the set of applicatibhs- 5;‘11.
The set
*k *
CA — U TAi
AiCA

is the set of all non empty sequences of events on the subsais of
The empty sequence of events is dendled
A trace onA; is either a sequence Gf'jl or the empty sequence. The set of tracesigris:

The set of traces on subsetsAf is:
TgAl - Tg*Al U{07}

The set of traces defined oh denotedZ, is the union of the sefd 4, for all subsets41 of A.

The single infinite sequence defined 'B@* is denotedl 7 and is calledunit trace. It is equal to the
infinite repetition(1.)* of the unit eventl .

Theabsent tracen A; (N — {_L.(4;)}: the infinite sequence formed by the infinite repetition of
Le(Ay))is denotedl 4,.

Notations

The smallest set of variables dfon which a given trac&’ is defined (definition domain of the events
composingT) is referred to asar(T). By conventionyar(07) = A.

For a tracel” andt an integer, we will note frequently; the eventl'(¢) of T" at the instant, and we
will note sometimes; the value of a variable for this event.

[11-3.2 Partial observation of a trace

Let A1 C AandA, C A two subsets off andT ¢ TA1 some trace om;.
The restriction ofl”’ on A,, or partial observation df' on A,, is denotedl’” Ay
If Ay N Ay # 0, T4, is the traceT’, such that:

dom(Ty) = dom(T)
{ vt € dom(T) To(t) =T(1) 4,

If Ay N Ay =0, Tyia, =Tyo = 1p.
If A2 ?é (Z), OT||A2 = OT.

11-3.3 Prefix order on traces

The following relation is defined on traces:
T, £15 ifand onlyif:

{ dom(Ty) C dom(T5)
(V&) ((t €dom(Th)) = (T(t) =Ta(t)))

I1I-3. TRACES 33

It is said thatl} is a prefix of15.

Corollary 2

e /is an order relation oriT, OT is the minimum for this order.
e The set of prefixes of a trace is a chain.

e Any subset of prefixes of a trace has an upper bound.

The notationZ<; represents the prefix of a tragesuch that € dom(T<;) andt + 1 & dom(T<).

[11-3.4 Product of traces

The productl” = T;-T> of two tracesl’} and7; defined respectively oA, and A, is the greatest trace
for the order relation” such that:

(Tjay £ T1) N (Tja, £ T2)
(itis defined onA; U A, and is obtained by termwise products of respective events).

Corollary 3 ('TQA1 -, 17) is a commutative monoid.
The product operatoris idempotent anf)7 is an absorbent (nilpotent) element.

[11-3.5 Reduced trace

A traceT; is said to be &ub-traceof a non empty trac& if and only if there exists an infinite sequence
f1, strictly increasing (i.e., injective and increasing) N(duch a sequence is callegpansion function
ony), such that:

T 0 fijdgomry) = T1

(the notationf| x designates the restriction of a given functifion the domainX).

Remarks
e O is a sub-trace of any trace;
e any prefixT; of T is a sub-trace dfs.
Corollary 4 The sub-trace relation is a preorder (reflexive and transitive).
The sub-trace relation is not antisymmetric, as shown by the following sequéngss: and(Ga)“

(with f1(n) = n + 1).

Definition A traceT; (defined onA,) is said to be aeduced traceof a non empty tracé (defined
on Ay) if and only if Ty is a sub-trace ol and:

e (dom(Ty)isfinite) = (dom(T») is finite)

e for any expansion functiori; on T} such thatls; o fl‘dom(Tl) = T3, then:

(Vt € (dom(T2)) \ fi(dom(T1))) (Ta(t) = Le(A2))

34 MODEL OF SEQUENCES

Proposition The relation'is a reduced trace of”is an order relation.
“Ty is a reduced trace df,"” is denoted:

T €Ty

Proof of antisymmetry:T} C| T, and7, C| T}
dom(Ty) = dom(Th)
If dom(T1) is finite then the single possible expansion functioriZris the identity.
For any tracel’, T is a prefix of 1} if and only if it is a prefix ofT5 is proved by recurrence on the

length of T".
Then the existence of an upper bound to any subset of prefixes of a trace proves the equality.

For a given expansion functighand a tracd;, there exists a least trace (for the prefix ordgris,

such thatl; C| 7.
We denote by the function that, to an expansion functigrand a tracd’, associates this least trace

f 1T (example on figur&—Ill.1).
Then we have, by definition:

TC, f1T
T €1 €2 L €3 651
AT & 1 1 ey gl es 1 1

Figure B—IIl.1: f1 1 T with f1(0) =0, f1(1) =3, f1(2) =4, f1(3) =5...

Property:
LT(ATT)=(faof1)1TT

For anyf, we have als¢f 1 O = Op.
By convention:f T 1p = 1.

l1I-4 Flows

Definition A flowis a trace which is minimal for the relatian, .

Comment: A flowF' on A, is a trace that does not contain the absent event;dretween two events
which have valued variables.

Corollary 5

e (Fisaflowandr; / F) = (F}isaflow),

I1-4. FLOWS 35

e Opis aflow;
e 1y isaflow;
e if Fis a finite flow onAy, then(F L, (A;)*) is a flow;

o |4 isaflow

[I-4.1 Equivalence of traces

Definition Two traces’; and7; are said to be equivalent modulo (this is denotedZ’ =, T) if
and only if there exists some tragesuch thatl’ C| 77 andT" C| Ts.

This relation is indeed an equivalence relation.
Property For any tracel’, the equivalence class @f modulo L is a lattice.

Proof
e By definition, every paiff}, 15 in an equivalence class has a lower bound.

e Every pairTy, T» in an equivalence class has an upper bound:
Let f1, f> such that:

Ty o fi = min(Ty, Ty)
Ty o fo = min(Ty, Ty)

The upper bound is the trace
max (T, T2) = f1 1Ty = f3 1 Tz
with f1, f4 defined as follows:

Vi, if s, f1(s) = t thenf](s) = max(¢, fa(s)),
if s & fi(dom(min(T1,T5))) thenifs = 0thenf{(s) = 0elsef|(s) = fi(s—1) +1

(f4 is defined symmetrically).
Then

(f{ o fl) T min(Tl, TQ) = (fé o f2) T min(Tl, TQ) = max(Tl, TQ)

Each equivalence class has a flow as lower bound. For affattes flow is denoted’) .

Notation The set of flows om; is denotedS 4, .

36 MODEL OF SEQUENCES

[1-4.2 Partial flow

Let A1 C AandA; C A two subsets off andF' ¢ SA1 some flow onA4;.
Theprojectionof F' on Ay, denotedl 4, (F'), is defined by:

4, (F) = (Fjjay))
The following equalities hold:
o VF, IIy(F) =17
o 114,(07) =0p

b HAQ(J—Al) = J—AmAg

[11-4.3 Flow-equivalence

Equivalence moduld. is an equivalence relation that preserves the simultaneousness of valuations within
an event and the ordering of events within a trace: traces which are equivalent mgogsess the same
synchronization relations.

A weaker relation is introduced, which is called flow-equivalence. It allows to compare traces with
respect to the sequences of values that variables hold.

Definition A traceT” defined onA; is arelaxationof a tracel” defined on the same set of variables
Ajifand onlyifforalla € Ay, T”{a} Cy T/”{a}' This is denotedT” C T".

Corollary The relaxation relationc is an order relation.

Definition Two tracesl; andT) are said to bélow-equivalen{this is denoted?; ~ T5) if and only
if there exists some tracE such thatl’ C 77 andT C T5.

The class of flow-equivalence of a tra€es a semi-lattice. It admits a lower bound which is a flow,
written 7.

[1I-5 Processes

[11-5.1 Definition
A processon A; C A is a set of flows om; which are non comparable by the prefix relation.
Example Let us represent a flow by the sequence of its events, where an event is represented by the

variables which are valued for it (successive events are separated by the sign “;”).
Consider the following flows defined on variables:

Fi: a;ab;b
F5: a;ab;ab
F5: a;ab;b;b

The flowsF; and F;, (respectively,F, and F3) can belong to a same process. Howevérand Fj
cannot belong to a same process since they are comparable.

I1I-5. PROCESSES 37

The set of processes oh is denotedP 4, . Itis a subset ofP (S 4,), the set of subsets & 4, .
The set

P§A1: U Pqu

A;CAy

is the set of processes on the subsetd of

The processlp = {17}, defined on the empty set of porls and with the unit trace as single
element, is callednit process.

The process onl; defined by the empty set of flows is denofgg (A).

Notation

The notatiorvar(P) is used to designate the smallest set of variable$ of which the proces® is
defined.

[1I-5.2 Partial observation of a process

Let A; C AandA,; C Atwo subsets off and P a process onl; .
Theprojectionof P on A,, denoted1 4, (P), is defined by:

M4, (P) = {Il4,(F) / F € Pandll4,(F) is maximal for/}

[11-5.3 Composition of processes

Let P, and P, two processes defined respectively nand A,.
Thecomposition(or synchronous compositiasf P; and P, denotedP; | P, is a process orl; U Ao
defined by:

PP, ={F €Sau4,/ (BFieP) (La(F)LF))

AN(BFeP) (Ha(F)LF))
N (Fis maximal for/)}

Corollary 6 (73941 ,,1p) is a commutative monoid.
The composition operatdris idempotent an@p(A;) is an absorbent (nilpotent) element.

I11-5.4 Order on processes

The following relation is defined on processes:
P, £ P, ifandonlyif:

VFveP) ((AFReh) (F14F))

This relation is an order relation.

38 MODEL OF SEQUENCES

Proof of antisymmetry:

(Pllpg) = ((VFl EPl) ((HFQGPQ) (Flng)))

(PQZPl) = ((3F3€P1) (FQZFg))

ThenF; = Fj3 since flows in a process are not comparable’by

ThenF| = F5. ThusP, = P. O

Corollary 7

o I14,(0p(A1)) = 0p(A1 N Az)

 Wyar(p)(P) =P

4,04, (P) = (114, o I14,)(P)
4,04, (P) £114, (P)|ILa,(P)

Wyar(py)(PLIP2) £ Pi

IT is monotonic: P, / P) = (IIg(P) Z1g(R))

|is monotonic: P, £) = (Q|P1 £ Q|F2)

o L5(Py|Py) £ I5(P)|p(Ps)

Proposition Let P, and P, two processes defined respectively nand As.

(Pl = 1Ily, (P1’P2)) A (HAlﬂAz(Pl) Z HAlﬂAz(PQ))

Sketch of the proof:
Sincell4, (P1|P2) £ P itis sufficient to prove that

(Pl £ 114, (P1|P2)) A (HAlﬂAz (Pl) Z HAlﬂAQ(PQ))

=) Assume thai?, £ 114, (P1|F2).

LetF € HAlﬂAg(Pl)

(FFe) (F=1I4na,(F1))

SinceFy € Py, by hypothesis,(3F’ € T4, (P1|P2)) (Fy L F')
Thus (ElF”EP1|P2) (Fl ZHAI(F”))

By definition of the composition(3Fy € P») (14, (F") L Fy)
Let FQW = I14,n4, (FQH)

ThenF £ Fy/

<) Assume thalls,na,(P1) £ 114,04, ().

If F; € Py, then (ElFQ S HAlﬂAQ(PQ)) (HAIQAQ(Fl) £ Fy)

Thus (EIF2/ € P2) (HAlﬂAz (Fl) £ 114,04, (F2/))

Thus (3F€P1’P2) (FllﬂAl(F)) OJ

I1I-6. SEMANTICS OF BASICSIGNAL TERMS 39

Consequences
o if AyNAy=0: P, =114, (P|P)andPy = [, (P | P2)
o if A C Ay (P =114, (P1|P)) & (P 2114 (P))
o if Ay C A (P =Py|P) & (Ia,(P) 2 P)
o if Ay =Ay: (PL=P|P) & (P4P)

As an application, ifP, represents a safety property defined on the same set of variahlgs Bs
satisfies the property,, which means that any flow a?; is a flow of P, (P, is less constrained than
Pl), if and OnIy if P, = P1|P2.

Note that there is the same result whenis defined on a subset of the variablespf

More generally, ifAs C Ay, P = P;|P, means thaf; is anabstractionof P; .

[1I-6 Semantics of basicSIGNAL terms

The semantics of each primitive operator is defined by a set of flowsseas processon A; C Aisa
non empty set of flows o, (i.e., a subset oSAl) defined, from primitive operators and composition,
by constraints(relations) on the flows.

In the following, we denote generically : PAl a process o, to define the semantics of the
corresponding term. In addition, we denet (x4, ..., z,) the set of ther; variables { = 1,...,n)
which are distinct.

I1I-6.1 Declarations

Let ;. designate a type whose domain of values (g.).
The term

X

defines a procesB : P{ X} representing all the possible sequences of values of the signal

P=r{ TeSxy/
V) (LX) #1L) = (T(X)eT(w)) }
[1I-6.2 Monochronous processes

A processP defined onA; is saidmonochronousf, at each instant for which one of the signals
is present (respectively, absent), all of them are also present (respectively, absent). Flows defining
monochronous processes are called also monochronous flows.

VI'epP) ((vt) ((BXeA) (L(X)=1)) = ((Wed) (L(Y)=1))))

40 MODEL OF SEQUENCES

2-a Static monochronous processes

LetF be an operator. Under some interpretaticior which the interpretation df is denoted| F'||;, the
term

Xn+1 = F(Xl,...,Xn)

defines a procesk : Pvar(Xl, ..., Xn, X,.1) DY some relation between the sequence of values of the
signalX,+1 and the sequence obtained by the pointwise extension of the applicatignuotier this
interpretation, to the sequence of tuples of values of the sighals. X, (hote that the sign:%: ”
makes explicit the fact that this term represents a non oriented equation).

P=x{ TeSvanx, . .., X0 Xns1)/
T is monochronous and

(vt) ((T{(Xnt1) # L) = (T(Xna) = [[Fli(Ti(X), Ti(Xn)))}
2-b Dynamic monochronous processes: the delay
The term
Xo =0 Xq{ $init Vo

defines a procesP : Pvar(X1, X,) by the relation constraining the equality of the sequence of values
of the signalX, and the sequence of values of the sighaldelayed by 1Y, is the initial value ofX.

P=xr{ Te¢ Svar(Xl,Xg) /
T is monochronous
and (Vt>0) ((Ty(X2) # L) = (Ty(X2)=T—1(X1)))
and(To(X1) #1L) = (To(X2)=V) }

[11-6.3 Polychronous processes

A process defined oA is saidpolychronousf it contains a flowI" for which there exists some instant
in which one of the signals is present while another one is not. By extension, a term is said polychronous
if it allows to define polychronous processes.

3-a Sub-signals
The term
X3 = X;whenX,

defines a procesP : Pvar(Xl,XQ,Xg) by the relation constraining the equality of the sequence of
values of the signats; and the sequence of occurrences of value of the signahen the Boolean signal
X, carries the valuérue.

P=x{ TeSanx, xs x5/ (V) (
(Ti(X2) = true) = (Ty(X3) = Ti(X1)))
N (Ty(X2) #true) = (Tu(X3)=1))) }

I1I-7. COMPOSITE SIGNALS 41

3-b Merging of signals
The term
X3 = X default X5

defines a procesP : Pvar(Xl,Xg,Xg) by the relation constraining the equality of the sequence of
values of the signat; and the sequence formed by the occurrences of value of the Zigoaby default
the occurrences of value of the sigial

P —A { T e Svar(Xl,Xg,Xg) / (Vt) (
(T:(X1) # 1) = (Ti(X3) = Ti(X1)))
AN (LX) =1) = (Ti(X3) =T(X2)) }

[I-6.4 Composition of processes

The term
Py | Py

whereP; andP, define respectively processPy§ andP5 on the sets of variabled,; and A,, defines a
procesP : PAlu A, by the greatest relation constraining their common signals to respect the constraints
imposed respectively by, andP, (see an example on the figuBe-ll.2).

P =5 P4|P>

[1I-6.5 Restriction

The term
P1 / a

(or Py where a)
whereP; defines a procesP; on the set of variables!;, defines a procesP : PAl\{a} by the
projection of P; on the subset of ports & which are different froma.

P=atly (@)

llI-7 Composite signals

The types of the &NAL language contain elementary types such as Booleans, integers, etc., but also
structured types allowing to declare composite objects. Structured types are tuple types and array types.

42 MODEL OF SEQUENCES

| |
ay CL U3
P1 1 1
ay J Wo)‘ 1
a9 \/ W9 \(L
| |
P2 ; ;
as : 1 : T3
Lo
[[Ny
aq 1 : U1 : V2 i 1 i (R}
P1|P2 as 1 Wy 1 Wy 1
as T i i) i 1 i 1 i I3
| | | |
| | | |
a1 U3 Uy
P1|P2 as o 1 1 o
as L €3
Figure B-IIl.2: Two flows of the composition &t andP2
1I-7.1 Tuples
Construction of tuple
If E4, ... ,E, designaten signals of respective types, ..., un,, the term
(E11' .. 7Em)

defines a tuple of signals, of tyge, x ... x u.,) (Where x designates the product of domains), such
that

(V) ((E1s-. En) e = (Eig, o Emy))

Tuple types

I1I-7. COMPOSITE SIGNALS 43

Letm typesuyq, - .., um, m Names of variables,, ..., A,, and a process of synchronizatiéh
The term

bundle (w1 Ayg; ... pm An;) Spec C
defines a tuple type (with named fieldls .. .,A,) as the set of functions:

= {Ag,.. A — UT(M) such thaE(A;) € T(ui).
i=1
It is reminded that the notation(ui) designates the domain of values (type) associatedwith
When(' is the process of synchronization that defines all the fields of the tuple (recursively) as being
synchronous, the corresponding type is then denoted by the term:

struct (ju1 Agy oo i Anl)

It can be considered, generically, that a tuple type, represented by a tuple with named or unnamed
fields (cf. sectionv—5, page76), can be viewed as a product of domains

(11 X - X i)
wherey, is the type of thé:" element of the tuple.

Declaration of a tuple variable (with named fields)

The association of a tuple type with synchronizatioywith a variable, denoted by the term
bundle (w1 Ag; ... Ag;) Spec C' X

defines a polychronous tuple of signals, such that

(ve) (
(V) ((Xe(hs)# L) = (X(as) €T(mi))))
/\ (the relation defined by the process denoted’tig verified))

Remark:
Such a declaration is a@N\NAL process with as interface, Ai, ..., um Ay ininput, and the empty set
in output.

For the particular case of a monochronous tuple, the association denoted by the term
struct (1 Ay ... Ap)) X

defines a monochronous tugignal, such that
V) ((Xe#L) = (V) (Xe(hs)eT(m))))
Access to an element

WhenX designates a polychronous tuple the type of which is defined as the set of functions
Z:{A1,... Ay} — [Jui such thaB(a;) € p;,
=1
the term

Y = X.A;

44 MODEL OF SEQUENCES

defines a process allowing to access to a component of the tuple:

(V) (Vi =Xi(A1))

Particular case: whendesignates a monochronous tuple, the term
Y = XA
defies a monochronous process allowing to access to a component of the tuple:

(Vt) ((Xe#Ll) = (Yi=Xi(A1)))
Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise exten-
sion) to tuples.

Let us consider someperatorF defined with the following signature:
1 X oo X UN — UN41
(note that operators may be polymorphic on some of their operands, so that a.gineay stand here
for some set of types).

We will denote
(X_asy,. .- X agg)
the elements of a tupbg, with m elements.

If at least one of thé& is a tuple the elements of which are correspondingly possible arguments of
the operatoF, more precisely, if
Em) (VR (T(K) = (g %) V(T (Re) = 1))) A

BR) (T(xe) = (g % x g,,))))

(wheregty,, ..., Ky, andit, represent some particular instances of typk
the term
XN+1 = F(Xls---ny)

under some interpretatioh, specifies a process which defines the tuple wittelementsXy, 1 by a
pointwise application of:

(vVt) (Vi, 1 <i<m) (X_ainy1, = [|[Fll1(vi_ait, -, vn_ait))
where
((T(6) = (i, %o x) = (vp_aiy = X_aig) A
(T(Re) # (g o)) A (T(R) =) = (ve_air = X))

This defines recursively new signatures of the operators, so that the pointwise extension can be
applied recursively.

-7.2 Arrays

ID being the set of values that can be carried by a variable, we introduce a distinguished value, denoted
nil, such that, semantically,il ¢ ID andnil # 1. This value is in particular the value of a non defined
element of an array. In the language, a value equalitanay be any (non determined) value of the
correct type.

I1I-7. COMPOSITE SIGNALS 45

Array types

Letm integersny, ...,n,, (n; € IN), and a type-.
The term

[n1,...,nm] v

defines an array type as the set of functions:
([0.n1 —1] x ... x [0.;, — 1]) — T (),
where [0.n; — 1] denotes the set of integers included between Ogrdl, andT(y) denotes the domain
of values of typev.
The curryfied and non curryfiedforms of the functions defining an array type are considered as
equivalent.
Thus, when the type is itself an array type, defined by the set of functions
([0.1mpmq1 — 1] x ... X [0.ngpp — 1]) — ’7'(,u),
the type denoted blyn,...,n,,] v is defined by the set of functions
([0.nqy — 1] x ... x [0.nnppqp — 1]) — T(u).

Declaration of an array variable

The association of an array type with a variable, denoted by the term
[n1,...,np] VX

defines an array signal such that

(vt) (
(Xi #1)
= ((Vk,1<k<m) ((Vig, 0<ip <ng—1) (Xe(ir,... im) €T(@)))))

For X an array of typg[0..ny — 1] x ... x [0..n, — 1]) — v,
the set of tuples of types [@; — 1] x ... x [0..n, — 1] wherel < p < m is designated by om(X).

Complete arrays and partial arrays

An array of type([0..n; — 1] x ... x [0..n,,, — 1]) — v is saidcompletdf the function
([0.ng — 1] x ... x [0.n, — 1]) = v
that defines it is total.
If this function is partial, the array is sajartial.
In this case, it is defined by the total function
([0.nq — 1] x ... x [0..ny, — 1]) — v U {nil}
that extends this partial function by associating with the non defined elements.

When the array defined by one of the following operators may be partial, the function described
by this semantics is necessarily a restriction of the function that defines the array. The corresponding
extension is such that any element non defined by the semantics is equial to

46 MODEL OF SEQUENCES

Array element

WhenX designates an array the type of which is defined as the set of functions
([0.n1 — 1] x ... X [0.n, — 1]) — v,

andI4, ..., I, are signals of type integer,
the term
Y = X[I4,...In]

defines a monochronous process allowing to access to an element of the: array

(vt) (
(X¢ # 1)
= (V) (0< Ty <np=1)) A (Ve = Xe(lre, -5 Imi))))

This operator is generalized below (see “extraction of sub-array”).

Static enumeration of array

The term
X = Eq,...Eq
defines a monochronous process enumerating the elements of an array:

(vt) ((Xe#L) = ((Vi=1,....,n) (Xu(i)=Ey)))
Iterative enumeration of array

The term
K :=: Nrecur ffrom V,

(whereN, maximum number of iterations, denotes a positive integer, which has a stricly positive upper
bound,upper_bound(N); Vo, denotes a value (or a tuple of values) of typeandf is a function fromy

into),

defines a process enumerating elements of a vectewbsizeupper_bound(N):

(vt) (
(K:# 1)

= (Vi) (((0<i <N =1) A((K(0) = Vou) A\ (Ki(i 1) = [|F1]1(K:(2)))))
Vo ((Ne <@ < upper_bound(W)) A\ (Ki(i) = nil)))))

The equationk; (i) = nil expresses the fact that the corresponding value exists (since all the ele-
ments of an array have the same clock), but it is not determined. In the language, this can be represented
by: Ky (i) = Kq(2).

This form is not provided as such in the concrete syntax of the language.

A particular formis 0.. N—1 which represents the term Nrecur ffrom O wheref
designates the function on integers such fi{ay = = + 1.

I1I-7. COMPOSITE SIGNALS 47

Pointwise extension

The operators defined on values of elementary types may be extended canonically (pointwise exten-
sion) to arrays.

Let us consider some operatodefined with the following signature:
M1 X .. XUN = [N+1
(note that operators may be polymorphic on some of their operands, so that a.gingay stand here
for some set of types).

If at least one of th&X, has one dimension more than the corresponding argument in the definition
of the operatoF, more precisely, if
@Em) (K (T(Tx) = [0.m — 1] =) V (T(TXe) = 1))) A (

- GR(7(TX) = [0.m — 1] —/)))

(wherei,, andi, represent some particular instances of typg
the term

TX]\H_]_ = F(TX4, ..., TXN)

under some interpretatioh defines a monochronous process which defines the aXgay by a point-
wise application of:

(vt) (
(TXN—Ht # J—)
= ((Vi, 0<i<m—1) (TXn414(8) = [[Fll1(v1:(0), - -, vne(i)))
where
((T(Tx) = [0..m — 1] —Hr) = (ki) = TXp(4)) A (
(T(THe) # [0.m — 1] =) A (T(THe) =ity)) = (0he(i) = TXpy))))

This defines recursively new signatures of the operators, so that the pointwise extension can be
applied recursively.

Cartesian product

With I andJ arrays of respective types
7-(I) =[0.m—1] - u andT(J) =[0.n—1] — v,
the term

(11,3]):= <ILJI>

defines a monochronous tuple of signdl&r, JJ), with IT andJJ of respective types
7(11) =[0.m *n — 1] — pand7(33) = [0..m*n — 1] — v,
such that:

(ve) (
(I # 1)
= (Vk,0<k<m-—-1) ((Vp,0<p<n—-1) (
(LI(k*n+p) = Li(k) \ (JJe(kxn+p)=Ji(p))))))

More generally, if is a tuple (with unnamed fields) of type
T(I)Z[O..m—l] — p1 X ..o x [0.m = 1] —

48 MODEL OF SEQUENCES

andJ is an array of type
7(3)=[0.n—1] — v,

the term

(II4,...11,,30):= <IL,I>

defines a monochronous tuple of signéis,, . . ., I1,, JJ), with, if /1 designates the tupl@I,,...,II;),
II andJJ of respective types
T(II)Z[O..m*n—l] — 1 X .o x [0emxn — 1] — py,
7(33) =[0.m*n —1] — v,
and:
(vt) (
(It # 1)
= ((Vk,0<k<m-—1) ((Vp,0<p<n-1) (
(IIi(kxn+p) = L(k) N (JJe(kxn+p)=J(p)))))
The cartesian product is used in particular to define jointly indexes used for multi-dimensional itera-

tions of processes.

Remark:i<Iy,... In;> = <1;,<1s,... Inx>>

Partial definition of array

The term
Y =(Ig,...,In): X
wherelq,...,I, are integers or arrays of integers:
7(11) =.. —T(I) ([0.51] x ... x [0..b,]) — v

with v an integer type, and the ba5|c integer values ofithare positive or zero,

T(x) = ([0..c1] % ... x [0..¢p]) — pwith¢; > by,...,cp > by,

and7(Y) = ([0..a1] x ... X [0..a,,]) — p U {nil} withfor 1 < i < n,a; = max I;(K)
KeDom(I;)

defines a monochronous process which specifies, in the general case, a partially defined array:

(vt) (

(X¢ # 1)

=
((p —0)/\(
(Ye(Lig, -5 Ine) = Xe) A\ (
(VJGDO’m() ((J#(

V (=1 A
((Y(Jj1y---,Jn) € N") (
K:{(lﬁ,...,k‘p)E|Np/V’i,1Sign,]it(kl,...,kp):ji})) = (
(K=0) = Yi(1,-...00) =nil)) A\ (
(K#0) = (Kma =maxk) = (Yi(j,- - n) = Xe(Kmas))))))))

where thek,,,, are obtained by the maximal elements in the $étsising the lexicographic order on
INP.

Ly dng)) = (Yi(J) = mil)))))

I1I-7. COMPOSITE SIGNALS 49

Extraction of sub-array

The definition of the operator of access to an element of array given above is generalized in the
following way to define the extraction of sub-array.

The term
X = Y[I4,....I0]
wherelq, ...,I, are integers or arrays of integers:
7(11) =... =7(10) = ([0.01] x ... x [0..b,]) — v

with v an integer type, and the basic integer values ofithare positive or zero,
7(Y) = ([0..a1] x ... x [0..a,]) — p
and7(X) = ([0.01] x ... x [0.b,]) — U {nil}

defines a monochronous process which, in the general case, extracts some sub-array from

(vt) (

(Y # 1)

=
((Lips- - Ing) € Dom(Y)) = (Xo=Yi(Tigs- e s D)) A (
(T Tng) & Dom(Y) = (X, = nil)))

Vo (Y0155 dp) € NP VR T <k <p, 0<jp <bp) ((
((L1e(rs -5 Gp)s -+ Ine (1, - -+ p)) € Dom(Y)) (
Xt(jlu v 7.jp) = }/t(jlt(jla v 7.jp)7 cee 7Int(j17 cee 7.jp))) /\ (
((Ilt(jla"'7.jp)7"'7Int(.j17"'7jp)) gDOm(Y)) = (
Xi(j1, -+ dp) = mil))))))

Sequential definition

The term
T = Tilnext T2

where:

7(T1) = ([0.c1] X ... [0..¢p]) — g1 U {nil},

7(T2) = ([0.51] X ... x [0.b,]) — p2 U {nil} with ¢ > by,..., ¢, > by,
and7(T) = ([0.c1] X ... x [0..cp]) — (w1 U p2) U {nil}

defines a monochronous process which specifies, in the general case, a sequential definition of an ar-
ray:

(vt) (
(Ty # 1)
= ((YU1,- - Jp) ENPVE 1<k <p, 0<jr <cx) ((
(1,5 Jp) € Dom(T2)) A\ (T2(j1,- - -, Jp) # nil)) = (
Xie(g1s - dp) = T2(1, -+ 53p))) A (
(15 dp) € Dom(T2)) V (T2t(j1, .- -, Jp) = nil)) = (
Xie(g1s - dp) = Th(G1, - 59p))))

50 MODEL OF SEQUENCES

[I-8 Classes of processes

The following classes of processes are usefully distinguished.

[1I-8.1 Iterations of functions

Let P a process defined af;. P is aniteration of functionon Ay C A, if and only if:
(VEL, Fe € P) (Vi te) (Fuya,(t) = Foa,(t2) = (Fi(t) = Fa(t2))))

Remark: An iteration of function does not need memory.

[11-8.2 Endochronous processes

Let P a process defined 0A;. P is endochronouwn A, C A, whereA, is considered as a totally
ordered sefaq, ... ,ay}, if and only if the function

d:P— H{al}(P) X ... X H{an}(P)
such that
B(F) = (Hgq (P, Mgy 1 (F))

is injective (and thus bijective, since it is necessarily surjective).

Informally, a process is endochronous on a set of variables if any flow of this process is entirely
determined by the sequences of values carried by these variables, independently of their relative presence
and absence.

In other words, a process is endochronous on a set of variables if given an external (asynchronous)
stimulation of these variables, it is capable of reconstructing a unique synchronous behaviorl fup to
equivalence). Then, it can be implemented as a process which is mostly insensitive to internal and
external propagation delays. This implementation and its context have only to agree on activation starts
and on the availability of data.

Property A processP defined ond; is endochronous oA, C A, if and only if:

(VE,F e P) (a4, (F))~ = (a,(F))x) = (F = F))

[11-8.3 Deterministic processes

A process is deterministic on a set of variables if any flow of this process is entirely determined by its
restriction to this set of variables.
Let P a process defined af,. P is deterministicon As C A; if and only if the function

O P —1l4,(P)
such that
O(F) =114, (F)

is injective (and thus bijective, since it is necessarily surjective).

In other words, a process is deterministic on a set of variables if any two flows of this process that
have the same projection on this set of variables upto some irtstaate the same behaviors upto

I1I-8. CLASSES OF PROCESSES 51

Property A processP defined onA; is deterministic ords C A, if and only if:

VE,F eP) (V) (((May(F))<t = (Ma,(F))<t) = (Fe=FL)))

Remarks and examples:

e For any elementary proced? of the SGNAL language of the form: : E(y, ..y yn), if

z € {y1,...,yn}, thenP is deterministic oy, ..., yn}.

E(y, ..y yn), if

e For any elementary proced? of the SGNAL language of the form: :
x & {y1,...,yn}, thenP is deterministic oy, ..., yn}.

e X = Ydefault X
is not deterministic ofY}.

e The determinism om; is not stable by composition and restriction.

Properties:

If a processP is an iteration of function omy, then it is deterministic oni; .
If a processP is endochronous oAy, then it is deterministic or; .

[11-8.4 Reactive processes

Reactivity of a process with respect to some set of variables may be defined as the ability of the process
to react to each configuration of these variables in all states.

Let P a process defined aA;. P is reactiveon A, C A, if and only if for each flowF' € P, for
eacht € dom(F'), for each event on A,, there exists a flow” € P such that:

(FLyy = Feot) A (F'(8) 4, = ©).

P is strictly reactiveon A C A; if and only if for each flowF' € P, for eacht € dom(F’), for each
evente on A, different from the absent eveﬂle(Ag), there exists a flowF” € P such that:

(Fét—l =Fei-1) A\ (F/(t)\AQ =e).

A process which is reactive on a non empty 4etis obviously strictly reactive onls.

Examples:
e Z = Xdefault Y
is strictly reactive or{X, Y}.

eZ = Xandy
is neither strictly reactive, nor reactive ¢R, Y}.

52 MODEL OF SEQUENCES

[1I-9 Composition properties

[11-9.1 Asynchronous composition of processes

The partial order of relaxation is used to define the semantics asyrechronougomposition of pro-
cesses: roughly, the asynchronous composition of two procéssasd P, is defined by the flows the
projection of which on common variables Bf and P, are relaxations of the projections on these com-
mon variables of flows of?; and of flows ofP;.

Definition Let P, and P, two processes defined respectively 4nand As.
The parallel composition(or asynchronous compositiaf P; and P, denotedP, || P, is a process

on A; U A, defined by:

PP ={FeSaua,/ (BF e84, 3FcP) ((FLF)
/\ (HA10A2 (Fl) C 114,04, (F))
A a4, (F1) =) Tapa,(F)))
AN(GBFReSa,,3Fc P) ((F £ F)
/\ (HAlﬂAQ (F2) C 14,4, (F))
N (W, (F2) =) Wap\ 4, (F)))
A (F'is maximal forZ)}

[11-9.2 Isochrony

The property ofisochronycharacterizes processes for which synchronous and asynchronous composi-
tions are equivalent. It means that a synchronous design composed of isochronous processes is robust to

their distribution.

Definition Two processe#’ and P, are saidsochronousf and only if:

P[Py = Py||Py

[11-9.3 Endo-isochrony

A special case of practical interest is the one of endochronous processes.

Definition Let P, and P, two endochronous processes defined respectivelylpand A;. Their
compositionP; | P, is saidendo-isochronoud and only if 1T 4,4, (P1)|114, 4, () is endochronous.

Property If P|P; is endo-isochronous, the? and P, are isochronous.

I1I-10 Clock system and implementation relation

The refinement of a system specification consists in transforming its abstract behaviors into more con-
crete ones that make intermediate computational steps explicit. Conversely, the abstraction of a behavior
consists in discarding some intermediate calculations. Thus it is useful to havglementation rela-

tion between processes, that takes into account a notion of time refinement.

II-11. TRANSFORMATION OF PROGRAMS 53

Sampler system

Let T atrace ond;. A sampler systerfor 1" is a functions : A; — A; such thats is acyclic, and
foralla € Ay, s(a) is a Boolean and

(vt) ((Ti(s(a)) =true) = (Ti(a) # 1))

A function s is a sampler system for a proceBsf and only if it is a sampler system for every flow
of P.

Clock system

LetT atrace ond;. A clock systenfior 7" is a sampler system such that foralE A,
(vt) ((Ti(s(a)) =true) < (Ti(a) # 1))

A function s is a clock system for a procegsif and only if it is a clock system for every flow aP.
Sampling

Let T" a trace ond; ands a sampler system féf. Thesamplingof 7" by s is the tracel” = Ss(T))
defined on4; such that for alu € Ay, (Vt) (7/(a) = S*(Ti(a))) whereS* is recursively defined
as follows:
if s is not defined om, thenS*(T;(a)) = Ti(a),
if s is defined oru, then

S*(Ti(a)) = Ti(a) it S*(Ti(s(a))) = true,
S*(Ti(a)) = L if S*(Ti(s(a))) # true.

Let P a process defined aA;. The sampling of® by a sampler systemfor P is the process”,
denotedP’ = X4(P), defined as the set of flows which are equivalent to samplings of flows of

P'={T{ € Sa, /(T € P) \(T' = S,(T))}
Well-clocked implementation

Let P a process o, and(a process om; such that there exists a one-to-one correspondence
such thatz(A4;) C A,, and lets a clock system o).
Q is awell-clocked implementatioof P with respect tas (denoted)) =<, P) if and only if:

M,4,)(2s(Q)) = P.

III-11 Transformation of programs

A general principal of transformation of programs (which is applied f@¥NaL programs all along

the design of an application, for example for verification purpose, for implementation purpose, or to
calculate abstractions of behaviors) consists in the following generic rewritting scheme: homomorphisms
of programs are defined such that a program is contained in the composition of its transformations by

54 MODEL OF SEQUENCES

these homomorphisms. Typically, one of these transformations is an abstract interpretation of the initial
program.
Let A; a set of variables. We consider:

e an interpretation homomorphisryi, which associates with each elementary prodeskefined on
Ay aprocess)s = f(P)on Ay,

e an homomorphism, which associates with each elementary prodestefined on4; a process
Qr =r(P)onA} C Ay,

such thaflla,na, (P) £ 4,04, (Qf|Qr)
and thusP = 114, (P|(Qf|Q;)).
Then we define a transformation of programs (which is an homomorphism)
T Pa, — Pajua,
such that
T}, (P) = left(T T;,(P))|right(T T, (P))
with:

o lefii< X,V >)=X

e right(< X, Y >) =Y

o 774 (P) =< f(P),r(P)>if Pisan elementary process

o TTj(P1|Py) = <1eft(T Ty, (1))|lef(T T, (P2)), right(7 Ty, (1)) Iright(7 T, (P2)) >
Then,P =1l4, (P|T4(P)).

Chapter IV

Calculus of synchronizations and
dependences

V-1 Clocks

As said before, the clock of a signal represents the presence instants of this signal, relatively to the other
ones. A system of clock relations is associated with any systenmzofAg equations (BsNAL process),
in order to represent specifically tegnchronization®f the process.

For that purpose, an homomorphisfiipck, is defined on processes, which has the following prop-
erty:
Clock(P)| P=P
or equivalently:P £ Clock(P)
(by abuse of notation, we use the same notation for the syntactic and semantic homomorphisms).

Then, the system of clock relations is encoded as a system of polynomial equations on the field of
integers modulo 3.

IV=1.1 Clock homomorphism

Let us consider the followinglerivedelementary processes, in order to make easier the expression of
clock equations:

e as = “u
is defined byus 1= a1 == a;
where == represents the equality operator defined on values of any type. The gigaalefined
at the same instants as the sigmahnd at each one of these instants, its value is the Boolean value
true (the type ofas is the subtype calleevent of the Boolean type, which contains as single value
the valuetrue). It is said thata, represents the event clock of the signal

(] (11/\: a9
is defined by ¢3 :=: "1 =="as) where as
and is generalized to variables ¢; "= ...” = a,). It expresses that the signals anda, (more
generally,aq, ...,a,) are present at the same instants (their clocks are equal).

TheClock homomorphism is defined as follows, depending on the types of the signals (the notation
T(J:) designates the type af): Boolean equations are left unchanged in the homomorphism.

56 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

1-a Monochronous definitions

e Definitions by extension:
it 7(b) =7(a1) =...=7(a,) = boolean:
b= f(ai,...,an)— b= f(ay,...,ay)
else:

b= flai,...,ap)—b =a1 =..."=a,

e Clock:

o~

b= Ta—b:= Ta

e Delay:
if 7(b) = boolean:
b:=: a$init v—>b:= a$init v
else:
b= a$init v—b =a

1-b Polychronous definitions

e Extraction:

if 7(b) = boolean:
b:=: ajwhenag— b:= a;whenay

else:
b:=: a; whenas— b~ ="a; when as
e Merging:

if 7(b) = boolean:
b:=: ajpdefault ay—b:=: qdefault a9

else:

b:=: a;default ao+— b~ ="uy default “as
1-c Hiding
Clock(P where a) = Clock(P) where a

1-d Composition
Clock(Py | Py)=Clock(Py)| Clock(Py)

IV=1.2 Verification

As a consequence, R is a safety property satisfied I6yock(P),
which is expressed bi | Clock(P) = Clock(P),
R is also satisfied by’ sinceP = Clock(P) | P.

IV-1. CLOCKS 57

IV=1.3 Clock calculus

Since the system of clock relations handles only values of Boolean signals, and presence/absence for the
other types of signals, there is a natural encoding of these values in th&M2df integers modulo 3
(or Galois fieldF3; with three elements):
F3=[{—1,0,1}, +, %]
with the usual meanings for operations and valuesq the usual addition modulo 3, is the usual
multiplication).

We define the set of polynomials ¢ty and a set of variables isomorphic to the variables oiGavaL
program. The association of the value 0 with a variable indicates the absence of value for the associated
signal in the corresponding instant. With each present Boolean signal, the-valueéhich is equal to 2
in Z/3Z) is associated if its current value false, and the valuet1 is associated if its current value is
true. Thus, the square of the value of the variable associated with a present Boolean signal is equal to 1;
for each non Boolean signal, we are interested only in the presence or absence of a value at the current
instant. So we associate with such a signal a squared variable.

The synchronization of alIENAL program is expressed by a system of equations in the set of poly-
nomials onF; defined by the homomorphism described below.

3-a Monochronous definitions

e Definitions by extension:

b= flay,...,ap) — b =a2=...=d2

(some relation on the values &fa, .. .,a, is obtained wherf designates a Boolean operator).
e Clock:

b= Ta—b=a’
e Delay:

b= a$int ve—&=0-a?)x& +a, =0, b=a?*¢&,

3-b Polychronous definitions

e Extraction:

b:=: a;whenas—b=ay*(—ay —a3)
e Merging:
b= apdefault as—b=a;+ (1—a})*as
3-c Hiding

Replaces, in the system, the hidden variable by an internal one.

3-d Composition
The system obtained fé?1 | P2 is the union of the systems obtained Rt and forP2.

58 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

3-e Static and dynamic clock calculus

Then the calculus of synchronizations (clock calculus) ofl@aN&L program is done by studying a
dynamic system such as:

XnJrl - P(men)
Q(Xna Yn) =0
Qo(Xo) =0

whereX is a state vector i0Z/3Z)P andY is a vector of events (abstract interpretations of signals) that
make the system evolve.

Such a dynamic system is a particular form of finite state transition system. Thus it is a model of
discrete event system on which it is possible to verify properties or to make control.

Studying such a system then consists in:

e studying itsstaticpart, i.e., the set of constraints
QXn,Yn) = 0

e studying itsdynamicpart, i.e., the transition system

Xnt1 = P(X,,Yn)
Qo(Xo) = 0

and the set of its reachable states, etc.

IV—2 Context clock

The clock relations imposed by &AL operators imply the existence obntext clockgor the various
occurrences of the signal variables.

A particular case of this situation is for the occurrence of constants, since such a context clock is the
only way to assign a clock to the occurrence of a constant.

Occurrences of constants are allowed iBI$AL expressions as a practical way to designate constant
signals, i.e., signals with a constant value. The occurrence of such a constemsome expression,
stands for the occurrence of some hidden signaefined as: :=: = $init w.

Each occurrence of a constant has a particular clock (which cannot be fixed explicitly since the
corresponding signal is hidden): this clock is defined by the context of utilization of the constant.

It is defined a utilization mode of the constants:

e allowing as much flexible use as possible
(we want to be able to write + 5 butalsox + (y default 5));

¢ allowing intuitive handling of their clocks (a constant is delivered at the clock necessary for the
coherence of a synchronous expression);

e free of interpretation for the synchronous operati@msl in particular, preserving possible proper-
ties of commutativity, associativity. .. of these operators;

e preserving the spirit, if not the letter, of the substitution principle;
e preserving the properties of the temporal operators:

— “"associativity” ofwhen,

IV-3. DEPENDENCES 59

— associativity ofdefault
— “right distributivity” of when on default

These requirements lead to consider that the occurrence of a constant has a clock which is provided by
the context.This has the consequence that the substitution principle cannot apply in general.
The rules for the definition of the context clock are introduced informally below.

e For a definition

the context clock of is the clock ofX.

e For a monochronous expression, the context clock of each argument is the context clock of the
expression.

e For adelay
E$

the context clock oF; is undefined, which means that the argument of a delay cannot be a constant
(note that it has also consequences on derived operators).

e For an extraction
F1{when C

having H as context clock, the context clock 6fis H, that of F is the clock product off and
of the clock at whichC' has the valuerue
(this can be used to assign explicitly a clock to a constant).

e For a merging of signals
FE; default FEs

having H as context clock, the context clock 8% and of £ is H.
For exampleb5 default x is equivalent tc.

In the sequel, the clock of a constant outside some context will be dehoted

The rules for the calculation of the clock of a constant in a given context apply also for the signals
the clock of which is undefined; such a signal is obtained by the operator The clock ofvar E
outside some context is also denoted

V-3 Dependences

The equations on signals imply, at the execution, an evaluation order which is described by the depen-
dence graph.

60 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

Figure B—IV.1: Formal meaning of the dependence statement.

IV=3.1 Formal definition of dependences

The following informal definition of dependences can be stated:

A signalx depends on a signal“at” a Boolean conditiore (noted y£> x) if, at each instant for which
cis present andrue, the event setting a value tocannot precede the event setting a valug.to

A formal definition in the form of an automaton is presented here. We give the formal meaning of the
statement

y Sox (IV.1)

in Figure B-1V.1. In the figure, the clock equations in states can be read as follgws:+ ¢*) = 0
means “abseny(v (absent) vV ¢ = false)” (at the considered instant)? = 0 means “abseny(”;
c+c? = 0 means “(absent] VV ¢ = false)”. This figure describes a non deterministic automaton which
represents the legal schedulings of calculi in one instant as conform with staté¥h&nt (

e States of the automaton are made of dependence graphs and clock equations. Clock equations can
be represented as equationsfin

e Transitions are labelled by signalg, ¢, z), or by the empty word. A transition labelled byy
reads: “signaly occurs, with any legal value”. A transition labelled byl) (respectivelyc(—1))

IV-3. DEPENDENCES 61

reads: “signak occurs, with valudrue (respectively,falsg”; the empty worde represents the
occurrence of any signal bug(c, x).

¢ In the automaton of FigurB—IV.1, all the states have an additional transition (not represented in
the Figure), labelled by, toward the initial state (which is represented with a thick circle in the
Figure).

The automaton describing all legal schedulings of calculi for a program in one instant is obtained
by a synchronous product of such basic automata, as described in $8e80B Since these automata
describe instantaneous behaviors, they are cafledo automata. The states of the transition system
describing the overall behavior of a program areftiteedstates (ornitial states) of the micro automata.

IV=3.2 Implicit dependences

The equations defining a process may induce implicit dependences, such as described in the following.
Notations: For a Boolean, we use the notatiofr] to represent the clock at whichhas the value
true, and[—c| to represent the clock at whiethas the valug alse.
In addition to the implicit dependences described below, the following implicit dependences apply
equally:

. ~
e for any signals, =z — x

o for any Boolean signat, ¢ - [¢] and ¢—5 [~(]

[c]

e any dependenceA,% x implies implicitly a dependence] — X.

2-a Monochronous definitions

e Definitions by extension:

b= flay,...,an)

The following implicit dependences exist:

ar—b,...,a,—b
e Clock:

b= "a

b is identified with the clock ofi, there is no implicit dependence.
e Delay:

b= a$init v

There is no implicit dependence.

2-b Polychronous definitions

e Extraction:
b:=: a; whenay
The following implicit dependences exist:

a1—>b

b

as — b

62 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

e Merging:
b:=: ajdefault ao
The following implicit dependences exist:
a1
ay —— b
Tay —"m

ag ——b
where as "— "a; designates the clock representing the instants dfiat are not instants af .

IV=3.3 Micro automata

3-a Definition of micro automata

The micro automaton associated with a program describes the legal schedulings of caloalinstant.
Let A be a set of variablesi® = AT U A~ is the set of variables of labelled by+ or —.
A word on A is any subsetn of A° such that

a® € m = da® ¢ mwheref = —and— = +
A micro automaton o is a tuple
< S,P(A%),S1, I C SxP(A*) xS >
such that:

e Sy C S: Sisthe set of states artg} is a set of initial states;

o if 51 "3 55 € I' (I is the set of transitionsy; is the label of the transition), and ~3 s3 € T, and
. ands,, "& s,.1 € I, then:

Vi # j,m; Nmy; =)
n
andm = UmZ is a word onA.
=1
oifsibsyel then sye8;t
The micro automaton is saghturatedif, in addition,
51@52EFandSQTES;gEF:slml«%mQSgEI’

Let AUT be a micro automatoi§at(AUT) is the saturated micro automaton which contadisT .
Consider two micro automata defined respectivelydgrand A, with A1 N A; = A. Two labels of
transitions,m; on Ay, andmsy on As, are said taoincideon A if and only if:

('ml N AS) = (mg N AS)

Let AUT, =< S1,P(A3),S11,I'1 > and AUT, =< Sy, P(A$), Sor,I's > two micro automata.
Their product, denotedUT = AUT; ||AUT5, is the micro automaton oA; U Az, defined by:

AUT = Sat(< St % SQ,'P(A‘{ U A;),SH X Sor, T >)

10 is denotedt in IV=3.1.

IV-3. DEPENDENCES 63

with I" defined as follows:

(s1,89) "3 (s),82) €T iff mlﬂAiz(bandsl@s’l el
(s1,89) "3 (s1,85) €T iff mo N A§ :QandSQTESIQEFQ
(s1,80) "RI" (s),sh) € T iff my andmy coincide onA; N Ay

ands; 4 8,1 € I'y andss EG: 8,2 eIy

3-b Construction of basic micro automata

(i) Micro automaton associated with a system of equations

Let us consider a system of equations on a set of variables
Y:R(A)=0

having at least one solution (the system encodes clock equations of a program).

A partial valuationof X is any system of equations : R'(A’) = 0 equivalent taR(A) = 0in which
a non empty subsdta, ..., a,} of variables ofA have been replaced by values. .., v, € {—1,1}
such tha®>’ has at least one solution.

If o denotes such a substitution, the following notations are used:

o(a;) = v; denotes the value assignedady o
o(R(A)) denotes the systeiii’(A’) obtained by the substitution.

Then we consideP (X)) the set ofR’(A’) such that there exists verifying
o(R(A)) = R'(4).
The micro automaton associated wihs the saturated micro automaton
< S,P(A%),{s0}, [>
such that:
e there exists a bijection : P(X) — S with ¢(R) = s

e for any valuations of R'(A’) € P(R(A)),

if and only if:

at €T iff o(a)=1and
a- €T iff o(a)=-1

e forall X' : R'(A") = 0 such that

Va,a € A" = a = 0 is a solution ofyY’

then
S(R) L spel

64 CALCULUS OF SYNCHRONIZATIONS AND DEPENDENCES

(i) Micro automaton associated with a dependence

The micro automaton associated with .
y—X

is defined as follows.
We consider the following states of resolutién

c
y = %Y =X {y, 2}, {c, 2}, (¥ (c +) = OC), {y} Az} {c} (e + ¢ =0), (y* = 0)
The micro automaton associated with- x is the saturated micro automaton

Sat(< S, P({y,x,c}?), {so}, [>)

such that there exists a bijectign: £ — S with ¢(y 5 2) = sg
and withI" defined as follows:

1) < y—x)el
¢ S o({y,a}) €T

In addition,I" contains all other transitions providing from resolutions such as described in (i).

The corresponding micro automaton is displayed in Figgw&V.1, wherec™ andc¢~ are denoted
respectivelyc(1) andc(—1), andy® andz® are denoted andx; moreover, thd) transitions have been
omitted in the figure. The complete micro automaton is the saturated micro automaton which contains
this one.

(iif) Micro automaton associated with a memorization

The encoding presented iW-3.1 considers not only the clocks, but also treuesof the Boolean
flows: delayed Boolean flows are th&ate variableof the program.

The micro automaton associated with=: y $ init v wherex andy are Boolean flows is the
saturated micro automaton obtained from the micro automaton depicted on Bigi¥&. The initial
states of this micro automaton are the states represented with a thick circle in the Figure.

(iv) Micro automaton associated with a process

The micro automaton associated with a process is the product of the micro automata associated with
each definition involved in the process.

IV-3. DEPENDENCES

65

Figure B—IV.2: Micro automaton of :=:

y $init

v

Part C

THE SIGNALS

Chapter V

Domains of values of the signals

A signal is a sequence of values associated with a clock. These values have all the same type, which is
considered as the type of the sequence. The objective of this chapter is to present the notations used to
represent these types and the processings which are applied on them. An element of the set of types of
the SGNAL language is denotedpe.

Let E be a term of the &NAL language; we denote Iay(E) the type associated with the teiand,
whenE is a constant expressiom,(E) the value of this expression, elaborated in the context in which
appears.

The set of types of theISNAL language contains the scalar types, the external types, the array types
and the tuple types.

1. Context-free syntax

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

V-1 Scalar types

Scalar types are the following: synchronization types, integer types, real types, complex types, character
type, string type; the integer, real and complex types compose the set of numeric types; character and
string types compose the set of alphabetic types.

1. Context-free syntax

Scalar-type::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ;= Integer-type

| Real-type

| Complex-type
Alphabetic-type ;= |char

string

70 DOMAINS OF VALUES OF THE SIGNALS

V-1.1 Synchronization types

The synchronization types are used to define the clocks of the signals. They are thectypor pure
signal) and the typé&oolean.

Denotations of types

1. Context-free syntax

Synchronization-type::= |event

event]
boolean

2. Types

(a) T(event) = event
(b) 7(boolean) = boolean

Denotations of values

e A signal of typecvent takes its values in a single-element set: there is no associated constant and
a parameter cannot be of that type.

e The constants of typolean are the logical values denoted with the syntax Bfoelean-cst(cf.
partA, sectionll-2.2, page23).

e The default initial value of typéoolean is the valuefalse.

V-1.2 Integer types

Integer values can be in short representation (k/pe-t), normal representation (typeteger), or long
representation (typlng); a given implementation may not distinguish these types. In this document, the
notationsmax long, min long, max integer, min integer, max short andmin short will be used to
designate respectively: the greatest representable integer (dbtyge the smallest representable inte-
ger (of typelong), the greatest integer of typateger, the smallest integer of typateger, the greatest
integer of typeshort and the smallest integer of typéort. These values depend of the implementation
and respect the following order:

min long < min integer < min short <0 < max short < max integer < max long

main integer < 0

Denotations of types

1. Context-free syntax

Integer-type ::= |short
integer

e

| |long

2. Types

(a) T(short) =short

V-1. SCALAR TYPES 71

(b) T(integer) = integer
() 7(long) =long

Denotations of values

The positive values of an integer type are denoted following the syntax teger-cst (cf. part
A, sectionll-2.3, page24). A negative value has not a direct representation: it is obtained using the
operatoB applied to a positive value.

1. Types
(a) The type of aiinteger-cst E is the smallest integer type that contains it.

2. Semantics

e An Integer-cst denotes an integer value represented in decimal base, contained between 0
andmax long.

e An occurrence of an integer value of typgort (respectively,integer andlong) smaller
thanmin short (respectively,min integer andmin long) or greater thamnax short (re-
spectively,maz integer andmax long) results, in the considered type, in a value depending
of the implementation.

e For aninteger-type, the default initial value is the value 0.
Bounded integers

Integers have a special role since they can be used to index arrays. In that case, we have to consider
bounded values.
In this document, for a given signél, we will use sometimes the following notations:

e lower_bound(E) designates the lower bound of the valuegof

e upper_bound(E) designates the upper bound of the value& of
These bounds are constant integers.

V-1.3 Realtypes
The real values can be in simple precision representation (i@ or double precision representation
(type dreal); a given implementation may not distinguish these types.

Denotations of types
1. Context-free syntax

Real-type::= @
| |dreal

2. Types

(@) T(real)=real
(b) 7(dreal)=dreal

72 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values E;. E,e E5 (simple precision) oF;. E>dE3 (double precision)

A value of real type is denoted following the syntax dRk@al-cst(cf. partA, sectionll-2.4, page24).
A Real-cstdenotes the approximate value of a real number.

1. Types

(a) A Simple-precision-real-cstis of typereal.
(b) A Double-precision-real-cstis of typedreal.

2. Semantics

e The valuep(E;), whenE; is omitted, is 0.

e If E, hasn digits, the value of the constant is the approximate valugadfE,) + @(E2)
10-7) « 109 (Es).

e For aReal-type the default initial value is the valu&0 or 0.0d0 following the type.

V-1.4 Complex types

The complex values have the common representation of their components (simple or double precision,
respectively typesomplex anddcomplex); both types are distinguished in a given implementation if
and only if the typeireal is distinguished from the typeeal.

Denotations of types

1. Context-free syntax

Complex-type::=
|

2. Types
(@ T(complex) = complex
(b) T(dcomplex)= dcomplex

Denotations of values

A value of complex type is obtained for example in the following expression, the first element of
which is the real part and the second one the imaginary part (cfCpagctionVIl-8.1, pagel28).

1. Examples

(@ 1.0 @ (—1.0)

For aComplex-type the default initial value is the pair of default real initial values.

V-2. EXTERNAL TYPES 73

V-1.5 Character type

The typecharacter contains the set of the admitted characters in the language.

Denotation of type
1. Types

(a) T(char) = character

Denotations of values
A value of typecharacter is denoted by &haracter-cst (cf. partA, sectionll-2.5, page24).

The default initial value of typeharacter is the character \000" .

V-1.6 String type

The typestring allows to represent any sequence of admitted characters. The value of the maximal
authorized size for a stringpaxzString Length, depends of the implementation.

Denotation of type
1. Types
(a) T(string) = string
Denotations of values

A value of typestring is denoted by &tring-cst (cf. partA, sectionll-2.6, page25).
The default initial value of typetring is the empty string" .

V-2 External types

External types make possible the use of signals the type of which is not a type of the language.

Denotation of type A

An external type is designated by a name.

1. Context-free syntax

External-type ::= Name-ype

2. Types

(a) For an external type with namg 7(A4) = A
Two external types with distinct names are not comparable.

3. Examples

(a) pointer is an external type with nangointer

74 DOMAINS OF VALUES OF THE SIGNALS

Denotations of values

An external constant can be denoted by a name; the value of an external constant can be defined by
the environment of the program (cf. p&;chapterXIl, pagel9l).

For example the identifiari1l can represent a constant of typeinter

For any external typel, it is possible to define a constant that represents the default initial value of
type A (cf. sectionvV—7, page84).

The only operations the semantics of which is defined on external type signals are operations of
description of communication graphs (which are polymorphic operations).

V-3 Enumerated types

Enumerated types allow to represent finite domains of values represented by distinct names. These values
(the enumerated values) are the constants of the type to which they belong.

Denotation of types enum (a4, ..., am)

An enumerated type is defined by the list (considered as an ordered list) of its values (the enumerated
values) and by its name (cf. sectivh7, page84): type A = enum (ai, ..., am);
However, like for the other types, such a name does not necessarily exist. In that case, the name of the
type is empty.
The definition of an enumerated type declares its enumerated values.

1. Context-free syntax

ENUMERATED-TYPE ::=

Name-enum-valug |:| Name-enum-valué*

2. Types
(a) The type of the enumerated type is:
T(A = enum (a1, ... am))=A><{a1,...,am}
where{ay, ..., ay,} represents the finite set of ordered values. . ., a,,. It means that the

name of an enumerated type (the name that is given in the declaration of the type) is part
of that type. Depending on the implementation, it can be the case or not that synonyms (cf.
sectionV-7, page84) are considered in the definition of the type.

If the enumerated type is not designated by a name, then its type is just the finite set of its
ordered values.

(b) The type of the enumerated values of an enumerated type is this enumerated(ty@e.:
.=T(an) =7(enum (a1, ..., am))

(c) Two enumerated types are considered to be equal if they have both the same name, and
the same set of enumerated valuiesthe same orderTwo enumerated types that are not
designated by a name are considered to be equal if they have the same set of enumerated
values, in the same order.

3. Semantics
The enumerated values of an enumerated type are ordered (syntactic order of their declaration).
All the values of a given type are distinct; these values are distinguished by their name.

V4. ARRAY TYPES 75

4. Examples

(a) type color = enum (yellow, orange); andtype fruit = enum (apple,
orange); are two enumerated types, each one defining an enumerated value hamed “or-
ange”. Both enumerated values named “orange” are distinct values, with different types. The
next paragraph describes the way allowing to distinguish them.

Denotation of values

#a; or A#ta;
whereA is the name of the enumerated type.
Note: the symbo# does not appear in the definition of the type (and its enumerated values), but only for
the use of an enumerated value.

1. Context-free syntax

ENUM-CST ::=

Name-enum-value

| Name{ype Name-enum-value

2. Semantics

e The notatior#a; can be used to reference an enumerated vglirea context in which there
is no possible ambiguity on the referenced value. If it is not the case, the natgtiorhas
to be used, wherd designates the enumerated type.

e The default initial value of an enumerated type is the first value of its declaration.
3. Clocks An enumerated value; (designated byta; or A#a;) is a constant.
(@) w(a;) =n
4. Examples
(a) color#orange andfruit#orange designate two different enumerated values (of two
different types) with the same name.
V-4 Array types
An array is a structure allowing to group togetlsgnchronouglements of a same type. The description

of such a structure and of the access to its elements uses constant expressions that have the general syntax
of signal expressionsS(EXPR).

Denotation of types [ni, ..., N v

An array type is defined by its dimensions and by the type of its elements.

1. Context-free syntax

76 DOMAINS OF VALUES OF THE SIGNALS

ARRAY-TYPE ::=
|I| S-EXPR{D S-EXPR }* SIGNAL-TYPE
2. Types

(a) The elaborated values of (©(n1)), ...,nm, (©(n.,)) are strictly positive integers.
(b) The type of the array is:

(R nm] v) = ([0..0(n1) —1] x ... x [0.0(n) — 1]) — T(v).
(c) When the typer (v) itself is an array typé n,,, 11, ., Tumip) 1, then the type of the
array is:
(R] v) = ([0..0(n1) — 1] x ... x [0.0(nm1p) — 11) — 7(1).
3. Clocks The integers:; must be constant expressions.
@ w(ng)=h

4. Properties
() Thetypeg ni, no] vand[ni] [ne] v are the same.

5. Examples

(a) [10,10] integer is a two dimensions integer array (the bounds of the array begin im-

plicitly at index 0 in each dimension).
(b) [n] pointer is a vector of values of external typeinter

Denotations of values

A constant array is defined by a constant expression of array (cf.DpactionIX—2, pagel49);
the elements that compose a constant array are from the same domain.

For anARRAY-TYPE , the default initial value is an array of which each element has the default

initial value of the type of the elements of the array.

V-5 Tuple types

The SGNAL language allows to define structured types, called in a generidwpdgtypes. Two cate-

gories of tuple types, called also tuple types with named fields, can be associated with the objec

not yet
fully
imple-

STBpRed

SIGNAL language in declarations:
e polychronous tuples (designated by the keywouddle)*;
e monochronous tuples (designated by the keyvabrdct)

(remark: the objects declared of tuple type can also be calfddg.

An object declared of type polychronous tuple is in fact a gathering of objects (family of objects).
In this way,a polychronous tuple of signals is not a sigrfdr example, in the general case, it has no
clock); it cannot be used as the type of the elements of an array. At the opposite, an object declared of

not yet implemented in ®.YCHRONY: clock properties of bundles are not taken into account.

V-5. TUPLE TYPES 77

type monochronous tuple can be a signal: it has a clock (delivered by the opgeaidrit can be used
as the type of the elements of an array.

A general rule is that operators on signals do not apply on polychronous tuples, but they are pointwise
extended on the fields of these tuples (cf. @archapterX, pagel69).

The SGNAL language allows also to manipulate gatherings (or tuples) of objects with no explicit
declaration of these gatherings. They define in fact tuples with unnamed fields, the type of which is a
product of types (cf. sectiow—6.2, paragraph “Order on tuples”, pagé). The operators defined on
signals are pointwise extended to tuples with unnamed fields (cf. DpachapterX, pagel69. By
extension, it will be possible to refer to the clock of a tuple of signals if all the signals of the tuple have
the same clock.

Denotation of types

struct (w1 X1 .. i Xom;)
or
bundle (w1 Xi; .. tm Xm;) spec C

A tuple type is defined by a list of typed and named fields; in addition, clock properties can be
specified on the fields of a tuple.

The description of such a type uses lists of declarations of sequence idelSHMEEECLARATION
(cf. sectionV-9, page87) for the designation of the fields, and propert®@BECIFICATION-OF-
PROPERTIES (cf. partE, sectionXI-6, pagel80) to express the clock properties that must be re-
spected by the signals corresponding to the fields defined by the type. These properties should describe
exclusivelyclock propertieson the fields of the tuple, excluding for instance graph properties. Note that
constraints on values can be specified under the form of constraints on clocks.

A tuple type can be multi-clock (polychronous) or mono-clock (monochronous). If it is multi-clock,
it is distinguished by the keyworoundle and it can contain specifications of clock properties applying
on its fields. If itis mono-clock, it is distinguished by the keywstclct — and all its fields are implicitly
synchronous; in this case, it can be used as type of the elements of an array.

1. Context-free syntax

TUPLE-TYPE ::=

struct NAMED-FIELDS

bundle NAMED-FIELDS
[SPECIFICATION-OF-PROPERTIES]

NAMED-FIELDS ::=
{ S-DECLARATION } +

2. Types

(a) From the point of view of the domains of associated values, the polychronous or monochronous
tuple types with named fields are designated in the same way in this document. The domain
is a non associative product (i.e., preserving the structuring) of typed named fields.

() T(struct (1 Xi; i fn X)))
=bundle({X1} — T(u1) x ... x {Xp} — T(um))
() T(bundle (p1 Xi; ... pm Xm:) spec C)

=bundle({X1} — T(ul) X .o x { Xy} — T(Nm))

78 DOMAINS OF VALUES OF THE SIGNALS

(d) Atype
bundle({X1} — T(u1) x ... x {Xm} — T(1m))
defines a set of functi%ns

=Xy, X} — UT(M) such thaE(X;) € T(ui).
i=1
3. Semantics
The tuple types with named fieldst(uct andbundle) allow to define structured types as non
associative grouping of typed named fieldsz; Xi; ... m Xm;) . The specifications
of propertiesspec C apply on the fields of the tuple. They establish constraints that must be
respected by the signals defined with such a type (space of synchronization of the values of the
domain).

4. Examples
(a) struct (integer X1, X2;)
is a tuple of two synchronous integers.

(b) bundle (integer A; boolean B;) spec (| A 7# B)
defines a union of types as a tuple the fields of which are mutually exclusive.

Denotations of values

A constant tuple is defined by a constant expression of tuple (cfDpaectionVIll-1, pagel43).
For aTUPLE-TYPE, the default initial value is recursively the tuple of initial values of its fields.

V-6 Structure of the set of types

A partial order is defined on the types such that there exists a “natural” plunging of a smaller set into

a greater one. The types are organized into domains corresponding to theoretical sets (non constrained
by the implementation). In this way, the domain of synchronization val8gsghronization-type)

contains the typesvent andboolean; the domain of integerdrfteger-type) contains the typeshort,

integer, andlong; the domain of realsReal-type) contains the typeseal anddreal; the domain of
complex Complex-type) contains the typesomplex anddcomplex.

V-6.1 Set of types

The set of types is composed of the types the expressions of which, indhaiSlanguage, described
in the following summary, are derived from the variaBESNAL-TYPE :

V—-6. STRUCTURE OF THE SET OF TYPES 79

SIGNAL-TYPE
Scalar-type

Synchronization-type

event| denotes the typevent
{ boolean| denotes the typ&oolean
Numeric-type
Integer-type
short | denotes the typehort
integer | denotes the typéenteger

long | denotes the typkong

Real-type

real | denotes the typeeal
{ ;Iﬁl_ldenotes the typéreal
Complex-type

dcomplex| denotes the typécomplex
Alphabetic-type
char | denotes the typeharacter

{ complex|denotes the typeomplex

string | denotes the typetring

External-type
Name-type
Generic form of the external typesume
ENUMERATED-TYPE

Name-enum-valug |:| Name-enum-valug *

Generic form of the enumerated types:x {a1,...,amn}
ARRAY-TYPE

m S-EXPR{ E S-EXPR}* m SIGNAL-TYPE
Generic form of the array type§f0..n; — 1] x ... x [0..n,, — 1]) — v
TUPLE-TYPE

struct NAMED-FIELDS
bundle NAMED-FIELDS |) |[SPECIFICATION-OF-PROPERTIES]

Generic form of the tuple types with named fields:
bundle({ X1} — 1 x ... x { X} — tm)

V—6.2 Order on types

Order on scalar and external types

The order on scalar and external types of theN3\L language is described in the figute-V.1 A
downward solid arrow'(_>) links a type with a type directly superior from the same domain (two types
of a same domain aimparablg; the other arrows represent basic conversions, the semantics of which
is described below. The other conversions are obtained by composition of conversions. The partial order
is denoted_.

The notion of “comparable types” is extended to arrays and tuples.

80 DOMAINS OF VALUES OF THE SIGNALS

Figure C-V.1: Order and conversions on scalar and external types

Order on arrays
The order on scalar and external types is extended to arrays:
e ([0.m; —1] x...x[0.mg —1]) - pC ([0.ny — 1] X ... x [0..n; — 1]) — v if and only if

x k=1
x Vi 1<i<k=m; <n
« andu C v

Order on tuples

A product of types is a type, called tuple type with unnamed fields, which preserves the structuring.
There is no syntactic designation of such a type (it is not possible to declare some object of type tuple
with unnamed fields); however, it is possible to manipulate objects of type tuple with unnamed fields
(product of types). A tuple with unnamed fields with a single element is considered as isomorphic to this
element.

The product of typeg, ..., iy, (in this order) is denotefu; x ... x p,).

The order on the types of signals is extended as follows on tuples:

V-6. STRUCTURE OF THE SET OF TYPES 81

o bundle({X 1} — p1 x ... x {Xp} — pn) Cbundle({Y1} — 11 x ... x {Y,} — v,,) ifand only
if:
p=n
and i) (X;=Yiety; Cv;)

co X) Cbundle({Y1} — v x ... x {Y,} — v,,) if and only if:
C (11 X...X1p)

)

pa XX i) B (X (g2 XX i)

p1 X ... X) E (v % ... X 1vp) ifand only if:
AV (mCwi)))

or
(@D (((C<k) = (LCw))
A (g X oo X) E vg)
A ((k+l=n)A\(k=p))
or ((k+1<n)Ak<p) A ((Bresrirr X oo X pn) E (Vhg1 X oo X 1)))
Notation

The notationu LI v is used to designate the upper bound of two comparable typesiv.

V-6.3 Conversions

A conversion is a function for which the image of an object of the typs the argument is an object

of the typev required by the context of utilization. The conversion functions for the types defined in the
SIGNAL language have the name of the reserved designation of the expected type or in general the name
of the expected type. In this document, these functions are denoted as follows, in order to describe their
semantics:

Cl : p—v

Direct conversion functions are available in the language, even if their semantics is described in terms of
composition of conversions.

3-a Conversions between comparable types

Between two directly comparable types u C v, the two following conversions are defined:

1. the conversio@, from a smaller type: to a greater type lets the values unchanged;

2. the conversio@;; : v — p which is the inverse of the previous one for the values of fype

The conversion functions are extended to any pair of comparable types:
o if vy CuCwythenCy = Cp,o C s

e (!, is the identity function.
Implicit conversions

The only implicit conversions are the conversiatisfor which i C v. Implicit conversions do not
need to be explicited in the language.

82 DOMAINS OF VALUES OF THE SIGNALS

3-b Conversions toward the domain “Synchronization-type”

The conversions C, .., are defined for each (except ifu is a polychronous tuple); Trivially, they

deliver the single value of typevent.

the conversions C¥

boolean

depend of the implementation while respecting the following rules:

long
boolean

e The conversior® verifies:

—cls (0) = false

boolean
l
- Cbzzl’;m(l) = true
e For aScalar-type p distinct fromevent
Clt rean = Coondl o CHt

boolean boolean long

3-c Conversions toward the domain “Integer-type”
The conversions C%, . depend of the implementation while respecting the following rules:

o CMC9T (1) = v if v is greater thamnin short and smaller thamaz short (non strictly in both

short

cases),
! int !
° Cs(i)zzgt = C;Zofgter © Ci:;?gger
e for aScalar-typeor ENUMERATED-TYPE u
!
Cghort = Cs(l):;g‘t © Cllf)ng

The conversions c*

integer

depend of the implementation while respecting the following rules:

o CI° (v) = v if vis greater thamnin integer and smaller thamaz integer (non strictly in

integer

both cases),

e for aScalar-type p which is not smaller thamteger (for the order defined on the types), or for
1 anENUMERATED-TYPE
!
Cﬁrztege’r‘ = CiZ?egger ° Cllj)ng

The conversions Cl“ong depend of the implementation while respecting the following rules:

o the conversior}oo**" is defined by the following rules:

_ Cboolean(false) =0

long

- Clboo%e“"(true) =1

o the value ofCj/*<'*"(C) is the numerical value of the code of the character

e the value ofCldo’;f;l(v) is the integer part of v if n is greater thanmin long and smaller than
max long (non strictly in both cases),

e for aScalar-type 1 which is not smaller thatvng (for the order defined on the types)
C“ — Cdreal o CM

long long dreal

o for anENUMERATED-TYPE p equal toA x {a1,...,an}, the conversio;,, is defined by:
cro (a1) = 0, ...,Cﬁmg(am) = m-—1.

long

V-6. STRUCTURE OF THE SET OF TYPES 83

3-d Conversions toward the domain “Real-type”

For eachReal-type a given implementation distinguihes tba&fenumbers (in the same sense as in Ada),
which have an exact representation.

The conversions C*

real

depend of the implementation while respecting the following rules:

e if v, of typedreal, is a safe number in the typeal, C¢ (v) = v

real
e the conversion preserves the order on the real numbers included between the smallest and the
greatest safe number in the typeul,

e for aScalar-type u
CH — Cdreal o CH

real real dreal

The conversions ¢/, .., depend on the implementation while respecting the following rules:

e the conversion preserves the order on the real numbers included between the smallest and the
greatest safe number in the tygeeal,

dcomplex . o
 Cpow (re@im) = re

complex __ Hdcomplex complex
® Cdreal - Cdreal Cdcomplex

if v, of typelong, is a safe number in the type-eal, C'2"9,(C) = v

dreal

for a Scalar-typedistinct of the previous ones,
Chot = Cot8 0 Cl!

dreal dreal long

3-e Conversions toward the domain “Complex-type”

There are no conversions toward the dom@omplex-type except those internal to that domain. How-
ever, a given implementation can provide such conversion functions. Note that the conversiaalof a
re into acomplex (respectively, of @real re into adcomplex) can be obtained bye@0.0.

The conversion ¢%"F'* depends on the implementation while respecting the following rule:

complex

d l . .
® Comples (re@im) ={CLgp! (re), Creer (im)}

3-f Conversions toward the typescharacter and string

The conversions ¢*

character

depend on the implementation while respecting the following rules:

e the value ofc'9" (v) is the character (if it exists) whose decimal value of its code is equal to

character
v,

o for aScalar-type i C/, = ¢l oCl!

character character long

There is no conversion toward the typ@ing.

84 DOMAINS OF VALUES OF THE SIGNALS

3-g Conversions of arrays

For any tuple of strictly positive integers, ...,n,,, and any conversio@,,

the conversionf(([[g_'_ﬁi - i]] o [[g_'_';’: - 11]])) — "is defined by:

([0.n1 —1] X ... x [0.nn — 1]) — o
C([o..ni — 1% ... X [0 —1]) = v (T) = CloT

3-h Conversions of tuples

Conversions of tuples with unnamed fields

For any conversion&.!, ...,CL",
the conversionf((l’jl1 S ,f;”)) is defined by:
Cln X X () = (CE (@), Ch (@)

Conversions of tuples with unnamed fields toward tuples with named fields

For any conversion§.;!, ...,C." and any tuple with named fields of type
bundle({X1} — 11 x ... x {X;n} —) that defines a functioR (cf. sectionV-5, page76),

the conversiorzl?éfjjufle'('{'XX1 ’f’i v % (Xom] o 1y IS defined by:

C(;le...xun) =,:OC(;U><...></Ln)
bundle({X1} = 1 X ... x{Xm} = vm) — (V1 X ... X vn)

V-7 Denotation of types

A type can be designated by an identifier, declared DE€LARATION-OF-TYPES (it cannot be an
identifier of predefined type). In particular, such a type identifier can designate a generic type, which can
represent a type of the language or an external type.
Denotation of type A

1. Context-free syntax

SIGNAL-TYPE ::=
Name-ype

2. Types

(a) The type designated byName-type A is the type associated with in the declaration of the
type A.

Declarations of types
type A = u; or
type A;

1. Context-free syntax

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { |:|DEFINITION-OF-TYPE} * D

V-8. DECLARATIONS OF CONSTANT IDENTIFIERS 85

DEFINITION-OF-TYPE ::=

Name-type
| Name{ypeEl DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

TYPE-INITIAL-VALUE ::=
Name-constant

2. Types
(8) The declaratiotype A = pu; defines the typel as being equal to the type

7(4) =7()

(b) When it appears in the formal parameters of a model (cf.fyaectionXI-5, pagel79), the
declarationtype A; defines a formal generic type whose actual value is provided within
the call of the model (cf. sectiovil-1.2, page97).

Otherwise, the declaratidgpe A; is an abbreviated form fdype A = external;

that specifiesd as an externally defined type. It means thats either an external type

the actual definition of which is provided in the environment of the program, or it is a formal
generic type, whose actual value is defined elsewhere in the context or is provided in a module
(cf. partE, sectionXll-1, pagel91).

It is possible to specify, in the declaration of an external tyfyea constant hame (which

must be the name of an external constant of typecf. sectionV-8, page85), that allows

to designate the default initial value of that type.

A given compiler may consider that such a constant name appearing as default initial value
of an external type constitutes an implicit declaration of this external constant.

(c) If Ais defined as an external type, then:

T(4)=A
(d) Two external types with distinct namésand B are considered as different types.

3. Properties

(a) With the declarationgype A = pu; andtype B = pu;
then7(4) = 7(B) = 7(1).
Some implementations may not ensure this property.

4. Examples

(a) type T = [n] integer; declares the typ& as vector of integers, of size

V-8 Declarations of constant identifiers

constant p X;=FEy,....Y, ..., Xy = Ey;

86 DOMAINS OF VALUES OF THE SIGNALS

A constant sequence is a sequence each element of which has the same value. Such a sequence can
be designated by an identifier.

1. Context-free syntax

DECLARATION-OF-CONSTANTS ::=

SIGNAL-TYPE

DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} * D

DEFINITION-OF-CONSTANT ::=

Name-constant
| NameconstanEl DESCRIPTION-OF-CONSTANT

DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

2. Types

@ @i (7()=7(x3))

) i (7(E)cT(x)

(c) When the constant declaration does not contain an expression, for example itois in
fact an abbreviated form foy; = external, that definesy; as an externally defined

constant. It means that the value ¥5f is provided either in a module (cf. pé# section
Xll-1, pagel91), or in the environment of the program.

3. Semantics

e Any expression defining a constant must be monochronous and functional (without side ef-
fect). With this reserve, the set of expressions admitted by a compiler contains the operators
and intrinsic functions and can contain a set of functions depending of a particular environ-
ment.

e The elaboration of the expressidi, in the contextCp of the declarationD, minus the
identifier X;, provides a constant value (determined at compile tia;n@?i) =

e the declarationD hides any higher declaration df; for the contextCp and the included
contexts;

e in a context wherd is visible, the elaboration of an occurrence of the identifigprovides
the valuep(X;) = v.

4. Clocks An occurrence of use ok; (or Y;) is considered as an occurrence of the designated con-

stant.
(@) w(E)=h
(b) w(X;)=h

©) w(v;)=hn

V-9. DECLARATIONS OF SEQUENCE IDENTIFIERS 87

5. Examples

(&) The declaration
constant real PI=3.14
defines the identifiePT of typereal and with valuep(3.14).

(b) The declaration
constant[2,7 real UNIT =[[1.0,0.0],[0.0,1.0]]
defines the identifieNIT as a unit real matrix.

(c) The declaration
constant RECTANGLE BASE;
whereRECTANGLE is an identifier of external type, defines a constant of that tgpsE, the
value of which should be provided at code generation.

(d) The declaration
constant integer L=M+N;
is incorrect ifM or N does not designate a constant or a parameter; if it is correct, it defines
the identifierL. as being equal to the sum of the constap{sr) and ().

V-9 Declarations of sequence identifiers

p IDy, .., IDj init Vi, .., ID,;

A sequence of values is provided with a type (the one of its elements); this type is associated with
an identifier in a declaration. In such a declaration, an identifier can designate a static parameter (formal
“signal”), a signal, or a tuple of signals. Initialization values can be associated with signals and tuples of
signals {(D; init Vj) in order to define their initial value(s) when these initial values are not defined
elsewhere.

1. Context-free syntax

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { I:lDEFINITION-OF-SEQUENCE} * E|

DEFINITION-OF-SEQUENCE ::=

Name-signal
| Name-signa S-EXPR

2. Types

(a) The declared names must be mutually distinct. The sama"t(/@)ais given to the identifiers
1Dy, ...,ID, inthe context of the declaration.

(b) For a signal expression (“assignment”, passage of static parameter or positional identifica-
tion) associating a value with an identifier/ D; declared with type:, we must have'(v)
L .

(c) The rules applying to initial values are exactly those described in the section “Initialization
expression” (cf. sectiokI-3.1, pagel07).

88 DOMAINS OF VALUES OF THE SIGNALS

3. Semantics

e i IDy, ..., I1D,,; declares the sequences (signals or paramefdds) ..., ID,. If
1 designates a polychronous tuple type then the identifiérs ..., I D, designate tuples
of signals (and not, strictly speaking, signals); the signals represented by these tuples are,
recursively, the fields of the tuples (the fields can be themselves tuples). For example, if
1 designates a tuple type with named fielisdle (1 Xy, ... tm Xmi) e
then each tupld D; gathers the signals (or, recursively, the tuples of signals) designated by
ID;. X4, ...,1D;. X,, (cf. partD, sectionVIII-3, pagel44), which have respectively the
typesiit, - -« fm-

e The semantics of an initialization expression specified in a declaration is exactly the same as
that described in the section “Initialization expression” (cf. sectior3.1, pagelQ07). The
association of an initialization with a signal declaration specifies a default initialization for
the corresponding signal. It can be overloaded by the definition of that signal (in that case, it
is unnecessary or only partly necessary).

4. Clocks

(&) The relations on the clocks of initialization expressions are described in the section “Initial-
ization expression” (cf. sectiovil—-3.1, pagel07).

5. Examples

(@) The declaratiomeal X, Y; declares the signak$andY of typereal.
(b) The declaratiofin] integer V; declares the vector of integevs of sizen.

V=10 Declarations of state variables
statevar w IDq init i, ..., IDj, .., 1D, init Vi

A state variable is a typed sequence the elements of which are present as frequently as necessary
(it is available at a clock which is upper than the upper bound of the clocks of all the signals of the
compilation unit in which it is declared). A state variable is defined via partial definitions the clock of
which are well defined. It keeps its previous value as long as a new one is defined. It should have an
initial value associated with its declaration (if it has not, it takes as initial value the default initial value
of its type). A state variable can be used only in a context which defines a context clock. A state variable
cannot be declared as input or output of a model of process.

1. Context-free syntax

DECLARATION-OF-STATE-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { I:lDEFINITION-OF-SEQUENCE} * E

2. Types

(&) The declared names must be mutually distinct. The sam@'t(/p)eis given to the identifiers
1D+, ...,ID, inthe context of the declaration.

V-10. DECLARATIONS OF STATE VARIABLES 89

(b) For a signal expression (partial “assignment” associating a valigh an identifier/ D;
declared with typg:, we must have (v) C .

(c) The rules applying to initial values are exactly those described in the section “Initialization
expression” (cf. sectiokI-3.1, pagel07).

3. Semantics

e Statevar uw IDq, ..., ID,,; declares the state variablé®q, ...,ID,,.

e The semantics of an initialization expression specified in a declaration is exactly the same as
that described in the section “Initialization expression” (cf. sectibrB.1, pagel07).

Note: The INRIA POLYCHRONY environment allows in some cases that the type of a constant, a
sequence identifier or a state variable is not provided explicitly in their declaration (the corresponding
SIGNAL-TYPE is simply omitted). The corresponding type must be deduced from the context of use

of the object.

Chapter VI

Expressions on signals

The values associated with signals are determined by equations on signals; these equations are built by
composition of sub-systems of equations (named also processes) from elementary equations.

This chapter presents the expressions of definition of sigBalE{PR). This presentation is preced-
ed by an introduction to the expressions of composition of definitiBrEXPR).

VI-1 Systems of equations on signals

Composition of definitions of signals

The equations of definition of signals can be composed by the :-‘ ee chaptevIl, “Ex-
pressions on processes”). An expression on processes
Ey | By
defines the signals (or, equivalently, has as outputs the signals) defined in each one of its sub-expressions,
and has as inputs the input signals of each one of these sub-expressions which are not outputs of the
other one. The value of an input signal of a sub-expression, which is defined in the other one, is the
value associated by this definition. As a signal cannot have a double complete definition, a given signal
identifier representing a totally defined signal cannot be output of two sub-expressions. However, it
is possible to have severphrtial definitions,in different sub-expressions, for a given signal (partial
definitions are syntactically distinguished).

An expression on processes can be parenthesizyon the left and b on the right (note

the presence of the sym).

A given output of an expression on processes can be hidden through the o(eee chapter
VII, “Expressions on processes”). An expression on processes
E1 / aq
has as outputs the outputs Bf distinct froma; and for inputs the inputs af;.

The signals are defined by explicit elementary equationBEFINITION-OF-SIGNALS , CON-
STRAINT s (cf. sectionVI-5.3, pagel21), or by referring to systems of equations declared as models
of processesINSTANCE-OF-PROCESS).

VI-1.1 Elementary equations

A definition of signals allows to define a signal or a set of signals with the syntax given below. A
definition of signals is an expression of processes.

92

EXPRESSIONS ON SIGNALS

1-a Equation of definition of a signal

X

= F

1. Context-free syntax

ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=
Name-signaE S-EXPR

2. Profile
An equation of definition of a signal has as output the defined signal and as inputs the inputs of the
expression¥ distinct of the output.

e ! (Xx:= E)={Xx}
e The inputs ofE are the signal identifiers that have at least one occurrenge in
?x:=E)=?F-!(x:=E)

3. Types
(@) T(E) £ T(X)

4. Semantics
The signalX is equal to the signal resulting from the evaluationzbfAn occurrence o in the
expression builds a recursive definition.

5. Definition in SIGNAL
Though it is the most frequently form of equation used in thenNd\L language X = F
is not the basic form. The si expresses that the equation is oriented, while in the basic form

(cf. partB, chapterlll, page29) the sign is used to express the fact that equations are non

oriented (cf. sectioV1-6, pagel22).
It is equal to the following process, where the dependences are made explicit:

| X = FE
| E —> X
)

(

6. Clocks A signal represented by an identifier and the signal that defines it are synchronous.
() w(X) =w(E)

7. Graph
@ F—X

8. Examples

(a) ifx,y, z designate signals:
x := y + z defines the signal designatedbyequal to the sum of the signals designated
respectively by andz; this expression has as inpytandz and as outpux.

ViI-1. SYSTEMS OF EQUATIONS ON SIGNALS 93

1-b Equation of multiple definition of signals
(X1,...X,)= E

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
Name-signal{ |:| Name-signal}* E| S-EXPR

2. Profile
An equation of multiple definition of signals has the inputs and outputs defined by the following
rules.

e The identifiers of defined signals represent the outputs of the equation:
P((Xy,....X) = E)={X1,...,X,}
e The inputs of the equation are the inputsfofvhich are not outputs of the equation:
?2(x1,...x)= E)=?E) -!((X1,...X,):= E)
3. Types

@ T((X1,...X)) = (T(X1) x ... x 7(X,))
) 7(E) C (T7(X)) x ... x 7(X,.))

4. Semantics

e X1,...,X, designate signals or tuples of signals.

e [can be viewed as a tuple ofelements: let E1,. .. ,F,) this tuple.

e Each signal or tupleX; is respectively equal to the signal or tugie that corresponds to it
positionally as output ofr.

5. Definition in SIGNAL
(X1,....X,)= FE
is equal to the following process:

(] Xi = E

| X, = E,

)

As a particular case, when the defined signal or tuple is unig¥9,:= FE is equivalent to:
X=F
(the syntax without parentheses as describedartan be used wheX is a tuple).

6. Clocks A signalrepresented by an identifier and the sighalthat defines it are synchronous. In
this case, there is:

(@) w(x:) =w(E)
7. Graph
(@ Ei— X;

94 EXPRESSIONS ON SIGNALS

8. Examples

(@) if x,y, z, a designate signals arifla model with one formal parameter, one input and three
outputs:
(x,y,2):=P{n}(at+5) defines the signals designatedXyy andz, equal respectively
to the first, second and third output of the mo&einstantiated with the parametarand
takinga;+5 as input at each occurrenceafthis expression has as inpauand as outputs,
y andz;

(b) if w, v, b also designate signals:
wxy,zVv):=(@a ,P{n}at5) ,b) defines the signal, x,y, z andv, equal respec-
tively to the signak, to the first, the second and the third output of the proessd to the
signalb; this expression has as inpas&ndb and as output®, x, y, z andv; it is equivalent
to the composition
(Iw wv)=(@ b)|(x yz):=P{n}(at5)]) ;

(c) if x designates a tuple with named fields whose fields are respectiVedyrdx2 , anda, b
designate signals:
(a,b):=(xx1 x.x2) defines the signals andb equal respectively to the first and the
second component of the tupte

(d) if x designates a tuple with named fields and designate signals:
x:=(a ,b) defines the tuplex the components of which are respectively equal to the
signalsa andb.

1-c Equation of partial definition of a signal

Equations of partial definition of a signal are a way to avoid the syntactic single assignment rule, even
if semantically, this rule applies. Each one of the partial definitions of a given signal contributes to
the overall definition of this signal. These partial definitions can appear in different syntactic contexts.
All these partial definitions have to be mutually compatible. One default partial definition can appear
for a given signal: it allows to complete the definition of the signal by a default value when the partial
definitions do not apply. The overall definition of the signal is considered as complete in a compilation
unit.

Equations of partial definition are syntactically distinguished by the use of the special oI
The use of this symbol is mandatory to allow the presence of different syntactic definitions of a given
signal. The syntactic single assignment rule still applies when the assignment Iused. In
particular, it is not possible to have both complete definition and partial ones for a given signal.

X:= FE
X ;= defaultvalue FE

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

Name-signa S-EXPR
| Namesigna defaultvalue | S-EXPR

2. Profile
An equation of partial definition of a signal has as output the partially defined signal and as inputs

ViI-1. SYSTEMS OF EQUATIONS ON SIGNALS 95

the inputs of the expressiafi distinct of the output.

(X == E)={X}

?x = B)=?E) -!'(x:= E)

I (X ::= defaultvalue E)={X}

e ? (X ::= defaultvalue E)=? (E) - ! (X ::= defaultvalue E)

3. Types
(@) 7(£) C 7(x)

4. Definition in SIGNAL
Let the following composition represent the whole set of partial definitions of a sigmak given
compilation unit;

(] X == E
| X = E,
| X = defaultvalue E,i1

)

It is semantically equivalent to:

(] X = E; default X
| X = E, default X
| X = (Epy1 When (X "= (Ey "+ ... T+ E,))) default X
| X "= FB "+.. "+ E, T+ X
|

)

5. Clocks For the above set of partial definitions of the sigihglany two different expressions;
must have the same value at their common instants if they have such common instants. The clock
of X is greater than the upper bound of the clocks of the expresgigris=1, ..., n.

@ Vi, j=1,....,n Ww(E > E;)=w(when ((E; when"E;) == (E; whenE;)))
0) w(X)=w(E ™ ...+ B, 7+ X)
(c) Fori =1,...,n, the clock of any expressioh; cannot be a context clock: in particuldy;

cannot be a constant expression or a direct reference to a state variable.
The clock ofE,,+; can bea context clock.

1-d Equation of partial definition of a state variable

State variables (cf. sectioi-10, page88) can be defined exclusively by equations of partial definition.
These equations define thextvalues of a state variable. The last defined value, which is the only one
that can be accessed at every instant, is referred to via the special not&idcf. sectionVI-2.3,

pagel06).
X:= F
1. Context-free syntax

The syntax is the same as that of an equation of partial definition of a signal.

96 EXPRESSIONS ON SIGNALS

2. Types
(@) 7(E) £ T(X)

3. Definition in SIGNAL

Let the following composition represent the whole set of partial definitions of a state vaiable
in a given compilation unit:
(] X == E

| X = E,
)

It is semantically equivalent to:

(| next_X := E; default next_X

next_X = FE, default next X
X = next X $
[next X

|
|
)

4. Clocks Forthe above set of partial definitions of the state variablany two different expressions
E; must have the same value at their common instants if they have such common instants.

@) Vi,j w(E; > E;) =w(when ((E; when"E;) == (E; when"E})))
(b) The clock of any expressiof; has to be well defined: it cannot be a context clock. In

particular, E; cannot be a constant expression or a non-clocked reference to another state
variable.

(c) The clock ofX is upper than the upper bound of the clocks of all the signals of the compila-
tion unit in which X is declared.

1-e Equation of partial multiple definition

(Xq,....Xn) = K
(Xq,...,X,) ::=defaultvalue)

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=

Name-signal{ |:| Name-signal}* S-EXPR
| Name-signal{ |:| Name-signal}* S-EXPR

2. Types

@ T((X1,...X)) = (7(X1) x ... x 7(X,))
) 7(E) C (7(X)) x ... x 7(X,,))

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 97

3. Semantics

e X1,...,X, designate signals, or tuples of signals, or state variables
(only signals or tuples of signals forXy,.. . ,X,,) ::= defaultvalue E)

e This is the same generalization bicand1-d
(only of 1-cfor (X;,...,X,,) ::= defaultvalue F) as that ofL-b with respect tdl-a

e Each signal, tuple or state variablg is respectively partially defined by the signal or tuple
v; that corresponds to it positionally as outputf

VI-1.2 Invocation of a model

The invocation of a model of process providesldS TANCE-OF-PROCESSby macro-expansiorf
the text of the model, or by reference to this model if the text of the model is defined externally or is
compiled separately.

Depending on the fact that a model:

e has or not parameters,
e has or not inputs,
e has or not outputs,

the invocation of the model can take different syntactic forms. In all cases, the composition with the
context is done positionally, on the inputs and on the outputs.

If the model has no outputs, and only in this case, its invocation appears as an expression on processes
(ELEMENTARY-PROCESS); in any other case, an invocation of model appears as an expression on
signals §-EXPR).

The tableC-VI.1 gives the generic forms of the invocation of a model (which can be either an ex-
pression on processes or an expression on signals).

Positional definition No inputs
of the inputs
Without parameters P(E1,....E,) P()
With parameters || P{ V4,... Vi }(F1,....En) | P{ Vi,... Vi 3O)

Table C-VI.1: Syntactic forms of an invocation of model

The different forms are detailed below.

1. Context-free syntax

ELEMENTARY-PROCESS ::=
INSTANCE-OF-PROCESS

2-a Macro-expansion of a model

One has to take care that this basic form is used here to describe the semantics of any invocation of model.
The composition with the context is made by identity of nantdawever, this form is not available as
an external form in the language, except if the corresponding model of process does not have inputs.

98 EXPRESSIONS ON SIGNALS

P{Vi,...Vin}
The static parameters are parenthesize(# bﬂ and ; these parameters are types or constant
expressions mainly used as initial values of signals or array size. Note that parameters can also be

models (cf. park, sectionXI-8, pagel87).

1. Context-free syntax

INSTANCE-OF-PROCESS::=
EXPANSION

| Name-mode

EXPANSION ::=

Name-nodel

S-EXPR-PARAMETER { DS-EXPR-PARAMETER}*

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE

2. Profile

o ! (P{ Vi, ooV }) is equal to the set of the names of the outputs of the visible declaration
of P, let{Yy,...,Y,}.

°«? (P{ VieeooVim }) is equal to the set of the names of the inputs of the visible declaration
of P,let{Xy,...,X,}.

3. Types

(a) Let, inthis orderp, ..., P, be the names of the formal parameters of the visible declaration
of P.

(b) The actual parameterS{EXPR-PARAMETER) of the invocation of the model must cor-
respondpositionally to the formal parameters of the declaration of the model (cf. Bart
sectionXI-5, pagel79. In particular, to the parameter types can only correspond types
(SIGNAL-TYPE), and to the “constant sequences” parameters can only correspond expres-
sions on sequenceS-{EXPR).

©) (T(V) x...x7(V,) E(T(P) x ... x T(R))
@d) 7(P{ Wi,...Vin}) =7('P)
(cf. partE, sectionXl-5, pagel79

4. Semantics

e P being the name of a model of visible process, the expres$igns.,V,, are the actual pa-
rameters of the expansion, correspondiagitionallyto the formal parameters of this model.
The expansior?{ V1,...,V,, } is equivalent to the body of the visible declaration/®in
which each formal parameter has been substituted by the corresponding actual parameter.

e P() Iisthe expansion o whenP has no parameters.

ViI-1. SYSTEMS OF EQUATIONS ON SIGNALS 99

5. Clocks The actual parameters of sequenggmust be constant expressions.

(@) w(v;) =h

2-b Positional macro-expansion of a model

P{Vi,...Vo) E1,....E,) or P(Ey,...E,) withn>1

In the external form of the language, the input signals are associated with an instance of model,
respecting their “position”: a list of expressions between the syand redefines the input
signals declared in the model respecting the order of these declarations.

1. Context-free syntax

INSTANCE-OF-PROCESS::=
PRODUCTION

PRODUCTION ::=
MODEL-REFERENCE S-EXPR{D S-EXPR }*

MODEL-REFERENCE ::=

EXPANSION
| Name-model

2. Profile

o ! (P{ Vi,...Vsu X Eip,....E,)) is equal to the set of the names of the outputs of the
visible declaration of, let{Y7,...,Y,}.

¢ ?2(P{ Vi . Va}(Ern. ER))=U? @) -, V)
=1

3. Types

(a) Let, in this order,Py, ..., P, be the names of the formal parameters ahd ..., X, the
names of the inputs of the visible declarationfaf

®) (T(V) x...xT(Vp,) E(T(P) x ... x T(R))

©) (T(E) x ... x T(E,)) E (T(X1) x ... x T(X,))

@) 7(P{ Vi,...Vi }(Er,....E,))=7('P)
(cf. partE, sectionXl-5, pagel79

4. Semantics
The formP(Ej,....,E,) is used wherP has no parameters.

5. Definition in SIGNAL

P{ V...V O Er,. . Ey)
is equal to the process defined below in whichX; } is a set of signal names that do not belong

to the inputs of the expressioi (| | ? (£;)), or to the sets of input or output names7af
=1

100 EXPRESSIONS ON SIGNALS

(I (SX1,., SX,) = (Ei,., Ep)
(] (X1 Xp) = (SX1.., SX))
| P{ Vi, Vi)
DD, ST X,
) /| SXi, .., SX,

6. Clocks The actual parameters of sequenggmust be constant expressions.

(@) w(v;) =h

2-c Call of a model

(SS1,...,98)= P{ Vi,...Vi,)(Er,....Ep)
(the form P{ V4,... Vi, }(E4,....E,) is used here generically to represent one of the forms defined
in 2-aor in 2-b; moreover, it can also appear as argument of any expression on signals)

1. Context-free syntax

S-EXPR::=
INSTANCE-OF-PROCESS

2. Definition in SIGNAL
(851,...,55) = P{ W,...Vin) En,...,E,), with the modelP having the output signals
{Y¥1,...,Y,}, is equal to the process defined below in whiélY; } is a set of signal names that do

not belong to the inputs of the expressi(ms(U ? (EZ)) or to the sets of input or output names
i=1
of P, or to the se{SSy,...,SS;,}.

(| (SS1 S8 = (SYi,.. SY,)

| (| P{ Ve, VX B, E,)
| (SYl,..., SY;I) = (Yl,..., ifq)
’) / Yi, ..., Y;]

) I Svi, .. SY,

The tableC—VI.2 gives the different forms of the invocation of a model together with the priority of
their arguments (refer to the tabl€s-VI.3 andC-VI.4).

2-d Expressions of type conversion
T(E)

The conversions of values between distinct effective types can be explicited as call of a model
(INSTANCE-OF-PROCESYS); the name of this model is the name of the destination type of the conver-

sion; the expressions of conversion can only appear as expressions on signals, but not as expressions on
processes.

1. Context-free syntax

VI-1. SYSTEMS OF EQUATIONS ON SIGNALS 101

Scheme Type
Arguments — Result

P{VY,. VO EV,.. E°)

PLV0. . VI (1 X oo X i) X (V1 X ... X vy)
P{VD,... VoY — (p1 X ... X pp)
P(EY,... EY) (11 X oo X vp)
P()

Table C-VI.2:INSTANCE-OF-PROCESS E?

e When the inputd?; are absent, it is a model without input (the tuple,(x . .. x v,,)) is then empty);

e When the model has at least one input, the tyges. ., v, being, in this order, those of the declaration of
the inputs ofP, there is
(1 X oo X)) E (v X .o X y)

e The typep; is that of the signal declaration corresponding positionally in outpét.in

S-EXPR::=
CONVERSION
CONVERSION ::=

Type—conversio S—EXPR

Type-conversion::=

Scalar-type
| Name-ype

2. Types

(@) Ifthe conversmnﬂ ()eX|sts
T(T(E))= ﬂﬂ

(b) If the conversiorCTgT)) does not exist]’(E') isincorrect.

3. Semantics

e If v is an element of the sequence of values representdd, llye corresponding element is

Té)) (v) in the sequence represented®y E') (if the conversiorC;_gE)) exists).

e If the typeT or the type ofF is an external type, the applied conversion, when it exists,
depends on the environment while respecting the general rules concerning conversions (cf.
sectionV-6.3, page81l).

4. Clocks A conversion is a monochronous expression.

@ w(T(E))=w(E)

102 EXPRESSIONS ON SIGNALS

5. Examples

(a) integer(3.14) has the valus.

VI-1.3 Nesting of expressions on signals

The expressions on signals can be nested in the respect of the priorities of the operators: any expression
with lower priority than the expression of which it is an argument must be parenthesized. Parenthesizing

is possible but not necessary in the other cases. Non parenthesized expressions which contain operators
with the same priority are evaluated from left to right, unless it is explicitly mentioned.

1. Context-free syntax

S-EXPR::=
S-EXPR

2. Profile
The expressionS-EXPR do not return a named output; their inputs are the set obtained by the
union of the sets of inputs of their operands.

3. Semantics
In the respect of the rules of priority, an equati®n=: 7T'(£,...,E,) formed by a function (or
an operator) and sub-expressiadns. . . ,F, is equal to the composition

¢ of the equations calculating these expressions in auxiliary variables:
(Xits Xim) =0 E;

e of the equationS :=: T(Xy1,....Xyn,,) €qual to the equatios :=: T(Fy,...,[,) in
which has been substituted, to each expressigithe tuple (; 1,...,X; ;) of the auxiliary
variables in which it is evaluated,

e and of the clock equations depending on the context of each one of these expressions.

Priorities and types of the operators on signals The tablesC-VI.3 andC-VI.4 contain a sum-
mary of the properties of expressions on signals. In these tables:

e the priorities are described in the first column (priority of the expression) and the second column
(priorities of its arguments) by usingj’ to describe an expression of prioritythe expressions are
evaluated in the decreasing order of priorities;

e the third column describes the types of the arguments and of the result:
— any; represents any type (however, one must refer to the definition of the operators for a
more precise description)
— bool; is the typeboolean or event
— compar; is any type in which there exists a partial order
— int; is an integer type (i.e., amongort, integer, long)
— real; is areal type (i.e., amonggal, dreal)
— cmplx; is a complex type (i.e., amongmplex, dcomplex)
— num; IS a numeric type (i.e., amongt;, real;, cmplx;);

VI-1.

SYSTEMS OF EQUATIONS ON SIGNALS

103

Prio- Scheme Type
rity Arguments — Result
‘ EY 0 event H
El El next E2 ([0.n1] X ... x [0.np]) — anyy X
([0.m1] x ... X [0.mp]) — anys — ([0.n1] X ... X [0.np]) — anyi Uanys a
E? E3: E3 ([0.11] X - % [0.1p]) — int1™ x
([0.m1] x ... x [0.mp]) — anyy — ([0.71] X ... X [0.7,]) — anyy
E3 E3 default E1 anyy X anyy — anyi U anys a
E* E*when E° anyy X booly — anyy
EP® E° after E° event X event — integer
E® from E°
E°count E°
ES ES™+ E7, ES— E7 anyi X anys
E7 E" % EB — event
EB when E? bool;
H EY ‘ if EYthen Elelse FEY ‘ booly X any; X anys — anyy L anys a H
E'0 EY.. E'l'step EM inty X inty X inty — [0..n] — inty U inty
E1.. El inty X inty — [0..n] — int; Uints
EU E'Y xor E!'2 bool; x booly — booly L bools
E12 E12 or E13
Eld Eld and E14
B not EF booly
ED E'6 == Fp1° anyi X anys a
E' «= 6 compary X compary — boolean a
E'° E'"Op BT any, X anyz — boolean a, b
compary X compars a,c
BT E7+ g8 pI7 — I3 numi X nums — numi U nums
E17 “" E18 [0.m1] — any; X [0.m2] — anys — [0.m1 + mo + 1] — anyj Uanys a
ET8 EB«EDY EBB] ED numi X nums — numi L nums
EB [« B anyi X int; — [0..m] — any,
E® modulo EY int] X intg — inty
EB . ED d
EDP E20 s« B2V numi X ity — numi
E?Y @ E% realy X realy — cmplxy e
E% + 21— g2l numi; — num;j
E%! var E?init E? anyy X anys — anyp f
var E% anyy
E?lcell EZinit E? anyi X booly X anys — anyy f
E?lcell E* anyy x bool;
S-EXPR-DYNAMIC C-Vl1.6

Table C-VI1.3: Expressions on signals

104 EXPRESSIONS ON SIGNALS

Prio- Scheme Type
rity Arguments — Result
H E?? ‘ tr E%2 ‘ ([0..] x [0.m]) — any; — ([0..m] x [0..]]) — any; ‘ H
H E? ‘ B2\ E# ‘ anyy X anys — any; Uanys ‘ a H
IS | any, | |
E% <EY,... EO> [0.m1 — 1] — anyy X ... X [0mn — 1] — anyn — [o..kﬁ1 my, — 1] — angy
X ... % [o..kﬁl my — 1] — anyn
[EY,. .. ,EO] anyy X ... X anyn —> [On —1] — »Iillanyi a
INSTANCE-OF-PROCESS - C-Vi.2
T(EY) any; — T(T) h
E26 E%[EY,. .. ,EO] ([0.11] X « -+ X [Omm]) — any) X (int1 X «.. X intm) —> any
([0.01] X +.. X [0ln]) — anyy x
([0.m1] X ... X [0.mp]) — int1™ —> ([0.mi] X ... x [0.mp]) — anyy
E?5, X, bundle({X1} — anyi X ... x {Xm} — anym) — any;
E?7 (EY,... EY anyy X ... X anyn — (any1 X ... X anyn)
CONSTANT C-VIL5
Id 7(1d) i
(E") 7(E)

Table C-VI.4: Expressions on signals

[a] fortypes belonging to the same domain

[b] forOp=or/=

[c] for Op <= or >= or < or >, a partial order being defined in the typenpar

[d] matrix products

[e] emplay is of typecomplex if both arguments are of typeal, it is of typedcomplex otherwise
[f] for anys C any,

[g] Iterative enumeration

[h] Conversion

[i] T(Id) is the type of the declaration of the signal identifigr

when, on a same line, two notations de type have the same index, the they designate the same type;

e the last column is a reference to the notes that follow the table (lowercase letter) or a reference to
another table.

VI-2 Elementary expressions

The expressions of elementary signals are the following:

1. Context-free syntax

VI-2. ELEMENTARY EXPRESSIONS 105

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label

| Namestate—variabl

VI-2.1 Constant expressions

A constant expression iSGONSTANT, an occurrence of constant identifier, an occurrence of parameter
identifier, a constant expression of tuple (cf. gatsectionVIll-1, pagel43), a constant expression of
array (cf. partD, sectionlX-2, pagel49), or one of the following expressions having recursively as
arguments constant expressions:

e anINSTANCE-OF-PROCESS (only if it is the call of a monochronous function with constant
arguments), or @ONVERSION,

e anS-EXPR-TEMPORAL
e anS-EXPR-BOOLEAN,
e anS-EXPR-ARITHMETIC.

Clock expressionsS-EXPR-CLOCK) and dynamic expressionS{EXPR-DYNAMIC) cannot be part
of a constant expression.
A constant is a denotation of value oaalar-type or of anENUMERATED-TYPE :

1. Context-free syntax

CONSTANT ::=

Boolean-cst
| Integer-cst
| Real-cst

| Character-cst
| String-cst

| ENUM-CST

These syntactic categories are described elsewhere (cf psettionll-2, page23).

1. Profile
A constant and consequently a constant expression have neither named input, nor named output.

2. Types

(a) The type of a constant expression is evaluated in accordance with the typeSsEKER
having the same syntax.

3. Clocks

(&) The clock of a constant expression and of its argumerits is

The tableC-VI.5 contains a summary of these properties and gives the priority of the constant lexical
expressions.

106 EXPRESSIONS ON SIGNALS

[Scheme \ Type |
true event
false boolean
Integer-cst Integer-type following its value
Simple-precision-real-cst real
Double-precision-real-cst dreal
Character-cst character
String-cst string

Table C-VI.5: Types of the constanks’”

VI-2.2 Occurrence of signal or tuple identifier

An occurrence of signal identifier has as value the signal that defines this identifier, as clock, the clock
of this signal and as type the type of its most internal declaration; the profile which is associated with it
contains as input this single identifier and does not contain a named output.

An occurrence of tuple identifier has as value the tuple of the signals that define this identifier.

In the rules describing the context-free syntax of the langudgme-signalcan designate, following
the context, a signal name, a tuple name, or a field name in a tuple.

The occurrence of a label is more specifically described in chajptesectionVII-5, pagel34.

VI-2.3 Occurrence of state variable

The notationX ? allows to refer to the last defined value of a state varidblef. sectionvV-10, page38).

State variables can be defined exclusively by equations of partial definition, that define the next values of
the state variable (cf. sectidfi-1.1, paragraphi-d, page9l). For a declared state variablg, the direct
reference taX is not allowed in expressions on signals; the only way to refer to the last defined value of
the state variable is by using the notati&?. The notationX ? designates the value of the state variable

X at the beginning of the “current step”. Moreover, this notation must be used in a context in which a
context clock is well defined.

X?
1. Types
(@) 7(x?) =7(x)

2. Definition in SIGNAL
Let H be the context clock oK ?, then, with the definition ofX" as it is given in section section
VI-1.1, paragrapt-d, page91, X ? is equivalent to:
X when H

3. Clocks

(&) The clock ofX?, which is equal to the clock ok, is upper than the upper bound of the
clocks of all the signals of the compilation unit in whighis declared.

VI-3. DYNAMIC EXPRESSIONS

107

VI-3 Dynamic expressions

Dynamic expressions allow the handling of values of signals having distinct dates.

definition of the value of the signals at their initial instants.

1. Context-free syntax

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

The tableC—-V1.6 gives the different forms of dynamic expressions.

Scheme Type
Arguments — Result

E* window E??init E2| A x E;y x W, — W,

E?! window E?%? A x By — W,
E?! $ E#init E?2 Al x By x Wiy — A4
E% $init E?2 Al x Ay — A
E21 $ E22 A1 X Ell — A1

E?' $ A — A

Table C-VI1.6:S-EXPR-DYNAMIC E?!

Ay anyy

E, constantM of Integer-type, strictly positive

Wy [0..M —2] — A,

Wy [0.M —1] — Ay

E4, signali of Integer-type, positive or zero, bounded by a constaht
of implicit value 1

Wi [0..N — 1] — A,
A Ay T Ay

VI-3.1 Initialization expression

E init V
The initialization expression allows to define the initial value(s) of a signal.

1. Types
(a) FE is asignal of any type.
(b) The type ofl” can be, depending on the context of the initialization:

e atypev such thav C 7(E),
e atype [0.n — 1] — v such thaw C 7(E).

They require the

108 EXPRESSIONS ON SIGNALS

2. Semantics

e If V has atype such thav C T(E) the value oft” defines an initial value for the expression
E init V.

e If V has a type [On — 1] — v such thatv C T(E , then the value of” definesn initial
values for the expressiafi init V' the valuep(V] 0]) defines the value of this expres-
sion at its first instant, the vaIu.p(V[1]) defines the value of the expression at its second
instant, etc.

If V' defines more values than required by the initialization of the expregsidhe extra values

are not taken into account.

If V defines less values than required by the initialization of the expregsitime missing values

are defined by the default initial value of type

An initialization expression can be associated with a signal either in an expression on signals, as it
is the case here, or in the declaration of a signal (cf. se&tiéh page87). When both forms of
initialization are defined for a same signal, the one which has the priority is that appearing in the
expression of definition of the signal. The presence of an initialization expression in the definition
of a signal specifies, with the same semantics as abalefaaltinitialization for the signal, when

no initialization is specified in its expression of definition. For a state variable (cf. seétbn
page88), it is recommended that its initialization is described in its declaration, and not in its
expressions of definition.

When several initialization expressions are associated with a signal in different partial definitions,
they should be compatible.

3. Clocks

@ w(E init V) =w(E)
(b) w(V)=h

VI-3.2 Simple delay
E $init Vo
1. Context-free syntax

SIMPLE-DELAY ::=
S-EXPR [S-EXPR]

2. Types

(a) FE is a signal of any type.
() T(E$init v)=7(E)
(© 7(w) C T(E)
3. Semantics
The semantics of the delay is described formally in Baigectionlll—6.2, page39.

The value of the signall $ init v is at each instant the value of the delayed signal at the
instantt — 1. Initially, this value is the value defined by the initializatiap (v)).

VI-3. DYNAMIC EXPRESSIONS 109

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of typ€E) (which implies that
it is defined for any type, including external ()r@T(E):

E$=FES$init 07_ E)’
except if an initial vaﬂue is associated with the defined signal, in its declaration (cf. s¥¢ti8ri,
pagel07).
5. Clocks
(@ w(vo) =h
(b) w(E $ init v) =w(E)
6. Examples

(a) the values taken by for y defined byy :=x $init 0 are described below for the corre-
sponding values of in input:

X =1 2 3 4

y = 0 1 2 3

VI-3.3 Sliding window
E window M init TE,

1. Context-free syntax

WINDOW ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) FE is asignal of any type.

(b) The size of the window)/, is an integer constant expression the value of which is greater
than or equal to 1. If it is equal to 1, the initialization has no effect.

() 7(E window M init TE;)=[0..p(M) — 1] — 7(E)

d) 7(TEy) =[0.n — 1] — 1,
wherey C 7(E), n > (M) —1,andn > 0
(in the particular case wherg(M) = 2, the single initialization value can be given by an
element of typer (T Ey) = u, wherep C 7(E))

3. Semantics
For a signalX defined byX := FE window M init TEj:

o (t+i>p(M)) = (X[= Etfgo(M)JriH)

e (1<t+i<(M) = (X[i] =TE[t-o(M)+i+2])

110 EXPRESSIONS ON SIGNALS

4. Definition in SIGNAL
X = FEwindow M init TE
whose right side qf:z represents an expression of sliding window, is equal to the process defined

as follows, whenp (M) > 1:

(I Xo
| Xy

E
Xo $ init TEJ[M — 2]

Xy-1 = Xuy-o $ init TE()[0]
X = [X1, oony X()]
I Xo, -y Xn—1

5. Definition in SIGNAL
FE window M is equal, wherqO(M) > 1, to the following expression on signals:

E window M init 0[0..90(M) — 9] — 7(E)

6. Definition in SIGNAL
X = Ewindow 1 is equal to the process defined as follows:

X:=[E]

7. Clocks

() w(M) =

(b) w(TEy) =h

) w(E window M init TE)=w(E)
8. Examples

(a) the values taken by for y defined byy := x window 3 init[-1,0] are described
below for the corresponding values»ofn input:

X = 1 2 3 4
y [_17071] [07172] [17273] [27374]

VI-3.4 Generalized delay
E$Iinit TE,
1. Context-free syntax

GENERALIZED-DELAY ::=

S-EXPR S-EXPR [[init | S-EXPR]

VI-3. DYNAMIC EXPRESSIONS 111

2. Types

(a) FE is asignal of any type.
(b) I is a positive or equal to zero integer, with an upper bound.
Let NV be the upper bound (if is an integer constanly is equal tol).
©) T(ES$ Iinit TE)=7(F)
d) 7(TEy) =[0.n — 1] — 1,
wherey C 7(E), n > (N),andn > 0
(in the particular case wherg(N) = 1, the single initialization value can be given by an
element of typer (TEy) = u, wherep C 7(E))

3. Definition in SIGNAL
X = ES$TIinit TE,
whose right side o@ represents an expression of generalized delay bounded by the maximal
value N, is equal to the process defined as follows:

TX = E window N+1 init TEy
X = TX[N-1I]
[TX

q
|
)

4. Definition in SIGNAL
X=FE%1
is equal to the process defined as follws:

(]| TX := E window N+1
| X = TX[N-1]
1) I TX

5. Clocks

(@) w(1) =w(E)
(b) w(TEy) =h
) w(E $ 1)=w(E)

6. Examples

(a) the values taken by for y defined byy := x $ 3 init[-2,-1,0] are described
below for the corresponding valuesofn input:

X 1 2 3 4 5 6
y -2 -1 0 1 2 3
(b) the values taken by for y defined byy :=x $iinit[-2,-1,0] are described
below for the corresponding valuesofandi in input:

i =1 3 31 2 1
x =1 2 3 4 5 6
y = 0 -1 0 3 3 5

112 EXPRESSIONS ON SIGNALS

VI-4 Polychronous expressions

The polychronous expressions are built on signals which have possibly different clocks.

1. Context-free syntax

S-EXPR-TEMPORAL::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER

Vi-4.1 Merging
E; default E,

1. Context-free syntax

MERGING ::=

S-EXPR S-EXPR

2. Types

(@) T(E,) andT(E,) are signals of a same domain.
(b) 7(E, default Ey) =7(E) U T(E,)

3. Semantics
The semantics is described formally in pBrtsectionlll—6.3, page40.

4. Clocks

@) w(BE, default Ep) =w(Fy) + (1 - w(Ey)) *w(Ea)) ifw(E)#h
(b) w(E, default Ey)=w(E1) + (1 —w(E)) *w(E, default Ey))
if W(E,) =h

5. Graph
WhenT(E, default) # boolean andT(E; default E,) # event:
(a) Fi — E4 default FEs

1—w(E)

(b) E5 E; default FE5

6. Properties
(@) (Fy default E,)default FE3=F;default (F;default FEj)
(b) F; default FE, = F; default (Fs whennot "E; default “F»)
©) W(E)) *w(Ey)=0) = (E default E,=E,default E)
@) (W(E) 2w(E)) V W(E) =) = (Bidefault E,=E)

VI-4. POLYCHRONOUS EXPRESSIONS 113

7. Examples

(a) the values taken by defined byY := E1 default E2 are described below for the corre-
sponding values dE1 andE2 in input:

El = 1 3 1L 5 7
E2 = 2 4 6 1 8
Y =13 6 5 7

VI-4.2 Extraction
FE when B

The values of a signal can be produced by extraction of the values of another signal when the values
of a Boolean signal are equal toue.

1. Context-free syntax

EXTRACTION ::=
S-EXPR S-EXPR

2. Types

(a) FE is a signal of any type.
(b) 7(B) C boolean
(c) 7(E when B) =7(E)

3. Semantics
The semantics is described formally in pBrtsectionlll—6.3, page40.

4. Clocks

(@ w(E when B)=w(E)*w(B)*(-1-B) ifw(E)+#h
(b) w(E when B)=w(B)*(-1-B) ifw(E)="h

5. Graph
WhenT (E when B) # boolean andT (E when B) # event:

(&) E— FEwhen B
(b) B—w(E when B)whenB is afree condition

6. Properties

(@) (T(B) =event) = (Bwhen B =DB)
(b) (F when By) when B; = E' when (B when Bs)
(c) E when (B when B) = E'when B

7. Examples

(a) the values taken by when Care described below for the corresponding valuexs anhdC
in input:

114 EXPRESSIONS ON SIGNALS

X =1 3 1 5 1 7
C =T L T F F T
XwhenC = 1 1 1 1 1 7

VI-4.3 Memorization
Ecell Binit Vj

The memorization allows to memorize a given signal at the clock defined by the upper bound of the
clock of the signal and the clock defined by the instants at which a Boolean signal has the-value

1. Context-free syntax

MEMORIZATION ::=

S-EXPR S-EXPR [S-EXPR]

2. Types

(a) FE is asignal of any type.
(b) 7(B) C boolean
) T(Ecell Binit Vp)=7(E)
d) 7(vo) Cc 7(E)
3. Definition in SIGNAL
X:= Ecell Binit Vj

whose right side represents an expression of memorizatio'adt the instants at whick
is true, is equal to the process defined as follows:

(default (X $ init 1))

| X = E
| X = FE "+ (when B)
)

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of typ€E), 0 (B):

FEcell B=Fcell Binit 07_ E)
except if an initial value is associated with the defined signal, in its declaration (cf. s¥¢ti8ri,

pagel07).
5. Clocks
@ w(E cell B init Vy)=w(E)+ (1 —w(E))*w(B)* (-1 - B))
6. Examples

(a) the values taken by cell C init O are described below for the corresponding values
of XandCin input:

X =113 L 1L L1 5 1 7
c=TFTTUF T L T L
X cell C init O = 0 1 3 3 L 3 65 5 7

VI-4. POLYCHRONOUS EXPRESSIONS 115

VI-4.4 Variable clock signal

var Einit 1}

Thevar operator allows to use a signal at any clock defined by the context.
1. Context-free syntax

VARIABLE ::=

S-EXPR [S-EXPR]

2. Types

(a) Eis asignal of any type.
(b) T(var Einit V) =7(E)
) 7(vo) € 7(F)

3. Definition in SIGNAL
Let:

e F' an expression on processes containing an occurremceof the expression on signals
var Einit Vj,
e H the context clock obar; in F,

e F'F the expression on processes equal’tm which X X has been substituted tar;.

F'is then equivalent to:

R

(F
= E default (X $ init V)
X = X when H

X "=FE "+ H
/

e e

|
|
|
|
)

4. Definition in SIGNAL
When the initial value is omitted, it is equal to the “null” value of typéE), OT(E):

var F=var Finit 07_ E
except if an initial value is associated with the defined signal, in its declaration (cf. se¢t8rd,
pagel0?).

5. Clocks
(@) w(var E init V) =nh

VI-4.5 Counters
H, modality H, or H;count M

116 EXPRESSIONS ON SIGNALS

The counter expressionspdalityafter orfrom , or counter modulocount) allow the number-
ing of the occurrences of a clock.

1. Context-free syntax

COUNTER ::=
S-EXPR|after | S-EXPR
| S-EXPR|from | S-EXPR
| S-EXPR|count|S-EXPR

2. Types

(@) T(Hl) = T(Hg) = event

(b) M is an integer constant expression.
(© T(H1 modality Hg) = integer

(d) T(H1 count M) =integer

3. Definition in SIGNAL
N := H; after Hs
whose right side represents an expression of counter of the evAntafter the reinitializa-
tion Hs, is equal to the process defined as follows:
(] CN = (0 when Hy) default (((N $ init 0) + 1) when Hy)
| CN = Hy "+ H,
| N = CN when H;
|) I CN

The signalN counts the number of occurrences of the sigHal(o;) since the last occurrence
of the signalH; (02); but the occurrences; which are simultaneous to occurrenegsare not
counted.

4. Definition in SIGNAL
N := H;from Hs
whose right side represents an expression of counter of the evAntsince the reinitializa-
tion Hs, is equal to the process defined as follows:

(N = (@ when H;) default 0) when Hy) default (((N $ init 0) + 1) when Hy)
N

|
| = H, "+ H;
| N := CN when H;
|) I CN

)

The signalN counts the number of occurrences of the siglal(o1) since the last occurrence
of the signalH; (02); the occurrences; which are simultaneous to occurrenegsare counted.

5. Definition in SIGNAL
N = H;count M
whose right side represents an expression of counter of the evéhtsnodulo go(M), is

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 117

equal to the process defined as follows:

(| N := (0 when ZN >= (M — 1)) default (ZN + 1)
| ZN = N $init (M — 1)

| N "= 1

1y | ZN

The signalN has 0 as initial value and is incremented by 1, modpl@w), at each new oc-
currence of the signat/; .

6. Clocks

(@) w(H, modality H,)=w(H,)
(b) w(M) =h
(c) w(H, count M)=w(H;)

7. Examples

(a) the values taken byl from E2 , E1 after E2 andE1 count 3 are described below for
the corresponding signalsl andE2 in input:

El = 1 e e o e e | o
E2 = e 1 1 e 1 1 e L
ElfromE2 = 1 1 2 1 2 3 1 1
E1l after E2 = 1 1 2 0 1 2 1 1
Elcount3 = 1L 0 1 2 0 1 1L 2

VI-4.6 Properties of polychronous expressions

e (F, default FEs)when B =(F; when B) default (E> when B)

o (T(B)=event) = (Bwhen(E;default E,)=(Bwhen E;)default (B when E}))

VI-5 Constraints and expressions on clocks

A

CONSTRAINT is an expression of processes which contributes to the construction of the system of

clock equations of the program. It is the tool for constraint programming. Such an expression can take
as arguments expressions on clocks or expressions on signals.

1. Context-free syntax

ELEMENTARY-PROCESS ::=
CONSTRAINT

VI-5.1 Expressions on clock signals

1-a Clock of a signal

“FE

118 EXPRESSIONS ON SIGNALS

The clock of a signal (of any type) is obtained by applying the operatorthis signal.
1. Context-free syntax
S-EXPR-CLOCK ::=
SIGNAL-CLOCK
SIGNAL-CLOCK ::=

S-EXPR

2. Types

(a) FE is asignal of any type.
(b) T(CE) = event

3. Definition in SIGNAL
E ==

Remark: this definition uses the operator of relaties defined on any type (cf. sectiofi—7.2,
pagel24).

4. Examples

(a) the values taken b are described below for the corresponding valueX of input:
X =1 2 3 4
X =T T T T

Remark: the expressio and the conversioavent (E) have the same result.

1-b Clock extraction

when B

The extraction of thérue values of a Boolean condition are obtained by applying the operator unary

when :
1. Context-free syntax
S-EXPR-CLOCK::=
CLOCK-EXTRACTION
CLOCK-EXTRACTION ::=

S-EXPR

2. Types

(@) 7(B) C boolean
(b) 7(when B) = event

3. Definition in SIGNAL

“B when B

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 119

4. Clocks
(@) w(when B)=w(B)* (-1 - B)
5. Examples
(a) the values taken byhen C are described below for the corresponding valugSiofinput:

C
when C

F F T
T T L L T
1-c Empty clock

0
The empty clock is the clock that does not “contain” any instant.

1. Context-free syntax
S-EXPR-CLOCK ::=
2. Types
(@) 7(0) = event

3. Definition in SIGNAL
“0is the lexical expression of the empty clock; it is equal to the solution of the following equation:
whennot '07="0

4. Clocks
(a) w("0)=0

VI-5.2 Operators of clock lattice
E1 AOp E2
1. Context-free syntax

S-EXPR-CLOCK ::=

S-EXPR[| S-EXPR
| S-EXPR[—|S-EXPR
| S-EXPR| ™ | S-EXPR

2. Types

(a) E1 andFE» are signals of any types.
(b) 7(E, ~Op E,) = event

120 EXPRESSIONS ON SIGNALS

3. Definition in SIGNAL
X = E1 4 Ey
defines a signal equal to the upper bound of the clocks of the sighaad E»; this expression is
equal to the process defined as follows:

(| X = AEl default AEQ
)

4. Definition in SIGNAL
X = E; “x E
defines a signal equal to the lower bound of the clocks of the sidhadsd E»; this expression is
equal to the process defined as follows:

(| X = AEl when AEQ
)

5. Definition in SIGNAL
X = El/\— E
defines a signal equal to the complementary clockEpfx E5 in"FEq; this expression is equal to
the process defined as follows:

(] X = when ((not "E,) default “Fy)
)

6. Clocks

@ w(Br ~+ E2)=w(E) + (1 - w(Er)) * w(E))
b) w(Er ~* Bp)=w(Er)*w(E,)
© w(Br ~— E)=w(E) - (W(E1) » w(Ey))

7. Properties

(@) Erv+ (Bx + E3) = (B + E2) + E3

(b) Er™+ Ex=Ey + B4

() EY+0=FE

d E+E=FE

(€) E1 7% (B2 E3) = (Eh " Eg) x Ej

() By ™ Es =FEy x F;

(9 Ex0=0

(h) ExE="FE

() (Br " Eo) ™+ E3 = (Er "+ E3) ™ (B2 + E3)
() (BEr ™+ E2) ™ E3 = (Eq "* E3) + (B2 * Ej)

VI-5. CONSTRAINTS AND EXPRESSIONS ON CLOCKS 121

VI-5.3 Relations on clocks
E1 AOp E2

The following expressions are expressions on processes describing constraints between clocks of
signals.

1. Context-free syntax

CONSTRAINT ::=
S-EXPR {E| S-EXPR ¥

| S—EXPR{ S-EXPR }*
| S—EXPR{ S-EXPR }*

| S-EXPR { S-EXPR ¥

2. Profile
A relation on clocks of signals is a process with no output and with:
n

?(E "Op .. “Op E,)=J?(E)
=1

3. Types
(&) The argumentg; are signals of any types, possibly distinct.

4. Definition in SIGNAL

E1 AOp EQ AOp EFE

(where Op is one of the operators=,” <,” > and #, and whereF E is an expression on clocks

or recursively a relation on clocks), builds the composition of the expresdipnsOp £E;, for

any pair of distinct indexesandj, and thus expresses the conjunction of the associated relations.

It is recursively defined by the composition of the following expressions of processes:

(’ E1 ’\Op E2

| E, "Op EE
| By "Op EE
1)

5. Definition in SIGNAL
E, T = E,
constrains the clock of the expression on signajsto be equal to that of’s; this expression,
whenH, ¢ ? (E1 T = Ez), is equal to the process with no output defined as follows:

(Hy:=("FE) == ("E)
) | H

6. Definition in SIGNAL
E1 T < E2
constrains the clock of the expression on sigrigal$o be smaller than (or equal to) thatbs; this

122 EXPRESSIONS ON SIGNALS

expression is equal to the process with no output defined as follows:
E1 = E1 “x EQ

7. Definition in SIGNAL

E1 > E2

constrains the clock of the expression on sigialdo be greater than (or equal to) thatef; this
expression is equal to the process with no output defined as follows:

Ei."=FE1"+ E,

8. Definition in SIGNAL

E, ~# E, specifies the mutual exclusion of the clocks of the expressions on sifhasd
Ey; hencew(E,)+w(E,) = 0. This expression is equal to the process with no output defined as
follows:

0 = E1 “x EQ
VI-6 ldentity equations not yet
imple-
Ei = Ey mented

Identity equations are expressions on processes describing equality constraints between the sequences

of values (and clocks) of two expressions.

1. Context-free syntax

CONSTRAINT ::=

S-EXPR S-EXPR

2. Profile

An identity equation is a process with no output and with:
? (E1 = EQ) =7 (El) U ? (EQ)

3. Types

(a) E; andE, are of comparable types.

4. Semantics

If £4 andE; can be viewed respectively as tup(egi1,. .. ,F1,) and(Es,... s, , the identity

equationFE; :=: FE5 constrains the sequences of values of the expresdignsind E5; to be
respectively equal.
An equationE; :=: FEs is the basic identity equation between signals in the language (cBpart

chapterlll, page29). Itis a non oriented equation, that does not induce dependences beftieen
andEs.

5. Clocks

If F; and Ey; designatesignals,they are synchronous. In this case:

@) w(E1) = w(B)

VI-7. BOOLEAN SYNCHRONOUS EXPRESSIONS 123

6. Properties

(a) FEy = Ey
is equal to the following process:

(| (when (Eyy == Ey)) ~ = En

| (when (By, == Es)) "= Eu
1)

VI-7 Boolean synchronous expressions

The Boolean expressions are synchronous expressions on signals. The operators defining such expres-
sions are the standard operators on Boolean elements extended to sequences of elements. The Boolean
expressions (or expressions with Boolean result) are either expressions of the Boolean lattice, or rela-
tions.

VI-7.1 Expressions on Booleans
1-a Negation
not E;

1. Context-free syntax

S-EXPR-BOOLEAN ::=

S-EXPR

2. Types

@) 7(E,) C boolean
(b) T(not E;) = boolean

3. Semantics
The operator of negation has, on the occurrences of signals, its usual semantics.

4. Clocks
@) w(not E;)=w(E)

1-b Operators of Boolean lattice
Ey Op Es
1. Context-free syntax
S-EXPR-BOOLEAN ::=
S-EXPR| or | S-EXPR

| S-EXPR|and|S-EXPR
| S-EXPR|xor |S-EXPR

124 EXPRESSIONS ON SIGNALS

2. Types

@) 7(E;) C boolean
(b) 7(E>) C boolean
(© T(E1 Op EQ) = boolean

3. Semantics
The expressions on Boolean signals have, on the synchronous occurrences of these signals, their
usual semantics; however, they are not primitive operators ofitheAs language.

4. Definition in SIGNAL
X = Fyand Ey
is equal to the process defined as follows:

(] X = (E1 when E,) default (not “E1)

|
| E1 T = Ey
)

5. Definition in SIGNAL
X := FEyor Ey
is equal to the process defined as follows:

(] X = (E1 when not E,) default “E;

|

| Ey T = Es

)

6. Definition in SIGNAL

X = Eyxor Ey
is equal to the process defined as follows:

(] X = not (E; == E»)
)

7. Clocks

(@) w(E) =w(E)
(b) W(Er Op Ep)=w(E)

VI-7.2 Boolean relations

The Boolean relations are equality, difference, and strict and non strict greater and lower relations.
Two classes of relation operators are distinguished according to their denotation:

e the operators which have a pointwise extension on elements of arrays (cfD,pentpterX,
page169), denoted respectively= |, ‘/ =, | > |,[>=} | <|et|<=]; for example, the operat
applied on two vectors has as result a vector of Booleans;

e the operators which have a Boolean result, whatever is the type sfghalson which they are
applied; in this class are only defined the operator of equality, de@d&nd the operator of

VI-7. BOOLEAN SYNCHRONOUS EXPRESSIONS 125

inferior or equal relation order, denoted <= | (these operators are pointwise extendefdtoilies
of signals:polychronous tuples with named fields and tuples with unnamed fields).

FE1 Op Es
1. Context-free syntax

S-EXPR-BOOLEAN ::=

RELATION
RELATION ::=
S-EXPR| = | S-EXPR
| S-EXPR|[/ =| S-EXPR
| SEXPR[> |S-EXPR
| S-EEXPR[>=| S-EXPR
| S-EEXPR| < | S-EXPR
| S-EXPR[<=| S-EXPR
| S-EXPRI==| S-EXPR
| SEEXPR[<<=|S-EXPR

2. Types

@ T(E1 Op Eg) = boolean
(b) ForE; == FEjs:
FE4 and B, aresignalsof a same domain, which is any domain.
(c) ForEy, = Ey;andE;, /= Es:
E; and Es are signals of a same doméhealar-type or ENUMERATED-TYPE .
(d) ForE; <<= E»:
E; and E, are signals of a same domd8talar-type (other than a&Complex-type), or of

ENUMERATED-TYPE , or of a same type for which the environment defines this operator
while respecting the properties enounced in this section.

(e) ForEy > Eo, B >= E5, E1 < Eg,andEl <= Ey:
FE, and E,, are signals of a same domdagtalar-type (other than e&Complex-type), or of
ENUMERATED-TYPE .

3. Semantics

e Two objects of array types are equal if and only if both arrays have the same dimension, are
of comparable types and the elements of same index are respectively equal.

e Two objects of monochronous tuple types are equal if and only if both objects are of compa-
rable types and the elements of corresponding fields are respectively equal.

e In the order defined on the values of tyla@lean, false is lower thantrue.

e The order defined on the values of tygewracter is the order on the decimal values of their
encoding.

e The order defined on the values of typeing is the corresponding lexicographic order.

126

EXPRESSIONS ON SIGNALS

10.

11.

e The order defined on the values of BNUMERATED-TYPE is the syntactic order of their
declaration in the definition of the type (cf. sectigr3, page74).

With these precisions, the operators of relation have their usual semantics. The otansi

denote the relation of equality; the operat~04:s<: ‘ and‘<:‘ denote the relation inferior or
equal.
The comparisons are made in the greatest type (of a same domain). Thde &n element of
the sequence of values representedtlyand if v, is the corresponding element in the sequence
of values represented by,
the corresponding elementis Op £ in the sequence representedBy Op FEks.

. Definition in SIGNAL

The expressiorf; /= Fs is equal to the following expression:
not (E1 = EQ)

. Definition in SIGNAL

The expressiorty; < E, is equal to the following expression:
(not (Eq = Ey)) and (E1 <= E»)

. Definition in SIGNAL

The expressiorty; >= Es is equal to the following expression:
E2 <= El

. Definition in SIGNAL

The expressiorty; > E, is equal to the following expression:

FEy < Eq
. Clocks
(@) w(B1) =w(Ez)
(b) w(E; Op E»)=w(E)
. Graph

When theFE; are not of a domaiisynchronization-type

(@) E1—FE; Op Es
(b) E—E; Op E»
Properties

The relatio is an order relation on all the types of signals for which it is defined; it has all
the properties of an order relation:

(a) reflexivity
(b) transitivity
(c) anti-symmetry: (€1 «= Ex) \ (F2 «= E1)) = (F1==E»)
Properties
The relatio is an order relation on the domains of values on which it is defined; it is:
(a) reflexive,
(b) transitive,
(c) anti-symmetric: (£, <= Ex) A\ (B2 <= E4)) = (E1=E»)

VI-8. SYNCHRONOUS EXPRESSIONS ON NUMERIC SIGNALS 127

VI-8 Synchronous expressions on numeric signals

The synchronous expressions on numeric signals are defined by pointwise extension of the standard
arithmetic operators on sequences of elements.

VI-8.1 Binary expressions on numeric signals
E1 Op E2

1. Context-free syntax

S-EXPR-ARITHMETIC ::=
S-EXPRE S-EXPR
| S-EXPR[- | S-EXPR
| S-EXPR| + |S-EXPR
| SEXPR[/ |S-EXPR

| S-EXPR|modulo|S-EXPR

| S-EXPR|++|S-EXPR
| DENOTATION-OF-COMPLEX

2. Semantics
If the result of an expression cannot be represented in theitygdehis expression, its value is a
value of typeu depending on the implementation.

If v1 is an element of the sequence of values representefl; gnd if v, is the corresponding
element of the sequence of values representefihyhe corresponding element in the sequence
represented by, Op FEsis:

U1 Op V9

3. Clocks

(@ w(Er) =w(E)
(b) W(E: Op Ep)=w(E)

4. Graph
(a) E1—E; Op E
(b) E—E; Op E»
Operators + —, x, / E; Op Es
1. Types

(a) 7(E,) and7(E,) are of anyNumeric-type in a same domain,
(b) 7(E1 Op Ep)=7(E)uT(E,)

2. Semantics
When an expression of division is of domairieger-type, the division is the integer division.

128 EXPRESSIONS ON SIGNALS

Operator modulo E; modulo FEs

1. Types

(@) 7(E,) andT(E,) are of domairinteger-type.
In addition, F, must be a constrained integer (strictly positive and with an upper bound).
(b) 7(E, modulo E,)=T7(E,)

2. Semantics
If ris defined byr := a modulo b,
then at each instant, the following property is true:
(Fanintegery) ((a=bxg+r) A (0 < r < b))
Operator xx E; #x E»
1. Types
(a) T7(E,) is aNumeric-type.
(b) 7(E>) is aninteger-type.
(C) T(El %k Eg) ZT(El)

Operator @ FE,@F>

A pair of synchronous elements Bkal-type defines a signal of domai@omplex-type

1. Context-free syntax

DENOTATION-OF-COMPLEX ::=

S-EXPR S-EXPR

2. Types
(a) 7(E,) is aReal-type
(b) 7(E) is aReal-type,

() if 7(E)) U T(E,) = real, thenT (E,@F,) = complex
it 7(E1) U T(E,) = dreal, thenT (E,@F») = dcomplex

3. Examples

(@ 1.0 @ (—1.0) defines a complex constant.

VI-8.2 Unary operators
Op E;

1. Context-free syntax

S-EXPR-ARITHMETIC ::=

S-EXPR
| [= |S-EXPR

VI-9. SYNCHRONOUS CONDITION 129

2. Types

(a) T7(E,) is aNumeric-type.
(b) T(Op E1)=7(E1)

3. Semantics
If the result of an expression cannot be represented in theitygdehis expression, its value is a
value of typeu depending on the implementation.

If v; is an element of the sequence of values representdd by
the corresponding element in the sequence represent@ by is:
Op U1

4. Clocks

() w(Op E1) =w(E:)
5. Graph

(@) E1—Op Ey

VI-9 Synchronous condition

if Bthen Ejelse E,

The synchronous condition is an expression on signals of same clock.

1. Context-free syntax

S-EXPR-CONDITION ::=

S-EXPR S-EXPR S-EXPR

2. Types

(@) 7(B) C boolean

(b) £ and E5 are signals of a same doméitalar-type, External-type or ENUMERATED-
TYPE.

) 7(if Bthen Ejelse Ey)=7(F)uT(E,)

3. Definition in SIGNAL
X :=if Bthen Ejelse E,
whose right side represents an expression of synchronous condition, is equal to the process
defined as follows:

X = (E; when B) default Es
B "= FE; T = E,

4. Clocks

(@ w(Er) =w(E)

130 EXPRESSIONS ON SIGNALS

(b) w(B) =w(E1)
) w(if B then E, else E,)=w(E)

Chapter VII

Expressions on processes

The expressions on processes allow to compose systems of equations on signals with the following
syntax:

1. Context-free syntax

P-EXPR::=

ELEMENTARY-PROCESS
| HIDING
| LABELLED-PROCESS
| GENERAL-PROCESS

GENERAL-PROCESS::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS

VII-1 Elementary processes

An elementary process is an instance of process (cf. se¢tieh2, page97), a definition of signals (cf.
sectionVI-1.1, page91), a constraint on clocks (cf. sectidf-5, pagell?) or on values (cf. section
VI-6, pagel22), or an expression of dependence (cf. f@arsectionXl—6.2, pagel82).

VII-2 Composition

The composition of two processé} and P, produces a process for which each execution observed on
the variables of?; (respectively,) is an execution of; (respectively,’). This composition is similar
to the aggregation of two systems of equations in a single one.

P | P

1. Context-free syntax

COMPOSITION ::=

[(] PEXPR{[| |P-EXPR} 1[]) |

132 EXPRESSIONS ON PROCESSES

2. Profile

° I(Pl | PQ):! (Pl)UI (PQ)
° O(Pl ‘ PQ):(O (Pl)—l (PQ))U(O (PQ)—I (Pl))
3. Types
(a) If their names are identical, an outpubf P; (respectively,) and an input: of P, (respec-
tively, ;) have also the same type.
(b) If their names are identical, an inpubf P; and an input: of P, have also the same type.
4. Semantics
A signal, input of P, (respectively,P), having as name the name of a signal, outpuofrespec-
tively, P;) and totally defined in it, has as definition iy (respectively, inP) its definition in P,
(respectively, inP;).
If the definitions of such a signal are partial definitions,Anand in P2, its resulting definition

is the combination of both partial definitions, as it is specified in sedfibri.1, paragraphl-c,
page9l

5. Clocks

(a) If their names are identical, an outpuof P; (respectively,;) and an input: of P, (respec-
tively, P;) have also the same clock.

(b) If their names are identical, an inpubf P, and an input: of P, have also the same clock.

VII-3 Hiding

The hiding is an expression that modifies the profile of an expression of processes by hiding some of its
outputs.
Pl A .., Ay

1. Context-free syntax

HIDING ::=
GEN ERAL—PROCESS Name-signak D Name-signal}*
| HIDING Namesignal{ElNamesignal}*

2. Profile
e ?2((P 1 A, ... A)=7(P)
el (P 1 Ay, ..., A)=1(P)—{A,. .. A}

3. Semantics
The hiding operation allows to hide outputs of the procBsshe outputs of the resulting process
are the outputs oP which do not appeain the list A4, ..., A,
The A; can be names of tuples: in that case, the hiding applies globally on the tuples.

VIl-4. CONFINING WITH LOCAL DECLARATIONS 133

4. Examples
Let P be a process witlA, BandC as inputs an andY as outputs.

(@ P /Y hasonlyXas output;
(b) P / Z isequal toP.

VIl-4 Confining with local declarations
Local declarations can be associated with any expression of processes.

1. Context-free syntax

CONFINED-PROCESS::=
GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

{ DECLARATION } *

The DECLARATION s are local to th€ONFINED-PROCESS, they are described in paf sec-
tion X1-2, pagel76(chapter “Models of processes”).

Local declarations of sequences

The signals (or tuples) that appear in a lisSeBDECLARATION s associated with an expression of
processes are hidden in output of tBI®NFINED-PROCESS.

P where ;1 Ay, ..., Anyy s m A1, ., Ay, ... end
The namesAy, ..., A4,,, ..., A1, ..., Ay, mustbe mutually distinct.
1. Profile
o ?(P where yu; A4, .., Apyy oo tom A1, . A,, ..end)=?(P)
e ! (P where 1y A, ... Apyy oo tom A1, . A,, ..end)=
L(P) —{A1,...,An, ..., AL, A)

2. TypesThe expression
P where pu; Ay, ..., D m A1, ., A,,, end
establishes a new syntactic contextraf
The declarations
where pup A, ..., Anyy oo m A1, ., Ay, end
are called “local declarations” faP.

(a) In this context, the type(m) is that associated with the signals, ..., A4,,, in accordance
with the rules defined in pa@, chapterV, “Domains of values of the signals”.

134 EXPRESSIONS ON PROCESSES

3. Definition in SIGNAL

Pl A .., Apyy ey A1, o, A,
with, in the context ofP, the associations of types defined above.

The following rules help to specify the context of visibility established by the local declarations of a
confined process (see also in paysectionXI-2, pagel76).

e An identifier of sequenc& (or an identifier of constant, or an identifier of type) used in an ex-
pression on processes that does not contain a declaratirisodaid external to this expression of
processes.

e An identifier of sequence (or of constant, or of typ€)local to an expression of processEs
or external toP and declared in a list)b ECLARATION s D, is local to theCONFINED-
PROCESSP where D end.

e An identifier of sequence (or of constant, or of typé)external to an expression of procesggs
and not declared in a list ®ECLARATION s D, is external to th€CONFINED-PROCESS P
where D end.

e Let A be an identifier of input signal of an expression of proceg3éssed but not defined iR),
then A must be external t®’.

e Let B be an identifier of output signal of a mod&f, then B must be an output signal defined
(at least partially) in the expression of processes associatedWyittxternal to this expression of
processes.

e Any sequence used inMODEL but not declared in the interface of ttMODEL must be either
local to the associated expression of processes, or external MQEREL (visible in a syntactic
context that includes it). In the same way, any constant or type identifier used@IEL must
be either local to the associated expression of processes, or externalNtOD&L .

VII-5 Labelled processes

It is possible to label an expression of processes:
XX P
1. Context-free syntax

LABELLED-PROCESS ::=
Label E P-EXPR

Label ::=

Name

The labelled proces¥ X :: P has the same semantics as the pro¢edsut the labelX X defines
a context clock for the proceds, and implicit signals are added to the graph.

VII-6. CHOICE PROCESSES 135

The label X X associated withP can be used to designate the procEss some expressions (de-
pendences, for example).

In particular, the labeK X can be used to define or to reference a characteristic clogk dfetick
of P. For that purpose, the label is considered as a signal of special type label, for which it is always
possible to reference its clock (in the usual wayéX for example).
This clock of the labelX X (thetick of P) is defined as being greater than the upper bound of the clocks
of all the signals designated iR (including the clocks of the labels contained i including also the
clocks of the signals designated in the macro-expansion of the models referenéetinnited to the
models which are not externally defined or separately compiled).

For the actions called i®, which are directly under the “scope” of the lab¥€LX (i.e., for which
there is no embedded labelled process containing these invocations of actions), the clock of tki&label
defines the activation clock of these actions. This clock can be fixed outside the pPo@es®nformity
with the constraint stated above: it is always greater than the upper bound of the clocks of the signals of
P).

The clock of the labeK X represents the context clock Bt

The other effect of labelling a process is to add the two following signals to the graph: let us denote
them respectively? XX and! XX, although these notations are not available in the syntax of the
language.

Both? XX and! XX have the clock" X X as their common clock. The implicit signal X X is
a signal that precedes all the nodes of the graph of the prdeefisere is a dependence frotnh X X
to each one of the signals designated®inSymmetrically, the implicit signadl X X is a signal which
is preceded by all the nodes of the graphiuf there is a dependence from each one of the signals
designated irP to the signal X X.

This feature is used to specify explicit dependences between processes (&, gEntionX|—6.2,

pagel8?).

The labels declared in a model of process (cf. garthapterXl, pagel73) are visible (i.e., can be
referenced) everywhere in this model, but not in its included models of processes: a label is in some way
local to a model.

In one model, a label cannot have the same name as another visible object (signal, parameter, con-
stant, type, model).

VII-6 Choice processes notyet
ully

A choice process is an expression of processes that allows to compose definitions according tg tHERIR-
ferent values of a signéal mented

case X in
{Eig, - Ein} o P
{Emni, - P P,
else P,

end

not yet implemented in ®LYCHRONY: intervals of values.

136 EXPRESSIONS ON PROCESSES

The “else” part is optional.

Other forms of enumeration of values can also be used in the different branches of the choice process.
They are described below.

1. Context-free syntax

CHOICE-PROCESS::=

Namesigna{ CASE }* [ELSE-CASE]

CASE ::=
ENUMERATION-OF-VALUES ElGENERAL—PROCESS

ELSE-CASE ::=
GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=
S-EXPR{DS-EXPR}* }
_[S-EXPR]D[S-EXPR]]
I[S-EXPR]D[S-EXPR]
I[S-EXPR]D[S-EXPR]]
i [S-EXPR] D [S-EXPR]

=

=]~ =]~]

2. Profile

° 9 (Pz) :{€i71,...,€i7pi}
e ?(case X in ..end)={x}ulJ?(P)- J! ()

7

o !(case X in ..end)=[]JI(P)

3. Types

(a) X has aScalar-typeor ENUMERATED-TYPE and
V’i,j T(EZ'J) C T(X)

4. Semantics
EachENUMERATION-OF-VALUES enumerates some subset of constant values which are in
the same domain as the sign#l signal on which the choice is based, and which are possible
values ofX.
All the enumerations of values (the “guards” of the choice) must be mutually exclusive. When
there is an “else” part, the different sub-types corresponding to the different guards form a partition
of the type ofX.
The enumerations of values can take the form of explicit enumerations (used for the description
below), or of intervals. The four possible forms of intervals are usable only if the values of the type
of X are totally ordered: they define intervals of values that can be, for both sides of the interval,
opened or closed. The bounds of an interval are optional (one of the two must be present): if the
lower bound is absent, the interval represents all the values smaller than the upper bound (included

VII-6. CHOICE PROCESSES 137

or not); if the upper bound is absent, the interval represents all the values greater than the lower
bound (included or not).

5. Definition in SIGNAL
When the processds have inputs (as specified above), these inputs are filtered by the instants at
which the signalX on which the choice is based takes as value one of the values enumerated in
the corresponding branch. Then the above choice process is equivalent to:

(| ey = ey when (X = Eyg) or oor (X = Epp))

] e/Lp1 = e1p, When ((X = Ep;) or ... or (X = Ein))

’ P1 [6/171/ 6171, ey ell,pll 6171,1]

| em1 = em1 when ((X = Epq) or ... or (X = Enn,))

| empn = €mp, When ((X = E,;) or .. or (X = Enn))
| Po [epal emay o Cmpm! €mpm)

| €ng11 = emy1n When ((X /= Epp) and ..oand (X /= Epp,))

| Emtipmes = Emtlpns When ((X /= Epp) and ... and (X /= Epp,))
/ /
| Pyt [€m+1,1/ Em+1,1r o €m+1,pm+1/ 6erl,pmH]
/ / / /
1) 1 oelqs €l pyr e CRTT €mt1 pmis
whereP; [e; 1/ei, ..., €, /e;] represents the process in which new identifiers:; ; are sub-

stituted to the identifiers; ; which are inputs of?;.

For all the processeB;, the new identifiersg’j are mutually distinct and do not appear elsewhere.

If some processd; does not have inputs, there is of course no sampling of inputs for it but the
“call” of this process is made at the clock at which the sigkiadbn which the choice is based takes

as value one of the values enumerated in the corresponding branch of the choice. In the definition,
this can be expressed by:

(f
| label; ~ = when ((X = E;;) or ... or (X = Ein,))
| label; @ P
)
fori =1..m
and by:
(f
| label,y1 ~ = when ((X /= Ej;) and ... and (X /= E;.,.))
’ labelm+1 . Pm+1
)

for the “else” part
(in place of the corresponding subsamplings and referencBsitathe previous definition).

6. Clocks The valuest; ; are constant expressions:

138 EXPRESSIONS ON PROCESSES

(a) CL)(EZ‘J‘) =h

Example
The statechart:
®\
) .
S,
=Y ——e
Q2
.\. b
@%/@ a
Nt
N\ J
_ J

may be described by the following program (process models and modules are described respectively in
chapterXl, pagel73and chapteKll, pagel9l):

module P_statechart =

type P_states = enum (Q, R, S);
type Q1_states = enum (U, V);
type Q2_states = enum (X, Y, 2);
process P_chart =
(? event Tick;
event a, b, i, j, m, n;
| P_states P_currentState;
Q1_states Q1_currentState;
Q2_states Q2_currentState;
)
(I (| case P_currentState in

{#Q}: (| P_nextState ::= (#R when a) default (#S when b) |)

{#R}: (] P_nextState ::= #S when b |)
{#S}. (| P_nextState = #Q when a |)

end
| P_nextState ::= defaultvalue P_currentState

| P_currentState := P_nextState $ init #Q
| P_currentState "= Tick
)
| clk_Q chart := when (P_currentState = #Q)
| start_ Q_chart := when (P_nextState = #Q) when (P_currentState /= #Q)
| Q1_State "= Q2_State "= clk_Q_chart ~+ start Q_chart
| (| case Q1_State in
{#U}: (| Ql_newsState :
{#V}. (| Ql_newsState :
end
| Q1_newsState ::= defaultvalue Q1_State
| Q1 _newsState "= Q1_State
| Q1_nextState := (#U when start Q_chart) default Q1_newState

#V when i |)
#U when j |)

Vil-6. CHOICE PROCESSES 139

| Q1_State := Q1 _nextState $ init #U
| Q1 currentState := Q1_State when clk_Q chart

)}
| (| case Q2_State in

{#X}: (| Q2_newState ::= #Y when m |)
{#Y}: (| Q2_newState ::= #Z when n |)
{#2}: (| Q2_newsState 1= #X when j |)

end
| Q2_newsState ::= defaultvalue Q2_State
| Q2_newsState "= Q2_State
| Q2_nextState := (#X when start_Q_chart) default Q2_newState
| Q2_State := Q2_nextState $ init #X
| Q2_currentState := Q2_State when clk_Q chart

)
)

where
P_states P_nextState;
event clk_Q_chart, start Q chart;
Q1 _states Q1_State, Q1_newState, Q1_nextState;
Q2_states Q2_State, Q2_newState, Q2_nextState;
end;
end;

(note that the program could be better structured using several process models).

Part D

THE COMPOSITE SIGNALS

Chapter VIII

Tuples of signals

An expression of tuple is an enumeration of elements of tuple, or a designation of field.

1. Context-free syntax

S-EXPR-TUPLE::=

TUPLE-ENUMERATION
| TUPLE-FIELD

VIlIl-1 Constant expressions

A constant expression of tuple is &EXPR-TUPLEwhich has recursively as arguments constant ex-
pressions, or any expression defining a tuple the elements of which are constants.

VIlI-2 Enumeration of tuple elements

A tuple represents a list (finite sequence) of signals or tuples.
(E1,....Ep)

1. Context-free syntax

TUPLE-ENUMERATION ::=

S-EXPR{D S-EXPR }*

2. Types
@ T((E1,....E)) = (T(B) x ... x T(E,))

3. Semantics
The tuple(E1, ..., E,) is equal to< vq,...,v, > where< vq,...,v, > is the sequence of
signals or tuples resulting from the evaluation of the expressigns. ., E,,.
The semantics is described formally in pBrtsectionlll-7.1, page42.

144 TUPLES OF SIGNALS

VIII-3 Denotation of field

X. X;
1. Context-free syntax

TUPLE-FIELD ::=
S-EXPRE Name-field

2. Types

@) 7(X) =bundle({X1} — 1 % ... x {X;n} = fim)
b) 7(X. Xi) = i
3. Semantics

If X is a tuple with named fieldX, ..., X,,, X. X; designates the signal or the tuple corre-
sponding to the field with nam#;.

In particular, the denotation of field may apply onlal s TANCE-OFPROCESSwhen the output

of the corresponding model is a tuple with named fields. It may also apply on an array element if
the elements of the array are monochronous tuples with named fields.

The semantics is described formally in pBrtsectionlll-7.1, page42.

VIlI-4 Destructuration of tuple

The syntax of anNSTANCE-OF-PROCESSis used to denote the call of predefined functions of de-
structuration of tuples:

e tuple(X)
— If X is a tuple with named fields of tygemndle({ X1} — 1 X ... X {Xm} — tm),
tuple(X) is the corresponding tuple with unnamed fiel€sY, ..., X,.), of type
(1115 o2 X fin)
— If X is a tuple with unnamed fields, the components of which are, in this okger,. ., X,,,
tuple(X)) isthe tuple with unnamed fieldtuple(Xi:),...,tuple(X.,))
— If X is not of tuple type, thetuple(X) is equal toX.

° rtuple(X))

— If X is a tuple with named fields of tygemndle({X1} — 1 X ... X {Xm} — tm),
rtuple(X) is the tuple with unnamed fields
(rtuple(X)), ..., rtuple(X))

— If X is a tuple with unnamed fields, the components of which are, in this okger,. ., X,,,
rtuple(X)) is the tuple with unnamed fields
(rtuple(X1), ..., rtuple(X))

— If X is not of tuple type, thentuple(X) is equal toX.

VIII-5. EQUATION OF DEFINITION OF TUPLE COMPONENT 145

VIII-5 Equation of definition of tuple component

A tuple can be defined component by component. An equation of definition of component of tuple is
an expression of processes the syntax of which extendSEf@NITION-OF-SIGNALS given in part

C, sectionVI-1.1, page91. The general form can contain both definitions of components of tuples and
global definitions of tuples and signals.

(Xl. A, o0 X An) = F
1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
COMPONENT E| S-EXPR
| COMPONENT [::=]S-EXPR

| COMPONENT S-EXPR

| COMPONENT { I:lCOMPONENT}* ElS-EXPR

| COMPONENT { DCOMPONENT}* S-EXPR

| COMPONENT { I:lCOMPONENT}*

S-EXPR
COMPONENT ::=

Name-signal
| Name-signaD COMPONENT

2. Types
@ T((X1. Ap, ... X0 A)) =(T(X1. A) x ... x T(X,. A))
) 7(E) C (T(X1. A1) x ... x T(X,. 4,))

3. Semantics

e Xi. Ay, ..., X,. A, designate signals or tuples of signals, respectively components of the
tuplesXy, ..., X,.

e Each signal or tupleX;. A; is respectively equal to the signal or tuplethat corresponds
positionally to it in output offs.

4. Clocks A signaland the signal; that defines it are synchronous. In that case:

(@) w(X;. 4;) =w(v;)

Chapter IX

Spatial processing

Spatial processing is obtained by manipulations of arrays.
The following operators are provided:

e operators of definition by enumeration
(ARRAY-ENUMERATION , CONCATENATION , ITERATIVE-ENUMERATION);

e an operator of definition of indice$NDEX);
e operators of access to elements of arrsddRRAY-ELEMENT , SUB-ARRAY);
e an operator of array restructuratioARRAY-RESTRUCTURATION);

e operators of sequential definition
(SEQUENTIAL-DEFINITION |, ITERATIVE-ENUMERATION);

e global operators on matrices such as transposiffGdANSPOSITION) and productsARRAY-
PRODUCT).

Moreover, structures of iteration are also defined on proce$EERATION-OF-PROCESSES),
with an associated operator of definition of multiple indidedJ(TI-INDEX).

1. Context-free syntax

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION

| CONCATENATION

| ITERATIVE-ENUMERATION
| INDEX

| ARRAY-ELEMENT

| SUB-ARRAY

| ARRAY-RESTRUCTURATION
| MULTI-INDEX

| SEQUENTIAL-DEFINITION
| TRANSPOSITION

| ARRAY-PRODUCT

| REFERENCE-SEQUENCE

148 SPATIAL PROCESSING

IX—1 Dimensions of arrays and bounded values

Dimensions of arrays

The syntax of alNSTANCE-OF-PROCESSis used to denote the call of predefined functions with
constant result giving the dimension of an array and the size of a dimension:

e dim(T)
If T"has atypd[0..n; — 1] x ... x [0..n,, — 1]) — v Wherev is aScalar-type or External-type

or ENUMERATED-TYPE ,

thenp(dim(7)) = m.
If 7" has a typer wherev is aScalar-type or External-type or ENUMERATED-TYPE ,

theny(dim(7)) = 0.
e size(T,1)
If T"has atypd[0..n; — 1] x ... x [0..n,, — 1]) — v wherev is aScalar-type or External-type

or ENUMERATED-TYPE ,

and if1 < (1) <m,

then(size(T.1))=ny,

elsego(size(T,1)) is not defined: it is an error in the program.

e size(T) is, by definition, equivalent to
size(T,1)

Bounded values

The syntax of aiNSTANCE-OF-PROCESSis used to denote the call of a predefined function
used to deliver bounded values.

bounds(Ei, Es, E3)

The values oft; are compelled to evolve between thatfof and Es.

1. Types
(a) E1, E» and E5 are signals of a same domdacalar-type (other than a&Complex-type), or
ENUMERATED-TYPE .
(b) T(bounds(Ey, By, B3)) =7(E) UT(E) UT(E)
(c) The pointwise extension is described in gayichapterX, pagel69.
2. Definition in SIGNAL

X = bOUﬂdS(FEy, Esy, E3)
whose right side represents an expression of bounded values, is equal to the process defined

as follows:

(] X =1if E; < Ey then E, else if FEy > E3 then E3 else FE;
)

3. Clocks
(@) w(Er) = w(Ey)

IX—2. CONSTANT EXPRESSIONS 149

(b) w(Er) = w(Es)
(c) w(bounds(FE;, Es, E3))=w(Er)

IX—2 Constant expressions

A constant expression of array is 8@EXPR-ARRAY which has recursively as arguments constant
expressions, or any expression defining an array the elements of which are constants.

IX—3 Enumeration

The enumeration of the elements of an array defines a vector by the ordered list of its elements.
[Ey, ..., E]

1. Context-free syntax

ARRAY-ENUMERATION ::=

m S-EXPR{D S-EXPR }*

2. Profile .
?0E,....E])={J7? ®E)
=1
3. Types

@ 7([ByB])=[0.n— 1] — | |7(E))
=1

4. Semantics
[E1, ..., E,] designates the vector thecomponents of which are, in this ordé#,, ..., F, (cf.
partB, sectionlll-7.2, page44).

5. Clocks
@ w(By, ... EJl)=w(BE) Vi=1,...,n
6. Examples

(@) With M1:=[[M11,M12,M13 [M21,M22,M23] ,
M1[1] is equal tof M11,M12,M13 .

IX—4 Concatenation

The concatenation allows to concatenate arrays along to their first dimension.
Ey H— Es

1. Context-free syntax

CONCATENATION ::=

S-EXPR S-EXPR

150 SPATIAL PROCESSING

2. Types

@ 7(E1) =[0.m1 —1] — 11

(b) 7(Es) =[0..my — 1] — o

(© T(El |+ E2) =[0..m1 +mo — 1] — p1 U o
3. Definition in SIGNAL

X = FEj |+ E;is equal to the process defined as follows:

X::[El[O],...,El[ml—].],EQ[O],...,EQ[mQ—].]]

4. Clocks

@) w(E) =w(E)
b) w(E |+ E)=w(E)

IX=5 Repetition

The repetition is a simple form of iterative enumeration which allows the finite repetition of a value.
E|x N
1. Context-free syntax

ITERATIVE-ENUMERATION ::=

S-EXPR S-EXPR

2. Types

@ 7(E)=p
(b) N is a positive integer expression, with a strictly positive upper bodigl,...
©) T(E [« N)=[0.Npap — 1] — 11
3. Semantics
At a given instant, all the elements of the vector definedby NV have the same value, which is
the value ofE.
The semantics is described formally in pBrtsectionlll-7.2, page44, using the “iterative enu-

meration of array”. The maximum number of iterations is givenNayand the iteration function
which is used here is the identity function with first value the vaiuigself.

4. Clocks

(@) w(B) =w(n)
) w(E |« N)=w(E)

IX—6. DEFINITION OF INDEX 151

IX—6 Definition of index
FEi.. Eystep Ej
1. Context-free syntax

INDEX ::=
S-EXPREl S-EXPR [S-EXPR]

2. Types

(&) E; andE5 are bounded integers such that the differeAge- 5 has always the same sign
(at every instant)vt, Fq; < FEo; orVt, Eqyy > Foy.
lower_bound(E?), upper_bound(EY), lower_bound(Ey) andupper_bound(Ey) will de-
note respectively the lower bounds and upper bounds, Gnd Es.

(b) Ej3is an integer constant different from 0, such that
if Vt, By, < By thenp(E3) > 0
and ifvt, 1, > By, thenp(E3) < 0.
When the step expressiohy, is omitted, its value is implicitly equal to 1.

(c) If p(F3) >0,
E1 FEs step Eg) =
upper bound(Eg) lower_bound(Ey))/@(E3) +1) — 1] — 7(E) uT(Ey)

If E3
él By step By) =
((upper_bound(E;) — lower_bound(Ey))/(—p(E3)) +1) — 1] — 7(E;) U T(E>)
In any case, the size of the vector must be strictly positive.

3. Semantics
The vector of integers defined Wy,.. F, step FE3 has as successive elements the valtigs
B + 0(E3), B, + (2% ©(E3)), etc., up to the last value betweéh, and Es, (included).
The semantics is described formally in pBrtsectionlll-7.2, page44, using the “iterative enu-
meration of array”.
The iteration function is the functiofi such thatf (z) = = + ¢(Es). The first value is&; .
If (p(E3) > 0, the maximum number of iterations is given by
N =(Ey — E1) 1 @(F3) + 1.
If (p(E3) < 0, the maximum number of iterations is given by
N = (B, — E) | (—p(Es)) + 1.

4. Clocks

(@) w(Er) =w(E) =w(Er.. E» step Ej)
(b) w(Es)=h

IX—7 Array element

An array element is obtained by indexing following the syntax of the first rule below. Every index of
array must be a positive bounded integer, whose upper bound is strictly inferior to the sfzthe

152 SPATIAL PROCESSING

considered dimension; the second rule provides a syntax of “local recovery” which defines the value of
the expression for the values of index outside the segment{01].

1. Context-free syntax

ARRAY-ELEMENT ::=

S-EXPRIIl S-EXPR {D S-EXPR ¥ m

| S-EXPRII' S—EXPR{D S-EXPR }* |I| ARRAY-RECOVERY

ARRAY-RECOVERY ::=

S-EXPR

IX—-7.1 Access without recovery
T[By, ..., Ep]

1. Profile "
?@Ey,....BEx])=? @) ul]? (&)
i=1

2. Types

(a) Foralli, E; is a positive (or zero) integer, with an upper bound. tgthe value of its upper
bound.

() 7(T) = ([0.n1 — 1] x ... x [0.2, — 1]) — 1
(remark: . can be an array type.)

©) T(T[By, ...,En]) =

3. Semantics
If v1, ..., v, represent respectively the self-corresponding elements in the sequences of values
represented by, ..., E,,, the corresponding element in the sequence represent&d By,
v Enl isT(< vy, ..., 0m >).
The semantics is described formally in pBrtsectionlll-7.2, page44.

4. Clocks
@) w(E) =w(1),...,.w(E,) =w(T)
) W(T[E1, ... En])=w(T)

5. Properties

(@) (E1,...,E, oftypeintegey = (T[E1,...,Ey] =T[E1] ...[En])

IX—7.2 Access with recovery
T[Ei,...,Ex] \\V
1. Types

@) 7(T) = ([0.n1 — 1] X ... X [0..0p, — 1]) — 11

IX-8. EXTRACTION OF SUB-ARRAY 153

(b) Foralli=1,...,m, 7(E;)isaninteger-type.
© 7(V) =2
(d) T(TT B, . B] \\V) = 1 U pio
2. Definition in SIGNAL
X:= T[Ey, ..., Epx] \\V

whose right side oE:z represents an expression of access to an array element with recovery, is
equal to the process defined as follows:

(| X1 := T[E; modulo n4, .., E,, modulo n,,]
’ By =0 <= FE))and (By <= (n1 — 1))

By = 0<= E;) and (E, <= (n, — 1))
B = (B; and ... and B,,) when ~T

Xy == V when °T

X = (X; when B) default X5

| X1, Xs, B, Bi, .., B,

)

3. Clocks

@ w(E) =w(1),...,.w(E,) =w(T)
(b) w(V) =w(T)
©) w(Tl By, ..., En]\\V)=w(T)

IX—8 Extraction of sub-array

The expression of extraction of sub-array is a generalization, with the same syntax, of the expression of
access to an array element (cf. secti¥r7, pagel51). Only the form where the accesses are obtained
via “generalized indices” (represented as arrays of integers) is given here; when they are integers, the
description of the corresponding expression is givekXifr.

Tl L, ..., 1]

1. Context-free syntax

SUB-ARRAY ::=

S-EXPRIIl S-EXPR {D S-EXPR ¥ m

2. Types
@ 7(n)=... =7(1,) = ([0.b1] x ... x [0.b,]) — v
with v an integer type, and the basic integer values ofithare positive or zero.

(b) More generally, the list of indiceg, ..., I,, can be specified by any expression denoting a
function ([0..b1] x ... x [0..bp]) — v™ (with v an integer type).

©) 7(T) =([0..a1] x ... x [0..a,]) — p
(1 can be an array type).

154 SPATIAL PROCESSING

@) 7(T[Ih, ..., 1,]) = ([0.b1] x ... x [0.b,])) — p

3. Semantics
T[I, ...,1,] extracts some sub-array from
The semantics is described formally in pBrtsectionlll-7.2, page44 (non defined values, repre-
sented bynil in the semantics, are any values of correct type).

If T has at least dimensions (and has the basic typéor the elements corresponding to these
first dimensions), it can be traversed using jointlyndices1y, ..., I,, (one per dimension), that
allow to extract elements of type

Each one of the indices is an array with the same number of dimensiops, let

The result, letX, has the same number of dimensions as the indices, whicHtsbasic elements
have the type: (type of the extracted elements).

With each “position”(ji, ..., j,) in X, it is associated the element Bfthe position of which is
given by the value of the indices in(ji, ..., jp), i.e., in the position

(Il[jlv"'vjp] 7"'7In[j17"'7jp]) inT.
4. Clocks

@) w(n) =w(7),...,w(I,) =w(1)
®) w(rl I, ..., L]) =w(7)

5. Properties

(@) If V is a vector of type [On — 1] — p and if I is an index defined by := 0.. n—1, then
the expression¥ andV[I] are equivalent.

6. Examples
(a) ([[10,20],[30,401D[1,0] value is30.
(b) (0..10)[2..4] value is[2,3,4]

(c) if Mis an x n matrix, thenM[0..n —1,0..n —1] is the vector containing its diagonal.

IX—9 Array restructuration

The array restructuration allows to define partially (in the general case) an array, by defining some
indices-defined coordinate points of this array. Non defined values are any values of correct type. This
operator is the “reverse” of the operator of extraction of sub-array (cf. selkfieg®, pagel53) in the
following informal way: letT" be the result of I1,...,[,) : S; if the indices are such that each element
of S is used only once by the definition, théif 11, ..., I,] valueisS.

(I,....I,): S

1. Context-free syntax

ARRAY-RESTRUCTURATION ::=
S-EXPREl S-EXPR

IX-9. ARRAY RESTRUCTURATION 155

2. Types
Depending oy, ..., I, being integers or arrays of integers, one of the following sets of relations
on types applies:

(@) e Foranyk, T(Ik) is a positive or null integer, with an upper bound. kgtthis upper

bound.
e T(S)=p
o 7((I1,....I.): S)=([0.a1] x ... x[0.a,]) — p
) e 7(n)=...=7(1,)=([0.b1] x ... x[0.b,)]) = v
with v an integer type, and far < i < n, min L(K) >0

KeDom(I;)
e More generally, the tuple of indices/y,...,[,) can be specified by any expression
denoting a functior{[0..b1] x ... x [0..b,]) — v™ (with v an integer type).

o 7(S)=([0.c1] x ... x [0..cp)]) — p

with ¢; > bl,...,cp > bp
e 7((I1,....I,): S)=([0..a1] x ... x[0.a,]) — p
withforl <i:<mn,a; = max I;(K)
KeDom(I;)

3. Semantics
(Iy,....0,) . S specifies a partial definition of array, using the coordinate points defined by the
tuple of “generalized indices(I3, ..., I,,) and the values of obtained by skimming through
these coordinates.
The semantics is described formally in pBrtsectionlll-7.2, page44 (non defined values, repre-
sented bynil in the semantics, are any values of correct type).

Let7 be the array defined by the expressfan,. .. [,,) : S. Iftheindices/y, ...,I, are such that
they allow to scan exactly the arrdy(each position is visited only once using these indices), then
the restructuratio” := (I1,...,[,,) : S defines the arra§’ such that the extraction of sub-array
T[I, ...,1I,] (cf. sectionlX-8, pagel53) is equal toS.

In other words [I1[k1,... kpl , .. Il kvye oo Kpll = ST k1. k] -

If (L[ki,... kp) ..., Iu[k1,..., kp]) defines the same position for several distinct values of
(k1,...,kp), itis the element corresponding to timaxof the (k1, . .., k,) (in lexicographic order)
which is used.
4. Clocks
@) w(r)=w(s),...,w(r,) =w(s)
®) w((n,.. L) : S)=w(s)
5. Examples

@z2:1 is a vectof any, any,1] .
whereany represents any well-typed valuei(in the semantics).
Its type is [0.2] — integer since the maximal value of 2 is 2.

(b) (1,2) : 3 isamatrix[[any, any, anyl,] any, any,3]]
Its type is([0..1] x [0..2]) — integer.

156 SPATIAL PROCESSING

(© 1 : [[1,2],[3,4]] is a 3-dimensions array
([any, anyl.l any, any]l,[[1,2],[3,4]]]
Its type is([0..1] x [0..1] x [0..1]) — integer.

(d) ([0,1],[2,1]) : [4.,5] isamatrix[[any, any,4],[any,5, any]] .

IX—10 Generalized indices

The syntax of anNSTANCE-OF-PROCESS:is used to denote the call of a predefined function that
delivers generalized “unit” indices. Such indices can be used for standard array traversal in extraction of
sub-array (cf. sectiotX-8, pagel53) or array restructuration (cf. sectidd—9, pagel54).

indices(ai,...an)

Let the expressiomdices(aq,...a,) define jointlyn indicesiy, ..., I,:
(I1,....,0,) ;= indices(A1ye .-y)

1. Types

(a) The elaborated values of (©(a1)), ...,a, ((a,)) are strictly positive integers.
(b) Forallj=1,...,n

(1) = (10-p(ar) ~ 11 x ... x [0.9(an) — 11) — v
wherev is aninteger-type.

2. Semantics
Forallj =1,...,n,
for all k; such thad < k; < ©(a;) — 1,

(vt) (L, (K1, k) = Kj5)

3. Definition in SIGNAL
(I1,....0,) :=indices(A1ye v fp)
may be obtained by the process defined as follows:

(| (In,.., I1I,):= <0. a - 1,..,0. ap, — 1>
| iterate (IL,.., [II,) of
(L[IL,.. IL), .., L[IL,., IL) :=(IL, .. I1,)
end
) [/ I, .., 11,

(cf. sectionIX-12, pagel57 and sectionX-13, pagel58).
4. Clocks

@ w(a) =h,...,w(a,) =1
(b) w(indices(ai1,...,a,))=h

IX—11. EXTENDED SYNTAX OF EQUATIONS OF DEFINITION 157

IX—11 Extended syntax of equations of definition notyet
ully

The following syntax extends the syntax @EFINITION-OF-SIGNALS given inVIII-5, pagel45: implte_d
mente

1. Context-free syntax

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT ElS—EXPR
| DEFINED-ELEMENT [:=|S-EXPR

| DEFINED-ELEMENT defaultvalue| S-EXPR
| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

S-EXPR

| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *
S—EXPR
| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

DEFINED-ELEMENT ::=
COMPONENT

| COMPONENT [[| S-EXPR{[, |S-EXPR ¥’

An equation
X[L,....In]:= E
is another way to write:
X=(nh,..In: E

The definition is similar when the symb is used.

If one equation defines only partially an array, this array can be defined using several equations,
defining different parts or elements of this array.

Independently of non defined elements (representedibyn the semantics), like any signal, a given
element cannot be defined by distinct values at a same instant.

All the elements of an array have the same clock, which is the clock of the array. In particular, if some
element is undefined at a given instant at which other elements are defined, this element is considered to
have any well-typed value.

IX-12 Cartesian product

The cartesian product is used mainly to define jointly indices, to be used in the provided structure of
iteration of processes (cf. sectitd—13, pagel58). Intuitively, the sequence of iteration is represented

by the first dimension of the indices (which are vectors). Thus, it is different from the generalized indices
used in extraction of sub-array (cf. sectibf-8, pagel53) or array restructuration (cf. sectidk-9,
pagel54), which are, in the more general case, multi-dimensional indices.

not yet implemented in ®LYcHRONY: multiple partial definitions for different elements of an array.

158 SPATIAL PROCESSING

<y, o Ip>

1. Context-free syntax

MULTI-INDEX ::=

S-EXPR{D S-EXPR ¥

2. Types
@) Yk, 7(1;,) = [0.mp — 1] —

n n
(b) 7'(<<Il, e ,In>>) = [OH mg — 1] — g X ... X [OH my — 1] — py
k=1 k=1
3. Semantics
The cartesian produet, ..., I,,>> defines a tuple of, vectorsi Iy, ..., I, the size of which
is equal to the product of the sizes of the vecthrs.. ., I,,. These vectorg!y, ...,I1, are such
that the tuples obtained by their elements of same index describe successively the respective values
of the elements ofy, ..., I,, in embedded loops such that the most external one enumerates the
elements off; and the most internal one enumerates the elements. of
The semantics is described formally in pBrtsectionlll-7.2, page44.

4. Clocks

@ w(n)=...=w(1,)
(b) Each one of the defineld;, has the same clock dg.

IX—13 Iterations of processes not et
ully

Structures of iteration are provided as process expressions imple-

mented

1. Context-free syntax

GENERAL-PROCESS::=
ITERATION-OF-PROCESSES

ITERATION-OF-PROCESSES ::=

array | ARRAY-INDEX P-EXPR[ITERATION-INIT]
iterate | ITERATION-INDEX P-EXPR[ITERATION-INIT]

ARRAY-INDEX ::=

Name S-EXPR

ITERATION-INDEX ::=

DEFINED-ELEMENT

| DEFINED-ELEMENT { | , | DEFINED-ELEMENT } *
| S-EEXPR

2not yet implemented in ®LYCHRONY: creation of the implicit added dimension when necessary; multiple associated
indices.

IX—13. ITERATIONS OF PROCESSES 159

ITERATION-INIT ==

P-EXPR

REFERENCE-SEQUENCE::=
S-EXPRIIlIIl

The structure of array is used in thecSIAL language to represent a notion of iteration.

The signals which are defined iteratively have a virtual additional first dimension (with respect to
their declaration), the size of which is the number of iterations. Moreover, a virtual ingléx this first
dimension is used to represent the initial value of the considered signal, at the beginning of the iterations.
The current value of the signal at a given iteration step may be a function of its value at the previous
iteration step.

Note that this representation of bounded iterations using an additional spatial dimension is only a
means to represent simply such iterations within the existing semantic cohtgxactice, this added
dimension has not necessarily to be created.

Let us first consider the following form:

iterate (Iy,...,0,) of P with P;,; end

whereP is a process expression with equations that may contain the following occurrences of signal
expressions:

e in the left hand side:
X[f(I1,...,1,)] (orjustX)

e in the right hand side:
X[g(ly,...,1,)] (orjustX)
and:
X[?l h(ly,...,1,)] (orjustX[?])

P+ 1s also a process expression with equations that may contain signal expressions of the form
X[u(ly,...,Ip)] (orjustX)inthe left hand side.

The equations which are under the scope of a structure of iteration (“iteration of processes”) in a
given unit of compilation are rewritten as a new system of equations according to the context of rewritting
established by the embedding of iteration structures. An indexing function (which can be represented as
some list of indexes) corresponds to such a context. The indexing function is a function:
[0..(ng*...%n,) —1] = [0.n1 — 1] x ... X [0..n, — 1]

For simplicity, let this function be represented here by the tuple of indBxes. , I,, (in this order): each
index has a size equal g * ... * n,. We notem = ny * ... x n,.
Let us consider also the following “generic” forms of equation®jyy;:
Xlu(l,...,Ip)]== E
and inP:
X[f(Ih,....)] == EX[?Il h(y,....001,Y[9(1,....n)],...)
(X, Y represent any variable¥~may beX— defined in the iteration, the functiorfs g, A, u... onin-
dexes can represent tuples although it is not mandatory, the sym is used here—improperly, in
some way—to make visible the fact that, besides the representation of the iteration in an added dimension
for the signals, each defined element has several definitions along the iteration.)

Considering this iteration context, the equations affected by this context are rewritten in the follow-

ing way (“expanded”, in some way), as a composition of equatidgh¥ (YY... are new variables,

160 SPATIAL PROCESSING

corresponding to the variables defined in the iteration, with the same type as the corresponding variable,
but with an additional first dimension of size + 1):

e initialization equations:
X[u(ly,...,Ip)l= E
is rewritten as the composition of equations:
Vir, ... ip, Yo(L[0]), ..., (Ll]),
XX[=10 w(e(nliad), p(Llil D= E

where—1 refers to the virtual first index of the added dimension.

e equations of the body:
X[f(I o L= KX M L)), YU L) -)
is rewritten as the composition of equations:
Vi=0,...,m—1,

- XX f(LLA, ... Ll)] =

= Vi# S, L),
XX 1= XX[1-1][J]

e final results:
X = XX[m—1]

This rewritting is some sort of preprocessing. In particular, the typing of a program has to be consid-
ered on the rewritten program.

As mentioned above, the iteration indexes can be represented as some list of indexes. A particular
case is to have such a list defined as a tuple resulting from the cartesian product of indexes. More
generally, the iteration indexes can be specified by any expression denoting a function
[0..(ng *...%n,) —1] = [0.ny — 1] x ... x [0..n, — 1] (Where then; are integer constants).

For a given set of equations, the context of iteration is established, in some unit of compilation,
by the whole embedding structure of the iterations containing these equations. As it will be easier to
understand it in a regular context, let us consider as typical example the embedding of two structures of
iteration, the indexing functions of them, taken separately, are given by cartesian products of indexes:
let <1y, ..., I,> for the most external one, ang& 1/, 1, ..., I,;,>> for the inner one. Then, for
the equations which are under the scope of both structures of iteration, the indexing function (which
determines the rewritting) is given by the following cartesian prodect;, ..., I,;,>. This rule is
generalized following the same principle for any indexing function and for any embedding of structures
of iteration.

The “array” notation is a special case of the “iterate” one, inherited from the previous version of the
SIGNAL language.

array [Ito N of Pwith P;,; end
whereNN is an expression defining a constant integer
is equal to the process defined as follows:

(] I :=0. N
| iterate I of P with P,,; end
PN

IX—13. ITERATIONS OF PROCESSES 161

Examples

e array | to N -1 of
array J to N —1 of
U[l,J] ;= if I=J then 1 else 0
end
end definesU as a unit matrix.

e array | to N -1 of
array J to N —1 of
T[I,J] = if J>=I then | +J else 0
end
end
definesT as a triangular matrix.

e array | to N -1 of
D[] = M[LI]
end
definesD as a vector equal to the diagonal of matvix

e array | to N -1 of
T[] := if 1=K then A else (T$)[I]
end
defines the vectof which at each instant keeps the values it had at the previous instant, except in
K where it takes the values &f(K andA can be signals).

earray | to N —1 of
V[I] = T[] + V[?III —1]\\O
end
defines the vectov in which each element, of indexcontains the sum of the firselements of a
vectorT.

earray | to N —1 of
R = op(T[ILR[?])
with R := vO
end
defines inR the scalar obtained by theductionof the vectorT by the operatoop (vO is the
initial value).

earray | to N —1 of
Y[I] := FILTER(Y[?][I =11 \\X)
end
defines a cascade &f processe$ILTER connected in series. The process mdeiITER is
declared with one input and one output of some basic type. Each input of an instance of the
process-ILTER is supplied by the output of the previous procBHSTER (the signalX provides
the input of the first procedsILTER). The vectorY is delivered as output.

e array | to N of
F = if 1=0 then 1 else | *F[?]
end
defines inF the factorial of\N.

162 SPATIAL PROCESSING

earray | to N —1 of
FOUND := if FOUND[?] /= -1
then FOUND[?]
else if ELEM = TABLE]I]
then |
else FOUND[?]
with FOUND = -1
end
specifies the research of the elemBhEMin an unsorted ABLE

e With fulladd a model of function defined as follows (cf. chapkr, pagel73):
function fulladd =
(? boolean cin, x, y; ! boolean cout, s;)
(| s := x xor y xor cin
| cout ;= (x and y) or (y and cin) or (cin and Xx)

)

then the following model of function defines an unsigned byte adder:
function byte adder =
(? [8] boolean X, Y; ! [8] boolean S; boolean overflow;)
(| array i to 7 of
(overflow, S[i]) := fulladd (overflow[?], X[i], YI[i])
with overflow := false
end

e Using the model of functioexchg :
function exchg =

(? integer a, v;

(| aa == v | w =

)

I integer aa, w;)
a

then the following model of function (cf. chaptt, pagel73) defines inwWa circular permutation
of V:
function Rotate =
{ integer n ; } (? [n] integer V; ! [n] integer W;)
(] array i to n-1 of
(aa, WIi]) := exchg (aa[?], VIi])
with aa := V[n-1]
end

)

where integer aa; ... end

e The following model of function sorts the vectarin increasing order iff:
function Sort =
{ integer n ; } (? [n] integer A; ! [n] integer T;)
(| array i to n-1 of

IX—14. SEQUENTIAL DEFINITION 163

array i to (n-2)-j of
(I T:=T7]
next (i : if T[?][i] > T[?][i+1]
then T[?][i+1] else T[?][i])
next (i+1 : if T[?][i] > T[?][i+1]
then T[?][i] else T[?][i+1])

1)
end
with T = A

end

)

(the sequential expression is defined in sect¥#l4, pagel63).

Some other examples are given in the definition of operators on matrices (cf. $&etldhpagel65).

IX—14 Sequential definition

The sequential definition is used mainly for the redefinition of elements of arrays.
T next Th

1. Context-free syntax

SEQUENTIAL-DEFINITION ::=
S-EXPR S-EXPR

2. Types

@ 7(71) = ([0..c1] x ... x [0..¢,]) — pa

(b) 7(T3) = ([0..51] x ... x [0..b,]) — o
with ¢; > bq,..., ¢, > b, andpy andyu, are comparable types
(Ty andT; are, in the general case, arrays with the same number of dimensions, but on each
of them, T, may be smaller thaff})

(C) T(Tl next Tg) = ([001] X ... X [Ocp]) — 1 U e
3. Semantics
T1 next T, defines, in the general case, the array which takes the valiig af each point at

whichT5 is defined (i.e., is semantically different fromil), and the value of; elsewhere.
The semantics is described formally in pBrtsectionlll-7.2, page44.

4. Clocks

(@) w(Th) =w(T)

(b) w(T; next T3)=w(Ty)
5. Examples

@T:=T$ next K: A
defines the vectol which at each instant keeps the values it had at the previous instant,
except inK where it takes the values 8f(K andA can be signals).

164 SPATIAL PROCESSING

IX—-15 Sequential enumeration

The sequential enumeration is a form of iterative enumeration that allows to define arrays using sequential
multi-dimensional iterations.

1. Context-free syntax
ITERATIVE-ENUMERATION ::=

m ITERATION { D PARTIAL-DEFINITION} *

PARTIAL-DEFINITION

DEFINITION-OF-ELEMENT
| ITERATION

DEFINITION-OF-ELEMENT ::=
|I| S-EXPR{D S-EXPR }* ElS—EXPR

ITERATION ::=
PARTIAL-ITERATION { I:l PARTIAL-ITERATION } *
DEFINITION-OF-ELEMENT
| PARTIAL-ITERATION { I:lPARTIAL-ITERATION} *

E| S-EXPR

PARTIAL-ITERATION ::=

[Name] [S-EXPR] [S-EXPR][[step| S-EXPR]

Let us consider the following definition of an arrayby sequential enumeration:
T:=[D1, ..., Dyl
This definition is equivalent to:
T:= Dynext ...next D,,
whereD; should be a complete definition of the array.
Let us now consider the following general form of a givep:
{i1in bito cystep di, ..., ipin byto c,step dpy:[f(ir,...,ip)]: E
It can be considered that the definitionof is obtained by the following composition:

(I (i1yeey dp) = <bi.. ¢ step di,..., bp.. ¢, step d,>
| iterate (i1,.., ip) of D[f(ir,...,3)] = E end
1) /1 dy, . ip
If the denotation of the indice§,f (i1, ... ,7,)] , is omitted, it is equivalent tf{ iy,... ip)] .

If the lower bound of an index is omitted, it is by default equal to 0. An upper bound can be omitted
if it corresponds without ambiguity to the upper bound of the corresponding dimension of the array. If a
step is omitted, it is by default equal to 1. The name of an index can be omitted if it has not to be used
explicitly.

A Dj, with the simple form:
[I]: FE
can be considered as being defined by the equation:
Dy[I1:= E

IX—-16. OPERATORS ON MATRICES 165

IX—16 Operators on matrices

IX-16.1 Transposition
1. Context-free syntax

TRANSPOSITION ::=

S-EXPR

Transposition on matrix tr FE
1. Types
@) 7(E)=([0.1—1] x[0.m —1]) — u
() 7(tr E)=([0.m —1] x[0.1—1]) — p

2. Definition in SIGNAL
X=tr F
whose right side - represents an expression of transposition of matrix, is equal to the process
defined as follows:

array ito m — 1lof
array jto [— lof
X[ijl:= E[j.]
end
end

3. Clocks
(@) w(r E)=w(F)
Transposition on vector To create a matrix-column, it is possible to create a matrix-line and then to

transpose it as follows:
tr[V]

IX-16.2 Matrix products

1. Context-free syntax

ARRAY-PRODUCT ::=

S-EXPR S-EXPR

2. Types

(a) The elements of the operands of an expression of matrix product have a basic type which is
aNumeric-type.

3. Clocks

(a) The operators of matrix product are synchronous.

166 SPATIAL PROCESSING

2-a Product of matrices
E1 *. E2
1. Types

@) 7(E;) = (0.1 — 1] x [0..m — 1]) — 1
(b) 7(E>) = ([0.m — 1] x [0.n. — 1]) — po
©) T(Ey % Ey) = ([0.1 — 1] x [0.n — 1]) — pu1 U pao

2. Definition in SIGNAL
X = Ey *x. By
whose right side oEl represents an expression of product of matrices, is equal to the process
defined as follows:

array ito [— 1of
array jto n— 1lof
array kto m — 1of
X[igl= X[?Il ijl+ Erldk] = Eof k,j]
with X[i,j]:= 0
end
end
end

2-b Matrix—vector product
E1 *. E2
1. Types

@) 7(E)) = (0.1 — 1] x [0.m — 1]) — 1
(b) T(E2) =[0.m —1] — s
(©) T(Ey* Ey) =[0.0— 1] = py U psy

2. Definition in SIGNAL
X = Ey x. By
whose right side gf:= | represents an expression of matrix—vector product, is equal to the process
defined as follows:

array ito [— 1of
array kto m — 1of
X[d= X[?I[d+ Eildik] * Eof k]
with X[i:= 0
end
end

IX—-16. OPERATORS ON MATRICES 167

2-c Vector—matrix product
E1 *. E2
1. Types
@ 7(E)=[0.0—1 —m
(b) 7(E5) = ([0..0 — 1] x [0.m — 1]) — o
©) T(Ey* Ey) =[0.m — 1] = py U us
2. Definition in SIGNAL
X = By x By

whose right side represents an expression of vector-matrix product, is equal to the process
defined as follows:

array jto m — 1of
array kto [— 1of
X[jl= X[?I jl+ Eil k] * E5[k.j]
with X[j]:= O
end
end

2-d Scalar product
E1 *. E2
1. Types
@ 7(E)=[0.1-1] - m
(b) T(E2) =[0.1 — 1] — py
(© T(El *. EQ) = U ope
2. Definition in SIGNAL

X = Ey *. Ey
whose right side represents an expression of scalar product, is equal to the process defined
as follows:

array ito [— 1of

X = X[7] + El[’L] * EQ[’L]
with X := 0
end

Chapter X

Extensions of the operators

X—1 Rules of extension n(f)J”);et

The operators defined in thec@AL language are termwise extended to arrays and tuples, provided #}@Ed

there is no possible ambiguity between the new operator resulting from the extension and sonteother
operatio.

The extension of a given operator defines a new operator, so that termwise extension may be applied
recursively.

The semantics of the extension on tuples is described formally inBpagctionlll-7.1, page4?2.

The semantics of the extension on arrays is described formally irBpa#gctionlll-7.2, page44.

Instances of processes and conversions follow the same rules of extension than operators.

A given extension is either an extension on tuples, or an extension on arrays. Mixed extensions are
not defined. If the types of the arguments of an operator are such that both extension on tuples and
extension on arrays can be applied, the extension on tuples applies first.

When an extension is applied, the rules associated with the operator (type relations, clock relations
apply element by element. Moreover, for the arrays, the constraint that all the elements have the same
clock has to be respected.

For tuples, there are different categories of tuples: monochronous tuples, which are signals, and
polychronous tuples, which are gatherings of signals (they have not, in general, one proper clock).
Monochronous tuples are tuples with named fields and polychronous tuples may be tuples with named or
unnamed fields. Whatever is the type of the arguments, the results of an extension on tuples are always
tuples withunnamedields (remind that a tuple with unnamed fields can always be assigned to a tuple
with named fields with a compatible type). Moreover, if the extension applies on tuples with named
fields, the operator applies on the elements of these tuples, independently of their names in the consid-
ered tuples. In other words, X is such a tuple with named fields on which the extension applies, this
extension applies effectively dople(X).

The possibly existing extensions for the operators of tten&L language are easily deduced from
the examination of authorized types for the arguments of there operators.

For example, the operat% is defined orsignalsof any types (in particular, on arrays and on

monochronous tuples with named fields). Thus the extensi@fon arrays or on monochronous
tuples with named fields has no purpose. On the other hand, this extension is defined on polychronous
tuples (in that case, the result is a polychronous tuple with unnamed fields of Booleans).

The same rules apply, for instance, on the polychronous opetetault

not yet implemented in ®LYCHRONY: extensions to tuples; some extensions to arrays.

170 EXTENSIONS OF THE OPERATORS

Concerning the other equality opera, it is defined only on signals of scalar types. Thus the
extension on arrays (for example) can apply and in this case, the result is an array of Booleans. The
extension on tuples (monochronous or polychronous) applies too.

The extension of the operatathen on polychronous tuples applies, on the first argument as well as
on the second one. But the extension on arrays is not defined in the general case on the second argument
since the resulting array would have elements with different clocks.

X-2 Examples

e If V1andV2 are two vectors, the expressioil *« V2 defines the termwise product of the vectors
V1andV2.

e If Kis a scalar and/ a vector, the expressidd * V defines the vector each element of which is
equal to the product df with the corresponding element gf

e If M1andM2 are two matrices, the expressidfil « M2 defines the termwise product of the
matricesMlandM2

¢ If P designates a process model which defines two oudatedY,
the expressio?() when C defines the signal¥ when CandY when C

e If P designates a process model with two inputs,
the expressio® ((A,B) when C) specifies a subsampling by the conditiGion each one of
the inputs ofP.

Part E

THE MODULARITY

Chapter X

Models of processes

The language allows to describe signals (synchronized sequences of typed values) and relations between
signals by equations; these equations can be grouped together in parameterized models of systems of
equations: themodels of processesThe call of a model in a system is, in principle (when the cor-
responding model is not compiled separately), equivalent to the direct writing of the equations of this
model.

XI-1 Classes of process models

A process model establishes a designation between a name and a set of parameterized equations; any
reference to this name is formally replaced by the designated equations.

The set of equations may be empty, or equivalently, simply defined by the keyxterhal (cf.
sectionXll-1, pagel9l). In that case, it is axternalprocess model (or model of external process). Its
definition is provided either in a module, or in the environment of the program.

If the process model is external, or if the considered model is compiled separately, the replacement
of a reference to this model by its equations remains partial. Such a partial replacement is limited to the
EXTERNAL-GRAPH of the called process (cf. sectidit—6, pagel80). The result of the invocation of
a model of external process or of a separately compiled process model (which could be not in accordance
with its description) can be only theoretically described.

For a model of external process, its graph properties are established BXTHERNAL-GRAPH .

For a described process model, the graph properties are established by the compositiBX dER&AL-
GRAPH and the body of the model. A good situation is that ETERNAL-GRAPH verifies the
properties deduced from the body of the model.

The following classes of processes are distinguished:

e A process is saidafeif it does not make any side effect:
@ M= (X)) Y= 7X)0) = ((M= f(X)] Yo:= 1|

Two different instantiations of aafeprocess with the same input values will provide the same
results.

This corresponds to the notionitdration of function(on the inputs), highlighted in pa, section
[11-8.1, page50.

174 MODELS OF PROCESSES

e A process is saidieterministic automateror more shortlydeterministie—(or memory safg if
its only possible “side effects” are changes to its private memorget&rministic automatois a
function of sequences, from initial states, trajectories of the inputs and trajectories of the clocks of
the outputs (considered, in some sense, as inputs), into trajectories of the outputs.

Two different instantiations of deterministic automatoprocess with the same sequences of input
values (and output clocks), and in the same initial conditions, will provide the same sequences of
outputs.

This corresponds to the notion deterministic procesgon the inputs), highlighted in paB,
sectionlll-8.3, page50.

Any safeprocess isleterministic automaton.

e A process isinsafein all other cases.
Two different calls of amunsafeprocess are never supposed to return the same results.
The following SGNAL processes are examplesunisafeprocesses:
— X = aor x
— (| x := a default ((x$1 init 0)+1) | b:= x when “b |Ix
The class of the process described by a process model may be precised by a specific keyword in the
EXTERNAL-GRAPH of the model.
In addition, it is possible to specify non normalized complementary informations (cf. sedtan
pagel84) in the DIRECTIVES.

Besides the above characterization of processes, different classes of process models are syntactically
distinguished. These are models of:

e functions,
e nodes,

actions,

processes.

Any process model called in the program must have a declaration visible in the syntactic context of
the call.
A processMODEL is defined according to the following syntax:

1. Context-free syntax

MODEL ::=

PROCESS
| ACTION
| NODE
| FUNCTION

PROCESS::=

process NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

XI-1. CLASSES OF PROCESS MODELS 175

ACTION ::=

NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

NODE ::=

NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

FUNCTION ::=

NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

BODY ::=
DESCRIPTION-OF-MODEL

DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

Xl-1.1 Processes

A procesqdescribed by a model of process) belongs to the most general class of processes.

There are no required particular relations regarding clocks as well as dependences. It is the job of the
compilation (clock calculus, dependence calculus) to synthesize these relations.

A process may bsafe, deterministic automatoor, unsafe.This may be specified in tHEXTERNAL-
GRAPH. By default, unless it can be proved different, it is considerednssfe.

Xl-1.2 Actions

Actions are processes that are called (activated) at a specific clock, which is designated via a label (cf.
partC, sectionVIl-5, pagel34). Syntactically, the activation of an action has to be under the scope of
such a label, in a labelled process.

An action (described by a model of action) has to respect some relations regarding its clocks and
dependences:

e ltstick (which is a clock greater than the upper bound of the clocks of all the signals designated in
the action) is necessarily accessible from the outside of the actiontidiis the clock designated
by the label under the scope of which the action call is.

e For the dependence relation, each input of an action precedes each output of that action at the
product (intersection) of their clocks.

An action may beafe, deterministic automatoor;, unsafe.This may be specified in tHEXTERNAL-
GRAPH. By default, unless it can be proved different, it is considerednasfe.

XI-1.3 Nodes not yet

imple-
Nodes are essentialgndochronouprocesses (cf. paB, sectionlll-8.2, page50). mented

176 MODELS OF PROCESSES

Roughly speaking, an endochronous process knows when it has to read its inputs, thus it is au-
tonomous when run in a given environment.

It may be shown that if the clock relations associated with a process can be organized as a tree of
clocks, the root of the tree representing thest frequentlock (which is the single greatest clock) of the
system, then this process is endochronous.

Besides the property that it is endochronousode(described by a model of node) has to respect
some relations regarding its clocks and dependences:

e Its tick (which is in that case a clock equal to the upper bound of the clocks of all the signals
designated in the node) is necessarily the clock of an input or output of the node.
In addition, the clock of any input or output signal of the node should be considered as explicitly
defined (without clock calculus synthesis). For those input or output signals the clock of which is
not explicitly defined, their clock is fixed to thizk.
Thus, there is no synthesis from the clock calculus for the clocks of inputs and outputs, but only
verification. However, there is possibly such a synthesis for the clocks of internal signals.

e For the dependence relation, each input of a node precedes each output of that node at the product
(intersection) of their clocks.

A node may beafeor deterministic automatorl his may be specified in tHEXTERNAL-GRAPH .
By default, unless it can be provedfe,it is considered adeterministic automaton.

Xl-1.4 Functions

A function is a process that specifies itgration of functionsuch as defined in paR, sectionlll-8.1,
page50.

A function(described by a model of function) is a particular case of node and has to respect all the
relations respected by a node regarding its clocks and dependences (cf. Xéetidh pagel75). In
addition, all the inputs and outputs of a function must have the same clock.

A function is constant on time and does not produce any side effect. In particular, it cannot contain
delay operators (or other operators derived from delay), that define some memory.

Note that it is nevertheless possible to specify some assertions on the input signals (for instance) of
a function. For example, the equatian = when (z > 0) specifies that when it is preseatmust be
positive.

A function is necessarilgafe(this has not to be specified in tEXTERNAL-GRAPH).

XI-2 Local declarations of a process model

The local declarations of a process model may be declarations of signals (or tuples), declarations of
state variables, declarations of constants, declarations of types, declarations of labels, declarations of
references to signals with extended visibility, or declarations of local models.

1. Context-free syntax

XI-2. LOCAL DECLARATIONS OF A PROCESS MODEL 177

DECLARATION ::=

S-DECLARATION
DECLARATION-OF-STATE-VARIABLES
DECLARATION-OF-CONSTANTS
DECLARATION-OF-TYPES
DECLARATION-OF-LABELS
REFERENCES

MODEL

A given zone of local declarations constitutes a gil@rel of declarations; this level is that of the
process expression that defines this zone. When this expression is the expression that defines the process
model, this zone is said the zone of the local declarations of the model. When this expression is the
expression that defines the external graph of the model, this zone is said the zone of the local declarations
of the external graph.

The zones of declaration of the formal parameters and of the inputs and outputs of a process model
constitute a samievelof declarations, the one of the model.

The levels of declarations are ordered in the following way:

e the level of a model is greater than the level of any sub-expression of this model;
e the level of an expression is greater than the level of any sub-expression of this expression;
e the level of a model is greater than the level of any local model declared in this model.

A local declaration of a model in a given level is visible (and thus, this model can be called as
INSTANCE-OF-PROCESY) in this whole level and in all lower levels, everywhere it is not hidden by
a declaration with the same name in a lower level. In particular, a m@ddclared in the zone of the
local declarations of a modét can be called in the expression associated Wwitlnd in the expressions
associated with the other sub-modelsiaf For these expressions, it possibly hides a model with the
same name that, without it, would be visible.

The set of sub-models declared in a moffatannot contain two models with the same name. More
generally, any two objects (models, types, signals, etc.) declared in a same level of declaration cannot
have the same name (see below).

The parameters declared in a process model are visible (and thus, may be referenced) in this whole
process model (in particular, the other parameters, the inputs and outputs, etc.) and in all the embedded
process models, everywhere they are not hidden by a declaration with the same name in a lower level.

The constants declared in a given level are visible in this whole level and in all lower levels, every-
where they are not hidden by a declaration with the same name in a lower level.

The types declared in a given level are visible in this whole level and in all lower levels, everywhere
they are not hidden by a declaration with the same name in a lower level.

The declaration of labels and their visibility obey to specific rules, which are more detailed in section
X1-3, pagel78

As a general rule, the local declarations of signals (or tuples) and state variables correspond to the
confining of these objects (cf. patt sectionVIl-4, pagel33) to the corresponding level and the lower
ones. However, the visibility of signals, tuples and state variables obey to specific rules, which are more
detailed in sectioXl-4, pagel78

The names of declared objects (models, signals or tuples, state variables, parameters, constants,
types, labels) can mutually mask themselves. In a given level, there cannot have two such identical
names.

178 MODELS OF PROCESSES

A given compiler may adapt the visibility rules for some classes of objects in the following way:
in the level where it is declared, a given object can be used only in a syntactic positidaltdas its
declaration (in this case, the order of declarations is significant). The rules for names redefinitions may
be adapted accordingly.

XI-3 Declarations of labels

1. Context-free syntax

DECLARATION-OF-LABELS ::=

Name-abel{ |:| Name-abel}* El

The labels declared in a process model, at any declaration level of this model, are visible (and can
be referenced) anywhere in this model, except in its interface (parameters, inputs and outputs, external
graph). The labels declared in the external graph of a process model are visible (and can be referenced)
anywhere in this model.

However, the labels declared in a process model are not visible in the sub-models of that model.

A label declared in a model cannot have the same name as any other object declared in that model (it
cannot be masked).

XI-4 References to signals with extended visibility notyet

o1 Vel

1. Context-free syntax r::gtid
REFERENCES::=

Name-signak |:| Name-signal}* El

The rules for the visibility of signals in the previous versions af AL were that this visibility was
always limited to the process model in which the signal was declared, excluding the sub-models of that
model.

This version offers the possibility to extend the visibility of signals (or tuples), and state variables,
with the same rules as for most of the other objects of the language. In that case, a signal (or tuple, or
state variable) declared in a given level is visible in this whole level and in all lower levels, everywhere
it is not hidden by a declaration with the same name in a lower level.

However, some freedom is left to the compilers to accept or not (possibly according to specific
options) signals with extended visibility. The three following cases may be distinguished:

1. Signals with extended visibility are not allowed.
2. Signals with extended visibility are allowed, but the use of such a signal must be explicitly refer-

enced as such when it crosses a frontier of process model with respect to its declaration.

Such a use is pointed by a “ref” declaration, under the scope of which is the considered use (with
the general scoping rules, restricted here to the considered process model).

A signal with extended visibility cannot be used if it has been hidden by the declaration of another
object with the same name.

A “ref” declaration cannot mask some object with the same name.

XI-5. INTERFACE OF A MODEL 179

3. Signals with extended visibility are allowed, and their use may be explicitly referenced (previous
case), though it is not mandatory.

XI-5 Interface of a model

The interface of a model contains an optional description of its formal static parameters, followed by a
description of its visible part. This one is composed of the lists (possibly empty) of its input and output
signals, and an optional description of the external behavior of the model.

1. Context-free syntax

DEFINITION-OF-INTERFACE ::=
INTERFACE

INTERFACE ::=
[PARAMETERS] INPUTS OUTPUTS EXTERNAL-GRAPH

PARAMETERS ::=

[{ FORMAL-PARAMETER } *]

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=
[{ S-DECLARATION } +]

OUTPUTS ::=
m[{ S-DECLARATION } *]

The formal parameters of the interface of a model can contain type parameters. These type param-
eters necessarily appear under the form of names of types, witiiES&RIPTION-OF-TYPE
definition (cf. partC, sectionvV—7, page84).

2. Types
The list of inputs (respectively, outputs) declared in the interface of a process model framed
constitutes a tuple the type of which is denote(dP) (respectively,m (! P)).

The type of the tuple of inputs and the type of the tuple of outputs are tuples with unnamed fields.
Thus:

(a) if the inputs and outputs of a process moBledppear as
(? w Eq;o. tm Em; ! v Sty . Vn Sns)
(to simplify the presentation, we consider that each designation of type qualifies one single
name of signal or tuple; the generalization to the case with lists of names is trivial)
then

7(?P) = (T (i) x ... x T ()
T('P) = (7(1) x ... x T(vp))

180 MODELS OF PROCESSES

3. Semantics
A model must have at least one input, or one output, or one communication with non null clock
with some external process.

The names of parameters, input signals and output signals must be mutually distinct.

The declarations of the input signalNPUTS) and the output signalOQUTPUTS) of a model

are declarations of sequences. The declarations of formal paranfARAKMETERS) can con-

tain declarations of parameter typ&HCLARATION-OF-TYPES) and declarations of constant
sequencesS-DECLARATION). In particular, the declarations of sequences can contain tuples of
parameters or signals. The declaration of a model sets up a context in which:

e the parameter types define formal types, in a way similar to the declarations of types de-
scribed in partC, chapteV, “Domains of values of the signals”;

e a type is associated with the declared parameters, input signals, and output signals, in a
similar way to the association of a type to local signals of a process (cf. Gyarhapter
VII, “Expressions on processes”), according to the rules defined in the chapter “Domains of
values of the signals”.

The invocation of a model sets up an expansion context in which:

e an effective type is associated with the parameter types, in a similar way to the definition of
type obtained by ®ESCRIPTION-OF-TYPE (cf. partC, sectionV-7, page84): if n is
the effective parameter corresponding, positionally, to the formal parametetyppe A;
then the typeA is defined as being equal to the typen the context of this invocation of
model;

e a value (or a tuple of values) is associated with each identifier of formal parameter, and a
signal (or a tuple of signals) is associated with each name of input or output signal (or tuple).

The declaration of a process model induces the existence of a given order on the parameters (what-
ever they are parameter types or not), an order on the input signals of the model, and an order on
its output signals. Each one of these orders is the order of specification of the objects of the con-
sidered class (parameter, input or output) in the interface. Any positional invocation of the model
is made respectively to these orders.

Example: a process modglthe interface of which is specified as

{Yi;, .. Y} (? A, ... Ay! By .. Bp)
can be called such as
(BB, ..., BB,) = P {YYi, .., YY)} (A4, ..., AAL)

where each signal or paramef€X; corresponds to the signal or paramekgr

XI-6 Graph of a model

The EXTERNAL-GRAPH of a model allows to specify clock and graph properties of the model, such

as the properties necessary and sufficient to be able to use this model after a separate compilation. These
properties may be provided by the designer or calculated by the compiler. They refer to input and output
signals of the model.

1. Context-free syntax

XI-6. GRAPH OF A MODEL 181

EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

PROCESS-ATTRIBUTE ::=

safe
deterministic
unsafe

SPECIFICATION-OF-PROPERTIES ::=

GENERAL-PROCESS

The PROCESS-ATTRIBUTE allows to qualify the corresponding model safe(keywordsafe),
deterministic automatortkeyword deterministic), or unsafe(keyword unsafe)—cf. section
XI-1, pagel73. It must be in accordance with the syntactic class of the model.

The SPECIFICATION-OF-PROPERTIES of an EXTERNAL-GRAPH uses a process expres-
sion that can make reference to the formal parameters and input and output signalg|lODEL. . Any
other identifier used in this expression is that of a local object (signal, process model, etc.), that must
have a declaration in this expression.

When theEXTERNAL-GRAPH is that of a described process model, the process defined by the
model is obtained by the composition of tlEXTERNAL-GRAPH and of the body of this model. A
recommended situation is that the properties established EXA&ERNAL-GRAPH may be deduced
from the properties verified by the body of the model.

When theEXTERNAL-GRAPH s that of an external process model, the properties it describes
establish the properties of the model for any invocation of this model.

In that case, the invocatiod {17, ..., V;} of an external process model
process X = {F; ... £}
(? Ei; .. B
spec C;
is equal to the process defined as follows:
(& x{n, .. v}
| C

)

If C; is the syntactic context of expansion established by the invocation of the model of external
process by the association of a value with each identifier of formal parameter, and by the association of
a signal with each input or output signal name, then, the invocation of this model results in the context
of expansiorC, equal toC; enriched by the equations (in particular, clock equations and dependences)
resulting from the construction of tHEXTERNAL-GRAPH .

XI-6.1 Specification of properties

The SPECIFICATION-OF-PROPERTIES is described by a usual process expression, the elementary
expressions of which are typically an instance of process (whixh may be, in that case, an instance of a
model of synchronization), a definition of signals, a clock equation, or an expression of dependence.

182 MODELS OF PROCESSES

XI-6.2 Dependences

An expression of expliciDEPENDENCES may appear in thEXTERNAL-GRAPH of a MODEL ,

but also in its body. The purpose of a specification of dependences in the external graph is to make
explicit dependences between input and output signals of the model, or to establish these dependences in
the case of a model of external process. The explicit dependences between signals are defined with the
following syntax:

1. Context-free syntax

ELEMENTARY-PROCESS ::=
DEPENDENCES

DEPENDENCES::=

SIGNALS { SIGNALS 3
| SIGNALS SIGNALS S-EXPR

SIGNALS ::=
ELEMENTARY-SIGNAL

| ELEMENTARY-SIGNAL { I:lELEMENTARY-SIGNAL} *

ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

We distinguish first the case where some of the “signals” for which dependences are specified are
labels (cf. parC, sectionVII-5, pagel34). In that case, for a labeY X, the designated signal is either
I XX (that is preceded by all the signals of the process labelled &y), or ? X X (that precedes all
the signals of the process labelled ByX), depending thaX X appears at the left side or at the right
side of the dependence arrow.
If XX is alabel:

e XX —> F

1. Definition in SIGNAL

' XX —> F
o F —> XX

1. Definition in SIGNAL
E ——> 7?7 XX
Then, with the designated signals:
e B, ——> Ey ——> Fj4

1. Definition in SIGNAL

XI-6. GRAPH OF A MODEL 183

(| B1 —> Ey
’ Ey ——> E3
)

Note that for the particular case where a lal§eX appears as
EFi —> XX ——> Ej
this expression is equivalent to:
(] By ——> ? XX
| | XX ——> Fj
1)

o { X1, ..., X} —> F

1. Definition in SIGNAL

(| X, —> F

| X, —> E
)
o B —> (Y, .., Y}

1. Definition in SIGNAL

(| E —> Y

| E —> Y,
)

o {F —> {V1, .., Y2} when B

1. Definition in SIGNAL

(] {F ——> Y1} when B

| {EF ——> Y,} when B
)

e {X —> Y} when B

1. Types
(@) 7(B) C boolean

2. Semantics
The result of the expression { X ——> Y} when B
is to add to the dependence graph a dependence XdmY labelled by the conditiorB,
representing the clock at whidB has the valuérue.
The semantics of such a dependence is described formally iB psettionlV-3.1, page60.

184 MODELS OF PROCESSES

3. Graph

@x 2y
4. Examples
(@ (| S1 :: ERASE (X)
| S2 1 DISPLAY (X)

| S1 ——> S2)
allows to sequentialize the actioBRASEandDISPLAY.

XI-7 Directives ”gj”yyet
TheDIRECTIVES allow to associate specific informations,gsagmasywith the objects of a prograin r::gltid

These informations may be used by a compiler or another tool.
A PRAGMA contains &Name, the list of the designations of objects with which it is associated, and

aPragma-statement

PR {Xi,.. Xu}"YYY"

1. Context-free syntax

DIRECTIVES ::=
[pragmas]{PRAGVIA * end][pragmes
PRAGMA ::=
Name-pragma

[PRAGMA-OBJECT { I:lPRAGMA-OBJECT} *]
[Pragma-statement |
PRAGMA-OBJECT ::=
Label
| Name
Pragma-statement::=
String-cst

2. Semantics
The pragma with nam& R and with (optional) statemehtY’ YY" is associated with each one of

the objects designated by, ..., X,,.
The designations (that should reference objects which are visible at the level of the model) can be:
e labels (in that case, the designated object is a process expression),
e names of signals, parameters, constants, types, etc. (the designated object is the correspond-
ing signal, parameter, constant, type, etc.).

By default (when there is no designated object), the pragma is associated with the current process
model.

Inot yet implemented in ®LYCHRONY: association of a pragma with named objects.

XI-7. DIRECTIVES 185

A pragma has no semantic effect. It can be ignored by a compiler, or it can trigger a specific
processing.

3. Examples
The following pragmas are recognized in the INRIAIR CHRONY environment:

(a) General information

e Comment
— Associated with the current model.
— Comment on this model.

e Note :
— Associated with the current model.
— Comment on this model.

(b) Compilation directives

e main:

— Associated with the current model.

— Inamodule, means that the corresponding model is an “entry point” of this module:
it constitutes a&ompilation unit(cf. sectionXll-1, pagel91).

e unexpanded :
— Associated with the current model.

— Means that the model is not expanded when it is called. Each one of its instances is
compiledin its calling contextand has an associated object (graph) in the internal
representation.

e separate
— Associated with the current model.
— Means that the model is not expanded when it is called. It is compiled separately

and has an associated object (graph) in the internal representation.
(c) Partitioning information

e RunOn
— Associated with the current modé®,
— The statement of this pragma is a string representing a constant integeti.value

— Each “node” (or vertex) of the internal representatiorPdthis internal representa-
tion is a graph) is attributed by the value
When a partitioning based on the use of the pragtuaOnis applied on an appli-
cation, the global graph of the application is partitioned according te tiéerent
values of the pragma so as to obtaisub-graphs, corresponding#osub-models.
The tree of clocks and the interface of these sub-models may be completed in such
a way that they represent endochronous processes.

(d) Separate compilation
e Black Box :
— Associated with the current model.

— Represents the “black box” abstraction of a model (may be the result of a compila-
tion). Only the interface of the model, including its external graph, is represented:
its body is empty.

186 MODELS OF PROCESSES

e Grey Box :

— Associated with the current model.

— Represents a “grey box” abstraction of a model. It contains an external graph that
represents clock and dependence relations of the interface, but also a restructuring
of the model intoclusterstogether with a representation of teehedulingof these
clusters (clock and dependence relations between these clusters). Each cluster is
represented as a “black box” abstraction which is such that any input of the cluster
precedes any of its outputs.

e DelayCluster

— Associated with the current model.

— May qualify one of the clusters of a “grey box” abstraction when code generation is
expected from this abstraction: in that case, one of the clusters, the “delay cluster”
(represented, like the other ones, by its “black box” abstraction), groups together
the delay operations of the model and is preceded by each one of the other clusters
(in the generated code, memories will be updated at the end of one instant).

(e) Code generation directives
The pragma€_CODECPP_CODEJava_CODEare specific to code generation.
They are associated with the current model.
Their statement is a “parameterized” string representing a piece of code in the considered
implementation language. Each call of the model is translated by this string in the gener-
ated code, after substitution of the encoded parameters by the corresponding signals in the
considered call.

The following encoded parameters may be used in the string:

— &pj (Wherej is a constant integer value) represents;ttieparameter of the call;

— & j (wherej is a constant integer value) represents;tfiénput signal of the call;
— &0j (Wherej is a constant integer value) represents;ttieoutput signal of the call;
&n represents the name of the model.

C_CODeEis used for C code generation.
CPP_COD&Hs used for C++ code generation.
Java_CODE is used for Java code generation.

() Profiling directives
e PROCESSOR_TYPE
— Associated with the current model.
— The statement of this pragma is a string representing a name, for exdDgke; ,
that should be the name of a flESP.LIB containing a module that defines the cost
of each operator by particular models.
— When profiling (performance evaluation) is required on a given program implement-
ed on some processor represented as a model wiPRIBCESSOR_TYREagma,
a morphism of this program is applied, that defines a new program representing cost
evaluation of the original program. The image of the original program by this mor-
phism uses the library designated by the pragma to interpret the cost evaluation
operators.
(g) Link with the SIGALI prover
e SIGALI :
— Associated with the current model.

XI-8. MODELS AS TYPES AND PARAMETERS 187

— Used for models contained in a specific library dedicated to the SIGALI prover. The
calls of these models are external calls that are interpreted when translated into the
SIGALI representation.

XI-8 Models as types and parameters not yet
imple-
The notion of type presented so far is enriched with the notionailel typethat represents the interfa(:emeﬁted

of a process model. Then model types can be used to specify formal process models as formal parameters
of process models: a process model with the corresponding model type as interface must then be provided
as effective parameter.

Model types

A model type is an interface of process model.

The following rules for aDEFINITION-OF-TYPE extend those given in paf, sectionV-7,
paged4.

The rule for aDEFINITION-OF-INTERFACE extends those given in sectidi-5, pagel79.

process T =1
(the correspondin@ECLARATION-OF-TYPE is: type process T = I;),
oraction T = I, etc.

1. Context-free syntax

DEFINITION-OF-TYPE ::=

@ Namemodel—typeirzl DEFINITION-OF-INTERFACE
m Name-model-typeiezl DEFINITION-OF-INTERFACE

| | node Namemodel-typa DEFINITION-OF-INTERFACE
function Name-model—typEl DEFINITION-OF-INTERFACE

DEFINITION-OF-INTERFACE ::=

Name-model-type

2. Types

(@) The declaratiotype process T = I, defines the model type with naniéas being
equal to the interface qdfrocessnodel!.
Let us denote this equality:
7(T) = interfacg ocess (1)

3. Semantics

e The same scoping rules as for other types apply to model types.
4. Properties

(&) With the declarations
type process A = I

188 MODELS OF PROCESSES

andtype process B = I

thenT(A) = 7(B) = interfacg rocess (7).

Some implementations may not ensure this property.
On the opposite, the declarations

type process A =1

andtype function B = I; (for instance)
define distinct model types.

5. Examples
(a) type process T = (? integer a; ! integer b;); declares the mod-
el typeT.

(b) type process TT = T; declares the model typeT which is equal tor.

(c) process PP =
T

(D

declares the process modRf with its interface specified by.

Models as parameters

The following rules for #ORMAL-PARAMETER extend those given in sectiofl-5, pagel79.
The rule forS-EXPR-PARAMETER extends those given in patt section2-a page97.

1. Context-free syntax

FORMAL-PARAMETER ::=
FORMAL-MODEL

FORMAL-MODEL ::=

@ Name-model-typeName-model
m‘ Name-model-typeName-model

| | node| Name-model-typeName-model
function | Name-model-typeName-model

S-EXPR-PARAMETER ::=

Name-nodel

The formal parameters of the interface of a moBealan contain model parameters, that appear as
a formal name of model, say, typed with a model type, sd¥/, which is visible in the current
syntactic context: typicallyprocess T Q.

2. Semantics
To complete the description that was given in seck®r5, pagel79, the declaration of a model
sets up a context in which the model parameters define formal models, that is to say, models for
which only the interface (described by a model type) is known (analogous to model of external
processes).
The same scoping rules as for other parameters apply to model parameters.

XI-8. MODELS AS TYPES AND PARAMETERS 189

In the body of the process modEl the formal model) is invoked using the usual syntax for the
invocation of models.

The invocation of a model sets up an expansion context in which an effective model, designated
by its name (which must be the name of a process model visible in the context of this invocation),
is associated with each model (positional association, just like other parameters).

3. Examples

(a) process P =
{ process T Q; }
(?2)
(I x = Q) ... I)
declares the process modelwich has a model paramet€ the interface of which is de-
scribed by the model type€ (in that case, it has, for instance one input and one output).
The modeP must be called with a visible process model as effective parameter; the interface
of this process model must be equallto
For example:.. P{PP}(...)...

Chapter XII

Modules

Xll-1 Declaration and use of modules

A module is a named set of declarations of constants, types and models.

The syntax oDECLARATION-OF-CONSTANTS , DECLARATION-OF-TYPES , PROCESS
ACTION , NODE and FUNCTION given below extends the syntax of these declarations such as de-
fined in partC, sectionV-8, page85, partC, sectionV-7, page84 and partE, sectionXl-1, pagel73
The presence of thprivate attribute is reserved to declarations which are in a module. The syn-
tax of EXTERNAL-NOTATION may be used as well for BESCRIPTION-OF-CONSTANT, a
DESCRIPTION-OF-TYPE or aDESCRIPTION-OF-MODEL , either they appear in a model or in
a module. Itis provided in this section.

The importation of objects of a module in another module or in a model is donaigia anportation
command that may be found in a listDECLARATION s. Then, the syntax @ECLARATION given
below extends that defined in p&isectionXl-2, pagel76.

1. Context-free syntax

MODULE ::=

Name-module{El
[DIRECTIVES] { DECLARATION} E

DECLARATION-OF-CONSTANTS ::=
‘ private H constant‘ SIGNAL-TYPE
DEFINITION-OF-CONSTANT { I:lDEFINITION—OF-CONSTANT} * E

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * E|

192 MODULES

PROCESS::=
‘ private H proces# NamemodeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

ACTION ::=
‘ private H action ‘ Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [|

NODE ::=

m m Name-modeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] El

FUNCTION ::=
‘ private H function ‘ Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [|

EXTERNAL-NOTATION ::=

[String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

IMPORT-OF-MODULES ::=
IMPORTED-OBJECTS { I:llMPORTED-OBJECTS}* E|

IMPORTED-OBJECTS ::=

Name-module

Pragmas may be associated with the objects of a module in the same way they can be associated with
the objects of a model (cf. sectiofi—7, pagel84). When there is no designated object for a pragma
specified in a module, it is by default associated with the current module.

The set of declarations of a module constitutes a same level of declarations: the level of a module.
The level of a module is greater than the level of any model declared in this module. With the usual rule,
there cannot have two objects with the same name declared in a module.

The visibility of the objects declared in a module may be restricted to this module using the at-
tribute private : when a declaration of constants, types or model is preceded by the kepword
vate (private constant ... , private type ... , private process ... , etc.), then
the visibility of the corresponding objects is confined to the module that containsribate declaration,
even if this module is referenced byuae command.

In a moduleM, but also in a model, the description of a constant, a type or a model can be given
by an expression of thel&GNAL language, or it can be described as external (relatively to the current

XIlI-1. DECLARATION AND USE OF MODULES 193

module) by using thexternal attribute (or equivalently, by the absence of description).

The objects declared in a module can be totally or partially imported from a model or another module
thanks to theuse command. Such a module provides a context of definition for some of the objects
described as external in the model or the module containinggeecommand (and visible at this level).
These external objects aredefinedin this way if they are imported (as corresponding objects with
the same name) from @sedmodule, or transitively, from a module imported in an imported module.
The redefined constants must have the same type as that appearing in their declaration as external (or
a redefinition of this type if it is an external type). In the same way, the redefined models must have
compatible interfaces.

More generally, any object described as external in some zone of declarétiomesy inherit a
(re-)definition from any context, visible if, that provides such a definition.

Though it is not mandatory, it may be a good policy to systematically declare as external in a module
M the objects referenced i/, but imported by aise command from another module. However, in
this case, they should be used only as external objects: for example, if some signal is declared with an
external type, only polymorphic operators could be applied to it.

A model or a module are@mpilation unitwhen all the objects they use (except predefined or intrin-
sic ones) have a declaration (which may be that of an external object) in this entity, taking into account
theuse commands contained in it. In any case, a module necessarily constitutes a compilation unit.

The objects whose definitions or redefinitions are imported in a model or métijeause com-
mand situated in a zone of local declarationsFoéire made visible at the level of the expression con-
taining these local declarations and at all lower levels (with the usual scoping rules, everywhere another
object with the same name is not declared at such a level). More precissg, @ommand inside the
local declarations of an expression establishes a new level of declaration which is just greater than that
of the expression. For example, an expression
E where L; use M; end
may be considered, from the point of view of the scoping rules, as equivalent to the following one:

(FE where L; end) where Decl (M) end
whereDecl(M) represents the declarations /af. This equivalence holds wherever thee command
is located in the local declarations.

A similar rule also applies for ase command located in the declarations of a module.

The importable objects of a module are the objects of this module that are not declamichtes
The objects imported by ase command are all the importable objects of the module.

When severalise commands appear at a same level of declaration, their syntactic order determines
a corresponding nesting of the importations, thus avoiding multiple definitions of a same object at a given
level. For example, to:

E where L; use Mj; ...; use M,,; end

corresponds the following nesting:

(((£ where L; end) where Decl (M,) end) ...) where Decl (M;) end
(the declarations of/; are visible in)M,,, but the converse is not true).

In this way, if several objects with the same name are imported in a given context from different
modules, the single one which is effectively visible is the one from the last module containing it in the
ordered list of thaise commands. Note that the rule applies differently for external objects since exter-
nal definitions are overloaded by corresponding non external ones.

The nesting of declarations also allows to overload, in some way, declarations of imported modules
(libraries) by local declarations, since the local ones have priority.

194 MODULES

When several modules are specified in a sarse command, the corresponding declarations are
imported at the same level. For example,

E where L; use My, ... M,y;end
would correspond to:
(E where L; end) where Decl (M;) ... Decl (M,) end

In this case, there is a potential risk of conflicts of the declarations imported from different modules.

In a given compilation unit, when an object is described as external (for example, usiegdhe
nal notation), then:

e either itis defined in an imported module,
e either is is defined in the context in which this compilation unit is used,

e oritis externally defined, in another language for instance, in the implementation environment of
the compilation unit.

The description of an object as external may be followed by a string, suektasial " X", which
is an attribute allowing to describe specific characteristics of the implementation of this object: imple-
mentation language, for instance (this is indeed a short notation for a specific pragma).

The nameV/ used in a commandise M; " is the name of a module visible in the design environ-
ment. The way this module is made available is not normalized.

As an example, in the INRIA ®LYCHRONY environment, there is an environment variable,
SIGNAL_LIBRARY_PATH,
which defines the paths at which library files may be found in the design environment. Such a file has a
name with the suffixe “.LIB” or “.SIG”, for example, “M.LIB” or “M.SIG” (in principle, the first part of
the name could be different from “M”), and contains the definition of a module namhgd SIGNAL.

Examples

e module Stack =
use my_elem;

type elem;

type stack;

process initst = (! stack p;);

process push = (? stack p; elem x; ! event except;)

spec (| x "> except | x --> except |);
process pop = (? stack p; ! elem x; ! event except;)
spec (| x " except |);

end;

Chapter XIlI

Intrinsic processes

Intrinsic process models constitute libraries of processes that may be usezNinLSrograms. These
models have not to be declared. The names of the intrinsic process models are not reserved words of the
SIGNAL language.

Xlll-1 Assertions not yet
imple-
An assertion is a process with no output which specifies that a Boolean signal must have thiewalugented

each time it is present. It has the syntax of a process call with no output.
Assertions are used in particular to specify hypotheses on some inputs of a model.

assert(B)
1. Types
(@) 7(B) = boolean

2. Semantics
An assertion is obtained by a call to the intrinsic process model:
process assert = (? boolean x; !);

A property specified by an assertion can be assumed by the clock calculus.
3. Definition in SIGNAL

assert(B)
is equal to the process defined as follows:

(| B == when B
)

4. Examples

(@) The process
assert(A<5)
expresses that the valuestoimust be always lower than 5 (whens present).

196 INTRINSIC PROCESSES

Xlll-2 “Left true” process

The followingleft_tt process is defined as intrinsic process model:
process left tt = (? boolean y, z; ! boolean Xx;)
(| x := y default false when "z)

XIlI-3 Mathematical functions

The following mathematical functions are defined as intrinsic process models. They correspond to func-
tions of the “math.h” library of the language C. A full description of them may be found in the documen-
tation of this library.

e arc cosine function:
function acos = (? dreal x; ! dreal y;);

e arc sine function:
function asin = (? dreal x; ! dreal y;);

e arc tangent function:
function atan = (? dreal x; ! dreal y;);

e arc tangent function of two variables:
function atan2 = (? dreal x1; dreal x2 ! dreal y;);

e cosine function:
function cos = (? dreal x; ! dreal y;);

e sine function:
function sin = (? dreal x; ! dreal y;);

e tangent function:
function tan = (? dreal x; ! dreal y;),

e hyperbolic cosine function:
function cosh = (? dreal x; ! dreal y;);

e hyperbolic sine function:
function sinh = (? dreal x; ! dreal y;);

e hyperbolic tangent function:
function tanh = (? dreal x; ! dreal y;);

e exponential function:
function exp = (? dreal x; ! dreal y;);

e multiply floating-point number by integral power of 2:
function Idexp = (? dreal x; integer i ! dreal y;);

e logarithmic function:
function log = (? dreal x; ! dreal y;);

XlllI-4. COMPLEX FUNCTIONS

197

e base-10 logarithmic function:
function logl0 = (? dreal x; ! dreal y;),

e power function:
function pow = (? dreal x1; dreal x2; ! dreal y;);

e square root function:
function sqrt = (? dreal x; ! dreal y;),

e smallest integral value not less than x:
function ceil = (? dreal x; ! dreal y;),

e absolute value of an integer:
function abs = (? integer x; ! integer y;);

e absolute value of floating-point number:
function fabs = (? dreal x; ! dreal y;);

e largest integral value not greater than x:
function floor = (? dreal x; ! dreal y;);

¢ floating-point remainder function:
function fmod = (? dreal x1; dreal x2; ! dreal y;),

e convert floating-point number to fractional and integral components:

function frexp = (? dreal x; ! dreal yl1; integer y2;);

e extract signed integral and fractional values from floating-point number:

function modf = (? dreal x; ! dreal y1; dreal y2;);

Xlll-4 Complex functions

The following complex functions are defined as intrinsic process models.

e conjugate of a complex:

function conj = (? complex x; ! complex vy;);

and

function conjd = (? dcomplex x; ! dcomplex y;);
e module of a complex:

function modu = (? complex x; ! real y;);

and

function modud = (? dcomplex x; ! dreal y;);
e argument of a complex:

function arg = (? complex x; ! real y;);

and

function argd = (? dcomplex x; ! dreal y;);
e real part of a complex:

function rpart = (? complex x; ! real y;);

and

function rpartd = (? dcomplex x; ! dreal y;);

198 INTRINSIC PROCESSES

e imaginary part of a complex:

function ipart = (? complex x; ! real y;);
and
function ipartd = (? dcomplex x; ! dreal y;);

XI1-5 Input-output functions

The following input-output functions are defined as intrinsic process models of the INRDAGHRONY
environment. They allow to read and write signals of basic types on standard input and output.

Theread andwrite functions below are described with no explicit type for the input or output
signalx: it means that they are polymorphic functions for which the effective type of the considered
argument is provided by the type of the corresponding signal in the call of the function.

e function read = (? string message; ! x);
A message is displayed and a value is read for
A standard read function is used in the generated code for the following possible tyges of
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

e function write = (? string message; x; !);
A message is displayed and the value &fis written.
A standard write function is used in the generated code for the following possible types of
boolean, short, integer, long, real, dreal, complex, dcomplex, character, string.

e function writeString = (? string message; !);
A message is displayed on the standard output.

Part F

ANNEX

Chapter XIV

Grammar of the SIGNAL language

XIV-=1 Lexical units
XIV-=1.1 Characters

Character ::= character | CharacterCode

Sets of characters

character::= name-char | mark | delimitor | separator | other-character
name-char::= letter-char | numeral-char | I:l
letter-char ::=

upper-case-letter-char | lower-case-letter-char| other-letter-char

upper-case-letter-char::=

| [EI[F] [

K
ol
El

(A1 [8]1[c]i o] [E]I [F]i [6]I [H]

e] NJro i [Pl [R]

s o v W XD
lower-case-letter-char::=

[]l
| [w]i

=]
EEE

]
BEE

[Le]I[f]l

<= 1]
=]
B

202 GRAMMAR OF THE SIGNAL LANGUAGE

other-letter-char ::=

AlAN[AN[AN A A] [&] (e [E]
el el el i
Lol ieli[e]i[e]i[o]i[e]iu]i[u]i o]
Oy J[eie]iafifali[a]i[a]i[a]
&[] el el [eli[e]i[e]r[v]i]]
][] Lo]l[e]i[e]I[8]lI[e]
|[e] | [u] LA [y]I[e]l

numeral-char ::

E
B
B
B
B
B
B
E
B
B

defimitor == [(][] ITE)I 3] I[L]I[T]
NG

separator::= |\x20
| long-separator
long-separator::= | \x9
| | \xA
| | \xC
| | \xD

Encodings of characters

CharacterCode::= OctalCode | HexadecimalCode
| escape-code

OctalCode::= octal-char [octal-char [octal-char]]

XIV=1. LEXICAL UNITS

203

octal-char= [o] | [1][[2]I[3]I[4]I[5]I[6]l

HexadecimalCode:= hexadecimal-char [hexadecimal-char]

hexadecimal-char::= numeral-char

([a]i[BlI[c]i[D]I[E]I[F]
Lali[o]ifeifa]ife]if]

| [7]
escape-code= H ||m|n - -
W] PN T] 2] T el

XIV=1.2 Vocabulary

prefix-mark ::=

Names

Name::= begin-name-char [{ name-char}"]

begin-name-char::= { name-char\ numeral-char}

Boolean constants

Boolean-cst:= | [false]

Integer constants

Integer-cst::= {numeral-char }*

204 GRAMMAR OF THE SIGNAL LANGUAGE

Real constants

Real-cst::= Simple-precision-real-cst
| Double-precision-real-cst

Simple-precision-real-cst::=

Integer-cst Simple-precision-exponent
| Integer—cst|:| Integer-cst [Simple-precision-exponent]

Double-precision-real-cst::=

Integer-cst Double-precision-exponent
| Integer—cstm Integer-cst Double-precision-exponent

Simple-precision-exponent:= E|Relative-cst | Relative-cst
Double-precision-exponent:= [d |Relative-cst | | D | Relative-cst

Relative-cst::= Integer-cst

| Integer-cst
| E| Integer-cst

Character constants
Character-cst::= D Character—cstCharacterEl
Character-cstCharacter::= { Character \ character-spec-char}
character-spec-char::=

| long-separator

String constants
String-cst ;= E| [{ String-cstCharacter } 7] E|
String-cstCharacter ::= { Character \ string-spec-char }

string-spec-char::=
| long-separator

XIV-2. DOMAINS OF VALUES OF THE SIGNALS

205

Comments

Comment::= [{ CommentCharacter }*]

CommentCharacter::= { Character \ comment-spec-char }

comment-spec-char:= |%

XIV=2 Domains of values of the signals

SIGNAL-TYPE ::= Scalar-type
| External-type
| ENUMERATED-TYPE
| ARRAY-TYPE
| TUPLE-TYPE

XIV=2.1 Scalar types

Scalar-type::= Synchronization-type
| Numeric-type
| Alphabetic-type

Numeric-type ::= Integer-type

| Real-type
| Complex-type

Alphabetic-type::= |char

string

206 GRAMMAR OF THE SIGNAL LANGUAGE

Synchronization types

Synchronization-type::= |event

even]
boolean

Integer types

Integer-type ::= |short
integer

e

| |long

Real types

Real-type::= @
| | dreal

Complex types

Complex-type::=

dcomplex

XIV=2.2 External types

External-type ::= Name-ype

XIV-2. DOMAINS OF VALUES OF THE SIGNALS 207

XIV-=2.3 Enumerated types

ENUMERATED-TYPE ::=

Name-enum-valug |:| Name-enum-valug*

ENUM-CST ::=

Name-enum-value

| Namei‘ype Name-enum-value

XIV=2.4 Array types

ARRAY-TYPE ::=

m S-EXPR {D S-EXPR }* SIGNAL-TYPE

XIV=2.5 Tuple types

TUPLE-TYPE ::=

struct ENAMED-FIELDS

bundle NAMED-FIELDS
[SPECIFICATION-OF-PROPERTIES]

NAMED-FIELDS ::=
{ S-DECLARATION } +

208 GRAMMAR OF THE SIGNAL LANGUAGE

XIV-=2.6 Denotation of types

SIGNAL-TYPE ::=
Name-+ype

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * E|

DEFINITION-OF-TYPE ::=

Name-type
| Name{ypeEl DESCRIPTION-OF-TYPE

DESCRIPTION-OF-TYPE ::=

SIGNAL-TYPE
| EXTERNAL-NOTATION [TYPE-INITIAL-VALUE]

XIV=2.7 Declarations of constant identifiers

DECLARATION-OF-CONSTANTS ::=

SIGNAL-TYPE

DEFINITION-OF-CONSTANT { DDEFINITION-OF-CONSTANT} * D

DEFINITION-OF-CONSTANT ::=
Name-constant
| NameconstanEl DESCRIPTION-OF-CONSTANT
DESCRIPTION-OF-CONSTANT ::=

S-EXPR
| EXTERNAL-NOTATION

XIV-=2.8 Declarations of sequence identifiers

XIV=3. EXPRESSIONS ON SIGNALS 209

S-DECLARATION ::=

SIGNAL-TYPE
DEFINITION-OF-SEQUENCE { I:lDEFINITION-OF—SEQUENCE} * D

DEFINITION-OF-SEQUENCE ::=

Name-signal
| Name-signa S-EXPR

XIV=2.9 Declarations of state variables

DECLARATION-OF-STATE-VARIABLES ::=

SIGNAL-TYPE

DEFINITION-OF-SEQUENCE { I:lDEFINITION-OF—SEQUENCE} * D

XIV=3 EXxpressions on signals

XIV=3.1 Systems of equations on signals

Elementary equations

ELEMENTARY-PROCESS ::=
DEFINITION-OF-SIGNALS

DEFINITION-OF-SIGNALS ::=
Name-signaE S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal{ |:| Name-signal}* E| S-EXPR

210 GRAMMAR OF THE SIGNAL LANGUAGE

DEFINITION-OF-SIGNALS ::=
Name-signa S-EXPR

| Name-signa defaultvalue | S-EXPR

DEFINITION-OF-SIGNALS ::=

Name-signal{ |:| Name-signal}* S-EXPR
| Name-signal{ |:| Name-signal}* S-EXPR

Call of model

ELEMENTARY-PROCESS ::=
INSTANCE-OF-PROCESS

INSTANCE-OF-PROCESS::=
EXPANSION

| Name-mode

EXPANSION ::=

Name-nodel

S-EXPR-PARAMETER { I:lS-EXPR-PARAMETER}*

S-EXPR-PARAMETER ::=

S-EXPR
| SIGNAL-TYPE

INSTANCE-OF-PROCESS::=
PRODUCTION

PRODUCTION ::=

MODEL-REFERENCE S—EXPR{D S-EXPR }*

MODEL-REFERENCE ::=

EXPANSION
| Name-model

XIV=-3. EXPRESSIONS ON SIGNALS 211

S-EXPR::=
INSTANCE-OF-PROCESS

S-EXPR::=
CONVERSION
CONVERSION ::=

Type—conversio S—EXPR

Type-conversion::=

Scalar-type
| Name-ype

Nesting of expressions on signals

S-EXPR::=

S-EXPR

XIV=3.2 Elementary expressions

S-EXPR-ELEMENTARY ::=

CONSTANT
| Name-signal
| Label

| Name-state—variabl

Constant expressions

212 GRAMMAR OF THE SIGNAL LANGUAGE

CONSTANT ::=

Boolean-cst
| Integer-cst
| Real-cst
| Character-cst
| String-cst
| ENUM-CST

XIV=3.3 Dynamic expressions

S-EXPR-DYNAMIC ::=

SIMPLE-DELAY
| WINDOW
| GENERALIZED-DELAY

Simple delay
SIMPLE-DELAY :=
S-EXPR [S-EXPR]
Sliding window

WINDOW ::=

S-EXPR S-EXPR [S-EXPR]

Generalized delay

GENERALIZED-DELAY ::=

S-EXPR S-EXPR [[init | S-EXPR]

XIV=-3. EXPRESSIONS ON SIGNALS

213

XIV=3.4 Polychronous expressions

S-EXPR-TEMPORAL::=

MERGING
| EXTRACTION
| MEMORIZATION
| VARIABLE
| COUNTER
Merging
MERGING ::=
S-EXPR S-EXPR
Extraction
EXTRACTION ::=

S-EXPR S-EXPR

Memorization

MEMORIZATION ::=

S-EXPR S-EXPR [S-EXPR]

Variable clock signal

VARIABLE ::=

S-EXPR [S-EXPR]

Counters

214 GRAMMAR OF THE SIGNAL LANGUAGE

COUNTER ::=
S-EXPR|after | S-EXPR
| S-EXPR|from | S-EXPR
| S-EXPR|count|S-EXPR

XIV=3.5 Constraints and expressions on clocks

ELEMENTARY-PROCESS ::=
CONSTRAINT

Expressions on clock signals

S-EXPR-CLOCK ::=
SIGNAL-CLOCK
SIGNAL-CLOCK ::=

S-EXPR

S-EXPR-CLOCK ::=
CLOCK-EXTRACTION
CLOCK-EXTRACTION :=

S-EXPR

S-EXPR-CLOCK ::=

Operators of clock lattice

XIV=-3. EXPRESSIONS ON SIGNALS 215

S-EXPR-CLOCK ::=

S-EXPR S-EXPR
| S-EXPR S-EXPR
| S-EXPR| ™ | S-EXPR

Relations on clocks

CONSTRAINT ::=
S-EXPR {E| S-EXPR ¥

| S—EXPR{ S-EXPR }*
| S—EXPR{ S-EXPR }*

| S-EXPR { S-EXPR }*

XIV=3.6 Constraints on signals

CONSTRAINT ::=

S-EXPR S-EXPR

XIV=3.7 Boolean synchronous expressions

Expressions on Booleans

S-EXPR-BOOLEAN::

S-EXPR

S-EXPR-BOOLEAN ::
S-EXPR|or |S-EXPR

| S-EXPR|and|S-EXPR

| S-EXPR|xor |S-EXPR

216 GRAMMAR OF THE SIGNAL LANGUAGE

Boolean relations

S-EXPR-BOOLEAN ::=

RELATION
RELATION ::=
S-EXPR|[= | S-EXPR
| S-EXPR|[/ =| S-EXPR
| SEXPR[> |S-EXPR
| S-EEXPR[>=| S-EXPR
| S-EEXPR| < | S-EXPR
| S-EXPR[<=| S-EXPR
| S-EXPR[—| S-EXPR
| S-EEXPR[<<=|S-EXPR

XIV=3.8 Synchronous expressions on numeric signals

Binary expressions on numeric signals

S-EXPR-ARITHMETIC ::=
S-EXPRE S-EXPR
| S-EXPR| — |S-EXPR
| S-EXPR[« | S-EXPR
| SEXPR[/ |S-EXPR

| S-EXPR|modulo|S-EXPR

| S-EXPR|++|S-EXPR
| DENOTATION-OF-COMPLEX

DENOTATION-OF-COMPLEX ::=

S-EXPR S-EXPR

XIV-4. EXPRESSIONS ON PROCESSES

217

Unary operators

S-EXPR-ARITHMETIC ::=

S-EXPR
| [—|SEXPR

XIV=3.9 Synchronous condition

S-EXPR-CONDITION ::=

S-EXPR S-EXPR S-EXPR

XIV-4 EXxpressions on processes

P-EXPR::=

ELEMENTARY-PROCESS
| HIDING

| LABELLED-PROCESS

| GENERAL-PROCESS

GENERAL-PROCESS::=

COMPOSITION
| CONFINED-PROCESS
| CHOICE-PROCESS

XIV=4.1 Composition

COMPOSITION ::=

[(]t PEXPR{[| |P-EXPR}" 1[]) |

218 GRAMMAR OF THE SIGNAL LANGUAGE

XIV-4.2 Hiding

HIDING ::=
GEN ERAL—PROCESS Name-signak D Name-signal}*
| HIDING Namesignal{DNamesignal}*

XIV-=4.3 Confining with local declarations

CONFINED-PROCESS::=
GENERAL-PROCESS DECLARATION-BLOCK

DECLARATION-BLOCK ::=

{ DECLARATION} +

XIV-4.4 Labelled processes

LABELLED-PROCESS ::=
Label E P-EXPR

Label ::=

Name

XIV=4.5 Choice processes

CHOICE-PROCESS::=

Namesigna{ CASE }* [ELSE-CASE]

XIV=5. TUPLES OF SIGNALS 219

CASE ::=
ENUMERATION-OF-VALUES ElGENERAL—PROCESS

ELSE-CASE ::=
elsel GENERAL-PROCESS

ENUMERATION-OF-VALUES ::=

S-EXPR{D S-EXPR ¥
| _[S-EXPR]D[S-EXPR]
| I[S-EXPR]D[S-EXPR]II'
| I[S-EXPR]D[S-EXPR]
I

[S-EXPR] |:| [S-EXPR] |I|

I

XIV=5 Tuples of signals

S-EXPR-TUPLE::=

TUPLE-ENUMERATION
| TUPLE-FIELD

XIV=5.1 Enumeration of tuple elements

TUPLE-ENUMERATION ::=

S-EXPR{D S-EXPR }*

XIV=5.2 Denotation of field

TUPLE-FIELD ::=
S-EXPRE Name-field

220 GRAMMAR OF THE SIGNAL LANGUAGE

XIV=5.3 Equation of definition of tuple component

DEFINITION-OF-SIGNALS ::=
COMPONENT E| S-EXPR
| COMPONENT [::=] S-EXPR

| COMPONENT S-EXPR

| COMPONENT { I:lCOMPONENT}* ElS-EXPR

| COMPONENT { DCOMPONENT}* S-EXPR

| COMPONENT { I:lCOMPONENT}*

S-EXPR
COMPONENT ::=

Name-signal
| Name-signal . | COMPONENT

XIV-6 Spatial processing

S-EXPR-ARRAY ::=

ARRAY-ENUMERATION

| CONCATENATION

| ITERATIVE-ENUMERATION
| INDEX

| ARRAY-ELEMENT

| SUB-ARRAY

| ARRAY-RESTRUCTURATION
| MULTI-INDEX

| SEQUENTIAL-DEFINITION
| TRANSPOSITION

| ARRAY-PRODUCT

| REFERENCE-SEQUENCE

XIV-6. SPATIAL PROCESSING 221

XIV-6.1 Enumeration

ARRAY-ENUMERATION ::=

|I| S-EXPR{D S-EXPR }*

XIV-6.2 Concatenation

CONCATENATION ::=

S-EXPR S-EXPR

XIV-6.3 Repetition

ITERATIVE-ENUMERATION ::=

S-EXPR S-EXPR

XIV-6.4 Definition of index

INDEX ::=

S-EXPREl S-EXPR [S-EXPR]

222 GRAMMAR OF THE SIGNAL LANGUAGE

XIV-6.5 Array element

ARRAY-ELEMENT ::=

S-EXPRIIl S-EXPR {D S-EXPR }¥* |I|

| S-EXPRII' S—EXPR{D S-EXPR }* |I| ARRAY-RECOVERY

ARRAY-RECOVERY ::=

S-EXPR

XIV-6.6 Extraction of sub-array

SUB-ARRAY ::=

S-EXPRIIl S-EXPR {D S-EXPR }¥* |I|

XIV-6.7 Array restructuration

ARRAY-RESTRUCTURATION ::=
S-EXPREl S-EXPR

XIV-6.8 Extended syntax of equations of definition

XIV-6. SPATIAL PROCESSING 223

DEFINITION-OF-SIGNALS ::=
DEFINED-ELEMENT ElS—EXPR
| DEFINED-ELEMENT S—EXPR

| DEFINED-ELEMENT defaultvalue| S-EXPR
| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

S-EXPR

| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

S-EXPR
| DEFINED-ELEMENT { DDEFINED-ELEMENT} *

DEFINED-ELEMENT ::=
COMPONENT

| COMPONENT [[| S-EXPR{[, |S-EXPR¥"

XIV-6.9 Cartesian product

MULTI-INDEX ::=

S-EXPR{D S-EXPR }*

XIV-6.10 Iterations of processes

GENERAL-PROCESS::=
ITERATION-OF-PROCESSES
ITERATION-OF-PROCESSES ::=

array | ARRAY-INDEX P-EXPR[ITERATION-INIT]
iterate | ITERATION-INDEX P-EXPR[ITERATION-INIT]

ARRAY-INDEX ::=

| Name[to| S-EXPR

224 GRAMMAR OF THE SIGNAL LANGUAGE

ITERATION-INDEX ::=
DEFINED-ELEMENT

| DEFINED-ELEMENT { I:lDEFINED-ELEMENT} *

| S-EEXPR
ITERATION-INIT =

P-EXPR

REFERENCE-SEQUENCE::=

S-EXPRIIlIIl

XIV-6.11 Sequential definition

SEQUENTIAL-DEFINITION ::=
S-EXPR S-EXPR

XIV=6.12 Sequential enumeration

ITERATIVE-ENUMERATION =
|I| ITERATION { |:| PARTIAL-DEFINITION } *

PARTIAL-DEFINITION ::=

DEFINITION-OF-ELEMENT
| ITERATION

DEFINITION-OF-ELEMENT ::=
|I| S-EXPR{D S-EXPR }* ElS—EXPR

ITERATION ::=
PARTIAL-ITERATION { [, |PARTIAL-ITERATION} *
| : | DEFINITION-OF-ELEMENT
| PARTIAL-ITERATION{ [, | PARTIAL-ITERATION} *

E| S-EXPR

XIV=7. MODELS OF PROCESSES 225

PARTIAL-ITERATION =

[Name] [S-EXPR] [S-EXPR] [S-EXPR]

XIV-6.13 Operators on matrices

Transposition

TRANSPOSITION ::=

S-EXPR

Matrix products

ARRAY-PRODUCT ::=

S-EXPR S-EXPR

XIV=7 Models of processes

XIV=7.1 Classes of process models

MODEL ::=

PROCESS
| ACTION
| NODE
| FUNCTION

PROCESS::=

process NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

ACTION ::=

NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

226 GRAMMAR OF THE SIGNAL LANGUAGE

NODE ::=

NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

FUNCTION ::=

NamemodeB

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E

BODY ::=
DESCRIPTION-OF-MODEL
DESCRIPTION-OF-MODEL ::=

GENERAL-PROCESS
| EXTERNAL-NOTATION

XIV=7.2 Local declarations of a process model

DECLARATION ::=

S-DECLARATION
| DECLARATION-OF-STATE-VARIABLES
| DECLARATION-OF-CONSTANTS

| DECLARATION-OF-TYPES

| DECLARATION-OF-LABELS

| REFERENCES

| MODEL

XIV-=7.3 Declarations of labels

DECLARATION-OF-LABELS ::=

Name+abel{ |:| Name+abel}* I:l

XIV=7. MODELS OF PROCESSES 227

XIV-=7.4 References to signals with extended visibility

REFERENCES::=

Name-signal |:| Name-signal}* El

XIV-=7.5 Interface of a model

DEFINITION-OF-INTERFACE ::=
INTERFACE

INTERFACE ::=
[PARAMETERS] INPUTS OUTPUTS EXTERNAL-GRAPH

PARAMETERS ::=

[{ FORMAL-PARAMETER } *]

FORMAL-PARAMETER ::=

S-DECLARATION
| DECLARATION-OF-TYPES

INPUTS ::=
[{ S-DECLARATION } +]

OUTPUTS ::=
m[{ S-DECLARATION } *]

XIV=7.6 Graph of a model

EXTERNAL-GRAPH ::=
[PROCESS-ATTRIBUTE] [SPECIFICATION-OF-PROPERTIES]

228 GRAMMAR OF THE SIGNAL LANGUAGE

PROCESS-ATTRIBUTE ::=

deterministic
|unsafe

unsafe

SPECIFICATION-OF-PROPERTIES ::=

GENERAL-PROCESS

Dependences

ELEMENTARY-PROCESS ::=
DEPENDENCES
DEPENDENCES::=
SIGNALS { SIGNALS 3

| SIGNALS SIGNALS S-EXPR

SIGNALS ::=
ELEMENTARY-SIGNAL
| ELEMENTARY-SIGNAL { I:lELEMENTARY-SIGNAL} .
ELEMENTARY-SIGNAL ::=

DEFINED-ELEMENT
| Label

XIV=7.7 Directives

DIRECTIVES ::=
[pregmes PRAGHA) * [end]ragmas|
PRAGMA ::=

Name-pragma[PRAGMA-OBJECT { I:lPRAGMA-OBJECT} *]
[Pragma-statement |

PRAGMA-OBJECT ::=

Label
| Name

XIV-8. MODULES

229

Pragma-statement::=
String-cst

XIV=7.8 Models as types and parameters

DEFINITION-OF-TYPE ::=

@ Name-model-typeiezl DEFINITION-OF-INTERFACE
action] Name-model-typeiezl DEFINITION-OF-INTERFACE

| | node Namemodel-typa DEFINITION-OF-INTERFACE
function Namemodel—typE DEFINITION-OF-INTERFACE

DEFINITION-OF-INTERFACE ::=

Name-model-type

FORMAL-PARAMETER ::=
FORMAL-MODEL

FORMAL-MODEL ::=

@ Name-mnodel-typeName+nodel
m‘ Name-model-typeName-model

| | node| Name-model-typeName-model
function | Name+nodel-typeName+nodel

S-EXPR-PARAMETER ::=

Name-nodel

XIV-8 Modules

XIV-=8.1 Declaration and use of modules

230 GRAMMAR OF THE SIGNAL LANGUAGE

MODULE ::=

Namemodulﬁ
[DIRECTIVES] { DECLARATION} + E

DECLARATION-OF-CONSTANTS ::=
‘ private H constant‘ SIGNAL-TYPE
DEFINITION-OF-CONSTANT { I:lDEFINITION-OF-CONSTANT} * D

DECLARATION-OF-TYPES ::=

DEFINITION-OF-TYPE { I:lDEFINITION-OF-TYPE} * E

PROCESS::=
‘ private H proces# Name-modeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] []

ACTION ::=
‘ private H action ‘ NamemodeE
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] [|

NODE ::=

NamemodeE

DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] E|

FUNCTION ::=
‘ private H function ‘ NamemodeB
DEFINITION-OF-INTERFACE [DIRECTIVES] [BODY] []

EXTERNAL-NOTATION ::=

[String-cst]

DECLARATION ::=
IMPORT-OF-MODULES

XIV-8. MODULES 231

IMPORT-OF-MODULES ::=
IMPORTED-OBJECTS { I:llMPORTED-OBJECTS}* E|

IMPORTED-OBJECTS ::=

Name-nodule

List of figures

B-IIl.1
B-IIl.2

B-IV.1
B-IV.2

C-vi1

f11Twith f1(0) =0, f1(1) =3, f1(2) =4, f1(3) =5.c0 v v v v v oo e 34
Two flows of the composition a1 andP2 42
Formal meaning of the dependence statement. 60
Micro automaton ofc :=: y $init o L 65
Order and conversions on scalar and external types 80

List of tables

C-VI.1 Syntactic forms of aninvocationofmodel. 97
C-VI.2 INSTANCE-OF-PROCESSE? ittt 101
C-VIL3 Expressionsonsignals. e 103
C-VI.4 Expressionsonsignals. 104

C-VI.5 Types of the constanfs?”
C-VI.6 S-EXPR-DYNAMIC E?*!

Index

Lexis
Alphabetic-type 69, 205
def,69, 205
begin-name-chag3, 203
def,23, 203
Boolean-cst105, 212
def,23, 203
Character25, 204, 205
def,19, 201
characterl9, 201
def,19, 201
Character-cst]05, 212
def, 25, 204
Character-cstCharactexs, 204
def, 25, 204
character-spec-chazp, 204
def, 25, 204
CharacterCodel9, 201
def,22, 202
Comment
def, 25, 205
comment-spec-chakb, 205
def, 25, 205
CommentCharacteBb, 205
def, 25, 205
Complex-type 69, 205
def,72, 206
delimitor, 19, 201
def,21, 202
Double-precision-exponerid, 204
def,24, 204
Double-precision-real-csg4
def,24, 204
ENUM-CST, 105
escape-code2, 202
def,22, 203
External-type 69, 205
def,73, 206
hexadecimal-chaf?2, 203
def,22, 203

237

HexadecimalCode&22, 202
def,22, 203

Integer-cst24, 105, 204, 212
def,24, 203

Integer-type 69, 205
def, 70, 206

Label, 105, 134, 182, 184, 211, 218 228
def,134, 218

letter-char,19, 201
def, 19, 201

long-separator?l, 25, 202, 204
def,21, 202

lower-case-letter-chaf,9, 201
def, 20, 201

mark,19, 201
def,21, 202

Name, 23, 73-75, 79, 84-87, 92-94, 96,
98, 99, 101, 105, 132, 134, 136, 144,
145,158 164, 174,175,178, 184, 187,
188 191, 192 206-211, 218-220, 223,

225231

def,23, 203
name-charl9, 23, 201, 203

def,19, 201
numeral-charl9, 22-24, 201, 203

def,20, 202
Numeric-type 69, 205

def,69, 205
octal-char22, 202

def,22, 203
OctalCode22, 202

def,22, 202
other-character]9, 201
other-letter-charl9, 201

def,20, 202
Pragma-statement34, 228

def,184, 229
prefix-mark

def,23, 203
Real-cst105, 212

238

INDEX

def,24, 204
Real-type 69, 205
def,71, 206
Relative-cst24, 204
def,24, 204
Scalar-typef9, 101, 205 211
def,69, 205
separatorl9, 201
def,21, 202
signalkw
def,26
Simple-precision-exponeri4, 204
def,24, 204
Simple-precision-real-cs4
def,24, 204
String-cst, 105, 184, 192, 212, 229, 230
def, 25, 204
String-cstCharacte®5, 204
def, 25, 204
string-spec-chags, 204
def, 25, 204
Synchronization-typeg9, 205
def,70, 206
Type-conversion101, 211
def,101, 211
upper-case-letter-chat9, 201
def,19, 201

Symbol

x, 21, 127,202, 216

xx, 127,216

x., 165, 225

+, 21, 24,127,128 202, 204, 216, 217

—,21,24,71,127,128 202 204, 216, 217

—— >,182 228

/, 21,127,202 216

/ =,125 216

<, 21,125 202 216

<<=,125 216

<=,125 216

=, 21,125 202 216

==,125 216

>, 21,125 202, 216

>=,125 216

(, 21, 74, 77,93, 96, 98, 99, 101, 102 143
145,157,158, 179,202, 207, 209-211,
219, 220, 223 224, 227

), 21, 74, 77,93, 96, 98, 99, 101, 102 143,

145,157,158 179, 202, 207, 209-211,
219 220, 223 224, 227

., 21, 24,144, 145, 202, 204, 219, 220

.., 151, 221

], 136,219

/,132, 218

;, 21,136, 154, 164, 202, 219, 222, 224

5,134,218

=, 94, 96, 145, 157, 210, 220, 223

:=, 92,93, 145 157, 209, 220, 223

=:,122 215

;, 21, 84, 86-88, 174, 175, 178 191, 192,
202, 208, 209, 225227, 230, 231

=, 85, 86, 174, 175, 187, 191, 192 208
225,226,229 230

?,21, 105,159 179 202, 211, 224, 227

[, 21,76, 149 152 153 157, 159, 164, 202,
207, 221224

[., 136,219

#,21, 75,202 207

$,21,108 110,202, 212

%, 21, 25, 202, 205

\, 22, 23,202 203

\X, 22, 203

{, 21,98, 136,164, 179,182, 184, 202, 210,
219, 224,227, 228

}, 21,98,136,179 182 184,202 210, 219,
227,228

], 21,76, 149 152, 153 157, 159, 164, 202,
207, 221224

\\, 152 222

%, 119 215

4,119, 215

~—,119 215

0,119 214

~<,121, 215

~=,121,215

~>,121,215

=, 21,118 202 214

“#,121, 215

. 21, 74,76, 79, 84, 86-88, 93, 96, 98, 99,
132,136,143, 145,149,152, 153 157,
158 164,178 182 184,191, 192, 202,
207-210, 218-224, 226-228, 230, 231

@,21, 128 202 216

|+, 149 221

D, 24,204

d, 24,204

INDEX

239

" 21, 25,202 204

E, 24,204

e, 24,204

1, 21,179 202 227

>>, 158 223

<<, 158 223

(|, 131,217

|, 21,131, 202, 217

|x, 150, 221

), 131, 217

', 21, 25, 202, 204

,19,201

Syntax

ACTION, 174, 225
def,175, 192 225, 230

ARRAY-ELEMENT, 147, 220
def,152 222

ARRAY-ENUMERATION, 147, 220
def,149 221

ARRAY-INDEX, 158, 223
def,158 223

ARRAY-PRODUCT,147, 220
def,165, 225

ARRAY-RECOVERY, 152, 222
def,152 222

ARRAY-RESTRUCTURATION,147, 220
def,154, 222

ARRAY-TYPE, 69, 205
def, 76, 207

BODY, 174, 175, 192, 225, 226, 230
def,175, 226

CASE,136, 218
def,136, 219

CHOICE-PROCESSI3], 217
def,136, 218

CLOCK-EXTRACTION,118 214
def,118 214

COMPONENT,145, 157, 220, 223
def,145 220

COMPOSITION,131, 217
def,131, 217

CONCATENATION, 147, 220
def,149 221

CONFINED-PROCESSI3], 217
def,133 218

CONSTANT,105, 211
def,105, 212

CONSTRAINT, 117,214

def,121, 122 215
CONVERSION,101, 211
def,101, 211
COUNTER,112 213
def,116, 214
DECLARATION, 133 191, 218 230
def,177,192 226, 230
DECLARATION-BLOCK, 133 218
def,133 218
DECLARATION-OF-CONSTANTS177,226
def,86, 191, 208, 230
DECLARATION-OF-LABELS,177, 226
def,178 226
DECLARATION-OF-STATE-VARIABLES,
177,226
def,88, 209
DECLARATION-OF-TYPES177, 179,226,
227
def,84, 191, 208 230
DEFINED-ELEMENT,157, 158 182 223
224,228
def,157, 223
DEFINITION-OF-CONSTANTS86, 191, 208
230
def,86, 208
DEFINITION-OF-ELEMENT,164, 224
def,164, 224
DEFINITION-OF-INTERFACE,174 175
187,192, 225, 226, 229, 230
def,179, 187, 227, 229
DEFINITION-OF-SEQUENCES7, 88, 209
def,87, 209
DEFINITION-OF-SIGNALS,92, 209
def, 92-94, 96, 145, 157, 209, 210, 220,
223
DEFINITION-OF-TYPE,84, 191, 208 230
def,85, 187, 208, 229
DENOTATION-OF-COMPLEX 127, 216
def,128 216
DEPENDENCES
def,182 228
DESCRIPTION-OF-CONSTANT86, 208
def,86, 208
DESCRIPTION-OF-MODEL175, 226
def,175 226
DESCRIPTION-OF-TYPES5, 208
def, 85, 208
DIRECTIVES,174, 175,191, 192 225, 226,

240 INDEX
230 def,179, 227

def,184, 228 ITERATION, 164, 224
ELEMENTARY-PROCESS] 3], 217 def, 164, 224

def,92, 97, 117, 182 209, 210, 214, 228 ITERATION-INDEX, 158 223
ELEMENTARY-SIGNAL, 182, 228 def,158 224

def,182 228 ITERATION-INIT, 158, 223
ELSE-CASE 136, 218 def,159, 224

def,136, 219 ITERATION-OF-PROCESSES358, 223
ENUM-CST,212 def,158, 223

def, 75, 207 ITERATIVE-ENUMERATION, 147, 220
ENUMERATED-TYPE,69, 205 def,150, 164, 221, 224

def,74, 207 LABELLED-PROCESS]13], 217
ENUMERATION-OF-VALUES,136, 219 def,134 218

def,136, 219 MEMORIZATION, 112,213
EXPANSION,98, 99, 210 def,114 213

def,98, 210 MERGING, 112 213
EXTERNAL-GRAPH,179, 227 def,112 213

def, 181, 227 MODEL, 177, 226
EXTERNAL-NOTATION, 85, 86, 175,208 def,174, 225

226 MODEL-REFERENCE99, 210

def,192 230 def,99, 210
EXTRACTION, 112 213 MODULE

def,113 213 def,191, 230
FORMAL-MODEL MULTI-INDEX, 147,220

def,188 229 def,158 223
FORMAL-PARAMETER,179, 227 NAMED-FIELDS, 77, 207

def,179, 188 227, 229 def, 77, 207

FUNCTION, 174 225
def,175 192, 226, 230
GENERAL-PROCESS]31-133 136,175
181, 217219, 226, 228
def,131, 158 217, 223
GENERALIZED-DELAY, 107, 212
def,110, 212
HIDING, 131, 132, 217, 218
def,132 218
IMPORT-OF-MODULES 192, 230
def,192 231
IMPORTED-OBJECTS]92 231
def,192 231
INDEX, 147, 220
def,151, 221
INPUTS,179 227
def, 179, 227
INSTANCE-OF-PROCESS)7, 100, 210,
211
def,98, 99, 210
INTERFACE, 179 227

NODE, 174 225
def,175, 192 226, 230
OUTPUTS,179 227
def,179, 227
P-EXPR131, 134, 158, 159,217,218 223
224
def,131, 217
PARAMETERS,179, 227
def,179, 227
PARTIAL-DEFINITION, 164, 224
def,164, 224
PARTIAL-ITERATION, 164, 224
def,164, 225
PRAGMA, 184, 228
def,184, 228
PRAGMA-OBJECT184, 228
def,184, 228
PROCESS]74 225
def,174, 192 225,230
PROCESS-ATTRIBUTE]81, 227
def,181, 228

INDEX

241

PRODUCTION,99, 210
def,99, 210
REFERENCE-SEQUENCHA7, 220
def, 159 224
REFERENCES]77, 226
def,178 227
RELATION, 125, 216
def,125 216
S-DECLARATION, 77,177,179 207, 226,
227
def,87, 209
S-EXPR
def,100-102 211
S-EXPR-PARAMETER9S, 210
def,98, 188 210, 229
S-EXPRARITHMETIC
def,127, 128 216, 217
S-EXPRARRAY
def,147, 220
S-EXPRBOOLEAN
def,123 125 215, 216
S-EXPRCLOCK
def,118 119 214 215
S-EXPRCONDITION
def,129 217
S-EXPRDYNAMIC
def,107, 212
S-EXPRELEMENTARY
def,105 211
S-EXPRTEMPORAL
def,112 213
S-EXPRTUPLE
def,143 219
S-EXPR,76, 86, 87, 92-94, 96, 98, 99, 101,
102 108-110,112-116,118 119 121~
123 125 127-129, 136, 143-145, 149-
154, 157-159, 163-165, 182, 207-217,
219-225, 228
SEQUENTIAL-DEFINITION, 147, 220
def,163 224
SIGNAL-CLOCK, 118 214
def,118 214
SIGNAL-TYPE, 76, 8588, 98, 191, 207-
210,230
def,69, 84, 205, 208
SIGNALS, 182, 228
def,182 228
SIMPLE-DELAY, 107, 212

def,108 212

SPECIFICATION-OF-PROPERTIE$Y, 181,

207,227
def,181, 228
SUB-ARRAY, 147, 220
def,153 222
TRANSPOSITION 147, 220
def,165, 225
TUPLE-ENUMERATION,143 219
def,143 219
TUPLE-FIELD, 143 219
def,144, 219
TUPLE-TYPE,69, 205
def,77, 207
TYPE-INITIAL-VALUE, 85, 208
def,85
VARIABLE, 112 213
def,115, 213
WINDOW, 107, 212
def,109, 212

Terminal

action, 26, 175, 187, 188 192, 225, 229,
230

after,26, 116, 214

and,26, 123, 215

array,26, 158 223

boolean26, 70, 206

bundle,26, 77, 207

case26, 136,218

cell, 26,114, 213

char,26, 69, 205

@, 26, 72, 206

constant26, 86, 191, 208, 230

count,26, 116, 214

dcomplex,26, 72, 206

default,26, 112, 213

defaultvalue 26, 94, 96, 145, 157, 210, 220,
223

deterministic,26, 181, 228

dreal,26, 71, 206

else,26, 129, 136, 217, 219

end,26, 133 136, 158, 184, 191, 218, 223,
228,230

enum,26, 74, 207

event,26, 70, 206

external,26, 192 230

false,23, 26, 203

242 INDEX

from, 26, 116, 214

function, 26, 175, 187, 188 192 226, 229,
230

if, 26,129, 217

in, 26, 136, 164, 218, 225

init, 26, 85, 87, 108-110, 114, 115, 209,
212 213

integer,26, 70, 206

iterate,26, 158 223

label,26, 178 226

long, 26, 70, 206

module,26, 191, 230

modulo,26, 127, 216

next,26, 163 224

node,26, 175, 187, 188 192, 226, 229, 230

not, 26, 123 215

of, 26, 158 223

operator26

or, 26, 123 215

pragmas26, 184, 228

private,26, 191, 192, 230

process26, 174, 187, 188, 192, 225 229,
230

real,26, 71, 206

ref, 26, 178 227

safe,26, 181, 228

short,26, 70, 206

spec,26, 181, 228

statevar26, 88, 209

step,26, 151, 164, 221, 225

string, 26, 69, 205

struct,26, 77, 207

then,26, 129, 217

to, 26, 158 164, 223, 225

tr, 26, 165, 225

true, 23, 26, 203

type, 26, 84, 191, 208 230

unsafe 26, 181, 228

use,26, 192 231

var, 26, 115 213

when,26, 113 118 182 213 214, 228

where,26, 133 218

window, 26, 109, 212

with, 26, 159, 224

Xor, 26, 123, 215

	A INTRODUCTION
	I Introduction
	I--1 Main features of the language
	I--1.1 Signals
	I--1.2 Events
	I--1.3 Models
	I--1.4 Modules

	I--2 Model of sequences
	I--3 Static semantics
	I--3.1 Causality
	I--3.2 Explicit definitions

	I--4 Subject of the reference
	I--5 Form of the presentation

	II Lexical units
	II--1 Characters
	II--1.1 Sets of characters
	II--1.2 Encodings of characters

	II--2 Vocabulary
	II--2.1 Names
	II--2.2 Boolean constants
	II--2.3 Integer Constants
	II--2.4 Real constants
	II--2.5 Character constants
	II--2.6 String constants
	II--2.7 Comments

	II--3 Reserved words

	B THE KERNEL LANGUAGE
	III Model of sequences
	III--1 Syntax
	III--2 Events
	III--3 Traces
	III--3.1 Definition
	III--3.2 Partial observation of a trace
	III--3.3 Prefix order on traces
	III--3.4 Product of traces
	III--3.5 Reduced trace

	III--4 Flows
	III--4.1 Equivalence of traces
	III--4.2 Partial flow
	III--4.3 Flow-equivalence

	III--5 Processes
	III--5.1 Definition
	III--5.2 Partial observation of a process
	III--5.3 Composition of processes
	III--5.4 Order on processes

	III--6 Semantics of basic Signal terms
	III--6.1 Declarations
	III--6.2 Monochronous processes
	2-a Static monochronous processes
	2-b Dynamic monochronous processes: the delay

	III--6.3 Polychronous processes
	3-a Sub-signals
	3-b Merging of signals

	III--6.4 Composition of processes
	III--6.5 Restriction

	III--7 Composite signals
	III--7.1 Tuples
	III--7.2 Arrays

	III--8 Classes of processes
	III--8.1 Iterations of functions
	III--8.2 Endochronous processes
	III--8.3 Deterministic processes
	III--8.4 Reactive processes

	III--9 Composition properties
	III--9.1 Asynchronous composition of processes
	III--9.2 Isochrony
	III--9.3 Endo-isochrony

	III--10 Clock system and implementation relation
	III--11 Transformation of programs

	IV Calculus of synchronizations and dependences
	IV--1 Clocks
	IV--1.1 Clock homomorphism
	1-a Monochronous definitions
	1-b Polychronous definitions
	1-c Hiding
	1-d Composition

	IV--1.2 Verification
	IV--1.3 Clock calculus
	3-a Monochronous definitions
	3-b Polychronous definitions
	3-c Hiding
	3-d Composition
	3-e Static and dynamic clock calculus

	IV--2 Context clock
	IV--3 Dependences
	IV--3.1 Formal definition of dependences
	IV--3.2 Implicit dependences
	2-a Monochronous definitions
	2-b Polychronous definitions

	IV--3.3 Micro automata
	3-a Definition of micro automata
	3-b Construction of basic micro automata

	C THE SIGNALS
	V Domains of values of the signals
	V--1 Scalar types
	V--1.1 Synchronization types
	V--1.2 Integer types
	V--1.3 Real types
	V--1.4 Complex types
	V--1.5 Character type
	V--1.6 String type

	V--2 External types
	V--3 Enumerated types
	V--4 Array types
	V--5 Tuple types
	V--6 Structure of the set of types
	V--6.1 Set of types
	V--6.2 Order on types
	V--6.3 Conversions
	3-a Conversions between comparable types
	3-b Conversions toward the domain ``Synchronization-type''
	3-c Conversions toward the domain ``Integer-type''
	3-d Conversions toward the domain ``Real-type''
	3-e Conversions toward the domain ``Complex-type''
	3-f Conversions toward the types character and string
	3-g Conversions of arrays
	3-h Conversions of tuples

	V--7 Denotation of types
	V--8 Declarations of constant identifiers
	V--9 Declarations of sequence identifiers
	V--10 Declarations of state variables

	VI Expressions on signals
	VI--1 Systems of equations on signals
	VI--1.1 Elementary equations
	1-a Equation of definition of a signal
	1-b Equation of multiple definition of signals
	1-c Equation of partial definition of a signal
	1-d Equation of partial definition of a state variable
	1-e Equation of partial multiple definition

	VI--1.2 Invocation of a model
	2-a Macro-expansion of a model
	2-b Positional macro-expansion of a model
	2-c Call of a model
	2-d Expressions of type conversion

	VI--1.3 Nesting of expressions on signals

	VI--2 Elementary expressions
	VI--2.1 Constant expressions
	VI--2.2 Occurrence of signal or tuple identifier
	VI--2.3 Occurrence of state variable

	VI--3 Dynamic expressions
	VI--3.1 Initialization expression
	VI--3.2 Simple delay
	VI--3.3 Sliding window
	VI--3.4 Generalized delay

	VI--4 Polychronous expressions
	VI--4.1 Merging
	VI--4.2 Extraction
	VI--4.3 Memorization
	VI--4.4 Variable clock signal
	VI--4.5 Counters
	VI--4.6 Properties of polychronous expressions

	VI--5 Constraints and expressions on clocks
	VI--5.1 Expressions on clock signals
	1-a Clock of a signal
	1-b Clock extraction
	1-c Empty clock

	VI--5.2 Operators of clock lattice
	VI--5.3 Relations on clocks

	VI--6 Identity equations
	VI--7 Boolean synchronous expressions
	VI--7.1 Expressions on Booleans
	1-a Negation
	1-b Operators of Boolean lattice

	VI--7.2 Boolean relations

	VI--8 Synchronous expressions on numeric signals
	VI--8.1 Binary expressions on numeric signals
	VI--8.2 Unary operators

	VI--9 Synchronous condition

	VII Expressions on processes
	VII--1 Elementary processes
	VII--2 Composition
	VII--3 Hiding
	VII--4 Confining with local declarations
	VII--5 Labelled processes
	VII--6 Choice processes

	D THE COMPOSITE SIGNALS
	VIII Tuples of signals
	VIII--1 Constant expressions
	VIII--2 Enumeration of tuple elements
	VIII--3 Denotation of field
	VIII--4 Destructuration of tuple
	VIII--5 Equation of definition of tuple component

	IX Spatial processing
	IX--1 Dimensions of arrays and bounded values
	IX--2 Constant expressions
	IX--3 Enumeration
	IX--4 Concatenation
	IX--5 Repetition
	IX--6 Definition of index
	IX--7 Array element
	IX--7.1 Access without recovery
	IX--7.2 Access with recovery

	IX--8 Extraction of sub-array
	IX--9 Array restructuration
	IX--10 Generalized indices
	IX--11 Extended syntax of equations of definition
	IX--12 Cartesian product
	IX--13 Iterations of processes
	IX--14 Sequential definition
	IX--15 Sequential enumeration
	IX--16 Operators on matrices
	IX--16.1 Transposition
	IX--16.2 Matrix products
	2-a Product of matrices
	2-b Matrix--vector product
	2-c Vector--matrix product
	2-d Scalar product

	X Extensions of the operators
	X--1 Rules of extension
	X--2 Examples

	E THE MODULARITY
	XI Models of processes
	XI--1 Classes of process models
	XI--1.1 Processes
	XI--1.2 Actions
	XI--1.3 Nodes
	XI--1.4 Functions

	XI--2 Local declarations of a process model
	XI--3 Declarations of labels
	XI--4 References to signals with extended visibility
	XI--5 Interface of a model
	XI--6 Graph of a model
	XI--6.1 Specification of properties
	XI--6.2 Dependences

	XI--7 Directives
	XI--8 Models as types and parameters

	XII Modules
	XII--1 Declaration and use of modules

	XIII Intrinsic processes
	XIII--1 Assertions
	XIII--2 ``Left true'' process
	XIII--3 Mathematical functions
	XIII--4 Complex functions
	XIII--5 Input-output functions

	F ANNEX
	XIV Grammar of the SIGNAL language
	XIV--1 Lexical units
	XIV--1.1 Characters
	XIV--1.2 Vocabulary

	XIV--2 Domains of values of the signals
	XIV--2.1 Scalar types
	XIV--2.2 External types
	XIV--2.3 Enumerated types
	XIV--2.4 Array types
	XIV--2.5 Tuple types
	XIV--2.6 Denotation of types
	XIV--2.7 Declarations of constant identifiers
	XIV--2.8 Declarations of sequence identifiers
	XIV--2.9 Declarations of state variables

	XIV--3 Expressions on signals
	XIV--3.1 Systems of equations on signals
	XIV--3.2 Elementary expressions
	XIV--3.3 Dynamic expressions
	XIV--3.4 Polychronous expressions
	XIV--3.5 Constraints and expressions on clocks
	XIV--3.6 Constraints on signals
	XIV--3.7 Boolean synchronous expressions
	XIV--3.8 Synchronous expressions on numeric signals
	XIV--3.9 Synchronous condition

	XIV--4 Expressions on processes
	XIV--4.1 Composition
	XIV--4.2 Hiding
	XIV--4.3 Confining with local declarations
	XIV--4.4 Labelled processes
	XIV--4.5 Choice processes

	XIV--5 Tuples of signals
	XIV--5.1 Enumeration of tuple elements
	XIV--5.2 Denotation of field
	XIV--5.3 Equation of definition of tuple component

	XIV--6 Spatial processing
	XIV--6.1 Enumeration
	XIV--6.2 Concatenation
	XIV--6.3 Repetition
	XIV--6.4 Definition of index
	XIV--6.5 Array element
	XIV--6.6 Extraction of sub-array
	XIV--6.7 Array restructuration
	XIV--6.8 Extended syntax of equations of definition
	XIV--6.9 Cartesian product
	XIV--6.10 Iterations of processes
	XIV--6.11 Sequential definition
	XIV--6.12 Sequential enumeration
	XIV--6.13 Operators on matrices

	XIV--7 Models of processes
	XIV--7.1 Classes of process models
	XIV--7.2 Local declarations of a process model
	XIV--7.3 Declarations of labels
	XIV--7.4 References to signals with extended visibility
	XIV--7.5 Interface of a model
	XIV--7.6 Graph of a model
	XIV--7.7 Directives
	XIV--7.8 Models as types and parameters

	XIV--8 Modules
	XIV--8.1 Declaration and use of modules

	List of figures
	List of tables
	Index

